JP2017025530A - Ground bearing force increasing injection method - Google Patents

Ground bearing force increasing injection method Download PDF

Info

Publication number
JP2017025530A
JP2017025530A JP2015143623A JP2015143623A JP2017025530A JP 2017025530 A JP2017025530 A JP 2017025530A JP 2015143623 A JP2015143623 A JP 2015143623A JP 2015143623 A JP2015143623 A JP 2015143623A JP 2017025530 A JP2017025530 A JP 2017025530A
Authority
JP
Japan
Prior art keywords
injection
ground
chemical
rod
penetration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015143623A
Other languages
Japanese (ja)
Inventor
重治 有馬
Shigeharu Arima
重治 有馬
泰徳 堀内
Yasunori Horiuchi
泰徳 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEISEI TECHNOS KK
Original Assignee
HEISEI TECHNOS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEISEI TECHNOS KK filed Critical HEISEI TECHNOS KK
Priority to JP2015143623A priority Critical patent/JP2017025530A/en
Publication of JP2017025530A publication Critical patent/JP2017025530A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To increase foundation-under ground bearing force of a structure by constructing a compaction strengthening area in the ground, by patrolling and injecting by switching at a multipoint interval to respective chemical injection rods, by penetrating up to a stable ground layer by directly adding external force to the chemical injection rods in a plurality of places, for injecting an injection material into the structure foundation-under ground.SOLUTION: An injection point P is arranged in a plurality of places at a predetermined interval in an aboveground part to the building foundation-under ground G, and when penetrating a chemical injection rod 10 in the ground by directly adding thrust at these injection points, the chemical injection rod is installed by determining the penetration depth by estimating a compaction degree of the ground G based on a shift of a propulsion load, and an injection material is respectively supplied by a very small quantity to the chemical injection rod 10 by multipoint injection for supplying by successively switching an injection place at a predetermined time interval via a distribution switching valve by the setting by control means from a chemical supply device, and a compaction strengthening part Q of soil is formed by detaining in the ground in the vicinity of a discharge part of the chemical injection rod 10.SELECTED DRAWING: Figure 2

Description

本発明は、既存構造物基礎下部地盤に複数個所で配設した注入ポイントにて注入材を微少量ずつ巡回して反復注入し、地盤内下部に圧密強化域を形成して既存構造物を正常な状態で安定支持することができる地盤支持力増強工法に関するものである。   The present invention circulates and repeatedly injects the injection material little by little at injection points arranged at a plurality of locations in the lower ground of the existing structure foundation, forms a consolidation strengthening zone in the lower part of the ground, and normalizes the existing structure. The present invention relates to a ground support capacity increasing method capable of stably supporting in a stable state.

従来、既存構造物の支持地盤の改良技術としては、透水性を減少させる、あるいは粘着力を増加させることを目的として自硬性の薬液を地盤に注入する工法が多く採用されている。その改良手段としては既に種々の工法が提案され、かつ実施されている。その多くは、ゲルタイムの短い瞬結性グラウトやゲルタイムの長い緩結性グラウトを、注入管を用いて地盤中に注入し、注入材を地盤の土壌と結合させて固結体を形成して周囲の土壌に押圧力を加え、圧密度を高めて地盤を強化する方法が知られている。   Conventionally, as a technique for improving the supporting ground of an existing structure, a method of injecting a self-hardening chemical into the ground for the purpose of reducing water permeability or increasing adhesive force has been widely adopted. Various methods have already been proposed and implemented as improvement means. Most of them are short-lived grouting with short gel time or slow-growing grouting with long gel time is injected into the ground using an injection tube, and the injected material is combined with the soil of the ground to form a solidified body and surroundings. There is a known method for strengthening the ground by applying a pressing force to the soil and increasing the pressure density.

例えば、地震や近隣部での掘削工事などに起因して発生した地盤の変状により構築物が不同沈下する現象がある。このような不同沈下により傾斜した構築物を復元する工法としては、傾斜した構築物の基礎下部の地盤中に薬液材を注入して地中に固結体を造成し、その固結体により地盤の圧密度を高めるとともに、薬液注入時その固結体に反力をとって基礎ごと構築物を持上げて復元する技術について、特許文献1などにより知られている。   For example, there is a phenomenon that the structure sinks due to ground deformation caused by an earthquake or excavation work in the vicinity. As a method of restoring a tilted structure due to such uneven settlement, a chemical solution is injected into the ground below the foundation of the tilted structure to form a consolidated body. Patent Document 1 and the like disclose a technique for increasing the density and taking a reaction force on the solidified body and injecting the whole structure to restore the structure when the chemical solution is injected.

また、地盤改良を目指して多数の薬液注入管を多点に配設し、これら各薬液注入管に注入薬液材を供給して同時または選択して地盤に注入することで、注入薬液材を地中に浸透させ、かつ固結体を造成して地盤改良する技術について特許文献2,3などによって開示されている。   In addition, with the aim of improving the ground, a large number of chemical solution injection pipes are arranged at multiple points, and each of these chemical solution injection pipes is supplied with an injection chemical solution material and simultaneously or selectively injected into the ground, so that the injection chemical solution material is grounded. Patent Documents 2 and 3 disclose a technique for improving the ground by infiltrating inside and forming a consolidated body.

さらに、軟弱地盤の改良手段として地盤を掘削しつつ薬液材を噴射注入して柱状の地盤改良部を造成し、地盤強化を行う工法が例えば特許文献4などによって知られている。   Furthermore, as a means for improving soft ground, a method for strengthening the ground by creating a columnar ground improvement part by injecting and injecting a chemical solution material while excavating the ground is known, for example, from Patent Document 4 and the like.

