JP2008239401A - Heat-resistant ceramic member - Google Patents

Heat-resistant ceramic member Download PDF

Info

Publication number
JP2008239401A
JP2008239401A JP2007082456A JP2007082456A JP2008239401A JP 2008239401 A JP2008239401 A JP 2008239401A JP 2007082456 A JP2007082456 A JP 2007082456A JP 2007082456 A JP2007082456 A JP 2007082456A JP 2008239401 A JP2008239401 A JP 2008239401A
Authority
JP
Japan
Prior art keywords
heat
ceramic member
resistant ceramic
resistant
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007082456A
Other languages
Japanese (ja)
Other versions
JP5142569B2 (en
Inventor
Toshiaki Shigeoka
俊昭 重岡
Taiji Tateyama
泰治 立山
Shoji Kosaka
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007082456A priority Critical patent/JP5142569B2/en
Publication of JP2008239401A publication Critical patent/JP2008239401A/en
Application granted granted Critical
Publication of JP5142569B2 publication Critical patent/JP5142569B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant ceramic member in which the elution of an alkaline metal does not occur even when used at a high temperature in the presence of moisture and heat-resistant resolvability and heat resistance are excellent. <P>SOLUTION: The heat-resistant ceramic member 1 is constituted of a sintered compact which is composed of a solid solution of a composition represented by Al<SB>(21-x)</SB>MgxTi<SB>(i+x)</SB>O<SB>5</SB>(0.3≤x≤0.9) and is ≤1.0 mass% in the oxide equivalent amount of other metallic components excluding Al, Mg, Ti, and O, and thereby, the heat-resistant ceramic member 1 which is free from melt loss and is excellent in the heat resistance and the heat-resistant resolvability can be provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、断熱材、高温部材の支持材、自動車の排ガス浄化触媒担体用ハニカム構造体、ディーゼルエンジン自動車のパティキュレートトラップ(粒子状物質除去)用ハニカム構造体、脱臭用、温風用などの民生用ハニカム構造体に利用できる耐熱性および耐熱分解、耐湿性に優れた耐熱性セラミック部材に関する。   The present invention includes, for example, a heat insulating material, a support material for a high-temperature member, a honeycomb structure for an exhaust gas purification catalyst carrier of an automobile, a honeycomb structure for particulate trap (particulate matter removal) of a diesel engine automobile, for deodorization, and for hot air The present invention relates to a heat-resistant ceramic member excellent in heat resistance, heat decomposition, and moisture resistance, which can be used for a consumer honeycomb structure.

従来、耐熱衝撃性部材のハニカム構造体として、コージェライトや、βユークリプタイト、βスポジューメンのリチウムアルミノケイ酸塩(通称:LAS)や、チタン酸アルミニウムなどの低熱膨張セラミックス材料が利用されている。   Conventionally, low thermal expansion ceramic materials such as cordierite, β-eucryptite, β-spodumene lithium aluminosilicate (common name: LAS), and aluminum titanate have been used as the honeycomb structure of the thermal shock-resistant member.

一般に、低熱膨張セラミックス材料とは20℃〜800℃の熱膨張係数が3.0×10−6/℃以下のセラミックスのことであり、これらの低熱膨張セラミックス材料は熱衝撃に強い材料として古くから知られており、最近では自動車の排ガス浄化触媒用ハニカム担体、セラミックスガスタービンのハウジングや熱交換体など、特に耐熱衝撃性が要求される部分への材料として使用されている。 In general, the low thermal expansion ceramic material is a ceramic having a thermal expansion coefficient of 20 ° C. to 800 ° C. of 3.0 × 10 −6 / ° C. or less. These low thermal expansion ceramic materials have long been used as materials resistant to thermal shock. Recently, it has been used as a material for parts requiring particularly thermal shock resistance, such as honeycomb carriers for exhaust gas purification catalysts of automobiles, ceramic gas turbine housings and heat exchangers.

コージェライト(2MgO・2Al・5SiO)は、優れた耐熱衝撃性を持つことから、特に自動車の排ガス浄化触媒用ハニカム担体として、多く実用化されている。 Cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ) has excellent thermal shock resistance and has been put to practical use as a honeycomb carrier for exhaust gas purification catalysts for automobiles.

しかしながら、コージェライトの耐熱温度は高いものでも1350℃程度であるため、この温度以上で利用することは困難であった。   However, since cordierite has a high heat resistance temperature of about 1350 ° C., it is difficult to use it above this temperature.

一方、チタン酸アルミニウム(AlTiO)は、1860℃の高融点を持ち、コージェライトと比べて耐熱性の高い低熱膨張セラミックス材料であるが、900℃〜1200℃の温度で保持すると、アルミナとチタニアに熱分解するという問題があり、利用に制限があった。 On the other hand, aluminum titanate (Al 2 TiO 5 ) is a low thermal expansion ceramic material having a high melting point of 1860 ° C. and higher heat resistance than cordierite, but when kept at a temperature of 900 ° C. to 1200 ° C., alumina There was a problem of thermal decomposition to titania, and there was a limit to its use.

そこで、このようなチタン酸アルミニウムに対して、耐熱分解性を高めるために、チタン酸アルミニウムにSiO、Fe、Al、TiO、MgO、CaOなどの添加剤を添加することが検討されている(例えば、特許文献1を参照。)。 Therefore, in order to improve the thermal decomposition resistance of such aluminum titanate, additives such as SiO 2 , Fe 2 O 3 , Al 2 O 3 , TiO 2 , MgO, and CaO are added to aluminum titanate. (For example, refer to Patent Document 1).

