JP2017019721A - Modified titanium oxide-based fine particle powder for honeycomb extrusion molded body, composition for honeycomb extrusion molded body and honeycomb molded body - Google Patents

Modified titanium oxide-based fine particle powder for honeycomb extrusion molded body, composition for honeycomb extrusion molded body and honeycomb molded body Download PDF

Info

Publication number
JP2017019721A
JP2017019721A JP2016189939A JP2016189939A JP2017019721A JP 2017019721 A JP2017019721 A JP 2017019721A JP 2016189939 A JP2016189939 A JP 2016189939A JP 2016189939 A JP2016189939 A JP 2016189939A JP 2017019721 A JP2017019721 A JP 2017019721A
Authority
JP
Japan
Prior art keywords
honeycomb
titanium oxide
molded body
fine particle
particle powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016189939A
Other languages
Japanese (ja)
Other versions
JP6266069B2 (en
Inventor
健太郎 山口
Kentaro Yamaguchi
健太郎 山口
足立 健太郎
Kentaro Adachi
健太郎 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Publication of JP2017019721A publication Critical patent/JP2017019721A/en
Application granted granted Critical
Publication of JP6266069B2 publication Critical patent/JP6266069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0209Esters of carboxylic or carbonic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a modified titanium oxide-based fine particle powder for honeycomb extrusion molded body capable of manufacturing a honeycomb molded body capable of reducing thickness and weight even increasing pitch number and excellent in moldability, strength, abrasion resistance and crack resistance or the like.SOLUTION: There is provided a modified titanium oxide-based fine particle powder for honeycomb extrusion molded body consisting of titanium oxide-based fine particle powder which is modified by a modifier consisting of aliphatic acid and/or aliphatic acid ester and having average particle diameter of 0.03 to 2.5 μm. There is provided a modified titanium oxide-based fine particle powder for honeycomb extrusion molded body where the aliphatic acid is saturated aliphatic acid represented by the following formula (1) and/or unsaturated aliphatic acid represented by the following formula (2). CH-COH (1) CH-COH (2), where n is an integer of 4 to 23, n' is an integer of 13 to 23 and m is an integer of 1 to 6 showing the number of double bond.SELECTED DRAWING: None

Description

本発明は、ハニカム押出成型体用改質酸化チタン系微粒子粉末および該微粉末を用いたハニカム押出成型体用組成物ならびにハニカム成型体に関する。   The present invention relates to a modified titanium oxide-based fine particle powder for a honeycomb extruded body, a composition for a honeycomb extruded body using the fine powder, and a honeycomb molded body.

セラミックス成形体は、セラミックス粉体を含むセラミックス成型用組成物を、例えば、押出成型、鋳込み成型、及び圧縮成型(打錠成型ともいう)等の成型方法により成型した後、乾燥工程、更には焼成工程を経て製造されている。   The ceramic molded body is formed by molding a ceramic molding composition containing ceramic powder by a molding method such as extrusion molding, casting molding, and compression molding (also referred to as tableting molding), followed by a drying step and further firing. It is manufactured through a process.

押出成型体の形状としては、タブレット状、リング状、パイプ状、ハニカム(蜂の巣)状等種々の形状が知られており、触媒担体あるいは触媒等として用いられている。
例えば、発電所等の固定発生源、自動車等の移動発生源から排出される汚染物質とくにNOxは、選択還元型NOx触媒(以下、SCR触媒という)としてハニカム触媒を用いて処理されている。
Various shapes such as a tablet shape, a ring shape, a pipe shape, and a honeycomb (honeycomb) shape are known as the shape of the extrusion-molded body, and it is used as a catalyst carrier or a catalyst.
For example, pollutants, particularly NO x , emitted from fixed sources such as power plants and mobile sources such as automobiles are treated using a honeycomb catalyst as a selective reduction type NO x catalyst (hereinafter referred to as SCR catalyst). .

従来、ハニカム成型体は、セラミックス粉末に、触媒成分源を配合した組成物を、ダイスを通して押出成型し、乾燥し、次いで焼成して製造している。しかしながら、押出成型する際に押出が困難であったり、剥離を生じたりする場合があり、ついで乾燥、焼成する際に大きく収縮したり、クラックを生じる問題があった。   Conventionally, a honeycomb molded body is manufactured by extruding a ceramic powder with a composition containing a catalyst component source through a die, drying, and then firing. However, there are cases where extrusion is difficult or exfoliation may occur during extrusion molding, and then there is a problem of significant shrinkage or cracking during drying and firing.

このため、本願出願人はハニカム成型用組成物に飽和脂肪酸を配合することによって乾燥時の収縮が低減できることを開示している。(特許文献1:特開2009−226583号公報)   For this reason, the applicant of the present application discloses that shrinkage during drying can be reduced by blending a saturated fatty acid into the honeycomb molding composition. (Patent Document 1: JP 2009-226583 A)

また、特開2011-240618号公報(特許文献2)には、(a)ポリアルキレングリコール脂肪酸エステルと(b)炭素数12〜22の直鎖不飽和脂肪酸を含有し、その比率が質量比で(a):(b)=96:4〜99:1である、セラミックス押出成形用添加剤が開示されている。特許文献2には、セラミックス押出成形用添加剤の添加方法及び使用形態について、特に制限はなく、添加方法としては、セラミックス原料粉体に添加してもよいし、混練中に添加してもよく、また杯土調製後に添加してもよい旨が開示されている。しかしながら、セラミックス原料粉体としてコージェライトを使用した実施例が開示されているだけであり、酸化チタン粒子を用いることについて、特にあらかじめ酸化チタン微粒子に押出成型用添加剤を添加した場合の効果についての記載も示唆もない。加えて、どのような粒子径のセラミックス原料粉体を用いるかについての記載もない。   JP-A-2011-240618 (Patent Document 2) contains (a) a polyalkylene glycol fatty acid ester and (b) a linear unsaturated fatty acid having 12 to 22 carbon atoms, and the ratio is expressed in mass ratio. (A) :( b) = 96: 4 to 99: 1 An additive for ceramic extrusion is disclosed. In Patent Document 2, there is no particular limitation on the method for adding and using the ceramic extrusion additive, and the addition method may be added to the ceramic raw material powder or may be added during kneading. In addition, it is disclosed that it may be added after the preparation of the clay. However, only an example using cordierite as a ceramic raw material powder is disclosed. Regarding the use of titanium oxide particles, particularly the effect when an additive for extrusion molding is added to titanium oxide fine particles in advance. There is no description or suggestion. In addition, there is no description as to what particle size ceramic raw material powder is used.

特開2009−226583号公報JP 2009-226583 A 特開2011−240618号公報JP 2011-240618A

ハニカム触媒には、さらなる性能向上あるいは経済性の向上のためにピッチ数を増加させるとともに、成型性、クラックの抑制、強度、耐摩耗性等の向上、触媒性能向上が求められており、加えて、軽量化、薄肉化が求められている。   Honeycomb catalysts are required to increase the number of pitches for further performance improvement or economic improvement, as well as to improve moldability, crack suppression, strength, wear resistance, etc., and catalyst performance. There is a need for weight reduction and thinning.

そこで、このような課題を解決するために、本発明者らは鋭意検討した結果、酸化チタン系微粒子粉末にあらかじめ特定の改質剤を所定量担持して用いると、成型性が向上し、クラックの抑制、強度、耐摩耗性等の効果が得られ、他方、成型性の向上によって強度、耐摩耗性等を低下させることなく従来より薄肉化でき、ピッチ数を増加することができることを見出して本発明を完成するに至った。   Therefore, in order to solve such problems, the present inventors have intensively studied. As a result, when a predetermined amount of a specific modifier is supported in advance on the titanium oxide-based fine particle powder, the moldability is improved and cracks are improved. It has been found that effects such as suppression, strength, wear resistance, etc. can be obtained, and on the other hand, by improving the moldability, it can be made thinner and the number of pitches can be increased without lowering strength, wear resistance, etc. The present invention has been completed.

[1]酸化チタン系微粒子からなり、かつ該酸化チタン系微粒子が、脂肪酸および/または脂肪酸エステルからなる改質剤で改質され、平均粒子径が0.03〜2.5μmであるハニカム押出成形体用改質酸化チタン系微粒子粉末。 [1] Honeycomb extrusion molding comprising titanium oxide-based fine particles, and the titanium oxide-based fine particles are modified with a modifier comprising a fatty acid and / or a fatty acid ester, and the average particle diameter is 0.03 to 2.5 μm. Modified titanium oxide fine particle powder for body.

[2]前記脂肪酸が下記式(1)で表される飽和脂肪酸および/または下記式(2)で表される不飽和脂肪酸であることを特徴とする[1]に記載のハニカム押出成型体用改質酸化チタン系微粒子粉末。
n2n+1−CO2H・・・・・・・・・・・・・・・・(1)
(但し、nは4〜23の整数)
n'2n'-2m+1−CO2H・・・・・・(2)
(但し、n'は13〜23の整数、mは2重結合の数を表す1〜6の整数)
[2] The honeycomb extruded body according to [1], wherein the fatty acid is a saturated fatty acid represented by the following formula (1) and / or an unsaturated fatty acid represented by the following formula (2): Modified titanium oxide fine particle powder.
C n H 2n + 1 -CO 2 H ················ (1)
(Where n is an integer from 4 to 23)
C n 'H 2n'-2m + 1 -CO 2 H ······ (2)
(Where n ′ is an integer from 13 to 23, m is an integer from 1 to 6 representing the number of double bonds)

[3]前記酸化チタン系微粒子の平均粒子径が0.03〜2.0μmの範囲にあることを特徴とする[1]に記載のハニカム押出成型体用改質酸化チタン系微粒子粉末。
[4]酸化チタン系微粒子が、酸化チタンとともに、酸化タングステン(WO3)、酸化モリブデン(MoO3)、酸化珪素(SiO2)、酸化ジルコニウム(ZrO2)から選ばれる酸化物の少なくとも1種を含み、酸化チタン系微粒子中の含有量が酸化物として0.5〜40重量%の範囲にあることを特徴とする[1]に記載のハニカム押出成型体用改質酸化チタン系微粒子粉末。
[5]水分を15重量%に調整した前記酸化チタン系微粒子の示差熱分析における30℃から100℃に昇温した際の重量減少率(W(%))と、水分を15重量%に調整した前記ハニカム押出成型体用改質酸化チタン系微粒子粉末の示差熱分析における30℃から100℃に昇温した際の重量減少率(WST(%))との重量減少率比(WST(%))/(W(%))が1.02〜1.20の範囲にあることを特徴とする[1]〜[4]のいずれかに記載のハニカム押出成型体用改質酸化チタン系微粒子粉末。
[3] The modified titanium oxide fine particle powder for a honeycomb extruded body according to [1], wherein an average particle size of the titanium oxide fine particles is in a range of 0.03 to 2.0 μm.
[4] Titanium oxide fine particles contain at least one oxide selected from tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), silicon oxide (SiO 2 ), and zirconium oxide (ZrO 2 ) together with titanium oxide. The modified titanium oxide-based fine particle powder for honeycomb extruded bodies according to [1], wherein the content in the titanium oxide-based fine particles is in the range of 0.5 to 40% by weight as an oxide.
[5] The weight reduction rate (W (%)) when the temperature was raised from 30 ° C. to 100 ° C. in the differential thermal analysis of the titanium oxide fine particles whose water content was adjusted to 15% by weight, and the water content was adjusted to 15% by weight. and said honeycomb extrusion producing molded modified titanium oxide-based fine powder weight loss when heated to 100 ° C. from 30 ° C. in differential thermal analysis (W ST (%)) and weight loss ratio (W ST ( %)) / (W (%)) is in the range of 1.02-1.20, the modified titanium oxide system for honeycomb extruded bodies according to any one of [1] to [4] Fine powder.

[6](i)[1]〜[5]のいずれかに記載のハニカム押出成型体用改質酸化チタン系微粒子粉末、
(ii)補強材、
(iii)活性成分前駆体化合物 を含む組成物であり、
該組成物中の(i)ハニカム押出成型体用改質酸化チタン系微粒子粉末の含有量が、33〜80.8重量%の範囲にあり、(ii)補強材の含有量が1.8〜12.8重量%の範囲にあり、(iii)活性成分前駆体化合物の含有量が酸化物換算して0.0006〜12.8重量%の範囲にあり、
全固形分濃度が60〜85重量%の範囲にあることを特徴とするハニカム押出成型体用組成物。
[7]さらに、フィラーを含んでなり、該フィラーの含有量が固形分として0.6〜12.8重量%の範囲にあることを特徴とする[6]に記載のハニカム押出成型体用組成物。
[8]さらに、前記改質剤以外の有機添加剤を0.03〜4.5重量%の範囲で含んでなることを特徴とする[6]に記載のハニカム押出成型体用組成物。
[9]前記活性成分前駆体化合物が、V、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irからなる群から選ばれる少なくとも1種の元素の化合物であることを特徴とする[6]に記載のハニカム押出成型体用組成物。
[6] (i) Modified titanium oxide-based fine particle powder for honeycomb extruded body according to any one of [1] to [5],
(ii) reinforcement,
(iii) a composition containing an active ingredient precursor compound,
In the composition, the content of (i) the modified titanium oxide-based fine particle powder for honeycomb extrusion molding is in the range of 33 to 80.8% by weight, and (ii) the content of the reinforcing material is 1.8 to In the range of 12.8 wt%, (iii) the content of the active ingredient precursor compound is in the range of 0.0006 to 12.8 wt% in terms of oxide,
A composition for extruded honeycomb bodies, wherein the total solid content is in the range of 60 to 85% by weight.
[7] The composition for extruded honeycomb bodies according to [6], further comprising a filler, wherein the filler content is in the range of 0.6 to 12.8% by weight as a solid content. object.
[8] The composition for extruded honeycomb bodies according to [6], further comprising an organic additive other than the modifier in a range of 0.03 to 4.5% by weight.
[9] The active component precursor compound is at least one selected from the group consisting of V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir. The composition for extruded honeycomb bodies according to [6], which is a compound of a seed element.