しかしながら、従来の地盤改良工法にあっては、例えば前記特許文献1による工法では、不同沈下による構築物の復元について実効が認められ、不同沈下により多くの構築物を復元しているが、不同沈下の復元を主目的とすることから、目的区画の改良に際して地盤の表層部で複数個所に設置の薬液注入管に対する薬液供給を所要の間隔で切換えて断続的に注入する、いわゆる多点インターバル注入を行い、比較的1回の注入量を制限して均衡を保ちながら注入反力を利用して地上部の構築物を持上げる工法であるため、薬液注入が地盤の表層部にとどまる。したがって、深層部まで改良する、例えば軟弱地盤を改良するに際して十分であると言えない。   However, in the conventional ground improvement method, for example, in the method according to Patent Document 1, it is recognized that the restoration of the structure by the non-uniform settlement is effective, and many structures are restored by the non-uniform settlement. Because the main purpose is to improve the target section, the chemical solution supply to the chemical solution injection pipes installed at multiple locations in the surface layer of the ground is switched at the required intervals to inject intermittently, so-called multipoint interval injection is performed, Since it is a method of lifting the structure of the ground part using the injection reaction force while maintaining a balance by restricting the amount of injection once relatively, the chemical solution injection remains at the surface layer part of the ground. Therefore, it cannot be said that it is sufficient when improving to the deep layer, for example, improving soft ground.

また、多点注入を同時にあるいは選択して行う特許文献2,3などで知られる工法では、複数個所に設置して地盤の所要深さ位置まで挿入した薬液注入管によって一斉に薬液注入を行っていることから、この工法においても地盤の限定された深さ位置での薬液材の浸透拡散による土壌の圧密強化となり、多数の高圧ポンプを必要とし関連設備が大型化して設備費や運転コストが嵩むという問題点がある。   In addition, in the methods known from Patent Documents 2 and 3 in which multi-point injection is performed simultaneously or selectively, chemical solutions are injected all at once by a chemical solution injection tube installed at a plurality of locations and inserted to a required depth position of the ground. Therefore, even in this construction method, the consolidation of the soil is enhanced by the permeation and diffusion of the chemical material at a limited depth in the ground, and a large number of high-pressure pumps are required, resulting in an increase in the size of related equipment and increase in equipment costs and operating costs. There is a problem.

さらに、特許文献4で知られるような掘削噴射方式の地盤改良技術にあっては、地中に柱状の改良部が造成されることと、掘削深度を自由に得られることから地層深くまで柱状の改良部が造成されて地盤の強化に有効であるが、施工が大掛かりになるほか一度に複数個所に改良部を造成できない、また、施工には比較的大型の設備機械を導入する必要があり、多くの工費が必要になるなどの問題点がある。   Furthermore, in the ground improvement technology of the excavation injection method as known in Patent Document 4, a columnar improvement portion is created in the ground, and the drilling depth can be freely obtained, so that the columnar shape extends deep into the formation. The improved part is created and effective for strengthening the ground, but the construction becomes large, and the improved part cannot be created at multiple places at once, and it is necessary to introduce relatively large equipment machines for construction, There are problems such as requiring a lot of construction costs.

特許第3126896号公報Japanese Patent No. 3126896 特許第4672693号公報Japanese Patent No. 4667293 特開2003−232030号公報JP 2003-232030 A 特開2008−208620号公報JP 2008-208620 A

本発明では、推進機能を備えて推進深度での地質を推定できる薬液注入ロッドを対象地盤区域の複数箇所に配置するに際し、安定地層まで直接薬液注入ロッドを貫入し、この各薬液注入ロッドには所定インターバルで選択した順序にて液供給を短時間で切換えて巡回注入するようにし、所定量注入操作した後に薬液注入ロッドをステップアップする操作を繰返し、地盤中に薬液注入による土壌の圧密強化域を構築し、地層の状態に対応して深層部まで構築物の基礎下における地盤支持力を増強することができる地盤支持力増強注入工法の提供を目的とする。   In the present invention, when a chemical injection rod that has a propulsion function and can estimate the geology at the propulsion depth is arranged at a plurality of locations in the target ground area, the chemical injection rod is directly penetrated to the stable formation, and each chemical injection rod The liquid supply is switched in a short time in the order selected at a predetermined interval, and cyclic injection is performed. After the predetermined amount injection operation, the step of stepping up the chemical injection rod is repeated, and the soil consolidation strengthening region by chemical injection into the ground An object of the present invention is to provide a ground support strength enhancing injection method capable of enhancing the ground support force under the foundation of the structure up to the deep layer corresponding to the state of the formation.

前記目的を達成するために、本発明の地盤支持力増強注入工法は、
構築物基礎下地盤に対し地上部で所定間隔にて複数個所に注入ポイントを配し、これら注入ポイントで推進機能を備えた薬液注入ロッドに直接推力を加えて地中に貫入するに際し、推進負荷の変移に基づき地盤の圧密度を推定して貫入深さを定めて設置し、前記薬液注入ロッドに対して薬液材は、薬液供給装置から制御手段による設定で供給切換手段を介して所定時間間隔で注入個所を順次切換えて供給する多点注入により、ごく少量ずつ供給して前記薬液注入ロッドの吐出部近傍の地中にとどめて土壌の圧密強化域を形成することを特徴とするものである。
In order to achieve the above-mentioned object,
Injecting points at multiple locations at predetermined intervals on the ground base of the structure foundation foundation board, and applying a thrust directly to the chemical injection rod equipped with a propulsion function at these injection points, Based on the displacement, the pressure density of the ground is estimated and the penetration depth is determined and installed, and the chemical liquid material is set to the chemical liquid injection rod from the chemical liquid supply device by the control means at a predetermined time interval through the supply switching means. By the multi-point injection in which the injection points are sequentially switched and supplied, a very small amount is supplied and stays in the ground in the vicinity of the discharge portion of the chemical injection rod to form a consolidation consolidation region of the soil.

前記発明において、前記注入ポイントに設置する薬液注入ロッドは、二重管構造にして外管の先端部に錐頭体が同軸上で取り付けられ、所定長さの外管を複数本順次接続して所定深度に達するようにし、こうした外管の軸方向に直接推進力を付加する推進手段を用い、順次継ぎ足して所定深度まで地中に押し込み貫入させるようにし、内管としてチューブを用いて、後端部に前記外管内と前記内管とに通じる給液接続部をそれぞれ設けたヘッドを取り付け、注入材が供給されるようにするのがよい。   In the above invention, the chemical injection rod installed at the injection point has a double tube structure, a cone is coaxially attached to the tip of the outer tube, and a plurality of outer tubes of a predetermined length are sequentially connected. Using a propulsion means that directly applies a propulsive force in the axial direction of the outer pipe so that it reaches a predetermined depth, it is successively added and pushed into the ground to a predetermined depth, and a tube is used as the inner pipe, and the rear end It is preferable to attach a head provided with a liquid supply connection part communicating with the inside of the outer pipe and the inner pipe to the part so that the injection material is supplied.