また、耐熱分解性および機械的強度をさらに高めるために、Mg化合物、Al化合物、Ti化合物と、NaまたはKを含むアルカリ長石(Na1−yAlSi)とを混合して焼結させたセラミック焼結体が報告されている(特許文献2を参照。)。 Further, in order to further improve the thermal decomposition resistance and mechanical strength, Mg compound, Al compound, Ti compound and alkali feldspar (Na y K 1-y AlSi 3 O 8 ) containing Na or K are mixed and sintered. A sintered ceramic sintered body has been reported (see Patent Document 2).

この特許文献2で開示される技術により得られたセラミック焼結体は、Siがチタン酸アルミニウムマグネシウム(AlTiO−MgTi)焼結体に固溶することにより、耐熱分解性に優れたセラミック焼結体を得ることができることに加え、焼成過程でNaまたはKを含むアルカリ長石が液相を形成し、緻密な結晶が形成されるため、機械的強度の高いセラミック焼結体を形成することができる。
特開平8−290963号公報 特開2005−46667号公報
The ceramic sintered body obtained by the technique disclosed in this Patent Document 2 has a heat decomposition resistance when Si is dissolved in an aluminum magnesium titanate (Al 2 TiO 5 —MgTi 2 O 5 ) sintered body. In addition to being able to obtain an excellent ceramic sintered body, alkali feldspar containing Na or K forms a liquid phase in the firing process, and a dense crystal is formed. Therefore, a ceramic sintered body with high mechanical strength can be obtained. Can be formed.
JP-A-8-290963 JP 2005-46667 A

しかしながら、特許文献2で開示される技術により得られた低熱膨張セラミックスは水分の存在下で使用すると、セラミック焼結体中のNaまたはKが溶出または偏析し、また、この現象はセラミック焼結体を水分存在下で加熱すると進行が著しく加速され、機械的強度が低下するという問題がある。   However, when the low thermal expansion ceramic obtained by the technique disclosed in Patent Document 2 is used in the presence of moisture, Na or K in the ceramic sintered body is eluted or segregated, and this phenomenon is caused by the ceramic sintered body. When heated in the presence of moisture, the progress is remarkably accelerated and the mechanical strength decreases.

本発明は、このような問題を解決すべく案出されたものであり、水分存在下高温で使用してもアルカリ金属が溶出することがなく、耐熱分解性および耐熱性に優れた耐熱性セラミック部材を提供することを目的とする。   The present invention has been devised to solve such problems, and alkali metals do not elute even when used at high temperatures in the presence of moisture, and are heat resistant ceramics excellent in heat decomposition resistance and heat resistance. An object is to provide a member.

本発明の耐熱性セラミック部材は、組成式がAl2(1−x)MgTi(1+x)(0.3≦x≦0.9)で表される固溶体からなり、Al、Mg、TiおよびOを除く他の金属成分の酸化物換算量が1.0質量%以下であることを特徴とする。 The heat-resistant ceramic member of the present invention is made of a solid solution whose composition formula is represented by Al 2 (1-x) Mg x Ti (1 + x) O 5 (0.3 ≦ x ≦ 0.9), and includes Al, Mg, The oxide conversion amount of other metal components excluding Ti and O is 1.0% by mass or less.

また、本発明の耐熱性セラミック部材は、前記xが、0.3≦x≦0.8であることが望ましい。   In the heat-resistant ceramic member of the present invention, the x is preferably 0.3 ≦ x ≦ 0.8.

本発明の耐熱性セラミック部材は、組成式がAl2(1−x)MgTi(1+x)(0.3≦x≦0.9)で表される固溶体からなり、Al、Mg、TiおよびOを除く他の金属成分の酸化物換算量が1.0質量%以下であることを特徴とする。これにより、耐熱分解性および耐熱性に優れた耐熱性セラミック部材を提供することができる。 The heat-resistant ceramic member of the present invention is made of a solid solution whose composition formula is represented by Al 2 (1-x) Mg x Ti (1 + x) O 5 (0.3 ≦ x ≦ 0.9), and includes Al, Mg, The oxide conversion amount of other metal components excluding Ti and O is 1.0% by mass or less. Thereby, the heat resistant ceramic member excellent in heat decomposition resistance and heat resistance can be provided.

また、本発明の耐熱性セラミック部材は、前記xを、0.3≦x≦0.8とした場合には、耐熱分解性および耐熱性に加え、熱膨張の小さな耐熱性セラミック部材となる。   In addition, the heat-resistant ceramic member of the present invention is a heat-resistant ceramic member having small thermal expansion in addition to heat-resistant decomposability and heat resistance when x is 0.3 ≦ x ≦ 0.8.

図1は本発明の耐熱性セラミック部材の一例を示したものである。図1には、4角柱状セルを基本構造とし、これが複数並んだハニカム構造体を示しているが、本発明の耐熱性セラミック部材は必ずしも4角柱状セルを基本構造とするものに限定されるものではない。例えばハニカム以外の形状であることも可能であるほか、ハニカム構造体であってもセル形状は3角形、6角形、菱形、あるいはこれらが混在する形態とすることも可能である。   FIG. 1 shows an example of the heat-resistant ceramic member of the present invention. FIG. 1 shows a honeycomb structure in which a quadrangular prismatic cell is used as a basic structure, and a plurality of the honeycomb structures are arranged. However, the heat-resistant ceramic member of the present invention is not necessarily limited to one having a quadrangular prismatic cell as a basic structure. It is not a thing. For example, the shape can be other than the honeycomb, and even in the honeycomb structure, the cell shape can be a triangle, a hexagon, a rhombus, or a mixture of these.