[10](i)[1]〜[5]のいずれかに記載のハニカム押出成型体用改質酸化チタン系微粒子粉末、
(ii)補強材、
(iii)活性成分 を含み
(i) ハニカム押出成型体用改質酸化チタン系微粒子粉末の含有量が55〜95重量%の範囲にあり、(ii)補強材の含有量が3〜15重量%の範囲にあり、(iii)活性成分の含有量が酸化物として0.001〜15重量%の範囲にあることを特徴とするハニカム成型体。
[11]さらに、フィラーを含み、該フィラーの含有量が1〜15重量%の範囲にあることを特徴とする[10]に記載のハニカム成型体。
[12]前記成型体の外径が30〜400mmの範囲にあり、長さが3〜1500mmの範囲にあり、ピッチが6〜500cpsiの範囲にあり、肉厚が0.1〜1.5mmの範囲にあることを特徴とする[10]または[11]に記載のハニカム成型体。
[13]前記活性成分が、V、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irから選ばれる少なくとも1種の元素の金属または金属酸化物であることを特徴とする[10]〜[12]のいずれかに記載のハニカム成型体。
[14]前記肉厚が0.1〜0.3mmの範囲にあることを特徴とする[12]に記載のハニカム成型体。
[10] (i) Modified titanium oxide-based fine particle powder for honeycomb extruded body according to any one of [1] to [5],
(ii) reinforcement,
(iii) including active ingredients
(i) The content of the modified titanium oxide-based fine particle powder for honeycomb extrusion molding is in the range of 55 to 95% by weight, (ii) the content of the reinforcing material is in the range of 3 to 15% by weight, ) A honeycomb molded body characterized in that the content of the active ingredient is in the range of 0.001 to 15% by weight as an oxide.
[11] The honeycomb molded body according to [10], further including a filler, wherein the filler content is in the range of 1 to 15% by weight.
[12] The outer diameter of the molded body is in the range of 30 to 400 mm, the length is in the range of 3 to 1500 mm, the pitch is in the range of 6 to 500 cpsi, and the wall thickness is 0.1 to 1.5 mm. The honeycomb molded body according to [10] or [11], which is in a range.
[13] The active component is a metal of at least one element selected from V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, Ir, or The honeycomb molded body according to any one of [10] to [12], which is a metal oxide.
[14] The honeycomb molded body according to [12], wherein the thickness is in a range of 0.1 to 0.3 mm.

本発明によれば、酸化チタン系微粒子粉末にあらかじめ特定の改質剤を所定量担持して用いているので、成型性が向上し、ピッチ数を多くしても、薄肉化・軽量化が可能であり、強度、耐摩耗性、耐クラック性等に優れたハニカム成型体を製造することが可能となる。   According to the present invention, since a predetermined amount of a specific modifier is supported in advance on the titanium oxide fine particle powder, the moldability is improved, and even if the number of pitches is increased, it is possible to reduce the thickness and weight. Thus, it becomes possible to manufacture a honeycomb molded body excellent in strength, wear resistance, crack resistance and the like.

実施例1、実施例6、比較例1及び比較例4の試料の重量減少曲線を示す。The weight reduction curve of the sample of Example 1, Example 6, the comparative example 1, and the comparative example 4 is shown. 実施例1、実施例6、比較例1及び比較例4の試料の吸熱曲線を示す。The endothermic curves of the samples of Example 1, Example 6, Comparative Example 1 and Comparative Example 4 are shown.

以下、先ず、本発明のハニカム押出成型体用改質酸化チタン系微粒子粉末について具体的に説明する。
[ハニカム押出成型体用改質酸化チタン系微粒子粉末]
本発明に係るハニカム押出成型体用改質酸化チタン系微粒子粉末は、酸化チタン系微粒子からなり、かつ該酸化チタン系微粒子が、脂肪酸および/または脂肪酸エステルからなる改質剤で改質されている。
Hereinafter, first, the modified titanium oxide-based fine particle powder for a honeycomb extruded body of the present invention will be specifically described.
[Modified titanium oxide fine particle powder for honeycomb extrusion molding]
The modified titanium oxide-based fine particle powder for honeycomb extrusion molding according to the present invention is composed of titanium oxide-based fine particles, and the titanium oxide-based fine particles are modified with a modifier composed of fatty acid and / or fatty acid ester. .

酸化チタン系微粒子
本発明に用いる酸化チタン系微粒子としては、酸化チタン微粒子が使用される。また、酸化タングステン(WO3)、酸化モリブデン(MO3)、酸化珪素(SiO2)、酸化ジルコニウム(ZrO2)から選ばれる酸化物の少なくとも1種を含む複合酸化チタン系微粒子を用いることができる。 酸化タングステン(WO3)、酸化モリブデン(MO3)、酸化珪素(SiO2)、酸化ジルコニウム(ZrO2)等を含む場合の酸化チタン以外の酸化物の含有量は酸化物として40重量%以下、さらには30重量%以下の範囲にあることが好ましい。
酸化チタン系微粒子中の前記酸化チタン以外の酸化物の含有量が多すぎると、改質酸化チタン系微粒子粉末を用いても成型が困難となる場合がある。
Titanium oxide fine particles Titanium oxide fine particles are used as the titanium oxide fine particles used in the present invention. Further, composite titanium oxide-based fine particles containing at least one oxide selected from tungsten oxide (WO 3 ), molybdenum oxide (MO 3 ), silicon oxide (SiO 2 ), and zirconium oxide (ZrO 2 ) can be used. . When tungsten oxide (WO 3 ), molybdenum oxide (MO 3 ), silicon oxide (SiO 2 ), zirconium oxide (ZrO 2 ), etc. are contained, the content of oxide other than titanium oxide is 40 wt% or less as an oxide, Furthermore, it is preferable that it exists in the range of 30 weight% or less.
If the content of oxide other than titanium oxide in the titanium oxide fine particles is too large, molding may be difficult even if the modified titanium oxide fine particle powder is used.

改質剤
本発明に用いる改質剤としては、脂肪酸および/または脂肪酸エステルが用いられる。
前記脂肪酸は、下記式(1)で表される飽和脂肪酸および/または下記式(2)で表される不飽和脂肪酸であることが好ましい。
n2n+1−CO2H・・・・・・・・・・・・・・・・(1)
(但し、nは4〜23の整数)
n'2n'-2m+1−CO2H・・・・・・(2)
(但し、n'は13〜23の整数、mは2重結合の数を表す1〜6の整数)
Modifiers As the modifiers used in the present invention, fatty acids and / or fatty acid esters are used.
The fatty acid is preferably a saturated fatty acid represented by the following formula (1) and / or an unsaturated fatty acid represented by the following formula (2).
C n H 2n + 1 -CO 2 H ················ (1)
(Where n is an integer from 4 to 23)
C n 'H 2n'-2m + 1 -CO 2 H ······ (2)
(Where n ′ is an integer from 13 to 23, m is an integer from 1 to 6 representing the number of double bonds)

飽和脂肪酸としては、具体的には、ステアリン酸、ラウリン酸、ミリスチン酸、ベヘン酸、アラキジン酸、リグノセリン酸、パルミチン酸等およびこれらの混合物が挙げられる。
また、不飽和脂肪酸としては、オレイン酸、アラキドン酸、リノール酸、リノレン酸、イコサペンタエン酸、ドコサヘキサエン酸等およびこれらの混合物が挙げられる。
脂肪酸エステルとしては、グリセリン脂肪酸エステルが好ましく、下記式で表される。
Specific examples of the saturated fatty acid include stearic acid, lauric acid, myristic acid, behenic acid, arachidic acid, lignoceric acid, palmitic acid and the like, and mixtures thereof.
Examples of unsaturated fatty acids include oleic acid, arachidonic acid, linoleic acid, linolenic acid, icosapentaenoic acid, docosahexaenoic acid, and the like, and mixtures thereof.
As the fatty acid ester, glycerin fatty acid ester is preferable, and is represented by the following formula.

Figure 2017019721
具体的にはステアリン酸モノグリセライド、パルミチン酸モノグリセライド、オレイン酸モノグリセライド、ステアリン酸ジグリセライド、オレイン酸ジグリセライド、ベヘニン酸モノグリセライド、カプリル酸モノグリセライド、カプリル酸ジグリセライド、カプリル酸トリグリセライド等およびこれらの混合物が挙げられる。
Figure 2017019721
Specific examples include stearic acid monoglyceride, palmitic acid monoglyceride, oleic acid monoglyceride, stearic acid diglyceride, oleic acid diglyceride, behenic acid monoglyceride, caprylic acid monoglyceride, caprylic acid diglyceride, caprylic acid triglyceride, and the like.

ハニカム押出成型体用改質酸化チタン系微粒子粉末中の前記改質剤の含有量は0.01〜1.5重量%、さらには0.02〜1.0重量%の範囲にあることが好ましい。
ハニカム押出成型体用改質酸化チタン系微粒子粉末中の改質剤の含有量が少ないと、押出成型の際の成型性向上効果が充分得られない場合がある。改質剤の含有量が多すぎると、後述する成型体を調製した場合に得られる成型体の細孔容積が大きくなる傾向があり、圧縮強度が不充分となる場合がある。
The content of the modifier in the modified titanium oxide fine particle powder for honeycomb extrusion molding is preferably 0.01 to 1.5% by weight, more preferably 0.02 to 1.0% by weight. .
If the content of the modifying agent in the modified titanium oxide fine particle powder for honeycomb extrusion molding is low, the effect of improving the moldability during extrusion molding may not be sufficiently obtained. When the content of the modifier is too large, the pore volume of the molded body obtained when a molded body described later is prepared tends to be large, and the compression strength may be insufficient.

ハニカム押出成型体用改質酸化チタン系微粒子粉末中の改質剤の含有量が前記範囲にあれば、成型性に優れ、圧縮強度、耐摩耗性、耐クラック性等に優れた成型体を調製することができる。特に、成型性に優れるためにハニカム成型体のような複雑な構造を有する成型体の調製が可能であり、このため、肉厚が薄い、軽量ハニカム成型体の調製が可能である。   If the content of the modifier in the modified titanium oxide fine particle powder for honeycomb extrusion molding is within the above range, a molding having excellent moldability, compression strength, abrasion resistance, crack resistance, etc. is prepared. can do. In particular, since it is excellent in moldability, it is possible to prepare a molded body having a complicated structure such as a honeycomb molded body. For this reason, it is possible to prepare a lightweight honeycomb molded body having a small thickness.

ハニカム押出成型体用改質酸化チタン系微粒子粉末は改質酸化チタン系微粒子の凝集体であり、改質酸化チタン系微粒子の改質前の平均粒子径は0.03〜2.0μm、さらには0.30〜1.50μmの範囲にあることが好ましい。   The modified titanium oxide-based fine particle powder for honeycomb extrusion molding is an aggregate of modified titanium oxide-based fine particles, and the average particle diameter of the modified titanium oxide-based fine particles before modification is 0.03 to 2.0 μm, It is preferably in the range of 0.30 to 1.50 μm.

また、改質酸化チタン系微粒子の平均粒子径は0.03〜2.5μm、さらには0.30〜2.0μmの範囲にあることが好ましい。
改質剤の含有量、酸化チタン微粒子の平均粒子径によっても異なるが、改質剤が多い場合は酸化チタン微粒子の表面を被覆したり、改質剤が少ない場合は酸化チタン微粒子の表面の一部に吸着等して存在している。このように、酸化チタン系微粒子の表面に改質剤が存在することによって成型性が向上する。
The average particle size of the modified titanium oxide fine particles is preferably in the range of 0.03 to 2.5 μm, more preferably 0.30 to 2.0 μm.
Depending on the content of the modifier and the average particle diameter of the titanium oxide fine particles, the surface of the titanium oxide fine particles is coated when the modifier is large, or the surface of the titanium oxide fine particles is coated when the modifier is small. It is adsorbed on the part. Thus, the moldability is improved by the presence of the modifier on the surface of the titanium oxide-based fine particles.

改質酸化チタン系微粒子の平均粒子径が前記範囲にあれば、成型性に優れ、得られる成型体は圧縮強度、耐摩耗性、耐クラック性等に優れている。
このようなハニカム押出成型体用改質酸化チタン系微粒子粉末は以下のようにして製造される。
If the average particle diameter of the modified titanium oxide fine particles is in the above range, the moldability is excellent, and the resulting molded article is excellent in compressive strength, wear resistance, crack resistance and the like.
Such a modified titanium oxide-based fine particle powder for a honeycomb extruded body is produced as follows.

前記した所定の平均粒子径を有する酸化チタン系微粒子に所定量の改質剤を混合することによって成型体用改質酸化チタン系微粒子粉末を調製することができる。
混合方法としては、酸化チタン系微粒子に可能な範囲で均一に混合できれば特に制限はなく、従来公知の混合方法を採用することができる。
A modified titanium oxide-based fine particle powder for a molded body can be prepared by mixing a predetermined amount of a modifier with the titanium oxide-based fine particles having the predetermined average particle diameter.
The mixing method is not particularly limited as long as it can be uniformly mixed with titanium oxide-based fine particles as much as possible, and a conventionally known mixing method can be employed.

例えば、ニーダー、ブレンダー、ミキサー等が挙げられる。
混合する際は加熱することが好ましく、加熱温度は改質剤の種類(融点等)によっても異なるが、概ね40〜120℃の範囲である。また改質時にエタノールなどの揮発性溶媒を用いてもよい。
For example, a kneader, a blender, a mixer, etc. are mentioned.
When mixing, it is preferable to heat, and the heating temperature is generally in the range of 40 to 120 ° C., although it varies depending on the type of the modifier (melting point etc.). Further, a volatile solvent such as ethanol may be used at the time of reforming.

また、混合時間は、温度によっても異なるが、概ね0.25〜5時間である。
水分を15重量%に調整した前記酸化チタン系微粒子の示差熱分析における30℃から100℃に昇温した際の水の脱離に伴う重量減少率(W(%))と、水分を15重量%に調整した前記ハニカム押出成型体用改質酸化チタン系微粒子粉末の示差熱分析における30℃から100℃に昇温した際の水の脱離に伴う重量減少率(WST(%))との重量減少率比(WST(%))/(W(%))が1.02〜1.20、好ましくは1.03〜1.15の範囲にあることが好ましい。
Moreover, although mixing time changes also with temperature, it is 0.25 to 5 hours in general.
In the differential thermal analysis of the titanium oxide fine particles whose water content was adjusted to 15% by weight, the weight reduction rate (W (%)) accompanying water desorption when the temperature was raised from 30 ° C. to 100 ° C., and 15% by weight of water. % Weight reduction rate (W ST (%)) accompanying water desorption when the temperature was raised from 30 ° C. to 100 ° C. in the differential thermal analysis of the modified titanium oxide-based fine particle powder for honeycomb extruded body adjusted to% The weight loss rate ratio (W ST (%)) / (W (%)) is 1.02 to 1.20, preferably 1.03 to 1.15.

ここで、ハニカム押出成型体用改質酸化チタン系微粒子粉末の示差熱分析における重量減少割合が多くなる理由については明らかではないが、重量減少割合比が前記範囲にあれば、後述する成型体用組成物を調製する際に100℃近辺の加温下での混練、捏和時に原料混合物の水分が同じであっても、100℃近辺の加温で脱離する水分により、見掛上水分が多い状態を呈し、混練、捏和の効果が高まり、成型性に優れたハニカム押出成型体用組成物が調製できるものと推察される。   Here, it is not clear why the weight reduction ratio in the differential thermal analysis of the modified titanium oxide fine particle powder for honeycomb extrusion molding is increased. When preparing the composition, even if the moisture of the raw material mixture is the same at the time of kneading and kneading around 100 ° C., the moisture desorbed by heating around 100 ° C. causes the apparent moisture to be It is presumed that a composition for a honeycomb extruded body that exhibits a large number of states, increases kneading and kneading effects, and has excellent moldability can be prepared.