前記注入ポイントにて設置される薬液注入ロッドは、付加される推進力が所定負荷を超える状態に到達したと判断された状態で貫入操作を停止し、前記薬液注入操作を行うようにすることを特徴とする。   The chemical injection rod installed at the injection point stops the penetration operation in a state where it is determined that the applied driving force has reached a state exceeding a predetermined load, and performs the chemical injection operation. Features.

また、本発明において、前記薬液注入ロッドによる注入ポイントでの薬液注入は、所要時間をおいて複数の注入ポイントを順次切換え短い注入時間で少量ずつ注入する操作を繰返し、注入薬液材を注入ポイントの周囲の地中でとどまるようにし、この操作の繰返しによって注入地点の周りに強化域を形成すると、薬液注入ロッドを前記強化域形成の縦軸方向相当分ステップアップさせ、前記操作を繰返し行って、多点注入により1回の注入量を少なくして注入された薬液材が、注入ポイントの周囲でとどまらせて上下方向に積層された強化域を形成することを特徴とする。   Further, in the present invention, the chemical injection at the injection point by the chemical injection rod is performed by sequentially switching a plurality of injection points at a necessary time and injecting a small amount in a short injection time. When the reinforcement region is formed around the injection point by repeating this operation so as to remain in the surrounding ground, the chemical solution injection rod is stepped up by an amount corresponding to the vertical direction of the reinforcement region formation, and the operation is repeated. It is characterized in that a chemical liquid material injected by reducing the amount of one injection by multi-point injection stays around the injection point to form a strengthened region laminated in the vertical direction.

本発明において、前記薬液注入ロッドの貫入のため付加する貫入推進手段としては、外管を把持して推力を加えるウエイト方式、油圧駆動方式、あるいはロッド頂部に外力を加える打撃方式(モンケン)、回転貫入方式などのうち選択された方式を採用することができる。   In the present invention, the penetration propulsion means added for penetration of the chemical solution injection rod includes a weight method in which an outer tube is gripped and thrust is applied, a hydraulic drive method, a striking method in which external force is applied to the top of the rod (monken), rotation A method selected from among penetration methods can be adopted.

本発明によれば、薬液注入ロッドをそのまま直接地盤内に貫入させて、その貫入地点(注入ポイント)での地盤内部の圧密度を貫入負荷によって、対応する貫入深度を直接的に感知して適正な貫入深さで薬液材の注入操作ができる。したがって、地盤中の安定層とその上部での薬液材注入による強化範囲とで軟弱な地層を圧密して広い強化域が形成でき、過度な注入を行うことなく適正でより効果的な構造物支持地盤の強化を図ることができる。   According to the present invention, the chemical injection rod is directly penetrated into the ground as it is, and the pressure density inside the ground at the penetration point (infusion point) is directly sensed by the penetration load, and the appropriate penetration depth is directly detected. The liquid material can be injected with a deep penetration depth. Therefore, it is possible to form a wide reinforced area by consolidating the soft layer with the stable layer in the ground and the strengthening range by injecting the chemical material at the upper part, and appropriate and more effective structure support without excessive injection The ground can be strengthened.

また、本発明によれば、薬液注入ロッドによる注入材の吐出部周辺に注入材がとどまるように注入することで、注入材の逸走や異常隆起などを防止して過度な注入が生じることなく、注入量を少なくして地盤の圧密度を高めることが可能になり、薬液注入により構造物基礎下地盤の支持力強化が経済的に実施し得る効果を奏するのである。   In addition, according to the present invention, by injecting the injection material so that the injection material stays around the discharge portion of the injection material by the chemical injection rod, without causing excessive injection and preventing the injection material from running away or abnormally rising, It becomes possible to increase the pressure density of the ground by reducing the amount of injection, and the effect of strengthening the supporting force of the structure foundation base plate by the chemical solution injection can be achieved economically.

本発明の地盤支持力増強注入工法の一実施形態を模式的に表す概要図である。It is a schematic diagram showing typically one embodiment of the ground support power reinforcement injection method of the present invention. 本発明による地盤支持力増強注入工法の一実施態様を地盤貫入圧力分布図(ブロック図)と比較して表す模式図である。It is a schematic diagram which represents one embodiment of the ground supporting force reinforcement | strengthening injection method by this invention compared with a ground penetration pressure distribution map (block diagram). 注入管の一例を表す図であって、注入管の先端部を示す図(a)と接続する中間部の管体を示す図(b)および注入ヘッド部を表す一部断面図(c)である。It is a figure showing an example of an injection | pouring pipe | tube, Comprising: The figure (b) which shows the pipe body of the intermediate part connected with the figure (a) which shows the front-end | tip part of an injection pipe, and the partial sectional view (c) showing an injection | pouring head part is there. 注入管の貫入に使用する貫入推進手段の一例を示す図である。It is a figure which shows an example of the penetration promotion means used for penetration of an injection pipe. 本発明の地盤支持力増強注入工法の実施に使用する薬液供給装置とその設置状況を模式的に表す図である。It is a figure which represents typically the chemical | medical solution supply apparatus used for implementation of the ground supporting force reinforcement | strengthening injection method of this invention, and its installation condition.

次に、本発明の地盤支持力増強注入工法の一実施形態について、図面を参照しつつ説明する。   Next, an embodiment of the ground bearing capacity enhancing injection method of the present invention will be described with reference to the drawings.