また、ハニカムの開口方向の全部もしくは一部を塞ぎ、サンドイッチ構造にして耐衝撃性を持たせることも、フィルタとして用いることも可能である。   It is also possible to block all or part of the honeycomb in the opening direction to have a sandwich structure to give impact resistance, or to use as a filter.

本発明の耐熱性セラミック部材は、このような形態の耐熱性セラミック部材であって、組成式がAl2(1−x)MgTi(1+x)(0.3≦x≦0.9)で表される固溶体からなり、Al、Mg、TiおよびOを除く他の金属成分の酸化物換算量が1.0質量%以下であることを特徴とする。 The heat-resistant ceramic member of the present invention is a heat-resistant ceramic member having such a form, and the composition formula is Al 2 (1-x) Mg x Ti (1 + x) O 5 (0.3 ≦ x ≦ 0.9). ), And the oxide equivalent amount of other metal components excluding Al, Mg, Ti and O is 1.0% by mass or less.

チタン酸アルミニウムは、900℃〜1200℃の温度で保持するとアルミナとチタニアに熱分解するという不具合があるが、本発明の耐熱性セラミック部材は、チタン酸マグネシウムとチタン酸アルミニウムとの固溶体において、チタン酸マグネシウムを30〜80mol%チタン酸アルミニウムに固溶させて、Al、Mg、TiおよびOを除く他の金属成分であるアルカリ元素や他の金属成分の酸化物であるSiO等を実質的に含まない組成とした場合であっても、耐熱性および耐熱分解性に優れた耐熱性セラミック部材となるという新たな知見に基づくものである。 Although aluminum titanate has a problem that it is thermally decomposed into alumina and titania when held at a temperature of 900 ° C. to 1200 ° C., the heat-resistant ceramic member of the present invention is titanium in a solid solution of magnesium titanate and aluminum titanate. Magnesium oxide is dissolved in 30-80 mol% aluminum titanate to substantially contain an alkali element which is another metal component excluding Al, Mg, Ti and O, and SiO 2 which is an oxide of another metal component. Even when the composition is not included, it is based on the new knowledge that the heat-resistant ceramic member is excellent in heat resistance and heat-decomposability.

すなわち、xが、0.3≦x≦0.9の範囲では、Al2(1−x)MgTi(1+x)(0.3≦x≦0.9)で表される固溶体は、チタン酸アルミニウムよりも、焼結温度が低下するために、チタン酸アルミニウムより焼結性が高くなる。 That is, when x is in the range of 0.3 ≦ x ≦ 0.9, the solid solution represented by Al 2 (1-x) Mg x Ti (1 + x) O 5 (0.3 ≦ x ≦ 0.9) is Since the sintering temperature is lower than that of aluminum titanate, the sinterability is higher than that of aluminum titanate.

このような領域では、アルカリ元素やSi等の他の金属成分の有効性は見いだせず、むしろ、アルカリ元素やSi等の他の金属成分が耐熱性セラミック部材で局部的に偏析した場合、その部位の固溶体の融点が極端に下がり、1400℃以下でも部分的に溶損する可能性がある。   In such a region, the effectiveness of other metal components such as alkali elements and Si is not found. Rather, when other metal components such as alkali elements and Si are segregated locally in the heat-resistant ceramic member, the region The melting point of the solid solution is extremely low, and there is a possibility of partial melting even at 1400 ° C. or lower.

一方、例えば、助剤成分として用いられるアルカリ元素やSiO等の他の金属成分がない状態で、xを0.3未満とした場合には耐熱分解性が不十分であり、また、xが0.9より大きいと熱膨張係数が高くなり不適である。 On the other hand, for example, when x is less than 0.3 in the absence of other metal components such as an alkali element and SiO 2 used as an auxiliary component, the thermal decomposition resistance is insufficient, and x is If it is larger than 0.9, the coefficient of thermal expansion becomes high, which is not suitable.

さらに、前記xを0.3≦x≦0.8の範囲とした場合には、特に耐熱分解性が高く、熱膨張係数が低い低熱膨張セラミックスからなる耐熱性セラミック部材とすることができる。   Further, when x is in the range of 0.3 ≦ x ≦ 0.8, a heat resistant ceramic member made of low thermal expansion ceramics having particularly high heat decomposition resistance and a low thermal expansion coefficient can be obtained.

ここで、本発明の耐熱性セラミック部材にはNa及びKのアルカリ金属が実質的に含まれていないことが重要である。NaおよびKのアルカリ金属が実質的に含まれていなとは、耐熱性セラミック部材を100重量部としたとき、セラミック部材中に含まれるNaおよびKがそれぞれ酸化物であるとみなして計算し、NaOとKOの合計量が0.2質量部以下であることを意味し、特に望ましくは0.16以下である。NaおよびKの含有量が0.2質量部を超えると、耐熱性セラミック部材を湿気または水分を含む雰囲気中で昇温、降温を繰り返して使用した場合、耐熱性セラミック部材中のNa、Kのアルカリ金属が雰囲気中の水分もしくは結露した水分と反応して耐熱性セラミック部材内部から溶出し、耐熱性セラミック部材が劣化、あるいは、場合によって耐熱性セラミック部材が接触する部品が劣化する。したがって、本発明の耐熱性セラミック部材は水分を含む雰囲気中で昇温、降温を繰り返して使用しても、劣化を起こし、破壊することがない。 Here, it is important that the heat-resistant ceramic member of the present invention is substantially free of Na and K alkali metals. The fact that the alkali metal of Na and K is substantially not included is calculated assuming that Na and K contained in the ceramic member are oxides when the heat-resistant ceramic member is 100 parts by weight, This means that the total amount of Na 2 O and K 2 O is 0.2 parts by mass or less, and particularly preferably 0.16 or less. When the content of Na and K exceeds 0.2 parts by mass, when the heat-resistant ceramic member is repeatedly heated and lowered in an atmosphere containing moisture or moisture, Na and K in the heat-resistant ceramic member Alkali metal reacts with moisture in the atmosphere or condensed moisture and elutes from the inside of the heat-resistant ceramic member, so that the heat-resistant ceramic member is deteriorated or, in some cases, a component that is in contact with the heat-resistant ceramic member is deteriorated. Therefore, even when the heat-resistant ceramic member of the present invention is repeatedly heated and lowered in an atmosphere containing moisture, it does not deteriorate and break down.