また、本発明に係るハニカム押出成型体用改質酸化チタン系微粒子粉末は、前記30℃から100℃に昇温した際の水の脱離量が多いだけでなく、水の脱離に伴う吸熱ピークのボトム温度が高温にシフトする傾向が認められる。   In addition, the modified titanium oxide fine particle powder for honeycomb extrusion molded body according to the present invention not only has a large amount of water desorption when the temperature is raised from 30 ° C. to 100 ° C., but also the endotherm accompanying the desorption of water. There is a tendency for the bottom temperature of the peak to shift to a higher temperature.

前記重量減少率は、示差熱分析計(リガク(株)製:差動型示差熱天秤:TG8120高温型、高感度示差走査熱量計:DSC8230標準型)により、サンプル量を約10mg、昇温速度5.0℃/min、空気雰囲気下の条件で測定し、30℃〜100℃までの重量減少率を求めた。   The weight reduction rate was measured by a differential thermal analyzer (manufactured by Rigaku Corporation: differential type differential thermal balance: TG8120 high temperature type, high sensitivity differential scanning calorimeter: DSC8230 standard type). Measurement was performed under conditions of 5.0 ° C./min in an air atmosphere, and a weight reduction rate from 30 ° C. to 100 ° C. was obtained.

[成型体用組成物]
本発明に係るハニカム押出成型体用組成物は、(i)前記ハニカム押出成型体用改質酸化チタン系微粒子粉末、(ii)補強材、(iii)活性成分前駆体化合物 を含む組成物である。
[Composite composition]
A composition for a honeycomb extruded body according to the present invention is a composition containing (i) the modified titanium oxide fine particle powder for a honeycomb extruded body, (ii) a reinforcing material, and (iii) an active component precursor compound. .

ハニカム押出成型体用改質酸化チタン系微粒子粉末
ハニカム押出成型体用改質酸化チタン系微粒子粉末としては、前記したものを用いる。
ハニカム押出成型体用組成物中のハニカム押出成型体用改質酸化チタン系微粒子粉末の含有量は固形分として33〜80.8重量%、さらには40〜75重量%の範囲にあることが好ましい。
Modified titanium oxide-based fine particle powder for honeycomb extruded body The above-described modified titanium oxide-based fine particle powder for honeycomb extruded body is used.
The content of the modified titanium oxide-based fine particle powder for honeycomb extrusion molding in the composition for honeycomb extrusion molding is preferably in the range of 33 to 80.8% by weight, more preferably 40 to 75% by weight as the solid content. .

ハニカム押出成型体用組成物中のハニカム押出成型体用改質酸化チタン系微粒子粉末の含有量が少ないと、成形が困難となるとともに、触媒性能、例えば選択還元型NOx触媒のNOxの除去率が不充分となる場合がある。 When the content of the modified titanium oxide fine particle powder for honeycomb extrusion molding in the composition for honeycomb extrusion molding is small, molding becomes difficult and catalyst performance, for example, NO x removal of the selective reduction type NO x catalyst is removed. The rate may be insufficient.

ハニカム押出成型体用組成物中のハニカム押出成型体用改質酸化チタン系微粒子粉末の含有量が多すぎても、後述する他の補強材、フィラー、活性成分前駆体の使用量が制限されるため、成型性、圧縮強度、耐クラック性および触媒性能が不充分となる場合がある。   Even if the content of the modified titanium oxide fine particle powder for honeycomb extrusion molded body in the composition for honeycomb extrusion molded body is too much, the usage amount of other reinforcing materials, fillers and active ingredient precursors described later is limited. Therefore, moldability, compressive strength, crack resistance, and catalyst performance may be insufficient.

補強材
補強材としては、グラスファイバー、セラミックファイバー等の繊維状補強材を用いることができる。
As the reinforcing material reinforcing material, a fibrous reinforcing material such as glass fiber or ceramic fiber can be used.

このような補強材を含んでいると、押出し成型した後の乾燥時の収縮による亀裂の発生を抑制することができ、圧縮強度、耐摩耗性に優れたハニカム成型体を調製することができる。   When such a reinforcing material is included, generation of cracks due to shrinkage during drying after extrusion molding can be suppressed, and a honeycomb molded body excellent in compressive strength and wear resistance can be prepared.

ハニカム押出成型体用組成物中の補強材の含有量は、固形分として1.8〜12.8重量%、さらには3〜10重量%の範囲にあることが好ましい。
ハニカム押出成型体用組成物中の補強材の含有量が少ないと、押出し成型した後の乾燥時に収縮による亀裂が発生する場合がある。成型体用組成物中の補強材の含有量が多すぎても、押出し成型時に成形用金型に補強材が詰まり、成形性を阻害する場合がある。
The content of the reinforcing material in the composition for honeycomb extrusion molding is preferably in the range of 1.8 to 12.8% by weight, more preferably 3 to 10% by weight as the solid content.
If the content of the reinforcing material in the composition for a honeycomb extruded body is small, cracks due to shrinkage may occur during drying after extrusion molding. Even if the content of the reinforcing material in the molded body composition is too large, the reinforcing material may be clogged in the molding die during extrusion molding, which may impair the moldability.

活性成分前駆体化合物
活性成分前駆体化合物としては、V、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irからなる群から選ばれる少なくとも1種の元素の化合物が用いられる。活性成分は触媒として機能するため、目的に応じて適宜選択される。
Active component precursor compound The active component precursor compound is selected from the group consisting of V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir. A compound of at least one element is used. Since the active component functions as a catalyst, it is appropriately selected according to the purpose.

具体的には、メタバナジン酸アンモニウム、硫酸バナジル、パラタングステン酸アンモニウム、メタタングステン酸アンモニウム、タングステン酸、モリブデン酸アンモニウム、硝酸クロム、酢酸クロム、硝酸マンガン、酢酸マンガン、硝酸パラジウム、硫酸鉄、硝酸ニッケル、硝酸銅、硝酸銀、硝酸イットリウム、硝酸セリウム、塩化金、塩化イリジウムなどが挙げられる。   Specifically, ammonium metavanadate, vanadyl sulfate, ammonium paratungstate, ammonium metatungstate, tungstic acid, ammonium molybdate, chromium nitrate, chromium acetate, manganese nitrate, manganese acetate, palladium nitrate, iron sulfate, nickel nitrate, Examples thereof include copper nitrate, silver nitrate, yttrium nitrate, cerium nitrate, gold chloride, and iridium chloride.

ハニカム押出成型体用組成物中の活性成分前駆体化合物の含有量は、0.0006〜12.8重量%、さらには0.3〜10重量%の範囲にあることが好ましい。
活性成分前駆体化合物の含有量が少ないと、選択還元型NOx触媒として用いた場合にNOxの除去率が不充分となる場合がある。
活性成分前駆体化合物の含有量が酸化物として多いと、成形性が低下し、得られるハニカム押出成型体の圧縮強度、耐クラック性が不充分となる。
The content of the active component precursor compound in the composition for a honeycomb extruded body is preferably 0.0006 to 12.8% by weight, more preferably 0.3 to 10% by weight.
If the content of the active component precursor compound is small, the NO x removal rate may be insufficient when used as a selective reduction type NO x catalyst.
When the content of the active component precursor compound is large as an oxide, the moldability is lowered, and the compression strength and crack resistance of the resulting honeycomb extruded body are insufficient.

フィラー
本発明では、フィラーを含んでいても良い。このようなフィラーを含んでいると、連続して押出し成形が可能となるとともに圧縮強度、耐摩耗性に優れた成型体を調製することができる。
Filler In the present invention, a filler may be included. When such a filler is contained, it is possible to continuously perform extrusion molding and to prepare a molded body having excellent compressive strength and wear resistance.

フィラーとしては、コージェライト、アルミナ、ジルコニア、窒化珪素、炭化珪素、粘土鉱物等のセラミックス粉体を用いることができる。
ハニカム押出成型体用組成物中のフィラーの含有量は、固形分として0.6〜12.8重量%、さらには3〜10重量%の範囲にあることが好ましい。
As the filler, ceramic powder such as cordierite, alumina, zirconia, silicon nitride, silicon carbide, clay mineral can be used.
The filler content in the composition for extruded honeycomb bodies is preferably in the range of 0.6 to 12.8% by weight, more preferably 3 to 10% by weight as the solid content.

ハニカム押出成型体用組成物中のフィラーの含有量が少ないと、連続押し出し成形性が低下し、長寸法の成型体、特に長寸法のハニカム成型体の成型が困難となる場合があり、また、成形用金型の清掃あるいは取り換えが頻繁になり、生産性、経済性が低下する場合がある。成型体用組成物中のフィラーの含有量が多すぎても、触媒性能が不充分となる場合がある。   If the content of the filler in the honeycomb extrusion molded body composition is low, the continuous extrusion moldability is lowered, and it may be difficult to mold a long-sized molded body, particularly a long-sized honeycomb molded body. The molding die may be frequently cleaned or replaced, which may reduce productivity and economy. Even if there is too much content of the filler in the composition for shaping | molding bodies, catalyst performance may become inadequate.

有機添加剤
本発明のハニカム押出成型体用組成物には、前記改質剤以外の有機添加剤を含んでいてもよい。
Organic additive The composition for a honeycomb extruded body of the present invention may contain an organic additive other than the modifier.

有機添加剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシメチルセルロース、結晶セルロース、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンオキサイド等が挙げられる。   Examples of the organic additive include carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, hydroxymethyl cellulose, crystalline cellulose, polyethylene glycol, polypropylene glycol, polyethylene oxide and the like.

このような有機添加材を含んでいると、成形用金型からの剥離性、成型性等が向上する効果が得られる。
ハニカム押出成型体用組成物中の有機添加剤の含有量はハニカム押出成型体用組成物中に0.03〜4.3重量%、さらには0.5〜2重量%の範囲にあることが好ましい。
When such an organic additive is contained, an effect of improving the peelability from the molding die, moldability, and the like can be obtained.
The content of the organic additive in the honeycomb extruded body composition may be in the range of 0.03 to 4.3% by weight, more preferably 0.5 to 2% by weight, in the honeycomb extruded body composition. preferable.

ハニカム押出成型体用組成物中の有機添加剤の含有量が少ないと、成形性が不充分となり、多すぎても、得られる成型体触媒の細孔容積が大きくなり、圧縮強度が不充分となる他、成形体の焼成時に亀裂が発生する場合がある。   If the content of the organic additive in the honeycomb extrusion molded composition is low, the moldability becomes insufficient, and if it is too much, the pore volume of the resulting molded catalyst becomes large and the compression strength is insufficient. In addition, cracks may occur during the firing of the molded body.

組成
ハニカム押出成型体用組成物は、上記成分以外に、溶剤を含む。溶剤としては、使用目的や成型方法に応じて適宜選択される。
具体的には、水、メタノール、エタノール、プロパノール、メチルエチルケトンなど揮発性溶剤が挙げられ、具体的には水が好ましい。
このようなハニカム押出成型体用組成物の全固形分濃度は60〜85重量%、さらには65〜75重量%の範囲にあることが好ましい。
The composition for a composition honeycomb molded body includes a solvent in addition to the above components. The solvent is appropriately selected depending on the purpose of use and the molding method.
Specific examples include volatile solvents such as water, methanol, ethanol, propanol, and methyl ethyl ketone. Specifically, water is preferable.
The total solid content of such a composition for extruded honeycomb bodies is preferably in the range of 60 to 85% by weight, more preferably 65 to 75% by weight.

ハニカム押出成型体用組成物の全固形分濃度が低すぎると、押出し成型後、乾燥前の成形体の保形性が弱く、変形する場合がある。
ハニカム押出成型体用組成物の全固形分濃度が大きすぎても、成形金型を通過する際のすべり性が小さく、成型性、特に連続成形性が低下する場合がある。
When the total solid content concentration of the composition for a honeycomb extruded body is too low, the shape retaining property of the molded body before the drying after the extrusion molding is weak and may be deformed.
Even when the total solid content concentration of the composition for a honeycomb extruded body is too large, the slip property when passing through the molding die is small, and the moldability, particularly the continuous moldability may be lowered.

本発明に係るハニカム押出成型体用組成物は、前記したハニカム押出成型体用改質酸化チタン系微粒子粉末を用いる以外は従来と同様にして調製することができる。
例えば、選択還元型NOx触媒の例では、前記ハニカム押出成型体用改質酸化チタン系微粒子粉末と補強材と活性成分前駆体化合物と水と、必要に応じて用いるフィラーと、有機添加剤とを前記した所定量の範囲となるように混合し、混練、捏和等することによって調製することができる。
The composition for a honeycomb extruded body according to the present invention can be prepared in the same manner as in the prior art except that the modified titanium oxide fine particle powder for a honeycomb extruded body is used.
For example, in the example of the selective reduction type NOx catalyst, the modified titanium oxide fine particle powder for a honeycomb extrusion molded body, a reinforcing material, an active ingredient precursor compound, water, a filler used as necessary, and an organic additive are included. It can be prepared by mixing, kneading, kneading, etc. so that it may become the range of the above-mentioned predetermined amount.

混練および捏和は、加温下で行うことが好ましい。このときの温度は概80〜140℃、さらには90〜130℃の範囲にあることが好ましい。このような温度範囲で混練および捏和を行うことによって、成型性に優れたハニカム成型体用組成物を調製することができる。   Kneading and kneading are preferably performed under heating. The temperature at this time is preferably in the range of about 80 to 140 ° C, more preferably 90 to 130 ° C. By performing kneading and kneading in such a temperature range, it is possible to prepare a honeycomb molded body composition having excellent moldability.

[成型体]
本発明に係るハニカム成型体は、(i)前記ハニカム押出成型体用改質酸化チタン系微粒子粉末、(ii)補強材、(iii)活性成分 を含む。
[Molded body]
The honeycomb molded body according to the present invention includes (i) the modified titanium oxide fine particle powder for the honeycomb extruded molded body, (ii) a reinforcing material, and (iii) an active component.

ハニカム成型体中のハニカム押出成型体用改質酸化チタン系微粒子粉末の含有量は55〜95重量%、さらには70〜80重量%の範囲にあることが好ましい。
ハニカム成型体中のハニカム押出成型体用改質酸化チタン系微粒子粉末の含有量が少ないと、成形が困難となるとともに、触媒性能、例えば選択還元型NOx触媒のNOxの除去率が不充分となる場合がある。
The content of the modified titanium oxide-based fine particle powder for honeycomb extrusion molding in the honeycomb molding is preferably in the range of 55 to 95% by weight, more preferably 70 to 80% by weight.
If the content of the modified titanium oxide fine particles for the honeycomb extruded body in the honeycomb molded body is small, the molding becomes difficult and the catalyst performance, for example, the NOx removal rate of the selective reduction type NOx catalyst becomes insufficient. There is a case.