本発明による地盤支持力増強注入工法は、既設構造物Aの負荷が作用する基礎下地盤Gに対して複数個所に分配した注入ポイントPに薬液注入ロッド10を設置して、この注入ポイントPで注入材を少量ずつ予め設定した時間間隔にて1箇所ずつ注入ポイントPを切換え注入する操作を繰り返し、構造物Aによる載荷重が作用する状態に対応して注入材を注入することにより地盤Gを強制的に圧密する。この注入操作で用いる薬液注入ロッド10は、地盤Gに対して直接貫入させ、その貫入操作に際して地質の調査を同時に行わせ、地層の圧密状態に対応した貫入深度の範囲で注入材を注入し、過度な注入を回避して合理的で経済的な地盤の支持力強化を実施できるのである。   In the ground supporting capacity increasing injection method according to the present invention, the chemical solution injection rod 10 is installed at the injection points P distributed to a plurality of locations with respect to the foundation base plate G on which the load of the existing structure A acts. The operation of switching and injecting the injection point P one by one at a preset time interval in small increments is repeated, and the ground G is injected by injecting the injection material corresponding to the state in which the loading load by the structure A acts. Force consolidation. The chemical injection rod 10 used in this injection operation is directly penetrated into the ground G, and at the same time, the geological investigation is performed at the time of the penetration operation, and the injection material is injected within the range of the penetration depth corresponding to the consolidated state of the formation, By avoiding excessive injection, it is possible to implement a rational and economical support for the ground.

そして、本発明の地盤支持力増強注入工法では、注入ポイントPに設置する薬液注入ロッド10を所定深度まで貫入する過程で測定された地層の状態に応じて注入材の注入量を順次切換えて行うようにする。すなわち、ステップアップして注入するにあたり、圧密度の低い地層部分では注入材の注入量が多くなるようにし、逆に圧密度の高い地層部分では注入材の注入量が少なくなるようにして注入する。場合によっては圧密度の高い地層部分では注入を行わない(図2参照)。このように地層の分布に応じた注入手法によることで、注入材を合理的に注入し、過剰な注入材を用いることなく、対象地盤の圧密度を全般的に向上させ、経済的効果を高め得ることができる。   And in the ground supporting force reinforcement injection method of the present invention, the injection amount of the injection material is sequentially switched according to the state of the formation measured in the process of penetrating the chemical injection rod 10 installed at the injection point P to a predetermined depth. Like that. That is, when stepping up and injecting, the injection amount of the injection material is increased in the formation portion where the pressure density is low, and conversely, the injection amount of the injection material is reduced in the formation portion where the pressure density is high. . In some cases, the injection is not performed in the formation portion having a high pressure density (see FIG. 2). By using the injection method according to the distribution of the formation in this way, the injection material can be rationally injected, the pressure density of the target ground can be improved generally without using excessive injection material, and the economic effect is enhanced. Can be obtained.

この実施形態では、対象となる地盤Gに所定の間隔(後述)で配分された複数個所の注入ポイントPにおいて設置する薬液注入ロッド10(以下、単に「注入管10」という)は、図3に例示するように、二重管構造のものが採用される。この注入管10の外管11としては、所定口径の金属管で所定の長さのものを周知構造の継ぎ手14(例えば、外管11の一端には雌ねじ14aを、他端には雄ねじ14bを設けて、順次ねじ合わせて接続するねじ継ぎ手構造)を用いて順次接続して使用する。そして、先端部には円錐形をした先頭部材13(本発明の「錐頭体」に対応)が尖端を先にして取り付けられ、この先頭部材13の取付軸部13aと外管端の内径との嵌合部分において外管11の周面に注入材の吐出口15が複数個所で放射状に設けてあり、外管11を順次接続して最終端では注入材の供給配管接続口17,18を備えたヘッド16が接続される。なお、内管12としては可とう性材料でなるチューブが組み合わされる(外管の貫入長さに対応させることができる)。   In this embodiment, a chemical solution injection rod 10 (hereinafter simply referred to as “injection tube 10”) installed at a plurality of injection points P distributed at predetermined intervals (described later) to the target ground G is shown in FIG. As illustrated, a double tube structure is employed. As the outer tube 11 of the injection tube 10, a metal tube having a predetermined diameter and having a predetermined length is a joint 14 having a known structure (for example, an external screw 14 a is provided at one end of the external tube 11, and an external screw 14 b is provided at the other end. The screw joint structure that is provided and sequentially connected by screw connection is used. A conical head member 13 (corresponding to the “cone” of the present invention) is attached to the tip portion with the tip end first, and the mounting shaft portion 13a of the head member 13 and the inner diameter of the outer tube end In the fitting portion, there are radially provided injection material discharge ports 15 at a plurality of locations on the peripheral surface of the outer tube 11, and the outer tube 11 is sequentially connected, and the injection material supply pipe connection ports 17 and 18 are connected at the final end. The provided head 16 is connected. In addition, the tube which consists of a flexible material is combined as the inner tube | pipe 12 (it can be made to respond | correspond to the penetration length of an outer tube | pipe).

このような構成の注入管10は、注入ポイントPにおいて貫入操作を行うに際し、例えばスウェーデン式サウンディング試験装置と同様な貫入推進手段20を使用して、先頭部材13を備えた注入管10を基礎下地盤Gに対して貫入させる。前記貫入推進手段20は、一例として図4に示されるように、移設可能で使用時直立する構造の本体フレーム21、この本体フレーム21の前面に沿って上下に摺動可能に支持される昇降フレーム22、この昇降フレーム22に組み込まれて貫入時に負荷を加える複数枚のウエイト23が搭載できるようにした載荷盤24、昇降フレーム22の上面に設けられて注入管10を把持するクランプ25、前記昇降フレーム22を引き上げるワイヤー26とウインチ27を備える。ただし、貫入推進手段については、油圧ジャッキ或いは機械式ジャッキを駆動源とするものなど、前記例に限定されるものではない。図中符号28は本体フレームの頂部に設けたガイドシーブ、21aは移設時に本体フレーム21を傾けると地切りして移動可能にする車輪である。   When performing the penetration operation at the injection point P, the injection pipe 10 having such a configuration uses, for example, the penetration propulsion means 20 similar to the Swedish sounding test apparatus, and uses the injection pipe 10 provided with the leading member 13 as a base. It penetrates into the ground G. As shown in FIG. 4 as an example, the penetration propulsion means 20 includes a main body frame 21 that can be moved and is upright when in use, and a lifting frame that is supported so as to be slidable vertically along the front surface of the main body frame 21. 22, a loading board 24 incorporated in the lifting frame 22 and capable of mounting a plurality of weights 23 for applying a load at the time of penetration; a clamp 25 provided on the upper surface of the lifting frame 22 for holding the injection tube 10; A wire 26 for lifting the frame 22 and a winch 27 are provided. However, the penetration propulsion means is not limited to the above example such as a hydraulic jack or a mechanical jack as a drive source. In the figure, reference numeral 28 denotes a guide sheave provided at the top of the main body frame, and 21a denotes a wheel that can be moved by being grounded when the main body frame 21 is tilted during the transfer.