なお、耐熱性セラミック部材中のSi、NaおよびKの含有量は蛍光X線分析法やICP(Inductively Coupled Plasma)発光分析法を用いて測定することができる。   The contents of Si, Na, and K in the heat-resistant ceramic member can be measured using a fluorescent X-ray analysis method or an ICP (Inductively Coupled Plasma) emission analysis method.

また、本発明の耐熱性セラミック部材は、0.3≦x≦0.9であることが重要である。x<0.3の場合、耐熱性セラミック部材を1400℃以下の温度で十分に焼結することは不可能であり、十分な機械的強度を得ることができない。これに対して、本発明の耐熱性セラミック部材はx≧0.3とし、融点1860℃のチタン酸アルミニウムに加えて融点1550℃のチタン酸マグネシウムを加えているため、1400℃以下の温度で十分緻密で機械的強度の高いハニカム構造体を製造することができるのである。   Moreover, it is important that the heat-resistant ceramic member of the present invention satisfies 0.3 ≦ x ≦ 0.9. When x <0.3, it is impossible to sufficiently sinter the heat-resistant ceramic member at a temperature of 1400 ° C. or less, and sufficient mechanical strength cannot be obtained. On the other hand, the heat-resistant ceramic member of the present invention has x ≧ 0.3, and magnesium titanate having a melting point of 1550 ° C. is added to aluminum titanate having a melting point of 1860 ° C. A dense honeycomb structure with high mechanical strength can be manufactured.

次に、本発明の耐熱性セラミック部材の製造方法について説明する。   Next, the manufacturing method of the heat resistant ceramic member of this invention is demonstrated.

耐熱性セラミック部材のうち、ここでは具体的に自動車などの排ガス浄化に用いられるハニカム構造体の製造方法の一例について説明する。   Of the heat-resistant ceramic members, here, an example of a method for manufacturing a honeycomb structure used for exhaust gas purification of an automobile or the like will be specifically described.

Al2(1−x)MgTi(1+x)(0.3≦x≦0.9)からなる固溶体を形成するために必要な原料を準備する。例えばアルミナ原料、チタニア原料、炭酸マグネシウムを上記組成式で表されるAl、Mg、Tiの金属成分と同じ比率となるように調合し、混合する。なお、上記組成式の固溶体を形成できるのであれば、金属酸化物、炭酸塩の原料の他に水酸化物、硝酸塩などの原料を用いても良く、またこれらの化合物を用いても良い。 Al 2 (1-x) Mg x Ti (1 + x) O 5 to prepare a raw material required to form a solid solution composed of (0.3 ≦ x ≦ 0.9). For example, an alumina raw material, a titania raw material, and magnesium carbonate are prepared and mixed so as to have the same ratio as the metal components of Al, Mg, and Ti represented by the above composition formula. As long as a solid solution having the above composition formula can be formed, raw materials such as hydroxides and nitrates may be used in addition to the raw materials of metal oxides and carbonates, and these compounds may be used.

これらの原料としては、高純度のものを用いることが望ましく、99.0%以上、特に99.5%以上の純度のものを用いることが望ましい。   As these raw materials, those having high purity are desirably used, and those having a purity of 99.0% or more, particularly 99.5% or more are desirably used.

また、混合原料については、乾式で混合したり、回転ミル、振動ミル、ビーズミル等のミルに投入し、水、アセトン、イソプロピルアルコール(IPA)のうち少なくともいずれか1種とともに湿式混合したスラリーを乾燥しても良い。   In addition, the mixed raw materials are mixed by a dry method or put into a mill such as a rotary mill, a vibration mill, a bead mill, etc., and a slurry obtained by wet mixing with at least one of water, acetone, and isopropyl alcohol (IPA) is dried. You may do it.

その際、混合によるSiOの混入を極力抑制することが必要である。特に、アルミナ原料にはNaやKといったアルカリ成分の少ない低アルカリ品を用いることが望ましい。スラリーの乾燥方法としては、スラリーを容器に入れて加熱、乾燥させてもよいし、スプレードライヤーで乾燥させても良く、または他の方法で乾燥させても何ら問題ない。 At that time, it is necessary to suppress mixing of SiO 2 by mixing as much as possible. In particular, it is desirable to use a low alkali product with few alkali components such as Na and K as the alumina raw material. As a method for drying the slurry, the slurry may be heated in a container and dried, or may be dried by a spray dryer, or may be dried by another method.