ハニカム成型体中のハニカム押出成型体用改質酸化チタン系微粒子粉末の含有量が多すぎても、他の補強材、フィラー、活性成分前駆体の含有量が制限されるため、成型性、圧縮強度、耐クラック性および触媒性能が不充分となる場合がある。   Even if the content of the modified titanium oxide fine particle powder for honeycomb extrusion molded body in the honeycomb molded body is too large, the content of other reinforcing materials, fillers, and active ingredient precursors is limited, so the moldability and compression The strength, crack resistance and catalyst performance may be insufficient.

ハニカム成型体中の補強材の含有量は、固形分として3〜15重量%、さらには3〜10重量%の範囲にあることが好ましい。
ハニカム成型体中の補強材の含有量が少ないと、強度が低く、また多くしても、却って生産性が悪い上に、触媒として機能する有効成分が少なくなる。
The content of the reinforcing material in the honeycomb molded body is preferably in the range of 3 to 15% by weight, more preferably 3 to 10% by weight as the solid content.
If the content of the reinforcing material in the honeycomb molded body is small, the strength is low, and even if it is increased, the productivity is poor, and the active ingredient that functions as a catalyst decreases.

ハニカム成型体中のフィラーの含有量は、固形分として1〜15重量%、さらには3〜10重量%の範囲にあることが好ましい。ハニカム成型体中のフィラーの含有量が少ないと、強度が低く、また、フィラーの含有量が多すぎても、触媒性能が不充分となる場合がある。   The filler content in the honeycomb molded body is preferably in the range of 1 to 15% by weight, more preferably 3 to 10% by weight as the solid content. If the filler content in the honeycomb molded body is small, the strength is low, and if the filler content is too large, the catalyst performance may be insufficient.

活性成分としては、前記前駆体から誘導されるものであり、V、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irから選ばれる少なくとも1種の元素の金属または金属酸化物が含まれている。   The active component is derived from the precursor and is selected from V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir. At least one elemental metal or metal oxide is included.

具体的には、V、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Ir等の金属および/またはV25、WO3、MO3、Cr23、MnO2、Mn23、Fe23、NiO、CuO、Ag2O、AuO、PdO、Y23、CeO2、Nd25、In23、IrO等の酸化物およびこれらの混合物が挙げられる。 Specifically, metals such as V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, Ir, and / or V 2 O 5 , WO 3 , MO 3 , Cr 2 O 3 , MnO 2 , Mn 2 O 3 , Fe 2 O 3 , NiO, CuO, Ag 2 O, AuO, PdO, Y 2 O 3 , CeO 2 , Nd 2 O 5 , In 2 O 3 And oxides such as IrO and mixtures thereof.

ハニカム成型体中の活性成分の含有量は酸化物として0.001〜15重量%、さらには0.3〜12重量%の範囲にあることが好ましい。活性成分の含有量が少ないと、選択還元型NOx触媒として用いた場合にNOxの除去率が不充分となる場合がある。活性成分の含有量が多すぎても、成型体の圧縮強度、耐クラック性が不充分となる。 The content of the active ingredient in the honeycomb molded body is preferably in the range of 0.001 to 15% by weight, more preferably 0.3 to 12% by weight as an oxide. If the content of the active component is small, the NO x removal rate may be insufficient when used as a selective reduction type NO x catalyst. Even if there is too much content of an active ingredient, the compressive strength and crack resistance of a molded object will become inadequate.

本発明では、前記したハニカム押出成形体用改質酸化チタン系微粒子粉末を用いることにより、成型性が大きく向上することから、従来成型性が困難なハニカム成型体、特に薄肉のハニカム成型体として好適に用いることができる。   In the present invention, the use of the modified titanium oxide fine particle powder for a honeycomb extruded body greatly improves the moldability, so that it is suitable as a honeycomb molded body, particularly a thin-walled honeycomb molded body, which has been difficult to mold. Can be used.

本発明では、上記した組成物を用いているため、成型性が高く、得られるハニカム成型体は強度、耐摩耗性に優れているが、一方で、成型性に優れているために薄肉化、ピッチ数の多い成型体を得ることができる。   In the present invention, since the above-described composition is used, the moldability is high, and the obtained honeycomb molded body is excellent in strength and wear resistance. A molded product having a large number of pitches can be obtained.

ハニカム成型体の外径は30〜400mmの範囲にあることが好ましい。
ここで、ハニカムの外観形状は、四角形、六角形、八角形以上の多角形、円形、楕円形等特に制限は無く、用途・用法によって適宜選択することができる。
The outer diameter of the honeycomb molded body is preferably in the range of 30 to 400 mm.
Here, the external shape of the honeycomb is not particularly limited, such as a quadrangle, a hexagon, a polygon more than an octagon, a circle, and an ellipse, and can be appropriately selected depending on the application and usage.

ハニカム成型体の外径が30mm未満と小さくする効果がなく、ハニカム型の選択還元型NOx触媒として用いる場合に、生産本数が増えるだけで経済的ではない。ハニカム成型体の外径が400mmを超えて大きくする効果がなく、このため押出成型装置もない。   There is no effect of reducing the outer diameter of the honeycomb molded body to less than 30 mm, and when used as a honeycomb type selective reduction type NOx catalyst, only the number of production increases and it is not economical. There is no effect of increasing the outer diameter of the honeycomb molded body beyond 400 mm, and therefore there is no extrusion molding apparatus.

また、ハニカム成型体の長さは3〜1500mm、さらには50〜1300mmの範囲にあることが好ましい。
ハニカム成型体の長さが3mm未満の場合は、製造するのが困難となる。
The length of the honeycomb molded body is preferably in the range of 3 to 1500 mm, more preferably 50 to 1300 mm.
When the length of the honeycomb molded body is less than 3 mm, it is difficult to manufacture.

ハニカム成型体の長さが1500mmを超えると、用途が少ない。
ハニカム成型体のピッチは6〜500cpsi、さらには15〜200cpsiの範囲にあることが好ましい。
When the length of the honeycomb molded body exceeds 1500 mm, the usage is small.
The pitch of the honeycomb formed body is preferably in the range of 6 to 500 cpsi, more preferably 15 to 200 cpsi.

ハニカム成型体のピッチが6cpsi未満の場合は、目開きが大きく保形性が弱くなり製造が難しくなる。
ハニカム成型体のピッチが500cpsiを超えると、成型時に圧力損失が大きくなり成形が困難となる場合がある。
When the pitch of the honeycomb formed body is less than 6 cpsi, the mesh opening is large and the shape retaining property is weak, which makes it difficult to manufacture.
When the pitch of the honeycomb molded body exceeds 500 cpsi, pressure loss becomes large at the time of molding, and molding may be difficult.

ハニカム成型体の肉厚は0.1〜1.5mm、さらには0.1〜0.3mmの範囲にあることが好ましい。
ハニカム成型体の肉厚が0.1mm未満のものは前記した改質酸化チタン系微粒子を用いても得ることが困難である。
The thickness of the honeycomb molded body is preferably in the range of 0.1 to 1.5 mm, more preferably 0.1 to 0.3 mm.
A honeycomb molded body having a thickness of less than 0.1 mm is difficult to obtain even if the above-described modified titanium oxide-based fine particles are used.

ハニカム成型体の肉厚が1.5mmを超えると、前記した改質酸化チタン系微粒子を用いることなく従来公知の方法で形成することができる。
本発明では、ハニカム成型体の肉厚は特に0.1〜0.3mmの範囲にあることが好ましい。
When the thickness of the honeycomb formed body exceeds 1.5 mm, it can be formed by a conventionally known method without using the modified titanium oxide-based fine particles.
In the present invention, the thickness of the honeycomb molded body is particularly preferably in the range of 0.1 to 0.3 mm.

本発明によれば、肉厚が薄く軽量で、ピッチの数が多く、且つ、強度、耐摩耗性、圧縮強度に優れ、軽量で、経済性に優れたハニカムとして好適に用いることができる。
本発明に係る成型体は、前記した成型体用組成物を用いて、従来公知の方法で調製することができる。
According to the present invention, it can be suitably used as a honeycomb that is thin and lightweight, has a large number of pitches, is excellent in strength, wear resistance, and compressive strength, is lightweight, and is economical.
The molded body according to the present invention can be prepared by a conventionally known method using the aforementioned molded body composition.

成型体の形状はペレット、ビード、リング、ハニカム等従来公知の形状の成型体を得ることができ、成型時の押出し成型用の金型を適宜選択することによって調製することができる。   The shape of the molded body can be obtained by obtaining a molded body having a conventionally known shape such as pellets, beads, rings, and honeycombs, and can be prepared by appropriately selecting a mold for extrusion molding at the time of molding.

なお、本発明では特に強度、耐摩耗性に優れた薄肉のハニカム成型体を得ることができるが、このとき、真空押出成形機を用いるとクラックの無い、より、強度、耐摩耗性に優れた薄肉のハニカム成型体を安定的に得ることができる。   In the present invention, it is possible to obtain a thin-walled honeycomb molded body particularly excellent in strength and wear resistance, but at this time, if a vacuum extrusion molding machine is used, there is no crack, and the strength and wear resistance are more excellent. A thin honeycomb molded body can be obtained stably.

[実施例]
以下、実施例により説明するが、本発明はこれらの実施例により限定されるものではない。
[実施例1]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(1)の調製
メタチタン酸スラリー(石原産業(株)製)78.3kgを加熱還流器付撹拌槽に仕込み、さらにパラタングステン酸アンモニウム2.82kgを添加して混合した後、濃度15重量%のアンモニア水30.5kgを加えてpHを9.5に調整し、95℃で1時間撹拌しながら熟成した。その後、この混合スラリーを40℃まで冷却し、ついで、濾過し、掛け水により洗浄して、固形分濃度(TiO2・WO3)49重量%の洗浄ケーキを調製した。洗浄ケーキは、乾燥基準でSO4を3.0重量%、Na2Oを0.03重量%含有していた。
[Example]
Hereinafter, although an example explains, the present invention is not limited by these examples.
[Example 1]
Preparation of Modified Titanium Oxide Fine Particle Powder (1) for Honeycomb Extruded Molded Body 78.3 kg of metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd.) was charged into a stirring tank equipped with a heating reflux, and 2.82 kg of ammonium paratungstate was further added. After adding and mixing, 30.5 kg of 15% by weight ammonia water was added to adjust the pH to 9.5, and the mixture was aged with stirring at 95 ° C. for 1 hour. Then, this mixed slurry was cooled to 40 ° C., then filtered, and washed with water to prepare a washed cake having a solid content concentration (TiO 2 · WO 3 ) of 49% by weight. The washed cake contained 3.0 wt% SO 4 and 0.03 wt% Na 2 O on a dry basis.

ついで、洗浄ケーキを110℃で20時間乾燥し、さらに550℃で5時間焼成した後、粉砕機を用いて粉砕し、酸化チタンと酸化タングステンの複合酸化物(TiO2−WO3、重量比TiO2/WO3=90/10)からなる酸化チタン系微粒子粉末(1)を得た。 Next, the washed cake was dried at 110 ° C. for 20 hours, further calcined at 550 ° C. for 5 hours, and then pulverized by using a pulverizer to obtain a composite oxide of titanium oxide and tungsten oxide (TiO 2 —WO 3 , weight ratio TiO 2). 2 / WO 3 = 90/10) to obtain a titanium oxide fine particle powder (1).

酸化チタン系微粒子粉末(1)の平均粒子径を以下の方法で測定し、結果を表に示す。また組成(調合基準)を表に示す。
平均粒子径および粒子径分布は、レーザー回折散乱式粒子径分布測定装置(堀場製作所製:LA−300)を用いて測定した。このときの条件は、水分散媒に分散させ、超音波を3分間照射し、レーザー光透過率が85%となるように濃度調整した。
The average particle size of the titanium oxide fine particle powder (1) was measured by the following method, and the results are shown in the table. The composition (preparation standard) is shown in the table.
The average particle size and particle size distribution were measured using a laser diffraction / scattering particle size distribution measuring apparatus (Horiba, Ltd .: LA-300). The conditions at this time were dispersed in an aqueous dispersion medium, irradiated with ultrasonic waves for 3 minutes, and the concentration was adjusted so that the laser light transmittance was 85%.

また、水分脱離率(W%)を測定し、結果を表に示すとともに、図1に重量減少曲線を示し、図2に吸熱曲線を示す(なお改質していないので、後述の比較例1に相当する)。
ついで、得られた酸化チタン系微粒子粉末(1)23.5kgと、改質剤としてステアリン酸23.5gを混合し、ニーダーにて20分間、120℃に加熱しながら混合してハニカム押出成型体用改質酸化チタン系微粒子粉末(1)を調製した。
Further, the moisture desorption rate (W%) was measured, and the results are shown in the table, and the weight loss curve is shown in FIG. 1, and the endothermic curve is shown in FIG. 1).
Next, 23.5 kg of the obtained titanium oxide-based fine particle powder (1) and 23.5 g of stearic acid as a modifier were mixed and mixed with a kneader for 20 minutes while heating to 120 ° C. to form a honeycomb extruded body. Modified titanium oxide fine particle powder (1) was prepared.

ハニカム押出成型体用改質酸化チタン系微粒子粉末(1)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示すとともに、図1に重量減少曲線を示し、図2に吸熱曲線を示す。 The average particle size and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (1) for honeycomb extrusion molding were measured. The results are shown in the table, and the weight loss curve is shown in FIG. 2 shows an endothermic curve.

このときの、ハニカム押出成型体用改質酸化チタン系微粒子粉末(1)中の改質剤の含有量は使用量基準で0.1重量%である。
また、平均粒子径は酸化チタン系微粒子粉末(1)と同様に測定した。
At this time, the content of the modifier in the modified titanium oxide fine particle powder (1) for the honeycomb extruded body is 0.1% by weight based on the amount used.
The average particle size was measured in the same manner as the titanium oxide fine particle powder (1).

ハニカム押出成型体用組成物(1)の調製
ハニカム押出成型体用改質酸化チタン系微粒子粉末(1)23.5kgに、モノエタノールアミン0.375kgにメタバナジン酸アンモニウムをV25として1.28kgを溶解した溶液を加え、次いでアンモニア水と水を加えてこの混合スラリーのpHを9とし、ニーダーにて120℃に加熱しながら0.5時間捏和した。その後、補強材としてグラスファイバー(オーウェンスコーニング(株)製:チョップドストランド03 DE、長さ3mm、繊維径5μm)1.25kg、フィラーとして酸性白土1.25kg、及び有機添加剤としてポリエチレンオキサイド0.5kgを加えて、さらに1.5時間捏和して、ハニカム押出成型体用組成物(1)を調製した。
ハニカム押出成型体用組成物(1)中の各成分の含有量(使用量基準)を表に示す。
水分量は赤外線水分計(ケツト化学研究所製:FD−610)によって測定した。
Preparation of Composition for Honeycomb Extrudate (1) 1. Modified titanium oxide fine particle powder for honeycomb extrudate (1) 23.5 kg, monoethanolamine 0.375 kg and ammonium metavanadate as V 2 O 5 . A solution in which 28 kg was dissolved was added, then aqueous ammonia and water were added to adjust the pH of the mixed slurry to 9, and the mixture was kneaded for 0.5 hours while heating to 120 ° C. with a kneader. Thereafter, glass fiber (made by Owens Corning Co., Ltd .: chopped strand 03 DE, length 3 mm, fiber diameter 5 μm) 1.25 kg as a reinforcing material, acid clay 1.25 kg as a filler, and polyethylene oxide 0. 5 kg was added and the mixture was further kneaded for 1.5 hours to prepare a honeycomb extruded body composition (1).
The contents (usage standard) of each component in the composition for honeycomb extruded body (1) are shown in the table.
The moisture content was measured with an infrared moisture meter (Ketto Chemical Laboratory: FD-610).