この注入管10の貫入操作に際しては、予め貫入試験の基準に類する選定値を用意しておき、貫入推進手段20における昇降フレーム22上のクランプ25により注入管10を把持し、載荷盤24に所定のウエイト23を搭載してその荷重でもって垂直に押し込む。すると、注入管10はクランプ25が付設されている昇降フレーム22とともに本体フレーム21の前面に案内されて降下し、貫入されることになる。なお、貫入操作に際しては、注入管10が所定長さ貫入されるごとにクランプ25による把持を解いて昇降フレーム22をウインチ27により昇降可能な寸法引き上げ、再びクランプ25で注入管10を把持してウエイト23の負荷をかけて押し込む操作を繰り返し行う。なお、ウインチ27は貫入操作時ワイヤーを緩めておく。   In the penetration operation of the injection tube 10, a selection value similar to the reference for the penetration test is prepared in advance, the injection tube 10 is gripped by the clamp 25 on the lifting frame 22 in the penetration propulsion means 20, and a predetermined value is applied to the loading board 24. The weight 23 is mounted and pushed vertically with the load. Then, the injection tube 10 is guided to the front surface of the main body frame 21 together with the lifting frame 22 to which the clamp 25 is attached, and is then inserted. During the penetration operation, every time the injection tube 10 is penetrated by a predetermined length, the grip by the clamp 25 is released, the lifting frame 22 is lifted by a winch 27, and the injection tube 10 is again gripped by the clamp 25. The operation of pushing in with the load of the weight 23 is repeated. The winch 27 loosens the wire during the penetration operation.

前記貫入操作に際し、地盤Gの表層部以降の注入管10の貫入によるデータを記録して地質を推定する。この場合、得られるデータに基づき深層部で圧密度の高い地層に到達したことが感知された時点で貫入操作を停止し、注入管10の設置が終了する。したがって、各注入ポイントPにおける注入管10の貫入深さは一定しないので、適正と考えられる深度に設定することになる。なお、注入管10の貫入設置が終われば、貫入推進手段20を撤去し、次の注入ポイントに移動させて前記要領で当該位置での注入管の設置を行う。   At the time of the penetration operation, data on the penetration of the injection pipe 10 after the surface layer portion of the ground G is recorded to estimate the geology. In this case, the penetration operation is stopped when it is sensed that the formation has reached a high pressure density formation in the deep layer based on the obtained data, and the installation of the injection tube 10 is completed. Therefore, since the penetration depth of the injection tube 10 at each injection point P is not constant, it is set to a depth considered appropriate. When the penetration installation of the injection pipe 10 is finished, the penetration promotion means 20 is removed and moved to the next injection point, and the injection pipe is installed at the position in the above manner.

前記各注入管10に対する注入材を供給する薬液供給装置30は、例えば水ガラス系注入材(A液)とセメント系注入材(B液)とを調製し、これらA液とB液とをそれぞれ別個に送液高圧ポンプ31A,31Bによって供給できるようにしたものを用いる。   The chemical liquid supply device 30 for supplying the injection material to each of the injection tubes 10 prepares, for example, a water glass-based injection material (A liquid) and a cement-based injection material (B liquid), and these A liquid and B liquid respectively. A pump that can be supplied separately by the liquid feed high-pressure pumps 31A and 31B is used.

各注入ポイントPに設置された注入管10に対して注入材を供給するには、前記薬液供給装置30から一連の供給配管32A,32B中に各注入管10に対応するように設けられた分配切換弁34を介して分岐された配管33A,33Bで接続され、薬液供給装置30に付設の制御盤35での設定による制御指令で、設定した注入時間で供給する注入ポイントPを選択して切換え、薬液材の1回の注入時間を短くして少量ずつ順次繰り返し注入できるようにする(図5参照)。   In order to supply the injection material to the injection pipes 10 installed at the respective injection points P, the chemical solution supply device 30 distributes the supply pipes 32A and 32B provided to correspond to the injection pipes 10 respectively. Connected by pipes 33A and 33B branched via a switching valve 34, and switched by selecting an injection point P to be supplied at a set injection time in accordance with a control command set by a control panel 35 attached to the chemical liquid supply device 30. The injection time of the chemical liquid material is shortened so that it can be sequentially and repeatedly injected in small amounts (see FIG. 5).

前述の薬液供給装置30において供給する注入材(A液とB液)は別個に調製する。ここで使用される注入材は、凝固時間の長いもの、いわゆる緩結性注入材を用いる。また、注入の操作を制御する制御手段(制御盤35)では、1か所の注入ポイントPでの1回の注入量として0.6〜4.0リットルの範囲で選択された量、注入間隔となる供給停止時間としては、注入された注入材のゲル化および所定強度発現時間に相応するものとして設定される。この注入材が注入管10の先端の吐出口15から地中に注入されて所要時間経過すると、当該注入ポイントPへの注入材の供給を分配切換弁34が閉止して次の注入ポイントPに対する分配切換弁34が開の状態に切換えられ、当該注入管10へ分岐された配管33A,33Bに注入材が供給されるようになる。この操作が順次各注入管10に対して切換えられ、所定回数巡回してそれぞれに注入される。   The injection material (A liquid and B liquid) supplied in the above-mentioned chemical liquid supply apparatus 30 is prepared separately. As the injection material used here, one having a long solidification time, that is, a so-called slow-setting injection material is used. Further, in the control means (control panel 35) for controlling the operation of injection, the amount selected in the range of 0.6 to 4.0 liters as the one injection amount at one injection point P, the injection interval The supply stop time is set to correspond to the gelation of the injected injection material and the predetermined strength development time. When this injection material is injected into the ground from the discharge port 15 at the tip of the injection tube 10 and a required time has elapsed, the distribution switching valve 34 closes the supply of the injection material to the injection point P and the next injection point P is supplied. The distribution switching valve 34 is switched to the open state, and the injection material is supplied to the pipes 33A and 33B branched to the injection pipe 10. This operation is sequentially switched with respect to each injection tube 10, and it injects to each after circulating a predetermined number of times.