次に、得られた混合原料に成形助剤や造孔剤を添加する。成形助剤としては、周知のバインダーを用いても良く、例えばメチルセルロース、ポリビニルアルコール、パラフィンワックス、グリセリンなどが好ましい。成形助剤は混合原料100質量部に対して1〜10質量部添加、混合することが、後述する成形の際に、成形体のクラックや割れ等の発生を抑制できるので好ましい。   Next, a molding aid and a pore former are added to the obtained mixed raw material. As a molding aid, a known binder may be used. For example, methyl cellulose, polyvinyl alcohol, paraffin wax, glycerin and the like are preferable. It is preferable to add and mix 1 to 10 parts by mass of the molding assistant with respect to 100 parts by mass of the mixed raw material, since the generation of cracks and cracks in the molded body can be suppressed during molding described later.

なお、造孔剤は、耐熱性セラミック部材を多孔質とする場合に好適に用いられるもので、焼成時に消失して造孔する機能を有するものである。造孔剤としては、例えば、活性炭、ポリエチレン樹脂および黒鉛などが好ましい。また、目的に応じて離型剤や消泡剤などを適宜添加しても良い。なお、上記造孔剤の大きさや添加量を変化させることによって、自由に低熱膨張セラミックスの気孔径、気孔率を調整することができる。   The pore-forming agent is suitably used when the heat-resistant ceramic member is porous, and has a function of disappearing during pore formation and forming a hole. As the pore-forming agent, for example, activated carbon, polyethylene resin and graphite are preferable. Moreover, you may add a mold release agent, an antifoamer, etc. suitably according to the objective. It should be noted that the pore diameter and porosity of the low thermal expansion ceramic can be freely adjusted by changing the size and amount of the pore former.

さらに、水などの溶媒を加えて万能混合機や三本ミルで予備混練した後、真空混練機などを用いて脱気混練し、押し出し成形に適した坏土を準備する。   Furthermore, after adding a solvent such as water and pre-kneading with a universal mixer or a triple mill, the mixture is degassed and kneaded using a vacuum kneader or the like to prepare a clay suitable for extrusion molding.

さらに、押出成形によりダイスを用いて例えばハニカム形状に成形する。得られた成形体を充分に乾燥した後、酸化雰囲気中、1200〜1700℃で、3〜5時間程度焼成すれば、ハニカム形状の本発明の耐熱性セラミック部材を形成することができる。   Furthermore, it is formed into, for example, a honeycomb shape using a die by extrusion molding. The resulting molded body is sufficiently dried and then fired at 1200 to 1700 ° C. for about 3 to 5 hours in an oxidizing atmosphere, whereby a honeycomb-shaped heat-resistant ceramic member of the present invention can be formed.

以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

表1に示す焼結体の組成となるように、市販のアルミナ原料、チタニア原料、マグネシア原料を調合し、溶媒にイソプロピルアルコール(IPA)、媒体にアルミナボールを用いて回転ミルで72時間混合してスラリーを作製した。   A commercially available alumina raw material, titania raw material, and magnesia raw material are prepared so as to have the composition of the sintered body shown in Table 1, and mixed in a rotary mill for 72 hours using isopropyl alcohol (IPA) as a solvent and alumina balls as a medium. A slurry was prepared.

用いたアルミナ原料は、日本軽金属社製のLS110であり、平均粒径が1.5μm、アルカリ金属の不純物量が0.1質量%、シリコンの不純物量が0.1である。また、用いたチタニア原料は、テイカ社製のJA−3であり、平均粒径が0.2μm、アルカリ金属の不純物量が0.3質量%である。また、用いた炭酸マグネシウム原料は、トクヤマ社製のTTであり、見掛比重が、0.23g/ml、アルカリ金属およびシリカの不純物が含まれないものである。   The alumina raw material used was LS110 manufactured by Nippon Light Metal Co., Ltd., having an average particle size of 1.5 μm, an alkali metal impurity amount of 0.1 mass%, and a silicon impurity amount of 0.1. The titania raw material used was JA-3 manufactured by Teika Co., which had an average particle size of 0.2 μm and an alkali metal impurity amount of 0.3 mass%. The magnesium carbonate raw material used is TT manufactured by Tokuyama Corporation, which has an apparent specific gravity of 0.23 g / ml and does not contain impurities of alkali metal and silica.

なお、試料No.10には前記アルミナ原料であるLS110の代わりに、平均粒径が2μm、アルカリ金属の不純物量が0.3質量%、シリコンの不純物量が0.1質量%の昭和電工社製A−172を用いた。   Sample No. 10 instead of LS110, which is the alumina raw material, A-172 manufactured by Showa Denko KK having an average particle diameter of 2 μm, an alkali metal impurity amount of 0.3 mass%, and a silicon impurity amount of 0.1 mass%. Using.

また、試料No.7、8には上記のアルミナ原料、チタニア原料、炭酸マグネシウム原料の他に丸釜釜戸陶料社製の平均粒子径が1.2μm、アルカリ金属の不純物を含まないシリカ原料であるSP−3を添加し、試料No.11にはシリコンの不純物を含まない旭硝子社製炭酸カリウムを、試料No.12にはシリコンの不純物を含まない旭硝子社製炭酸水素ナトリウムを添加した。   Sample No. 7 and 8 include SP-3, which is a silica raw material having an average particle diameter of 1.2 μm and containing no alkali metal impurities, manufactured by Marumama Kamado Ceramics Co., Ltd. in addition to the above-mentioned alumina raw material, titania raw material, and magnesium carbonate raw material. And sample no. 11 is potassium carbonate manufactured by Asahi Glass Co., Ltd., which does not contain silicon impurities. No. 12 was added with sodium hydrogen carbonate that does not contain silicon impurities.