成型体(1)の調製
ハニカム押出成型体用組成物(1)を真空押出成形機でハニカム形状に押出成型により、ハニカム構造体(1)を調製した。
このとき、以下の基準で成型性を評価し、結果を表に示す。
Preparation of Molded Body (1) The honeycomb structure (1) was prepared by extruding the honeycomb extruded body composition (1) into a honeycomb shape with a vacuum extruder.
At this time, moldability was evaluated according to the following criteria, and the results are shown in the table.

<成形性>
押出成形時のダイス面からの流れが安定的で、連続10分間押出成形する間にハニカム触媒内部に欠陥が発生しない場合を◎とした。また、初期の流れが安定的であるが、連続10分間成形する間にハニカム触媒内部に欠陥が発生した場合を○とした。一方、初期の流れが不安定でハニカム触媒内部に欠陥が発生した場合は△とした。ダイス面から出てこないものを×とした。
<Moldability>
The case where the flow from the die surface during extrusion molding was stable and no defect occurred inside the honeycomb catalyst during extrusion molding for 10 minutes continuously was marked as と し た. In addition, the initial flow was stable, but a case where a defect occurred inside the honeycomb catalyst during the continuous 10-minute molding was marked as ◯. On the other hand, when the initial flow was unstable and a defect was generated inside the honeycomb catalyst, Δ was given. The thing which did not come out from a die surface was set as x.

ついで、ハニカム構造体(1)を60℃で48時間乾燥し、ついで、530℃で3時間焼成してハニカム構造の成型体(1)を調製した。
成型体(1)の各寸法を測定し、結果を表に示す。また、成型体(1)中の各成分の含有量(使用量基準)を表に示す。(重量比でTiO2/WO3/V25/GF/酸性白土の割合は、77.4/8.6/4/5/5である。)
また、成型体(1)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を以下の方法で測定し、結果を表に示す。
Next, the honeycomb structure (1) was dried at 60 ° C. for 48 hours and then fired at 530 ° C. for 3 hours to prepare a honeycomb structure molded body (1).
Each dimension of the molded body (1) was measured, and the results are shown in the table. In addition, the content (usage standard) of each component in the molded body (1) is shown in the table. (The weight ratio of TiO 2 / WO 3 / V 2 O 5 / GF / acid clay is 77.4 / 8.6 / 4/5/5.)
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (1) were measured by the following methods, and the results are shown in the table.

<比表面積>
30%窒素―70%ヘリウムの混合ガスを吸着ガスとしたBET法に基づく比表面積測定装置によりハニカム状排ガス処理触媒の比表面積を求める。
<Specific surface area>
The specific surface area of the honeycomb-shaped exhaust gas treatment catalyst is determined by a specific surface area measuring device based on the BET method using a mixed gas of 30% nitrogen and 70% helium as an adsorbed gas.

<細孔容積>
細孔容積は、水銀圧入法細孔分布測定装置(QANTA CROME社製:PM−33GT1LP)で測定した。なお、圧力範囲は32〜32200psiである。
<Pore volume>
The pore volume was measured with a mercury intrusion method pore distribution measuring device (manufactured by QANTA CROME: PM-33GT1LP). The pressure range is 32 to 32200 psi.

<圧縮強度>
圧縮強度機(東京試験機製作所製:型式 AL/B30P)を用い、成型体(1)を立方体または直方体に切出した試料に対し、ハニカム孔の貫通方向、及びこの方向と直交する方向(以下、単に「直交方向」ともいう)に一定速度で圧縮負荷をかけ、試料が破壊されるまでの最大荷重(N)を読み取り、下記(4)式より圧縮強度を求める。
圧縮強度:(N/cm2)=W(N)/{a(cm)×c(cm)} ・・・(4)
ここで、a(cm)及びc(cm)は試料の加圧面の2辺の寸法を示す。W(N)は徐々に負荷をかけ試料が完全に破壊されるまでの最大荷重を示す。
<Compressive strength>
Using a compressive strength machine (manufactured by Tokyo Test Machine Manufacturing Co., Ltd .: model AL / B30P), a sample obtained by cutting the molded body (1) into a cube or a rectangular parallelepiped, and the direction through which the honeycomb holes penetrate and perpendicular to this direction (hereinafter, A compressive load is applied at a constant speed to the specimen (also referred to simply as “orthogonal direction”), the maximum load (N) until the sample is broken is read, and the compressive strength is obtained from the following equation (4).
Compressive strength: (N / cm 2 ) = W (N) / {a (cm) × c (cm)} (4)
Here, a (cm) and c (cm) indicate the dimensions of the two sides of the pressing surface of the sample. W (N) indicates the maximum load until the sample is completely destroyed by applying a load gradually.

<脱硝触媒性能試験>
成型体(1)を、ハニカム孔数5×5目、長さ200mmに切り出して試験試料とし、この試験試料を流通式反応器に充填した。この流通式反応器に下記組成のモデルガスを流通させて脱硝率を測定した。触媒接触前後のガス中の窒素酸化物(NOx)の脱硝率は、下記(5)式により求めた。このときNOxの濃度は化学発光式の窒素酸化物分析装置にて測定した。
脱硝率(%)={(未接触ガス中のNOx(質量ppm)−接触後のガス中のNOx(質量ppm))/未接触ガス中のNOx(質量ppm)}×100 ・・・(5)
試験条件
触媒形状:ハニカム孔数5×5目、長さ200mm
反応温度:350℃、SV=40,000hr−1
モデルガス組成:NOx=100質量ppm、NH3=100質量ppm、O2= 7重量%、H2O=10重量%、N2=バランス
<Denitration catalyst performance test>
The molded body (1) was cut into a honeycomb sample having 5 × 5 honeycomb holes and a length of 200 mm to obtain a test sample, and this test sample was filled in a flow reactor. A model gas having the following composition was passed through this flow reactor, and the denitration rate was measured. The denitration rate of nitrogen oxides (NO x ) in the gas before and after contact with the catalyst was determined by the following equation (5). At this time, the concentration of NO x was measured with a chemiluminescent nitrogen oxide analyzer.
Denitration rate (%) = {(NO x in non-contact gas (ppm by mass) −NO x in gas after contact (mass ppm)) / NO x in non-contact gas (mass ppm)} × 100・ (5)
Test conditions Catalyst shape: Honeycomb pore number 5 × 5, length 200mm
Reaction temperature: 350 ° C., SV = 40,000 hr −1
Model gas composition: NOx = 100 mass ppm, NH 3 = 100 mass ppm, O 2 = 7 wt%, H 2 O = 10 wt%, N 2 = balance

[実施例2]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(2)の調製
実施例1において、改質剤としてステアリン酸4.7gを用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(2)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(2)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
[Example 2]
Preparation of Modified Titanium Oxide Fine Particle Powder (2) for Honeycomb Extruded Body Modified Example of Modified Titanium Oxide Fine Particle for Honeycomb Extruded Body Except that 4.7 g of stearic acid was used as a modifier. Powder (2) was prepared.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (2) for honeycomb extruded body were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(2)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(2)を用いた以外は同様にしてハニカム押出成型体用組成物(2)を調製した。
ハニカム押出成型体用組成物(2)中の各成分の含有量を表に示す。
Preparation of Composition for Extruded Honeycomb (2) Composition for Extruded Honeycomb (2) in the same manner as in Example 1 except that the modified titanium oxide fine particle powder (2) for honeycomb extruded is used. Was prepared.
The content of each component in the composition for honeycomb extruded body (2) is shown in the table.

成型体(2)の調製
実施例1において、ハニカム押出成型体用組成物(2)を用いた以外は同様にして成型体(2)を調製した。
このとき、成型性を評価するとともに、得られた成型体(2)の各寸法を測定し、結果を表に示す。また、成型体(2)中の各成分の含有量を表に示す。
また、成型体(2)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (2) A molded body (2) was prepared in the same manner as in Example 1 except that the composition for extruded honeycomb body (2) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (2) was measured, and the results are shown in the table. In addition, the content of each component in the molded body (2) is shown in the table.
Further, the specific surface area, pore volume, compressive strength, and denitration catalyst performance of the molded body (2) were measured, and the results are shown in the table.

[実施例3]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(3)の調製
実施例1において、改質剤としてステアリン酸11.8gを用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(3)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(3)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
[Example 3]
Preparation of Modified Titanium Oxide Fine Particle Powder (3) for Honeycomb Extrusion Molded Modified Titanium Oxide Fine Particle for Honeycomb Extrusion Molded Example 1 except that 11.8 g of stearic acid was used as a modifier. Powder (3) was prepared.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (3) for honeycomb extruded body were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(3)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(3)を用いた以外は同様にしてハニカム押出成型体用組成物(3)を調製した。
ハニカム押出成型体用組成物(3)中の各成分の含有量を表に示す。
Preparation of Composition for Extruded Honeycomb (3) Composition for Honeycomb Extruded Body (3) was the same as in Example 1 except that modified titanium oxide fine particle powder (3) for honeycomb extruded body was used. Was prepared.
The content of each component in the composition for honeycomb extruded body (3) is shown in the table.

成型体(3)の調製
実施例1において、ハニカム押出成型体用組成物(3)を用いた以外は同様にして成型体(3)を調製した。
このとき、成型性を評価するとともに、得られた成型体(3)の各寸法を測定し、結果を表に示す。また、成型体(3)中の各成分の含有量を表に示す。
また、成型体(3)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (3) A molded body (3) was prepared in the same manner as in Example 1 except that the composition for extruded honeycomb body (3) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (3) was measured, and the results are shown in the table. Further, the content of each component in the molded body (3) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (3) were measured, and the results are shown in the table.

[実施例4]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(4)の調製
実施例1において、改質剤としてステアリン酸47.0gを用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(4)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(4)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
[Example 4]
Preparation of Modified Titanium Oxide Fine Particle Powder (4) for Honeycomb Extrusion Molded Modified Titanium Oxide Fine Particle for Honeycomb Extrusion Molded Example 1 except that 47.0 g of stearic acid was used as a modifier. Powder (4) was prepared.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (4) for honeycomb extruded body were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(4)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(4)を用いた以外は同様にしてハニカム押出成型体用組成物(4)を調製した。
ハニカム押出成型体用組成物(4)中の各成分の含有量を表に示す。
Preparation of Composition for Extruded Honeycomb (4) Composition for Extruded Honeycomb (4) in the same manner as in Example 1 except that the modified titanium oxide fine particle powder (4) for extruded honeycomb is used. Was prepared.
The content of each component in the composition for honeycomb extruded body (4) is shown in the table.

成型体(4)の調製
実施例1において、ハニカム押出成型体用組成物(4)を用いた以外は同様にして成型体(4)を調製した。
このとき、成型性を評価するとともに、得られた成型体(4)の各寸法を測定し、結果を表に示す。また、成型体(4)中の各成分の含有量を表に示す。
また、成型体(4)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (4) A molded body (4) was prepared in the same manner as in Example 1 except that the composition for extruded honeycomb body (4) was used.
At this time, while evaluating moldability, each dimension of the obtained molded object (4) was measured, and a result is shown to a table | surface. Further, the content of each component in the molded body (4) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (4) were measured, and the results are shown in the table.

[実施例5]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(5)の調製
実施例1において、改質剤としてステアリン酸117.5gを用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(5)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(5)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
[Example 5]
Preparation of Modified Titanium Oxide Fine Particle Powder (5) for Honeycomb Extrusion Molded Modified Titanium Oxide Fine Particle for Honeycomb Extrusion Molded Example 1 except that 117.5 g of stearic acid was used as a modifier. Powder (5) was prepared.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (5) for honeycomb extruded body were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(5)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(5)を用いた以外は同様にして成型体用組成物(5)を調製した。
ハニカム押出成型体用組成物(5)中の各成分の含有量を表に示す。
Preparation of composition for honeycomb extruded body (5) A composition for molded body (5) was prepared in the same manner as in Example 1 except that the modified titanium oxide fine particle powder (5) for honeycomb extruded body was used. did.
The content of each component in the composition for a honeycomb extruded body (5) is shown in the table.

成型体(5)の調製
実施例1において、ハニカム押出成型体用組成物(5)を用いた以外は同様にして成型体(5)を調製した。
このとき、成型性を評価するとともに、得られた成型体(5)の各寸法を測定し、結果を表に示す。また、成型体(5)中の各成分の含有量を表に示す。
また、成型体(5)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (5) A molded body (5) was prepared in the same manner as in Example 1, except that the composition for extruded honeycomb body (5) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (5) was measured, and the results are shown in the table. Further, the content of each component in the molded body (5) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (5) were measured, and the results are shown in the table.

[実施例6]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(6)の調製
実施例1において、改質剤としてステアリン酸188gを用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(6)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(6)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示すとともに図1に重量減少曲線を示し、図2に吸熱曲線を示す。
また、組成(使用量基準)を表に示す。
[Example 6]
Preparation of Modified Titanium Oxide Fine Particle Powder (6) for Honeycomb Extrusion Molded Example 1 Modified titanium oxide fine particle powder for honeycomb extrudate ( except for the use of 188 g of stearic acid as a modifier ). 6) was prepared.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (6) for honeycomb extrusion molding were measured. The results are shown in the table, and the weight loss curve is shown in FIG. Shows the endothermic curve.
Moreover, a composition (usage amount basis) is shown in the table.

ハニカム押出成型体用組成物(6)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(6)を用いた以外は同様にしてハニカム押出成型体用組成物(6)を調製した。
ハニカム押出成型体用組成物(6)中の各成分の含有量(使用量基準)を表に示す。
Preparation of honeycomb extruded body composition (6) Preparation of honeycomb extruded body composition (6) in Example 1 except that the modified titanium oxide fine particle powder (6) for honeycomb extruded body was used. Was prepared.
The contents (usage basis) of each component in the composition for extruded honeycomb body (6) are shown in the table.

成型体(6)の調製
実施例1において、ハニカム押出成型体用組成物(6)を用いた以外は同様にして成型体(6)を調製した。
このとき、成型性を評価するとともに、得られた成型体(6)の各寸法を測定し、結果を表に示す。また、成型体(6)中の各成分の含有量(使用量基準)を表に示す。
また、成型体(6)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (6) A molded body (6) was prepared in the same manner as in Example 1 except that the composition for extruded honeycomb body (6) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (6) was measured, and the results are shown in the table. In addition, the content (usage standard) of each component in the molded body (6) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (6) were measured, and the results are shown in the table.

[実施例7]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(7)の調製
実施例1と同様にして、酸化チタン系微粒子粉末(7)を得た。得られた酸化チタン系微粒子粉末(7)23.5kgと、改質剤としてステアリン酸23.5gをエタノール中に溶解した溶液100mlとを20分間混合後、40±5℃に調整した恒温槽中で乾燥して、ハニカム押出成型体用改質酸化チタン系微粒子粉末(7)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(7)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
[Example 7]
Preparation of Modified Titanium Oxide Fine Particle Powder (7) for Honeycomb Extrusion Molded Titanium oxide fine particle powder (7) was obtained in the same manner as in Example 1. In a thermostatic bath adjusted to 40 ± 5 ° C. after mixing for 20 minutes with 23.5 kg of the resulting titanium oxide fine particle powder (7) and 100 ml of a solution of 23.5 g of stearic acid dissolved in ethanol as a modifier. And dried to prepare a modified titanium oxide fine particle powder (7) for a honeycomb extruded body.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (7) for honeycomb extruded body were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(7)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(7)を用いた以外は同様にしてハニカム押出成型体用組成物(7)を調製した。
ハニカム押出成型体用組成物(7)中の各成分の含有量を表に示す。
Preparation of honeycomb extruded body composition (7) Preparation of honeycomb extruded body composition (7) in Example 1 except that the modified titanium oxide fine particle powder (7) for honeycomb extruded body was used. Was prepared.
The content of each component in the composition for a honeycomb extruded body (7) is shown in the table.

成型体(7)の調製
実施例1において、ハニカム押出成型体用組成物(7)を用いた以外は同様にして成型体(7)を調製した。
このとき、成型性を評価するとともに、得られた成型体(7)の各寸法を測定し、結果を表に示す。また、成型体(7)中の各成分の含有量を表に示す。
また、成型体(7)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (7) A molded body (7) was prepared in the same manner as in Example 1 except that the composition for extruded honeycomb body (7) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (7) was measured, and the results are shown in the table. Further, the content of each component in the molded body (7) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (7) were measured, and the results are shown in the table.

[実施例8]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(8)の調製
実施例1において、改質剤としてラウリル酸23.5gを用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(8)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(8)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
[Example 8]
Preparation of Modified Titanium Oxide Fine Particle Powder (8) for Honeycomb Extruded Body Modified Example of Modified Titanium Oxide Fine Particle Powder for Honeycomb Extruded Body in Example 1 except that 23.5 g of lauric acid was used as a modifier. (8) was prepared.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (8) for honeycomb extruded body were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(8)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(8)を用いた以外は同様にしてハニカム押出成型体用組成物(8)を調製した。
ハニカム押出成型体用組成物(8)中の各成分の含有量を表に示す。
Preparation of composition for honeycomb extruded body (8) Preparation of honeycomb extruded body composition (8) in the same manner as in Example 1 except that the modified titanium oxide fine particle powder (8) for honeycomb extruded body was used. Was prepared.
The content of each component in the composition for honeycomb extruded body (8) is shown in the table.

成型体(8)の調製
実施例1において、ハニカム押出成型体用組成物(8)を用いた以外は同様にして成型体(8)を調製した。
このとき、成型性を評価するとともに、得られた成型体(8)の各寸法を測定し、結果を表に示す。また、成型体(8)中の各成分の含有量を表に示す。
また、成型体(8)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (8) A molded body (8) was prepared in the same manner as in Example 1 except that the composition for honeycomb extruded body (8) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (8) was measured, and the results are shown in the table. In addition, the content of each component in the molded body (8) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (8) were measured, and the results are shown in the table.

[実施例9]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(9)の調製
実施例1において、改質剤としてミリスチン酸23.5gを用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(9)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(9)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
[Example 9]
Preparation of modified titanium oxide fine particle powder (9) for honeycomb extruded body Modified titanium oxide fine particle powder for honeycomb extruded body was the same as in Example 1 except that 23.5 g of myristic acid was used as a modifier. (9) was prepared.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (9) for honeycomb extruded body were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(9)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(9)を用いた以外は同様にしてハニカム押出成型体用組成物(9)を調製した。
ハニカム押出成型体用組成物(9)中の各成分の含有量を表に示す。
Preparation of Composition for Extruded Honeycomb (9) Composition for Extruded Honeycomb (9) in the same manner as in Example 1 except that the modified titanium oxide fine particle powder (9) for honeycomb extruded is used. Was prepared.
The content of each component in the composition for honeycomb extruded body (9) is shown in the table.

成型体(9)の調製
実施例1において、ハニカム押出成型体用組成物(9)を用いた以外は同様にして成型体(9)を調製した。
このとき、成型性を評価するとともに、得られた成型体(9)の各寸法を測定し、結果を表に示す。また、成型体(9)中の各成分の含有量を表に示す。
また、成型体(9)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (9) A molded body (9) was prepared in the same manner as in Example 1, except that the composition for honeycomb extruded body (9) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (9) was measured, and the results are shown in the table. Further, the content of each component in the molded body (9) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (9) were measured, and the results are shown in the table.

[実施例10]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(10)の調製
実施例1において、改質剤としてパルミチン酸23.5gを用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(10)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(10)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
[Example 10]
Preparation of Modified Titanium Oxide Fine Particle Powder (10) for Honeycomb Extrusion Molded Example 1 Modified titanium oxide fine particle powder for honeycomb extruded model, except that 23.5 g of palmitic acid was used as a modifier. (10) was prepared.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (10) for honeycomb extrusion molding were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(10)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(10)を用いた以外は同様にしてハニカム押出成型体用組成物(10)を調製した。
ハニカム押出成型体用組成物(10)中の各成分の含有量を表に示す。
Preparation of Composition for Extruded Honeycomb (10) Composition for Extruded Honeycomb (10) in the same manner as in Example 1 except that the modified titanium oxide fine particle powder (10) for honeycomb extruded is used. Was prepared.
The content of each component in the composition for honeycomb extruded body (10) is shown in the table.

成型体(10)の調製
実施例1において、ハニカム押出成型体用組成物(10)を用いた以外は同様にして成型体(10)を調製した。
このとき、成型性を評価するとともに、得られた成型体(10)の各寸法を測定し、結果を表に示す。また、成型体(10)中の各成分の含有量を表に示す。
また、成型体(10)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (10) A molded body (10) was prepared in the same manner as in Example 1, except that the composition for extruded honeycomb body (10) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (10) was measured, and the results are shown in the table. In addition, the content of each component in the molded body (10) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (10) were measured, and the results are shown in the table.

[実施例11]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(11)の調製
実施例1において、改質剤としてオレイン酸23.5gを用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(11)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(11)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
[Example 11]
Preparation of Modified Titanium Oxide Fine Particle Powder (11) for Honeycomb Extruded Body Modified Example of Modified Titanium Oxide Fine Particle Powder for Honeycomb Extruded Body Except that 23.5 g of oleic acid was used as a modifier. (11) was prepared.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (11) for honeycomb extrusion molding were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(11)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(11)を用いた以外は同様にして成型体用組成物(11)を調製した。ハニカム押出成型体用組成物(11)中の各成分の含有量を表に示す。
Preparation of composition for honeycomb extruded body (11) A composition for molded body (11) was prepared in the same manner as in Example 1 except that the modified titanium oxide fine particle powder (11) for honeycomb extruded body was used. did. The content of each component in the composition for honeycomb extruded body (11) is shown in the table.

成型体(11)の調製
実施例1において、ハニカム押出成型体用組成物(11)を用いた以外は同様にして成型体(11)を調製した。
このとき、成型性を評価するとともに、得られた成型体(11)の各寸法を測定し、結果を表に示す。また、成型体(11)中の各成分の含有量を表に示す。
また、成型体(11)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (11) A molded body (11) was prepared in the same manner as in Example 1 except that the composition for extruded honeycomb body (11) was used.
At this time, the moldability was evaluated, the dimensions of the obtained molded body (11) were measured, and the results are shown in the table. Further, the content of each component in the molded body (11) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (11) were measured, and the results are shown in the table.

[実施例12]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(12)の調製
実施例1において、改質剤としてステアリン酸モノグリセライド23.5gを用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(12)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(12)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
[Example 12]
Preparation of Modified Titanium Oxide Fine Particle Powder (12) for Honeycomb Extrusion Molded Modified Titanium Oxide Fine Particle for Honeycomb Extrusion Molded Example 1 except that 23.5 g of stearic acid monoglyceride was used as a modifier. Powder (12) was prepared.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (12) for the honeycomb extruded body were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(12)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(12)を用いた以外は同様にしてハニカム押出成型体用組成物(12)を調製した。
ハニカム押出成型体用組成物(12)中の各成分の含有量を表に示す。
Preparation of honeycomb extruded body composition (12) Preparation of honeycomb extruded body composition (12) in Example 1 except that the modified titanium oxide fine particle powder (12) for honeycomb extruded body was used. Was prepared.
The content of each component in the composition for honeycomb extruded body (12) is shown in the table.

成型体(12)の調製
実施例1において、ハニカム押出成型体用組成物(12)を用いた以外は同様にして成型体(12)を調製した。
このとき、成型性を評価するとともに、得られた成型体(12)の各寸法を測定し、結果を表に示す。また、成型体(12)中の各成分の含有量を表に示す。
また、成型体(12)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (12) A molded body (12) was prepared in the same manner as in Example 1, except that the composition for extruded honeycomb body (12) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (12) was measured, and the results are shown in the table. Further, the content of each component in the molded body (12) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (12) were measured, and the results are shown in the table.

[実施例13]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(13)の調製
メタチタン酸スラリー(石原産業(株)製)78.3kgを加熱還流器付撹拌槽に仕込み、さらにパラタングステン酸アンモニウム1.97kgと、水硝子溶液を陽イオン交換樹脂で脱アルカリして調製したSiO2濃度4.0重量%の酸性ケイ酸液18.8kgを添加して混合した後、濃度15重量%のアンモニア水30.5kgを加えてpHを9.5に調整し、さらに95℃で1時間撹拌しながら熟成した。その後、この混合スラリーを40℃まで冷却し、ついで、濾過し、掛け水により洗浄して、固形分濃度(TiO2・WO3・SiO2)50重量%の洗浄ケーキを調製した。洗浄ケーキは、乾燥基準でSO4を3.0重量%、Na2Oを0.03重量%含有していた。
[Example 13]
Preparation of Modified Titanium Oxide Fine Particle Powder (13) for Honeycomb Extruded Molded Body 78.3 kg of metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd.) was charged into a stirring tank equipped with a heating reflux, and 1.97 kg of ammonium paratungstate was further added. After adding 18.8 kg of an acidic silicic acid solution having a SiO 2 concentration of 4.0 wt% prepared by dealkalizing the water glass solution with a cation exchange resin, 30.5 kg of ammonia water having a concentration of 15 wt% was mixed. Was added to adjust the pH to 9.5, and the mixture was further aged with stirring at 95 ° C. for 1 hour. Then, this mixed slurry was cooled to 40 ° C., then filtered, and washed with water to prepare a washing cake having a solid content concentration (TiO 2 · WO 3 · SiO 2 ) of 50% by weight. The washed cake contained 3.0 wt% SO 4 and 0.03 wt% Na 2 O on a dry basis.

ついで、洗浄ケーキを110℃で20時間乾燥した後、さらに550℃で5時間焼成して酸化チタンと酸化タングステンとシリカの複合酸化物(TiO2−WO3−SiO2、重量比:TiO2/WO3/SiO2=90/7/3)からなる酸化チタン系微粒子粉末(13)を得た。 Next, the washed cake was dried at 110 ° C. for 20 hours, and further calcined at 550 ° C. for 5 hours to be a composite oxide of titanium oxide, tungsten oxide and silica (TiO 2 —WO 3 —SiO 2 , weight ratio: TiO 2 / A titanium oxide fine particle powder (13) composed of WO 3 / SiO 2 = 90/7/3) was obtained.

酸化チタン系微粒子粉末(13)の平均粒子径を測定し、結果を表に示す。また組成(調合基準)を表に示す。また、水分脱離率(W%)を測定し、結果を表に示す。
以下、実施例1において酸化チタン系微粒子粉末(13)を用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(13)を調製した。
ハニカム押出成型体用改質酸化チタン系微粒子粉末(13)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
The average particle diameter of the titanium oxide fine particle powder (13) was measured, and the results are shown in the table. The composition (preparation standard) is shown in the table. Further, the moisture desorption rate (W%) was measured, and the results are shown in the table.
Hereinafter, a modified titanium oxide fine particle powder (13) for a honeycomb extruded body was prepared in the same manner except that the titanium oxide fine particle powder (13) was used in Example 1.
The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (13) for honeycomb extruded body were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(13)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(13)を用いた以外は同様にして成型体用組成物(13)を調製した。
ハニカム押出成型体用組成物(13)中の各成分の含有量を表に示す。
Preparation of composition for honeycomb extruded body (13) In Example 1, a composition for molded body (13) was prepared in the same manner except that the modified titanium oxide fine particle powder (13) for honeycomb extruded body was used. did.
The content of each component in the composition for honeycomb extruded body (13) is shown in the table.

成型体(13)の調製
実施例1において、ハニカム押出成型体用組成物(13)を用いた以外は同様にして成型体(13)を調製した。
このとき、成型性を評価するとともに、得られた成型体(13)の各寸法を測定し、結果を表に示す。また、成型体(13)中の各成分の含有量を表に示す。
また、成型体(13)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (13) A molded body (13) was prepared in the same manner as in Example 1 except that the composition for honeycomb extruded body (13) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (13) was measured, and the results are shown in the table. In addition, the content of each component in the molded body (13) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (13) were measured, and the results are shown in the table.

[比較例1]
ハニカム押出成型体用酸化チタン系微粒子粉末(R1)の調製
実施例1において、改質剤を使用しなかった以外は同様にしてハニカム押出成型体用酸化チタン系微粒子粉末(R1)を調製した。
ハニカム押出成型体用成型体用酸化チタン系微粒子粉末(R1)の平均粒子径を測定し、結果を表に示す。
[Comparative Example 1]
Preparation of Titanium Oxide Fine Particle Powder (R1) for Honeycomb Extrusion Molded Titanium oxide fine particle powder (R1) for honeycomb extrudate was prepared in the same manner as in Example 1 except that no modifier was used.
The average particle diameter of the titanium oxide-based fine particle powder (R1) for the molded body for the honeycomb extruded body was measured, and the results are shown in the table.

ハニカム押出成型体用組成物(R1)の調製
実施例1において、ハニカム押出成型体用酸化チタン系微粒子粉末(R1)を用いた以外は同様にしてハニカム押出成型体用組成物(R1)を調製した。
ハニカム押出成型体用組成物(R1)中の各成分の含有量を表に示す。
Preparation of composition for honeycomb extruded body (R1) In Example 1, a composition for honeycomb extruded body (R1) was prepared in the same manner as in Example 1 except that the titanium oxide fine particle powder (R1) for honeycomb extruded body was used. did.
The content of each component in the honeycomb extruded body composition (R1) is shown in the table.

成型体(R1)の調製
実施例1において、ハニカム押出成型体用組成物(R1)を用いた以外は同様にして押出成型を開始したが、間もなく目詰まりして成型ができなかった。
Preparation of molded body (R1) Extrusion molding was started in the same manner as in Example 1 except that the composition for extruded honeycomb body (R1) was used, but it was soon clogged and could not be molded.

[比較例2]
ハニカム押出成型体用酸化チタン系微粒子粉末(R2)の調製
実施例13において、改質剤を使用しなかった以外は同様にしてハニカム押出成型体用酸化チタン系微粒子粉末(R2)を調製した。
ハニカム押出成型体用酸化チタン系微粒子粉末(R2)の平均粒子径を測定し、結果を表に示す。
[Comparative Example 2]
Preparation of Titanium Oxide Fine Particle Powder (R2) for Honeycomb Extruded Body A titanium oxide fine particle powder (R2) for a honeycomb extruded body was prepared in the same manner as in Example 13 except that no modifier was used.
The average particle diameter of the titanium oxide fine particles (R2) for honeycomb extrusion-molded bodies was measured, and the results are shown in the table.

ハニカム押出成型体用組成物(R2)の調製
実施例1において、ハニカム押出成型体用酸化チタン系微粒子粉末(R2)を用いた以外は同様にして成型体用組成物(R2)を調製した。
ハニカム押出成型体用組成物(R2)中の各成分の含有量を表に示す。
Preparation of composition for honeycomb extruded body (R2) A composition for molded body (R2) was prepared in the same manner as in Example 1 except that the titanium oxide fine particle powder (R2) for honeycomb extruded body was used.
The content of each component in the honeycomb extruded body composition (R2) is shown in the table.

成型体(R2)の調製
実施例1において、ハニカム押出成型体用組成物(R2)を用いた以外は同様にして押出成型を開始したが、間もなく目詰まりして成型ができなかった。
Preparation of molded body (R2) Extrusion molding was started in the same manner as in Example 1 except that the composition for honeycomb extruded body (R2) was used, but it was soon clogged and could not be molded.

[比較例3]
ハニカム押出成型体用組成物(R3)の調製
実施例1と同様にして調製した酸化チタン系微粒子粉末(1)23.5kgに、モノエタノールアミン0.375kgにメタバナジン酸アンモニウムをV25として1.28kgを溶解した溶液を加え、ついで、ステアリン酸23.5gを加え、次いでアンモニア水と水を加えてこの混合スラリーのpHを9とし、ニーダーにて110℃に加熱しながら捏和した。
[Comparative Example 3]
Preparation of composition for honeycomb extruded body (R3) 23.5 kg of titanium oxide fine particle powder (1) prepared in the same manner as in Example 1, 0.375 kg of monoethanolamine and V 2 O 5 of ammonium metavanadate as V 2 O 5 A solution in which 1.28 kg was dissolved was added, then 23.5 g of stearic acid was added, then ammonia water and water were added to adjust the pH of the mixed slurry to 9, and kneaded while heating to 110 ° C. with a kneader.

その後、補強材としてグラスファイバー(オーウェンスコーニング(株)製:チョップドストランド03 DE、長さ3mm、繊維径5μm)1.25kg、(フィラー)として酸性白土1.25kg、及び有機添加剤としてポリエチレンオキサイド0.5kgを加えて、さらに捏和して、ハニカム押出成型体用組成物(R3)を調製した。
ハニカム押出成型体用組成物(R3)中の各成分の含有量を表に示す。
Then, glass fiber (made by Owens Corning Co., Ltd .: chopped strand 03 DE, length 3 mm, fiber diameter 5 μm) 1.25 kg as reinforcing material, 1.25 kg of acid clay as (filler), and polyethylene oxide as organic additive 0.5 kg was added and further kneaded to prepare a honeycomb extruded body composition (R3).
The content of each component in the composition for honeycomb extruded body (R3) is shown in the table.

成型体(R3)の調製
実施例1において、ハニカム押出成型体用組成物(R3)を用いた以外は同様にして成型体(R3)を調製した。
このとき、成型性を評価するとともに、得られた成型体(R3)の各寸法を測定し、結果を表に示す。また、成型体(R3)中の各成分の含有量を表に示す。
また、成型体(R3)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (R3) A molded body (R3) was prepared in the same manner as in Example 1 except that the composition for extruded honeycomb body (R3) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (R3) was measured, and the results are shown in the table. Further, the content of each component in the molded body (R3) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (R3) were measured, and the results are shown in the table.

[比較例4]
ハニカム押出成型体用酸化チタン系微粒子粉末(R4)の調製
実施例1において、改質剤としてステアリン酸1175gを用いた以外は同様にして成型体用酸化チタン系微粒子粉末(R4)を調製した。成型体用酸化チタン系微粒子粉末(R4)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示すとともに図1に重量減少曲線を示し、図2に吸熱曲線を示す。また、改質剤の含有量を表に示す。
[Comparative Example 4]
Preparation of Titanium Oxide Fine Particle Powder (R4) for Honeycomb Extrusion Molded Titanium oxide fine particle powder (R4) for molded body was prepared in the same manner as in Example 1 except that 1175 g of stearic acid was used as a modifier. The average particle diameter and moisture desorption rate (W ST %) of the titanium oxide fine particle powder (R4) for molded bodies were measured. The results are shown in the table, the weight loss curve is shown in FIG. 1, and the endothermic curve is shown in FIG. Show. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(R4)の調製
実施例1において、ハニカム押出成型体用酸化チタン系微粒子粉末(R4)を用いた以外は同様にしてハニカム押出成型体用組成物(R4)を調製した。
ハニカム押出成型体用組成物(R4)中の各成分の含有量を表に示す。
Preparation of honeycomb extruded body composition (R4) A honeycomb extruded body composition (R4) was prepared in the same manner as in Example 1 except that the titanium oxide fine particle powder (R4) for honeycomb extruded body was used. did.
The content of each component in the composition for extruded honeycomb bodies (R4) is shown in the table.

成型体(R4)の調製
実施例1において、ハニカム押出成型体用組成物(R4)を用いた以外は同様にして成型体(R4)を調製した。
このとき、成型性を評価するとともに、得られた成型体(R4)の各寸法を測定し、結果を表に示す。また、成型体(R4)中の各成分の含有量を表に示す。
また、成型体(R4)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (R4) A molded body (R4) was prepared in the same manner as in Example 1 except that the composition for extruded honeycomb body (R4) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (R4) was measured, and the results are shown in the table. In addition, the content of each component in the molded body (R4) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (R4) were measured, and the results are shown in the table.

[比較例5]
ハニカム押出成型体用酸化チタン系微粒子粉末(R5)の調製
実施例1において、改質剤としてステアリン酸1.2gを用いた以外は同様にしてハニカム押出成型体用酸化チタン系微粒子粉末(R5)を調製した。
ハニカム押出成型体用酸化チタン系微粒子粉末(R5)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。
[Comparative Example 5]
Preparation of Titanium Oxide Fine Particle Powder (R5) for Honeycomb Extrusion Molded Titanium oxide fine particle powder (R5) for honeycomb extrudate in the same manner as in Example 1 except that 1.2 g of stearic acid was used as a modifier. Was prepared.
The average particle diameter and moisture desorption rate (W ST %) of the titanium oxide fine particle powder (R5) for honeycomb extrusion molding were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(R5)の調製
実施例1において、ハニカム押出成型体用酸化チタン系微粒子粉末(R5)を用いた以外は同様にしてハニカム押出成型体用組成物(R5)を調製した。
ハニカム押出成型体用組成物(R5)中の各成分の含有量を表に示す。
Preparation of composition for honeycomb extruded body (R5) In Example 1, a composition for honeycomb extruded body (R5) was prepared in the same manner as in Example 1 except that the titanium oxide fine particle powder (R5) for honeycomb extruded body was used. did.
The content of each component in the composition for honeycomb extruded body (R5) is shown in the table.

成型体(R5)の調製
実施例1において、ハニカム押出成型体用組成物(R5)を用いた以外は同様にして成型体(R5)を調製した。
このとき、成型性を評価するとともに、得られた成型体(R5)の各寸法を測定し、結果を表に示す。また、成型体(R5)中の各成分の含有量を表に示す。
また、成型体(R5)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (R5) A molded body (R5) was prepared in the same manner as in Example 1 except that the composition for extruded honeycomb body (R5) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (R5) was measured, and the results are shown in the table. The contents of each component in the molded body (R5) are shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (R5) were measured, and the results are shown in the table.

[実施例14]
ハニカム押出成型体用改質酸化チタン系微粒子粉末(14)の調製
メタチタン酸スラリー(石原産業(株)製)87.0kgを加熱還流器付撹拌槽に仕込み、濃度15重量%のアンモニア水20.5kgを加えてpHを9.5に調整し、さらに95℃で1時間撹拌しながら熟成した。その後、この混合スラリーを40℃まで冷却し、ついで、濾過し、掛け水により洗浄して、固形分濃度(TiO2)49重量%の洗浄ケーキを調製した。洗浄ケーキは、乾燥基準でSO4を3.0重量%、Na2Oを0.03重量%含有していた。
[Example 14]
Preparation of Modified Titanium Oxide Fine Particle Powder (14) for Extruded Honeycomb Molded Body 87.0 kg of metatitanic acid slurry (manufactured by Ishihara Sangyo Co., Ltd.) was charged into a stirring tank equipped with a heating reflux, and ammonia water having a concentration of 15% by weight. The pH was adjusted to 9.5 by adding 5 kg, and further aged with stirring at 95 ° C. for 1 hour. Thereafter, the mixed slurry was cooled to 40 ° C., then filtered and washed with water to prepare a washing cake having a solid content concentration (TiO 2 ) of 49% by weight. The washed cake contained 3.0 wt% SO 4 and 0.03 wt% Na 2 O on a dry basis.

ついで、洗浄ケーキを110℃で20時間乾燥した後、さらに540℃で5時間焼成して酸化チタン酸化物(TiO2)からなる酸化チタン系微粒子粉末(14)を得た。酸化チタン系微粒子粉末(14)の平均粒子径を測定し、結果を表に示す。また組成(調合基準)を表に示す。また、水分脱離率(W%)を測定し、結果を表に示す。 Next, the washed cake was dried at 110 ° C. for 20 hours, and further calcined at 540 ° C. for 5 hours to obtain titanium oxide fine particle powder (14) made of titanium oxide oxide (TiO 2 ). The average particle diameter of the titanium oxide fine particle powder (14) was measured, and the results are shown in the table. The composition (preparation standard) is shown in the table. Further, the moisture desorption rate (W%) was measured, and the results are shown in the table.

以下、実施例1において酸化チタン系微粒子粉末(14)を用いた以外は同様にしてハニカム押出成型体用改質酸化チタン系微粒子粉末(14)を調製した。ハニカム押出成型体用改質酸化チタン系微粒子粉末(14)の平均粒子径および水分脱離率(WST%)を測定し、結果を表に示す。また、改質剤の含有量を表に示す。 Hereinafter, a modified titanium oxide-based fine particle powder (14) for a honeycomb extruded body was prepared in the same manner except that the titanium oxide-based fine particle powder (14) was used in Example 1. The average particle diameter and moisture desorption rate (W ST %) of the modified titanium oxide fine particle powder (14) for honeycomb extruded molded body were measured, and the results are shown in the table. The content of the modifier is shown in the table.

ハニカム押出成型体用組成物(14)の調製
実施例1において、ハニカム押出成型体用改質酸化チタン系微粒子粉末(14)を用いた以外は同様にしてハニカム押出成型体用組成物(14)を調製した。ハニカム押出成型体用組成物(14)中の各成分の含有量を表に示す。
Preparation of honeycomb extruded body composition (14) Preparation of honeycomb extruded body composition (14) in Example 1 except that the modified titanium oxide fine particle powder (14) for honeycomb extruded body was used. Was prepared. The content of each component in the composition for a honeycomb extruded body (14) is shown in the table.

成型体(14)の調製
実施例1において、ハニカム押出成型体用組成物(14)を用いた以外は同様にして成型体(14)を調製した。
このとき、成型性を評価するとともに、得られた成型体(14)の各寸法を測定し、結果を表に示す。また、成型体(14)中の各成分の含有量を表に示す。
また、成型体(14)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (14) A molded body (14) was prepared in the same manner as in Example 1 except that the composition for honeycomb extruded body (14) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (14) was measured, and the results are shown in the table. In addition, the content of each component in the molded body (14) is shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (14) were measured, and the results are shown in the table.

[比較例6]
ハニカム押出成型体用酸化チタン系微粒子粉末(R6)の調製
実施例14において、改質剤を使用しなかった以外は同様にしてハニカム押出成型体用酸化チタン系微粒子粉末(R6)を調製した。ハニカム押出成型体用酸化チタン系微粒子粉末(R6)の平均粒子径を測定し、結果を表に示す。
[Comparative Example 6]
Preparation of Titanium Oxide Fine Particle Powder (R6) for Honeycomb Extruded Body A titanium oxide fine particle powder (R6) for a honeycomb extruded body was prepared in the same manner as in Example 14 except that no modifier was used. The average particle diameter of the titanium oxide fine particle powder (R6) for honeycomb extrusion-molded bodies was measured, and the results are shown in the table.

ハニカム押出成型体用組成物(R6)の調製
実施例1において、ハニカム押出成型体用酸化チタン系微粒子粉末(R6)を用いた以外は同様にしてハニカム押出成型体用組成物(R6)を調製した。ハニカム押出成型体用組成物(R6)中の各成分の含有量を表に示す。
Preparation of composition for honeycomb extruded body (R6) A composition for honeycomb extruded body (R6) was prepared in the same manner as in Example 1 except that the titanium oxide fine particle powder (R6) for honeycomb extruded body was used. did. The content of each component in the honeycomb extruded body composition (R6) is shown in the table.

成型体(R6)の調製
実施例1において、ハニカム押出成型体用組成物(R6)を用いた以外は同様にして成型体(R6)を調製した。
このとき、成型性を評価するとともに、得られた成型体(R6)の各寸法を測定し、結果を表に示す。また、成型体(R6)中の各成分の含有量を表に示す。
また、成型体(R6)の比表面積、細孔容積、圧縮強度および脱硝触媒性能を測定し、結果を表に示す。
Preparation of molded body (R6) A molded body (R6) was prepared in the same manner as in Example 1 except that the composition for extruded honeycomb body (R6) was used.
At this time, the moldability was evaluated, each dimension of the obtained molded body (R6) was measured, and the results are shown in the table. The contents of each component in the molded body (R6) are shown in the table.
Further, the specific surface area, pore volume, compressive strength and denitration catalyst performance of the molded body (R6) were measured, and the results are shown in the table.

Figure 2017019721
Figure 2017019721

Figure 2017019721
Figure 2017019721

Figure 2017019721
Figure 2017019721

Claims (14)

酸化チタン系微粒子からなり、かつ該酸化チタン系微粒子が、脂肪酸および/または脂肪酸エステルからなる改質剤で改質され、平均粒子径が0.03〜2.5μmであるハニカム押出成形体用改質酸化チタン系微粒子粉末。   The modified honeycomb extruded body is composed of titanium oxide-based fine particles, and the titanium oxide-based fine particles are modified with a modifier comprising a fatty acid and / or a fatty acid ester, and have an average particle size of 0.03 to 2.5 μm. Titanium oxide fine particle powder. 前記脂肪酸が下記式(1)で表される飽和脂肪酸および/または下記式(2)で表される不飽和脂肪酸であることを特徴とする請求項1に記載のハニカム押出成型体用改質酸化チタン系微粒子粉末。
n2n+1−CO2H・・・・・・・・・・・・・・・・(1)
(但し、nは4〜23の整数)
n'2n'-2m+1−CO2H・・・・・・(2)
(但し、n'は13〜23の整数、mは2重結合の数を表す1〜6の整数)
The modified oxidation for a honeycomb extruded body according to claim 1, wherein the fatty acid is a saturated fatty acid represented by the following formula (1) and / or an unsaturated fatty acid represented by the following formula (2): Titanium fine particle powder.
C n H 2n + 1 -CO 2 H ················ (1)
(Where n is an integer from 4 to 23)
C n 'H 2n'-2m + 1 -CO 2 H ······ (2)
(Where n ′ is an integer from 13 to 23, m is an integer from 1 to 6 representing the number of double bonds)
前記酸化チタン系微粒子の平均粒子径が0.03〜2.0μmの範囲にあることを特徴とする請求項1に記載のハニカム押出成型体用改質酸化チタン系微粒子粉末。   2. The modified titanium oxide fine particle powder for a honeycomb extruded body according to claim 1, wherein an average particle size of the titanium oxide fine particles is in a range of 0.03 to 2.0 μm. 酸化チタン系微粒子が、酸化チタンとともに、酸化タングステン(WO3)、酸化モリブデン(MoO3)、酸化珪素(SiO2)、酸化ジルコニウム(ZrO2)から選ばれる酸化物の少なくとも1種を含み、酸化チタン系微粒子中の含有量が酸化物として0.5〜40重量%の範囲にあることを特徴とする請求項1に記載のハニカム押出成型体用改質酸化チタン系微粒子粉末。 The titanium oxide fine particles contain at least one oxide selected from tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), silicon oxide (SiO 2 ), and zirconium oxide (ZrO 2 ) together with titanium oxide. The modified titanium oxide fine particle powder for a honeycomb extruded body according to claim 1, wherein the content in the titanium fine particle is in the range of 0.5 to 40% by weight as an oxide. 水分を15重量%に調整した前記酸化チタン系微粒子の示差熱分析における30℃から100℃に昇温した際の重量減少率(W(%))と、水分を15重量%に調整した前記ハニカム押出成型体用改質酸化チタン系微粒子粉末の示差熱分析における30℃から100℃に昇温した際の重量減少率(WST(%))との重量減少率比(WST(%))/(W(%))が1.02〜1.20の範囲にあることを特徴とする請求項1〜4のいずれかに記載のハニカム押出成型体用改質酸化チタン系微粒子粉末。 Weight reduction rate (W (%)) when the temperature was raised from 30 ° C. to 100 ° C. in the differential thermal analysis of the titanium oxide fine particles adjusted to 15% by weight, and the honeycomb adjusted to 15% by weight weight loss ratio of the weight loss rate when the temperature was raised from 30 ° C. to 100 ° C. in differential thermal analysis of the extrusion producing molded modified titanium oxide-based fine particles (W ST (%)) ( W ST (%)) / (W (%)) is in the range of 1.02-1.20, modified titanium oxide-based fine particle powder for a honeycomb extruded body according to any one of claims 1 to 4. (i)請求項1〜5のいずれかに記載のハニカム押出成型体用改質酸化チタン系微粒子粉末、
(ii)補強材、
(iii)活性成分前駆体化合物 を含む組成物であり、
該組成物中の(i) ハニカム押出成型体用改質酸化チタン系微粒子粉末の含有量が、33〜80.8重量%の範囲にあり、(ii)補強材の含有量が1.8〜12.8重量%の範囲にあり、(iii)活性成分前駆体化合物の含有量が酸化物換算して0.0006〜12.8重量%の範囲にあり、
全固形分濃度が60〜85重量%の範囲にあることを特徴とするハニカム押出成型体用組成物。
(i) Modified titanium oxide fine particle powder for honeycomb extruded body according to any one of claims 1 to 5,
(ii) reinforcement,
(iii) a composition containing an active ingredient precursor compound,
In the composition, the content of (i) the modified titanium oxide-based fine particle powder for honeycomb extrusion molding is in the range of 33 to 80.8% by weight, and (ii) the content of the reinforcing material is 1.8 to In the range of 12.8 wt%, (iii) the content of the active ingredient precursor compound is in the range of 0.0006 to 12.8 wt% in terms of oxide,
A composition for extruded honeycomb bodies, wherein the total solid content is in the range of 60 to 85% by weight.
さらに、フィラーを含んでなり、該フィラーの含有量が固形分として0.6〜12.8重量%の範囲にあることを特徴とする請求項6に記載のハニカム押出成型体用組成物。   The composition for a honeycomb extruded body according to claim 6, further comprising a filler, wherein the content of the filler is in the range of 0.6 to 12.8% by weight as a solid content. さらに、前記改質剤以外の有機添加剤を0.03〜4.5重量%の範囲で含んでなることを特徴とする請求項6に記載のハニカム押出成型体用組成物。   The composition for extruded honeycomb bodies according to claim 6, further comprising an organic additive other than the modifier in a range of 0.03 to 4.5% by weight. 前記活性成分前駆体化合物が、V、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irからなる群から選ばれる少なくとも1種の元素の化合物であることを特徴とする請求項6に記載のハニカム押出成型体用組成物。   The active component precursor compound is at least one element selected from the group consisting of V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir. The composition for extruded honeycomb bodies according to claim 6, wherein the composition is a compound of (i)請求項1〜5のいずれかに記載のハニカム押出成型体用改質酸化チタン系微粒子粉末、
(ii)補強材、
(iii)活性成分 を含み
(i) ハニカム押出成型体用改質酸化チタン系微粒子粉末の含有量が55〜95重量%の範囲にあり、(ii)補強材の含有量が3〜15重量%の範囲にあり、(iii)活性成分の含有量が酸化物として0.001〜15重量%の範囲にあることを特徴とするハニカム成型体。
(i) Modified titanium oxide fine particle powder for honeycomb extruded body according to any one of claims 1 to 5,
(ii) reinforcement,
(iii) including active ingredients
(i) The content of the modified titanium oxide-based fine particle powder for honeycomb extrusion molding is in the range of 55 to 95% by weight, (ii) the content of the reinforcing material is in the range of 3 to 15% by weight, ) A honeycomb molded body characterized in that the content of the active ingredient is in the range of 0.001 to 15% by weight as an oxide.
さらに、フィラーを含み、該フィラーの含有量が1〜15重量%の範囲にあることを特徴とする請求項10に記載のハニカム成型体。   The honeycomb molded body according to claim 10, further comprising a filler, wherein the filler content is in the range of 1 to 15 wt%. 前記成型体の外径が30〜400mmの範囲にあり、長さが3〜1500mmの範囲にあり、ピッチが6〜500cpsiの範囲にあり、肉厚が0.1〜1.5mmの範囲にあることを特徴とする請求項10または11に記載のハニカム成型体。   The outer diameter of the molded body is in the range of 30 to 400 mm, the length is in the range of 3 to 1500 mm, the pitch is in the range of 6 to 500 cpsi, and the wall thickness is in the range of 0.1 to 1.5 mm. The honeycomb molded body according to claim 10 or 11, wherein 前記活性成分が、V、W、Mo、Cr、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、In、Irから選ばれる少なくとも1種の元素の金属または金属酸化物であることを特徴とする請求項10〜12のいずれかに記載のハニカム成型体。   The active component is a metal or metal oxide of at least one element selected from V, W, Mo, Cr, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, In, and Ir The honeycomb formed body according to any one of claims 10 to 12, wherein 前記肉厚が0.1〜0.3mmの範囲にあることを特徴とする請求項12に記載のハニカム成型体。   The honeycomb molded body according to claim 12, wherein the thickness is in a range of 0.1 to 0.3 mm.
JP2016189939A 2012-12-28 2016-09-28 COMPOSITION FOR HONEYCOMB EXTRUSION MOLDED BODY, HONEYCOMB MOLDED BODY AND METHOD FOR PRODUCING THEM Active JP6266069B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012288171 2012-12-28
JP2012288171 2012-12-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014554480A Division JP6068512B2 (en) 2012-12-28 2013-12-25 Modified titanium oxide fine particle powder for molded body, composition for molded body, and molded body

Publications (2)

Publication Number Publication Date
JP2017019721A true JP2017019721A (en) 2017-01-26
JP6266069B2 JP6266069B2 (en) 2018-01-24

Family

ID=51021149

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014554480A Active JP6068512B2 (en) 2012-12-28 2013-12-25 Modified titanium oxide fine particle powder for molded body, composition for molded body, and molded body
JP2016189939A Active JP6266069B2 (en) 2012-12-28 2016-09-28 COMPOSITION FOR HONEYCOMB EXTRUSION MOLDED BODY, HONEYCOMB MOLDED BODY AND METHOD FOR PRODUCING THEM

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014554480A Active JP6068512B2 (en) 2012-12-28 2013-12-25 Modified titanium oxide fine particle powder for molded body, composition for molded body, and molded body

Country Status (3)

Country Link
JP (2) JP6068512B2 (en)
CN (1) CN104936927B (en)
WO (1) WO2014104071A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299159B (en) * 2016-08-25 2018-11-09 纳晶科技股份有限公司 The preparation method and quanta point electroluminescent device of metal oxide nanoparticles
CN117259758B (en) * 2023-10-05 2024-03-29 广东三浩铸锻科技有限公司 Method for preparing part from waste steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000826A1 (en) * 2005-06-27 2007-01-04 Ibiden Co., Ltd. Honeycomb structure body
WO2007015495A1 (en) * 2005-08-01 2007-02-08 Hitachi Metals, Ltd. Process for producing ceramic honeycomb structure
JP2008239401A (en) * 2007-03-27 2008-10-09 Kyocera Corp Heat-resistant ceramic member
JP2009226583A (en) * 2008-02-27 2009-10-08 Jgc Catalysts & Chemicals Ltd Ceramic molding clay and its manufacturing method, method of manufacturing ceramic molding using ceramic molding clay, and ceramic molding manufactured thereby

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3804108B2 (en) * 1996-02-16 2006-08-02 株式会社村田製作所 Manufacturing method of ceramic sintered body
JPH09249459A (en) * 1996-03-14 1997-09-22 Murata Mfg Co Ltd Production of composite material of ceramic with resin and production of ceramic sintered compact
CN101260006B (en) * 2007-11-01 2011-06-29 北京奥福(临邑)精细陶瓷有限公司 Method for preparing honeycomb ceramic containing titanium dioxide
JPWO2009141881A1 (en) * 2008-05-20 2011-09-22 イビデン株式会社 Honeycomb structure
US20100029462A1 (en) * 2008-08-01 2010-02-04 Derosa Michael Edward Ceramic precursor having improved manufacturability
DE102008036724A1 (en) * 2008-08-07 2010-02-11 Uhde Gmbh Highly porous foam ceramics as catalyst supports for the dehydrogenation of alkanes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000826A1 (en) * 2005-06-27 2007-01-04 Ibiden Co., Ltd. Honeycomb structure body
WO2007015495A1 (en) * 2005-08-01 2007-02-08 Hitachi Metals, Ltd. Process for producing ceramic honeycomb structure
JP2008239401A (en) * 2007-03-27 2008-10-09 Kyocera Corp Heat-resistant ceramic member
JP2009226583A (en) * 2008-02-27 2009-10-08 Jgc Catalysts & Chemicals Ltd Ceramic molding clay and its manufacturing method, method of manufacturing ceramic molding using ceramic molding clay, and ceramic molding manufactured thereby

Also Published As

Publication number Publication date
WO2014104071A1 (en) 2014-07-03
CN104936927B (en) 2018-03-16
CN104936927A (en) 2015-09-23
JPWO2014104071A1 (en) 2017-01-12
JP6266069B2 (en) 2018-01-24
JP6068512B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP4913727B2 (en) Oxygen removal catalyst and oxygen removal method using the catalyst
JP6833787B2 (en) Composition for improved production of substrates
KR20030070827A (en) Process for purification of exhaust gases and catalyst used for purification of exhaust gases in this process
JP2011140210A (en) Molding and method of manufacturing the same, and catalyst and method of manufacturing the same
JP2012139625A (en) Titanium containing powder, exhaust gas treatment catalyst, and method of manufacturing titanium containing powder
JP2015142917A (en) Titanium-containing powder, exhaust gas treatment catalyst, and method of producing titanium-containing powder
JP6441140B2 (en) Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder
JP2002535229A5 (en)
JP2010221082A (en) Supported body of noble metal, and method of producing carboxylate ester using the same as catalyst
JP6266069B2 (en) COMPOSITION FOR HONEYCOMB EXTRUSION MOLDED BODY, HONEYCOMB MOLDED BODY AND METHOD FOR PRODUCING THEM
JP6732431B2 (en) Method for producing aliphatic alcohol
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
JP2017170308A (en) Method for producing honeycomb type denitration catalyst
JP5215990B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2014061476A (en) Oxide of titanium/silicon/tungsten, denitration catalyst obtained by using the oxide, method for preparing the oxide, and denitration method
JP5310885B2 (en) Method for producing base metal catalyst for exhaust gas purification
WO2014178290A1 (en) Denitration catalyst and method for producing same
RU2756660C1 (en) Catalytic element of a regular cellular structure for heterogeneous reactions
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
JP2004519322A (en) Zirconia catalyst for reducing nitrous oxide
JP2015182030A (en) Method for producing exhaust gas treatment catalyst
JP7183081B2 (en) Denitrification catalyst and method for producing the same
JP2022159206A (en) Denitration catalyst
JP2006116393A (en) Manufacturing method for catalyst for removing nitrogen oxide and catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

R150 Certificate of patent or registration of utility model

Ref document number: 6266069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250