前述のように各注入ポイントPの注入管10に対する注入材の供給に際しては、各注入管10に対して割り当てられているすべての分配切換弁34が一連に接続された供給配管32A,32B中に設けられて連通状態にされている。そして、この供給配管32A,32Bの終端が閉止(プラグまたは弁で)した状態にされているので、制御手段の指令によって選択された注入ポイントへの分配切換弁34のみが開き、それ以外の分配切換弁はすへて注入管10への分岐された配管33A,33Bを閉じる。したがって、供給配管32A,32Bは所定の圧力に維持されるので、各注入管10への注入材の供給時には、いずれの位置においても所定の圧力でもって注入管10から地中に吐出し、同様に機能する。   As described above, when the injection material is supplied to the injection pipe 10 at each injection point P, all the distribution switching valves 34 assigned to the injection pipes 10 are provided in the supply pipes 32A and 32B connected in series. It is provided and is in communication. Since the terminal ends of the supply pipes 32A and 32B are closed (plugs or valves), only the distribution switching valve 34 to the injection point selected by the command of the control means is opened, and the other distribution is performed. The switching valve closes the pipes 33A and 33B branched to the injection pipe 10. Accordingly, since the supply pipes 32A and 32B are maintained at a predetermined pressure, when the injection material is supplied to each injection pipe 10, it is discharged from the injection pipe 10 into the ground at a predetermined pressure at any position. To work.

こうして注入ポイントPで注入管10によって地中に注入された注入材は、一回当たりの供給量がごく少量であるので、吐出部から地中に吐出されると木の根状に分散してその周辺部の土壌と結び付いてとどまり、吐出された注入材がゲル化及び所定強度に発現する時間を待ち時間とし、この待ち時間中に他の注入ポイントPへの注入材の供給が順次切換えられて注入が行われる。   The injection material injected into the ground through the injection pipe 10 at the injection point P in this way is very small in supply amount per time, so when discharged from the discharge portion into the ground, it is dispersed in the shape of a tree root and its surroundings. The waiting time is the time for the discharged injected material to gel and develop at a predetermined strength, and the supply of the injected material to other injection points P is sequentially switched during this waiting time. Is done.

切換えが一巡して先に注入された注入ポイントPの注入管10に再び注入材が供給されると、吐出する注入材が先に吐出して土壌中に分散されて結び付き、ゲル化して圧密化されつつある部分に後続の注入材が注入圧によって圧入され流動し、先に圧密された部分の外側に流れ出し、周辺土壌と結び付くとともに枝状に分布される。この状態が後続の注入により所定回数繰り返されると、一回の注入量がごく少量であるから、大きく拡張することなく注入ポイントPでの吐出周辺部でとどまることになる。   When the injection material is supplied again to the injection pipe 10 at the injection point P where the switching is completed once, the injection material to be discharged is discharged first, dispersed in the soil, tied, gelled and consolidated. Subsequent injection material is injected into the portion being pressed by the injection pressure and flows, flows out of the previously consolidated portion, is connected to the surrounding soil, and is distributed in branches. When this state is repeated a predetermined number of times by subsequent injections, the injection amount at one time is very small, so that it remains at the discharge peripheral portion at the injection point P without greatly expanding.

前記各注入ポイントPの配置間隔は、注入する注入材の粘度、注入量、注入圧や地質などの条件を勘案して、その注入ポイントPでの注入材の注入による周辺への分散半径を予測し、この分散半径の2倍を超える間隔(ただし、これに限定されない)で配置するのが好ましい。   The arrangement interval of each injection point P is estimated in consideration of conditions such as the viscosity of the injection material to be injected, the injection amount, the injection pressure and the geology, and the dispersion radius to the periphery due to the injection of the injection material at the injection point P. However, it is preferable to dispose at an interval exceeding (but not limited to) twice the dispersion radius.

各注入ポイントPでの注入が所定の回数繰り返されると、注入操作を一旦停止する。こうして最初に貫入設置された注入管10の吐出部深さ位置の周辺で所定量の注入材が注入されて土壌の圧密強化部Q(本発明の圧密強化域に対応する)が形成されると、注入管10をパイプ引き上げ手段(先に注入管を貫入させるのに用いた貫入推進手段20を逆操作させる、或いは別途杭抜き器など)を用いて所定寸法注入管10を引き上げる(ステップアップ)。なお、注入管の引き上げに際して、初期の段階において注入管10の先端部に取り付けた先頭部材13は残留して管体(外管11と内管12)を引き上げることになる。   When the injection at each injection point P is repeated a predetermined number of times, the injection operation is temporarily stopped. Thus, when a predetermined amount of the injection material is injected around the discharge portion depth position of the injection pipe 10 that has been first installed in a penetrating manner, the soil consolidation strengthening portion Q (corresponding to the consolidation strengthening region of the present invention) is formed. Then, the injection pipe 10 is pulled up by a pipe pulling means (reverse operation of the penetration propulsion means 20 previously used for penetrating the injection pipe, or a separate pile remover) (step up). . When the injection tube is pulled up, the leading member 13 attached to the tip of the injection tube 10 remains in the initial stage, and the pipe body (the outer tube 11 and the inner tube 12) is pulled up.

次に、注入管10を一定寸法ステップアップさせると、再び前記要領で注入材の注入を順次繰り返し行う。こうすると、先の注入によって地中に形成された圧密強化部Qの上側で、前記状態と同様に木の根状に注入形成された圧密強化部Qが積層状態で形成される。   Next, when the injection tube 10 is stepped up by a certain size, the injection of injection material is sequentially repeated again in the manner described above. In this way, the consolidation strengthened portion Q formed in the shape of a tree root is formed in a laminated state on the upper side of the consolidation strengthened portion Q formed in the ground by the previous injection.