このスラリーに成形助剤として、原料粉末の合量100質量部に対して5質量部のパラフィンワックスを添加、混合した後に乾燥して成形用粉末とした。次に、この成形用粉末を用いて、粉末加圧式成形法によって直径20mm×厚さ10mmの円板状成形体および直径10mm×長さ15mmの円柱状成形体を作製し、さらにそれぞれの成形体を大気中で1400℃、4時間の条件で焼成して、焼結体の評価用試料とした。   As a molding aid, 5 parts by mass of paraffin wax was added to the slurry as a molding aid with respect to 100 parts by mass of the raw material powder, mixed, and then dried to form a molding powder. Next, using this molding powder, a disk-shaped molded body having a diameter of 20 mm × thickness of 10 mm and a cylindrical molded body having a diameter of 10 mm × length of 15 mm are produced by a powder pressure molding method, and each molded body is further produced. Was fired in the atmosphere at 1400 ° C. for 4 hours to obtain a sample for evaluation of a sintered body.

各焼結体の耐熱分解性については、さらに円板状焼結体の各試料を大気雰囲気の中で1100℃の温度で300時間、耐熱分解試験して耐熱分解性を評価した。このようにして準備した耐熱分解試験前後の試料をX線回折法によりピーク強度を測定して、Al2(1−x)MgTi(1+x)(0.3<x≦0.9)の固溶体の回折角2θが25−27°のメインピーク強度(IAMT)と、TiO相の回折角2θが36.1°のピーク強度(I)からピーク強度比のA=IAMT/(IAMT+I)をそれぞれ算出した。さらに耐熱分解試験前および耐熱分解試験後のピーク強度比をそれぞれA、Aとして下記の式により各試料の熱分解率を求めて表1に示した。 Regarding the thermal decomposition resistance of each sintered body, each sample of the disk-shaped sintered body was further subjected to a thermal decomposition test at 1100 ° C. for 300 hours in an air atmosphere to evaluate the thermal decomposition resistance. The samples prepared before and after the thermal decomposition test were measured for peak intensity by X-ray diffraction, and Al 2 (1-x) Mg x Ti (1 + x) O 5 (0.3 <x ≦ 0.9 ) and the diffraction angle 2θ is the main peak intensity of 25-27 ° of a solid solution of (I AMT), the peak intensity of the diffraction angles 2θ of TiO 2 phase 36.1 ° (the I T) from the peak intensity ratio a = I AMT / (I AMT + I T ) was calculated. Furthermore, the peak intensity ratios before and after the thermal decomposition test were set as A 0 and A 1 , respectively, and the thermal decomposition rates of the respective samples were obtained by the following formulas and shown in Table 1.

また熱膨張率についてはJIS R1618に準拠して、昇温速度20℃/分の条件で円柱状焼結体の試料の20℃〜800℃の熱膨張係数を測定した。   Regarding the coefficient of thermal expansion, the coefficient of thermal expansion of 20 ° C. to 800 ° C. of the sample of the cylindrical sintered body was measured according to JIS R1618 under the condition of a temperature rising rate of 20 ° C./min.

また、作製した試料については、X線回折法により、ピーク強度を分析して、結晶を同定した。また、Al、Mg、TiおよびOを除く他の金属成分については、ICP(Inductively Coupled Plasma)発光分析法により分析して、表1の他の金属成分として記載した。なお、表1に記載した他の金属成分の量は、酸化物換算したものである。   Moreover, about the produced sample, the peak intensity | strength was analyzed by the X ray diffraction method, and the crystal | crystallization was identified. Further, other metal components excluding Al, Mg, Ti and O were analyzed by ICP (Inductively Coupled Plasma) emission analysis and described as other metal components in Table 1. In addition, the quantity of the other metal component described in Table 1 is an oxide conversion.

なお、他の金属成分のうち、比較的量の多いSiとNa及びKの合計量については、焼結体中のそれぞれの量を酸化物に換算して記載した。また、比較的量の少ない成分としてCa、P等が検出されたが、この数値は個別に記載せずに、他の金属成分の合量を記載した。

Figure 2008239401
In addition, about the total amount of Si, Na, and K with comparatively much quantity among other metal components, each quantity in a sintered compact was described in conversion into the oxide. Moreover, although Ca, P, etc. were detected as a component with comparatively little quantity, this numerical value was not described separately, but described the total amount of other metal components.
Figure 2008239401

表1に示すように、本発明の範囲外の試料である試料No.15、16は、熱分解率が50%以上で耐熱分解性が不十分であった。本発明の範囲外の試料である試料No.1は熱膨張係数が4.0×10−6/℃と大きいものであった。 As shown in Table 1, Sample No. which is a sample outside the scope of the present invention. Nos. 15 and 16 had a thermal decomposition rate of 50% or more and insufficient heat resistance. Sample No. which is a sample outside the scope of the present invention. 1 had a large thermal expansion coefficient of 4.0 × 10 −6 / ° C.

これに対し、本発明の試料No.2〜6、9、10、13、14は、耐熱分解性が高く、熱膨張係数も小さかった。   On the other hand, sample no. 2-6, 9, 10, 13, and 14 had high thermal decomposition resistance and a small thermal expansion coefficient.