ここにおいて、注入管10のステップアップによる注入材の注入に関しては、図2に例示するように、注入管10の貫入時に得られたデータに基づき貫入圧力分布図を作成し、この貫入圧力分布図に対応させて圧密度の低い層hでは注入材の注入量を多くする。また、圧密度の高い層Hでは注入材の注入量を少なくしてステップアップさせる。   Here, regarding the injection of the injection material by step-up of the injection tube 10, as illustrated in FIG. 2, a penetration pressure distribution diagram is created based on the data obtained at the time of penetration of the injection tube 10, and this penetration pressure distribution diagram. Accordingly, the injection amount of the injection material is increased in the layer h having a low pressure density. In addition, the layer H having a high pressure density is stepped up by reducing the injection amount of the injection material.

このようにして、前記要領で注入管10をステップアップと注入の操作を繰り返し、地盤中に地層の状態に対応する容量の圧密強化部Q,Q′を上下方向に拡張形成させる。このような注入操作が各注入ポイントPにおいて同時並行して行われることにより、隣接する注入ポイントPでそれぞれ形成される圧密強化部Q,Q′によって横方向に相互に周辺土壌が圧密され、対象とする建造物Aの基礎下地盤G内が強化されることになる。   In this way, the injection tube 10 is repeatedly stepped up and injected in the manner described above, and the consolidation strengthening portions Q and Q ′ having a capacity corresponding to the state of the formation are expanded in the vertical direction in the ground. By performing such an injection operation in parallel at each injection point P, the surrounding soil is consolidated in the lateral direction by the consolidation strengthening portions Q and Q ′ formed at the adjacent injection points P, respectively. The foundation ground board G of the building A is strengthened.

本発明によれば、薬液注入ロッド(注入管10)に直接外力を加えて地盤内に貫入させ、その貫入地点での地盤内部の圧密度を貫入負荷から検知することで、直接的に安定地層を感知して適正貫入深さを設定し、かつ注入材の注入操作を地層に対応させて注入量の加減ができる。したがって、構造物による載荷重が作用する状態で地盤中の安定層とともにその上部の範囲を注入による圧密で強化域が形成でき、過度な注入を行うことなく、経済性を高め効果的な構造物支持地盤の強化を図ることができる。   According to the present invention, an external force is directly applied to the chemical injection rod (injection tube 10) to penetrate into the ground, and the pressure density inside the ground at the penetration point is detected from the penetration load, so that the stable formation directly The amount of injection can be increased or decreased by setting the appropriate penetration depth by sensing this and making the injection operation of the injection material corresponding to the formation. Therefore, it is possible to form a strengthened zone by consolidation by injection in the upper part of the ground together with the stable layer in the ground in the state where the load is applied by the structure, and it is an effective structure that enhances economic efficiency without excessive injection The support ground can be strengthened.

上記説明によれば、重力式・動力加圧式などの貫入推進手段を用いて注入管を地盤に貫入することについて記載したが、注入管の後端(貫入時の上端)に打込み用のヘッドを着脱可能に取り付けて、仮設できる支持体(例えば三脚支持体)で支持する滑車を介し吊下げた重錐を落下させて打撃力を加え貫入する方式(モンケン)を採用することもできる。また、注入管を回転させて貫入することも可能である。   According to the above description, it has been described that the injection pipe is penetrated into the ground using a gravity type or power pressurization type penetration propulsion means. However, a driving head is provided at the rear end (upper end at the time of penetration) of the injection pipe. It is also possible to adopt a method (monken) in which a heavy cone suspended by a pulley that is detachably attached and supported by a temporary support (for example, a tripod support) is dropped to apply impact force. It is also possible to penetrate the injection tube by rotating it.

10 注入管(薬液注入ロッド)
11 外管
12 内管
13 先端部材(錐頭体)
15 注入材の吐出口
16 ヘッド
20 貫入推進手段
22 昇降フレーム
23 ウエイト
25 クランプ
30 薬液供給装置
31A、31B 送液高圧ポンプ
34 分配切換弁
A 構造物
G 地盤
Q,Q′ 圧密強化部(強化域)
10 Injection tube (chemical injection rod)
11 Outer tube 12 Inner tube 13 Tip member (cone)
DESCRIPTION OF SYMBOLS 15 Injection material discharge port 16 Head 20 Penetration propulsion means 22 Lifting frame 23 Weight 25 Clamp 30 Chemical solution supply device 31A, 31B Liquid feeding high pressure pump 34 Distribution switching valve A Structure G Ground Q, Q 'Consolidation strengthening part (strengthening zone)

Claims (5)

構築物基礎下地盤に対し地上部で所定間隔にて複数個所に注入ポイントを配し、これら注入ポイントで推進機能を備えた薬液注入ロッドに直接推力を加えて地中に貫入するに際し、推進負荷の変移に基づき地盤の圧密度を推定して貫入深さを定めて設置し、前記薬液注入ロッドに対して薬液材は、薬液供給装置から制御手段による設定で供給切換手段を介して所定時間間隔で注入個所を順次切換えて供給する多点注入により、ごく少量ずつ供給して前記薬液注入ロッドの吐出部近傍の地中にとどめて土壌の圧密強化域を形成することを特徴とする地盤支持力増強注入工法。   Injecting points at multiple locations at predetermined intervals on the ground base of the structure foundation foundation board, and applying a thrust directly to the chemical injection rod equipped with a propulsion function at these injection points, Based on the displacement, the pressure density of the ground is estimated and the penetration depth is determined and installed, and the chemical liquid material is set to the chemical liquid injection rod from the chemical liquid supply device by the control means at a predetermined time interval through the supply switching means. Multi-point injection that sequentially switches the injection site, supplying a very small amount and staying in the ground near the discharge part of the chemical injection rod to form a consolidation consolidation area of the soil Injection method. 前記注入ポイントに設置する薬液注入ロッドは、二重管構造にして外管の先端部に錐頭体が同軸上で取り付けられ、所定長さの外管を複数本順次接続して所定深度に達するようにし、こうした外管の軸方向に直接推進力を付加する推進手段を用い、順次継ぎ足して所定深度まで地中に押し込み貫入させるようにし、内管としてチューブを用いて、後端部に前記外管内と前記内管とに通じる給液接続部をそれぞれ設けたヘッドを取り付け、注入材が供給されるようにする請求項1に記載の地盤支持力増強注入工法。   The chemical injection rod to be installed at the injection point has a double tube structure, and a cone is coaxially attached to the tip of the outer tube, and a plurality of outer tubes of a predetermined length are sequentially connected to reach a predetermined depth. Using a propulsion means that directly applies a propulsive force in the axial direction of the outer tube, the outer tube is successively added and pushed into the ground to a predetermined depth, and a tube is used as the inner tube. 2. The ground supporting force-enhancing injection method according to claim 1, wherein a head provided with a liquid supply connection portion communicating with the inside of the pipe and the inner pipe is attached so that the injection material is supplied. 前記注入ポイントにて設置される薬液注入ロッドは、付加される推進力が所定負荷を超える状態に到達したと判断された状態で貫入操作を停止し、前記薬液注入操作を行うようにすることを特徴とする請求項1または2に記載の地盤支持力増強注入工法   The chemical injection rod installed at the injection point stops the penetration operation in a state where it is determined that the applied driving force has reached a state exceeding a predetermined load, and performs the chemical injection operation. The ground supporting capacity enhancing injection method according to claim 1 or 2, 前記薬液注入ロッドによる注入ポイントでの薬液注入は、所要時間をおいて複数の注入ポイントを順次切換え短い注入時間で少量ずつ注入する操作を繰返し、注入薬液材を注入ポイントの周囲の地中でとどまるようにし、この操作の繰返しによって注入地点の周りに強化域を形成すると、薬液注入ロッドを前記強化域形成の縦軸方向相当分ステップアップさせ、前記操作を繰返し行って、多点注入により1回の注入量を少なくして注入された薬液材が、注入ポイントの周囲でとどまるようにして上下方向に積層された強化域を形成することを特徴とする請求項1に記載の地盤支持力増強注入工法。   The liquid injection at the injection point by the chemical liquid injection rod is performed by sequentially switching a plurality of injection points at a required time and injecting a small amount in a short injection time, and the injection chemical liquid material remains in the ground around the injection point. Thus, when the strengthening zone is formed around the injection point by repeating this operation, the chemical solution injection rod is stepped up by an amount corresponding to the vertical axis direction of the strengthening zone formation, and the operation is repeated, and once by multipoint injection. 2. The ground supporting force enhancing injection according to claim 1, wherein a strengthening region is formed in which a chemical material injected with a small amount of injection is stacked vertically so as to stay around the injection point. Construction method. 前記薬液注入ロッドの貫入のため付加する推進手段としては、外管を把持して推力を加えるウエイト方式、油圧駆動方式、回転貫入方式、あるいはロッド頂部に外力を加える打撃方式(モンケン)などのうち選択された方式を採用する請求項1に記載の地盤支持力増強注入工法。
The propulsion means added for penetration of the chemical solution injection rod includes a weight method in which an outer tube is gripped and thrust is applied, a hydraulic drive method, a rotary penetration method, or a striking method in which external force is applied to the top of the rod (Monken) The ground support capacity increasing injection method according to claim 1, wherein the selected method is adopted.
JP2015143623A 2015-07-21 2015-07-21 Ground bearing force increasing injection method Pending JP2017025530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015143623A JP2017025530A (en) 2015-07-21 2015-07-21 Ground bearing force increasing injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015143623A JP2017025530A (en) 2015-07-21 2015-07-21 Ground bearing force increasing injection method

Publications (1)

Publication Number Publication Date
JP2017025530A true JP2017025530A (en) 2017-02-02

Family

ID=57950301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015143623A Pending JP2017025530A (en) 2015-07-21 2015-07-21 Ground bearing force increasing injection method

Country Status (1)

Country Link
JP (1) JP2017025530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137981A (en) * 2018-02-06 2019-08-22 東海旅客鉄道株式会社 Method for filling grout material
JP2022058226A (en) * 2020-09-30 2022-04-11 日建ウッドシステムズ株式会社 Ground reinforcement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137981A (en) * 2018-02-06 2019-08-22 東海旅客鉄道株式会社 Method for filling grout material
JP7008524B2 (en) 2018-02-06 2022-01-25 東海旅客鉄道株式会社 How to inject grout material
JP2022058226A (en) * 2020-09-30 2022-04-11 日建ウッドシステムズ株式会社 Ground reinforcement method
JP7135188B2 (en) 2020-09-30 2022-09-12 日建ウッドシステムズ株式会社 Ground reinforcement method

Similar Documents

Publication Publication Date Title
JP6093453B2 (en) Ground improvement method
CN101538857A (en) Pile extraction construction method
CN107246001A (en) Long auger guncreting pile is engaged wall mechanical device and construction method with mixing pile
CN107338781A (en) A kind of compacting pile construction device and its construction method
CN107642041A (en) The hollow clump of piles anchorage of super-large diameter
CN108643214B (en) Backfill mixed soil composite foundation structure and construction method thereof
CN104404956A (en) Construction method for pedestal piles
CN105672316A (en) Steel pile sinking damping device and construction method
JP2017025530A (en) Ground bearing force increasing injection method
CN107100160A (en) A kind of construction technology for lower storage reservoir check dam vibro-replacement stone column
CN104711975A (en) Construction technology for long spiral cast-in-situ bored pile
CN107604902B (en) Grouting behind shaft or drift lining bored concrete pile and its construction technology
WO2015152826A1 (en) Method for installing a multi-section suction caisson
JP2009287326A (en) Pulling out method of existing pile
CN207277312U (en) A kind of compacting pile construction device
CN207331690U (en) Pile pile sunk stake machine
CN207582472U (en) A kind of pile body is equipped with the Retaining Structure with Double-row Piles of rotary churning pile
CN108316288A (en) Half casing guncreting pile construction equipment and construction method
CN103866763B (en) Method for making pile by performing pile pressure irrigation through immersed tube and special device and application
CN105064334A (en) Construction method for cast-in-situ bored pile
JP5876353B2 (en) Steel pipe pile construction method
CN203846495U (en) Static pile press-in machine with additional inner-striking pipe-sinking pressure-filling pile construction function
JP2015004251A (en) Ground improvement method
JP2884273B2 (en) Construction method for high strength cast-in-place concrete piles
CN203334953U (en) Long rod type hole leading pile machine