また、表1の試料No.1〜16の組成からなる混合原料に成形助剤としてメチルセルロース、ポリビニルアルコールを原料100質量部に対して、それぞれ5質量部、2質量部添加し、さら溶媒の水を20質量部とポア剤の活性炭を8質量部加えて万能混合機と真空混練機で混練して押し出し成形用坏土とした。さらに、押し出し成形法によりダイスを用いて坏土を直径100mm、高さ150mmの円柱ハニカム形状に成形して充分に乾燥した後、大気中で1400℃、4時間の焼成をおこない、気孔率35%のハニカム構造体の評価用試料とした。   In addition, sample No. 5 parts by mass and 2 parts by mass of methylcellulose and polyvinyl alcohol are added to 100 parts by mass of the raw material as a molding aid in a mixed raw material having a composition of 1 to 16, respectively, and 20 parts by mass of solvent water and a pore agent are added. 8 parts by mass of activated carbon was added and kneaded with a universal mixer and a vacuum kneader to obtain an extrusion molding clay. Further, the clay was formed into a cylindrical honeycomb shape having a diameter of 100 mm and a height of 150 mm using a die by an extrusion molding method and dried sufficiently, followed by firing at 1400 ° C. for 4 hours in the atmosphere, and a porosity of 35%. A sample for evaluation of the honeycomb structure was used.

次に、各ハニカム構造体を大気中の雰囲気、1300℃の温度で5時間の耐熱試験をした後、ハニカム構造体全体の寸法変化や、外周壁、隔壁の変形や溶融が無いかを調べた。   Next, each honeycomb structure was subjected to a heat resistance test at 1300 ° C. for 5 hours in the atmosphere, and then examined for dimensional change of the entire honeycomb structure, deformation of the outer peripheral wall and partition walls, and melting. .

その結果、ハニカム構造体のうち、シリカ原料を添加した試料No.7、8の材料を用いたハニカム構造体は隔壁の一部が溶融しているのが見られた。一方、試料No.2〜6、9〜14ではハニカム構造体全体の寸法変化や、外周壁、隔壁の変形や溶融が見られず、耐熱性が良好であった。   As a result, among the honeycomb structures, sample No. 1 to which silica raw material was added was added. In the honeycomb structure using the materials 7 and 8, a part of the partition walls was melted. On the other hand, sample No. In Nos. 2 to 6 and 9 to 14, no dimensional change of the entire honeycomb structure, deformation or melting of the outer peripheral wall and partition walls were observed, and the heat resistance was good.

次に、ハニカム構造体を加湿した大気(水分51g/m)の雰囲気中、1100℃×10時間の加熱処理を繰り返し10回行なった耐湿試験を行なった後、ハニカム構造体から円柱の長さ方向に長さ15mm、縦横幅5mm×5mmの試料を切り出し、JISR1608に準拠して長さ方向の圧縮強度を測定した。 Next, after performing a moisture resistance test in which the heat treatment at 1100 ° C. × 10 hours was repeated 10 times in an atmosphere of air (moisture of 51 g / m 3 ) in which the honeycomb structure was humidified, the length of the cylinder from the honeycomb structure was measured. A sample having a length of 15 mm in the direction and a width and width of 5 mm × 5 mm was cut out, and the compressive strength in the length direction was measured according to JIS R1608.

その結果、炭酸水素ナトリウムまたは炭酸カリウムを添加した試料No.11、12では圧縮強度は6および4MPaと低いものであった。一方、本発明の試料No.2〜6、9、10、13、14では圧縮強度が12MPa以上であった。   As a result, sample no. 11 and 12, the compressive strength was as low as 6 and 4 MPa. On the other hand, sample no. In 2-6, 9, 10, 13, and 14, the compressive strength was 12 MPa or more.

本発明の耐熱性セラミック部材を用いたハニカム構造体の一例を示した斜視図である。It is the perspective view which showed an example of the honeycomb structure using the heat resistant ceramic member of this invention.

符号の説明Explanation of symbols

1・・・ハニカム構造体
2・・・外周壁
3・・・セル
4・・・隔壁
DESCRIPTION OF SYMBOLS 1 ... Honeycomb structure 2 ... Outer peripheral wall 3 ... Cell 4 ... Partition

Claims (2)

組成式がAl2(1−x)MgTi(1+x)(0.3≦x≦0.9)で表される固溶体からなり、Al、Mg、TiおよびOを除く他の金属成分の酸化物換算量が1.0質量%以下であることを特徴とする耐熱性セラミック部材。 Other metal components excluding Al, Mg, Ti and O, which are composed of a solid solution whose composition formula is represented by Al 2 (1-x) Mg x Ti (1 + x) O 5 (0.3 ≦ x ≦ 0.9) The heat-resistant ceramic member characterized by having an oxide conversion amount of 1.0% by mass or less. 前記xが、0.3≦x≦0.8であることを特徴とする請求項1に記載の耐熱性セラミック部材。 The heat resistant ceramic member according to claim 1, wherein x is 0.3 ≦ x ≦ 0.8.
JP2007082456A 2007-03-27 2007-03-27 Heat-resistant ceramic material Expired - Fee Related JP5142569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082456A JP5142569B2 (en) 2007-03-27 2007-03-27 Heat-resistant ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082456A JP5142569B2 (en) 2007-03-27 2007-03-27 Heat-resistant ceramic material

Publications (2)

Publication Number Publication Date
JP2008239401A true JP2008239401A (en) 2008-10-09
JP5142569B2 JP5142569B2 (en) 2013-02-13

Family

ID=39911183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082456A Expired - Fee Related JP5142569B2 (en) 2007-03-27 2007-03-27 Heat-resistant ceramic material

Country Status (1)

Country Link
JP (1) JP5142569B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083738A (en) * 2008-10-02 2010-04-15 Hitachi Metals Ltd Method for producing aluminum titanate-based ceramic honeycomb structure
WO2010074231A1 (en) * 2008-12-25 2010-07-01 住友化学株式会社 Method for producing aluminum titanate fired body
JP2010215447A (en) * 2009-03-16 2010-09-30 Ngk Insulators Ltd Method for producing aluminum titanate ceramic
WO2011081217A1 (en) * 2009-12-28 2011-07-07 住友化学株式会社 Method for manufacturing an aluminum titanate ceramic
WO2014199740A1 (en) * 2013-06-14 2014-12-18 住友化学株式会社 Honeycomb structure and honeycomb filter
JP2017019721A (en) * 2012-12-28 2017-01-26 日揮触媒化成株式会社 Modified titanium oxide-based fine particle powder for honeycomb extrusion molded body, composition for honeycomb extrusion molded body and honeycomb molded body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641883A (en) * 1979-09-13 1981-04-18 Nippon Toki Kk High temperature stable aluminum titanate product
JPS56134560A (en) * 1980-03-19 1981-10-21 Ngk Insulators Ltd Low expansion ceramics and manufacture
JPH02258670A (en) * 1989-03-31 1990-10-19 Kurosaki Refract Co Ltd Low temperature expandable ceramics
JPH09249451A (en) * 1996-03-13 1997-09-22 Kurosaki Refract Co Ltd Member for steel material sliding part of induction heating furnace
WO2004039747A1 (en) * 2002-11-01 2004-05-13 Ohcera Co., Ltd. Method for producing aluminum magnesium titanate sintered product
JP2004250249A (en) * 2003-02-18 2004-09-09 Inax Corp Plastic ceramics, and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641883A (en) * 1979-09-13 1981-04-18 Nippon Toki Kk High temperature stable aluminum titanate product
JPS56134560A (en) * 1980-03-19 1981-10-21 Ngk Insulators Ltd Low expansion ceramics and manufacture
JPH02258670A (en) * 1989-03-31 1990-10-19 Kurosaki Refract Co Ltd Low temperature expandable ceramics
JPH09249451A (en) * 1996-03-13 1997-09-22 Kurosaki Refract Co Ltd Member for steel material sliding part of induction heating furnace
WO2004039747A1 (en) * 2002-11-01 2004-05-13 Ohcera Co., Ltd. Method for producing aluminum magnesium titanate sintered product
JP2004250249A (en) * 2003-02-18 2004-09-09 Inax Corp Plastic ceramics, and production method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012037056; Journal of American Ceramic Society Volume 81 Number 10, 199810, P.2645-2653 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083738A (en) * 2008-10-02 2010-04-15 Hitachi Metals Ltd Method for producing aluminum titanate-based ceramic honeycomb structure
WO2010074231A1 (en) * 2008-12-25 2010-07-01 住友化学株式会社 Method for producing aluminum titanate fired body
JP2010150088A (en) * 2008-12-25 2010-07-08 Sumitomo Chemical Co Ltd Process for producing aluminum titanate-based fired product
JP2010215447A (en) * 2009-03-16 2010-09-30 Ngk Insulators Ltd Method for producing aluminum titanate ceramic
WO2011081217A1 (en) * 2009-12-28 2011-07-07 住友化学株式会社 Method for manufacturing an aluminum titanate ceramic
JP2017019721A (en) * 2012-12-28 2017-01-26 日揮触媒化成株式会社 Modified titanium oxide-based fine particle powder for honeycomb extrusion molded body, composition for honeycomb extrusion molded body and honeycomb molded body
WO2014199740A1 (en) * 2013-06-14 2014-12-18 住友化学株式会社 Honeycomb structure and honeycomb filter

Also Published As

Publication number Publication date
JP5142569B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5478259B2 (en) Silicon carbide based porous material
JP5246889B2 (en) Porous ceramic member, method for producing the same, and filter
US7473464B2 (en) Porous material and method for production thereof
CA2362763C (en) Honeycomb structure and process for production thereof
JP4398260B2 (en) Silicon carbide based porous material and method for producing the same
EP1600432B1 (en) Silicon carbide based porous material and method for preparation thereof, and honeycomb structure
JP4111439B2 (en) Honeycomb structure
JP5406286B2 (en) Aluminum titanate type porous structure
KR20040099329A (en) Strontium feldspar aluminum titanate for high temperature applications
WO2002062726A1 (en) Honeycomb structure and method for preparation thereof
JP5142569B2 (en) Heat-resistant ceramic material
JP2010077008A (en) Porous ceramic member, method for producing the same and filter
WO2005009918A1 (en) Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof
JP2002154876A (en) Honeycomb structure and method for producing the same
JPWO2005005019A1 (en) Exhaust gas purification honeycomb filter and manufacturing method thereof
JP3340689B2 (en) Method for manufacturing cordierite-based ceramic honeycomb structure
JP2014189447A (en) Porous material, honeycomb structure, and method for manufacturing porous material
JP2010228935A (en) Porous ceramic member and filter
JPH1157496A (en) Preparation of cordierite ceramic honeycomb structure body
JP5142650B2 (en) Heat resistant ceramic member and filter
WO2005005336A1 (en) Beta-spodumene ceramics for high temperature applications
JP2011005408A (en) Filter element and filter
JP2005046667A (en) Honeycomb carrier for exhaust gas cleaning catalyst and its manufacturing method
JP5128989B2 (en) Cordierite ceramics manufacturing method
JP6756530B2 (en) Honeycomb structure and manufacturing method of honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees