JP2017018859A - Membrane washing control method, membrane washing control device, and water treatment system - Google Patents

Membrane washing control method, membrane washing control device, and water treatment system Download PDF

Info

Publication number
JP2017018859A
JP2017018859A JP2015136403A JP2015136403A JP2017018859A JP 2017018859 A JP2017018859 A JP 2017018859A JP 2015136403 A JP2015136403 A JP 2015136403A JP 2015136403 A JP2015136403 A JP 2015136403A JP 2017018859 A JP2017018859 A JP 2017018859A
Authority
JP
Japan
Prior art keywords
cleaning
chemical
membrane
tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015136403A
Other languages
Japanese (ja)
Other versions
JP6611230B2 (en
Inventor
美和 齋藤
Miwa Saito
美和 齋藤
卓巳 小原
Takumi Obara
卓巳 小原
理 山中
Satoru Yamanaka
理 山中
直樹 川本
Naoki Kawamoto
直樹 川本
英明 小峰
Hideaki Komine
英明 小峰
正彦 堤
Masahiko Tsutsumi
正彦 堤
浩嗣 山本
Koji Yamamoto
浩嗣 山本
昌大 木下
Masahiro Kinoshita
昌大 木下
永江 信也
Shinya Nagae
信也 永江
佑子 都築
Yuko Tsuzuki
佑子 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kubota Corp
Original Assignee
Toshiba Corp
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kubota Corp filed Critical Toshiba Corp
Priority to JP2015136403A priority Critical patent/JP6611230B2/en
Publication of JP2017018859A publication Critical patent/JP2017018859A/en
Application granted granted Critical
Publication of JP6611230B2 publication Critical patent/JP6611230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a membrane washing control method that can efficiently wash a membrane filter with a reduced amount of chemical liquid, and to provide a membrane washing control device, and a water treatment system.SOLUTION: The membrane washing control method includes: an acquisition process; and a determination step. The acquisition process acquires a transmembrane pressure difference value of the membrane filter or membrane filtration resistance value immediately after washing the membrane filter with the chemical liquid. The determination step determines washing strength in performing the next chemical liquid washing on the basis of the transmembrane pressure difference value or membrane filtration resistance value.SELECTED DRAWING: None

Description

本発明の実施形態は、膜洗浄制御方法、膜洗浄制御装置、及び水処理システムに関する。   Embodiments described herein relate generally to a membrane cleaning control method, a membrane cleaning control device, and a water treatment system.

水処理システムでは、一般的に、被処理水を固液分離するためにろ過膜が用いられている。しかしながら、ろ過膜によるろ過を継続することにより、膜面上や膜内に濁質や浮遊物質などが付着又は堆積し、膜の目詰まり(ファウリング)が生じる。ファウリングが生じると、膜の被処理水側(一次側)と透過水側(二次側)の圧力差、つまり膜間差圧(TMP;Trans Membrance Pressure)が上昇する。TMPが上昇すると、透過流束が低減し、安定的に被処理水を確保できなくなるため問題である。   In a water treatment system, a filtration membrane is generally used for solid-liquid separation of water to be treated. However, by continuing filtration with a filtration membrane, turbidity, suspended substances, etc. adhere or accumulate on the membrane surface or in the membrane, resulting in clogging (fouling) of the membrane. When fouling occurs, the pressure difference between the treated water side (primary side) and the permeated water side (secondary side) of the membrane, that is, the transmembrane pressure (TMP) increases. When TMP rises, the permeation flux decreases, and it becomes a problem because it becomes impossible to secure treated water stably.

そのため、TMP値が所定の値に達した段階で、ろ過膜を薬液洗浄する。現状では、薬液洗浄をする際に使用する薬液の濃度や洗浄時間は、初期に設定した値から変更しないことが多い。そのため、例えば、初期に設定した薬液濃度が低い場合や洗浄時間が短い場合、ろ過膜の洗浄が不十分となり、洗浄を繰り返すごとに急激にTMP値が上昇するといった場合があった。また、初期に設定した薬液濃度が高い場合や洗浄時間が長い場合、過剰洗浄となり、薬液コストが増加する場合や、膜寿命が低下する場合があった。   Therefore, when the TMP value reaches a predetermined value, the filtration membrane is washed with a chemical solution. At present, the concentration and cleaning time of the chemical solution used for cleaning the chemical solution are often not changed from the initial values. Therefore, for example, when the initially set concentration of the chemical solution is low or when the cleaning time is short, the filtration membrane is not sufficiently cleaned, and the TMP value may increase rapidly each time the cleaning is repeated. Further, when the initially set concentration of the chemical solution is high or when the cleaning time is long, excessive cleaning is performed, and the cost of the chemical solution may increase, or the film life may be reduced.

特開2013−202471号公報JP 2013-202471 A

本発明が解決しようとする課題は、少ない薬液で効率的にろ過膜を洗浄することができる膜洗浄制御方法、膜洗浄制御装置、及び水処理システムを提供することである。   The problem to be solved by the present invention is to provide a membrane cleaning control method, a membrane cleaning control device, and a water treatment system capable of efficiently cleaning a filtration membrane with a small amount of chemical solution.

実施形態の膜洗浄制御方法は、取得工程と決定工程とを持つ。取得工程ではろ過膜を薬液洗浄し、ろ過を再開した直後のろ過膜の膜間差圧値(TMP0)又は膜ろ過抵抗値を取得する。決定工程では、ろ過膜を薬液洗浄し、ろ過を再開した直後のろ過膜の膜間差圧値(TMP0)又は膜ろ過抵抗値に基づいて、次の薬液洗浄を行う際の洗浄強度を決定する。 The film cleaning control method of the embodiment has an acquisition step and a determination step. In the acquisition step, the filtration membrane is washed with a chemical solution, and the transmembrane differential pressure value (TMP 0 ) or membrane filtration resistance value of the filtration membrane immediately after resumption of filtration is obtained. In the determination step, the cleaning strength for the next chemical cleaning is determined based on the transmembrane differential pressure value (TMP 0 ) or membrane filtration resistance value of the filtration membrane immediately after the filtration membrane is washed with the chemical solution and filtration is resumed. To do.

実施形態の水処理システムを示す概略構成図。The schematic block diagram which shows the water treatment system of embodiment. 実施形態の膜洗浄制御装置を示す概略構成図。The schematic block diagram which shows the film | membrane cleaning control apparatus of embodiment. 実施形態の膜洗浄制御方法の流れを示すフローチャート。The flowchart which shows the flow of the film | membrane cleaning control method of embodiment.

以下、実施形態の膜洗浄制御方法、膜洗浄制御装置、及び水処理システムを、図面を参照して説明する。
なお、以下の説明で用いられる図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。また、以下の説明で例示される材料、寸法等は一例であって、実施形態はそれらに必ずしも限定されるものではなく、適宜変更して実施することが可能である。
Hereinafter, a membrane cleaning control method, a membrane cleaning control device, and a water treatment system of an embodiment will be described with reference to the drawings.
In the drawings used in the following description, in order to make each component easy to see, the scale of the size may be changed depending on the component. In addition, the materials, dimensions, and the like exemplified in the following description are examples, and the embodiment is not necessarily limited thereto, and can be implemented with appropriate modifications.

先ず、実施形態の水処理システムについて、図1を参照して説明する。図1は、実施形態の水処理システムを示す概略構成図である。図1に示すように、水処理システム1は、無酸素槽2と、好気槽(槽)3と、ろ過膜を備えた膜モジュール4と、圧力計5と、処理水槽6と、薬液槽7と、薬液濃度調整槽8と、洗浄薬液排出槽9と、膜洗浄制御装置10とを備える。水処理システム1は、有機物やアンモニア性窒素などの窒素成分を含む水(以下、「原水」と記載する)から、有機物や窒素成分を分解除去し、分解除去後の処理水を、膜モジュール4を通じて外部へ排出するシステムである。   First, the water treatment system of embodiment is demonstrated with reference to FIG. Drawing 1 is a schematic structure figure showing a water treatment system of an embodiment. As shown in FIG. 1, a water treatment system 1 includes an anoxic tank 2, an aerobic tank (tank) 3, a membrane module 4 provided with a filtration membrane, a pressure gauge 5, a treated water tank 6, and a chemical liquid tank. 7, a chemical concentration adjusting tank 8, a cleaning chemical discharge tank 9, and a film cleaning control device 10. The water treatment system 1 decomposes and removes organic substances and nitrogen components from water containing organic substances and nitrogen components such as ammoniacal nitrogen (hereinafter referred to as “raw water”), and treats the treated water after the decomposition and removal with the membrane module 4. It is a system that discharges to the outside through.

無酸素槽2は、送水経路L1が接続されており、送水経路L1を介して、外部から原水が供給されている。また、無酸素槽2は、返送経路L2が接続されており、返送経路L2を介して、原水と活性汚泥の混合液が無酸素槽2及び好気槽3を循環する。   The anoxic tank 2 is connected to a water supply path L1, and raw water is supplied from the outside through the water supply path L1. Moreover, the return path L2 is connected to the anaerobic tank 2, and the mixed solution of raw water and activated sludge circulates through the anoxic tank 2 and the aerobic tank 3 through the return path L2.

無酸素槽2中には、様々な微生物群で構成される活性汚泥が存在する。活性汚泥は無酸素槽2、好気槽3、返送経路L2を介して循環している。無酸素槽2は、無酸素状態に維持されており、活性汚泥中の脱窒菌の働きが活発になっている。無酸素槽2内では、脱窒菌の働きにより硝酸性窒素を窒素ガスに分解することができる。生成した窒素ガスは大気中に放出されることで水中の窒素成分が除去される。また、有機物の一部は、活性汚泥中の微生物の働きにより、低分子化されるとともに脱窒菌に利用されることでCO2まで分解される。 In the anaerobic tank 2, there is activated sludge composed of various microorganism groups. The activated sludge is circulated through the anoxic tank 2, the aerobic tank 3, and the return path L2. The anoxic tank 2 is maintained in an anoxic state, and the action of denitrifying bacteria in the activated sludge is active. In the anoxic tank 2, nitrate nitrogen can be decomposed into nitrogen gas by the action of denitrifying bacteria. The generated nitrogen gas is released into the atmosphere to remove nitrogen components in the water. A part of the organic matter is reduced in molecular weight by the action of microorganisms in the activated sludge and is also decomposed to CO 2 by being used for denitrifying bacteria.

無酸素槽2の内部には、撹拌機11が設けられている。撹拌機11により、無酸素槽2内の原水と活性汚泥との接触効率が高まり、これにより硝酸性窒素の分解を促進することができる。無酸素槽2において処理された水は、好気槽3に供給される。   A stirrer 11 is provided inside the anaerobic tank 2. By the stirrer 11, the contact efficiency between the raw water and the activated sludge in the oxygen-free tank 2 is increased, thereby promoting the decomposition of nitrate nitrogen. The water treated in the anaerobic tank 2 is supplied to the aerobic tank 3.

好気槽3では、前段の無酸素槽2から供給された原水と活性汚泥の混合液が処理される。好気槽3は、無酸素槽と同様に様々な微生物群で構成される活性汚泥が存在する。   In the aerobic tank 3, the mixed solution of raw water and activated sludge supplied from the previous anaerobic tank 2 is processed. The aerobic tank 3 has activated sludge composed of various microbial groups as in the anoxic tank.

好気槽3には、ブロワ12が接続されている。ブロワ12から供給される空気により好気槽3内を曝気し、好気槽3内に空気を送り込むとともに膜モジュール4のろ過膜表面を洗浄することができる。好気槽3は、好気状態に維持されており、活性汚泥内の好気微生物群ならびに硝化菌の働きが活発になっている。好気微生物群の働きにより、有機物はCO2に、硝化菌の働きにより、好気槽3内のアンモニア性窒素は、硝酸性窒素に酸化分解される。生成した硝酸性窒素は、返送経路L2を介して無酸素槽2へ供給され、無酸素槽2において分解される。 A blower 12 is connected to the aerobic tank 3. The inside of the aerobic tank 3 is aerated by the air supplied from the blower 12, the air is sent into the aerobic tank 3 and the membrane surface of the membrane module 4 can be cleaned. The aerobic tank 3 is maintained in an aerobic state, and the functions of aerobic microorganisms and nitrifying bacteria in the activated sludge are active. The organic matter is oxidized to CO 2 by the action of the aerobic microorganism group, and the ammonia nitrogen in the aerobic tank 3 is oxidized to nitrate nitrogen by the action of the nitrifying bacteria. The produced nitrate nitrogen is supplied to the anoxic tank 2 through the return path L2, and is decomposed in the anoxic tank 2.

返送経路L2は、一端が好気槽3に接続され、他端が無酸素槽2に接続されている。返送経路L2にはポンプ13が設けられており、ポンプ13により返送経路L2を介して好気槽3内の原水と活性汚泥の混合液を無酸素槽2へ循環供給することができる。硝化菌の働きにより生成した硝酸性窒素も同様に無酸素槽2へ供給される。余剰になった活性汚泥は返送経路L2の途中から外部へ引き抜くようにしてもよい。   The return path L2 has one end connected to the aerobic tank 3 and the other end connected to the oxygen-free tank 2. A pump 13 is provided in the return path L2, and the pump 13 can circulate and supply the mixed solution of raw water and activated sludge in the aerobic tank 3 to the anoxic tank 2 through the return path L2. Nitrate nitrogen generated by the action of nitrifying bacteria is also supplied to the anoxic tank 2. The surplus activated sludge may be pulled out from the middle of the return path L2.

膜モジュール4は、好気槽3内に浸透されて設けられている。膜モジュール4により、混合液中から有機物及び窒素成分が除去された水(以下、「処理水」と記載する)を分離、ろ過して取り出すことができる。   The membrane module 4 is provided so as to penetrate into the aerobic tank 3. The membrane module 4 can separate and filter out water from which organic substances and nitrogen components have been removed from the mixed solution (hereinafter referred to as “treated water”).

ろ過膜の材質、形状としては、被処理水から濁質や固形物を分離、ろ過することができるものであれば特に限定されない。具体的には、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、塩素化ポリエチレン、セラミックなどが挙げられる。また、ろ過膜の形状としては、中空糸状のものや平膜状、モノリス状などが代表的なものとして挙げられる。   The material and shape of the filtration membrane are not particularly limited as long as they can separate and filter turbidity and solid matter from the water to be treated. Specific examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), chlorinated polyethylene, and ceramic. Examples of the shape of the filtration membrane include a hollow fiber shape, a flat membrane shape, and a monolith shape.

膜モジュール4は、送水経路L3を介して、処理水槽6と接続されている。送水経路L3にはろ過膜に近い方から順番に、切換え弁14と、切換え弁15と、ポンプ16とが設けられている。   The membrane module 4 is connected to the treated water tank 6 via the water supply path L3. In the water supply path L3, a switching valve 14, a switching valve 15, and a pump 16 are provided in order from the side closer to the filtration membrane.

切換え弁14を開閉することにより、薬液濃度調整槽8で調製した薬液の膜モジュール4への供給を制御することができる。また、切換え弁15を開閉することにより、薬液洗浄後の薬液の洗浄薬液排出槽9への供給を制御することができる。また、ポンプ16により、膜モジュール4によりろ過された処理水を、処理水槽6に供給することができる。   By opening and closing the switching valve 14, the supply of the chemical solution prepared in the chemical concentration adjusting tank 8 to the membrane module 4 can be controlled. Further, by opening and closing the switching valve 15, it is possible to control the supply of the chemical liquid after the chemical liquid cleaning to the cleaning chemical liquid discharge tank 9. Further, the treated water filtered by the membrane module 4 can be supplied to the treated water tank 6 by the pump 16.

圧力計5は、切換え弁15及びポンプ16の間に設けられている。圧力計5により送水経路L3を流れる処理水の圧力を測定することで、ろ過膜の一次側の圧力と二次側の圧力との圧力差、つまり膜間差圧(TMP)を取得することができる。   The pressure gauge 5 is provided between the switching valve 15 and the pump 16. By measuring the pressure of the treated water flowing through the water supply path L3 with the pressure gauge 5, the pressure difference between the primary side pressure and the secondary side pressure of the filtration membrane, that is, the transmembrane pressure difference (TMP) can be obtained. it can.

処理水槽6は、送水経路L3を介して、膜モジュール4と接続されている。処理水槽6は、送水経路L3を介して、膜モジュール4から処理水が供給されている。また、処理水槽6は、送水経路L4と接続されている。送水経路L4により、処理水槽6に供給された処理水の一部を外部に放出し、残りを処理水槽6に貯留することができる。   The treated water tank 6 is connected to the membrane module 4 via the water supply path L3. The treated water tank 6 is supplied with treated water from the membrane module 4 via the water supply path L3. The treated water tank 6 is connected to the water supply path L4. A part of the treated water supplied to the treated water tank 6 can be discharged to the outside and the rest can be stored in the treated water tank 6 by the water supply path L4.

また、処理水槽6は、送水経路L5を介して、薬液濃度調整槽8と接続されている。送水経路L5にはポンプ17が設けられており、ポンプ17により処理水槽6に貯留した処理水を薬液濃度調整槽8に供給することができる。   Moreover, the treated water tank 6 is connected to the chemical concentration adjusting tank 8 through the water supply path L5. A pump 17 is provided in the water supply path L5, and the treated water stored in the treated water tank 6 by the pump 17 can be supplied to the chemical concentration adjusting tank 8.

ポンプ17はインバータにより流量制御可能なものであり、洗浄条件決定部33(図2参照)で決定した薬液の濃度に基づいて、薬液濃度調整槽8への処理水の供給量を調整することができる。   The pump 17 can be controlled in flow rate by an inverter, and can adjust the supply amount of treated water to the chemical concentration adjusting tank 8 based on the concentration of the chemical determined by the cleaning condition determination unit 33 (see FIG. 2). it can.

薬液槽7は、送水経路L6を介して、薬液濃度調整槽8と接続されている。薬液槽7は、膜モジュール4を薬液洗浄する際に使用する薬液を貯留するための槽である。   The chemical tank 7 is connected to the chemical concentration adjusting tank 8 through the water supply path L6. The chemical solution tank 7 is a tank for storing a chemical solution used when the membrane module 4 is subjected to chemical cleaning.

薬液槽7に貯留される薬液としては、膜モジュール4を薬液洗浄することができるものであれば特に限定されない。また、ろ過膜に付着した付着物の種類によって、適宜薬液を選択してもよい。   The chemical solution stored in the chemical solution tank 7 is not particularly limited as long as the membrane module 4 can be cleaned with the chemical solution. Moreover, you may select a chemical | medical solution suitably according to the kind of deposit | attachment adhering to the filtration membrane.

有機系の付着物に対して用いる薬液としては、有機系の付着物に対応する薬液であれば特に限定されない。具体的には、例えば、次亜塩素酸ナトリウム、水酸化ナトリウムなどが挙げられる。   The chemical solution used for the organic deposit is not particularly limited as long as it is a chemical corresponding to the organic deposit. Specific examples include sodium hypochlorite and sodium hydroxide.

また、無機系の付着物に対して用いる薬液としては、無機系の付着物に対応する薬液であれば特に限定されない。具体的には、例えば、シュウ酸、クエン酸などが挙げられる。   In addition, the chemical liquid used for the inorganic deposit is not particularly limited as long as it is a chemical corresponding to the inorganic deposit. Specific examples include oxalic acid and citric acid.

薬液槽7は、複数の薬液を貯留し、洗浄強度決定部32により決定した洗浄強度に基づいて、薬液洗浄の際に使用する薬液を適宜選択することができるものであってもよい。具体的には、例えば、膜モジュール4の薬液洗浄直後のTMP値が所定の値以下の場合には有機系の付着物に対する薬液を用いて、所定の値よりも大きくなった場合には無機系の付着物に対する薬液を用いるといったように薬液を使い分けてもよい。   The chemical tank 7 may store a plurality of chemical liquids and appropriately select a chemical liquid to be used for chemical liquid cleaning based on the cleaning strength determined by the cleaning strength determination unit 32. Specifically, for example, when the TMP value immediately after the chemical cleaning of the membrane module 4 is equal to or lower than a predetermined value, the chemical liquid for the organic deposit is used, and when the TMP value becomes larger than the predetermined value, the inorganic system is used. You may use a chemical | medical solution separately, such as using the chemical | medical solution with respect to the deposit | attachment.

送水経路L6にはポンプ18が設けられており、ポンプ18により薬液槽7に貯留された薬液を薬液濃度調整槽8に供給することができる。ポンプ18に搭載されたインバータにより、洗浄条件決定部33(図2参照)で決定した薬液の濃度に基づいて、薬液濃度調整槽8への薬液の供給量を調整することができる。   A pump 18 is provided in the water supply path L <b> 6, and the chemical liquid stored in the chemical liquid tank 7 can be supplied to the chemical liquid concentration adjusting tank 8 by the pump 18. The supply amount of the chemical liquid to the chemical concentration adjusting tank 8 can be adjusted based on the concentration of the chemical determined by the cleaning condition determination unit 33 (see FIG. 2) by the inverter mounted on the pump 18.

薬液濃度調整槽8は、送水経路L5,L6を介して、処理水槽6及び薬液槽7と接続されており、処理水槽6から処理水が供給され、薬液槽7から薬液が供給されている。薬液濃度調整槽8において、処理水と薬液とを混合することで、薬液の濃度を調整することができる。   The chemical concentration adjusting tank 8 is connected to the treated water tank 6 and the chemical liquid tank 7 via the water supply paths L5 and L6, the treated water is supplied from the treated water tank 6, and the chemical liquid is supplied from the chemical liquid tank 7. In the chemical solution concentration adjusting tank 8, the concentration of the chemical solution can be adjusted by mixing the treated water and the chemical solution.

薬液濃度調整槽8は、送水経路L7を介して切換え弁14と接続されている。送水経路L7には、ポンプ19が設けられており、ポンプ19により、薬液濃度調整槽8において濃度が調整された薬液を、膜モジュール4の二次側から供給することができる。   The chemical concentration adjusting tank 8 is connected to the switching valve 14 via the water supply path L7. A pump 19 is provided in the water supply path L7, and the chemical liquid whose concentration is adjusted in the chemical liquid concentration adjusting tank 8 by the pump 19 can be supplied from the secondary side of the membrane module 4.

またポンプ19は、膜モジュール4の膜内部に必要量の薬液を供給するポンプである。必要量の薬液は膜内部の容積により決まるもので、一定量の薬液量となる。洗浄条件決定部33(図2参照)で決定した洗浄時間だけ、薬液が膜内部に入った状態を保持する。   The pump 19 is a pump that supplies a necessary amount of chemical solution into the membrane of the membrane module 4. The required amount of the chemical solution is determined by the volume inside the membrane, and becomes a certain amount of the chemical solution. The state in which the chemical solution enters the inside of the film is maintained for the cleaning time determined by the cleaning condition determination unit 33 (see FIG. 2).

洗浄薬液排出槽9は送水経路L8を介して、切換え弁15と接続されている。洗浄条件決定部33で決定した洗浄時間経過後、薬液は本経路を介して、洗浄薬液排出槽9に排出される。   The cleaning chemical liquid discharge tank 9 is connected to the switching valve 15 through the water supply path L8. After the elapse of the cleaning time determined by the cleaning condition determining unit 33, the chemical liquid is discharged to the cleaning chemical liquid discharge tank 9 through this path.

膜洗浄制御装置10は、信号線C1,C2,C3,C4,C5,C6を介して、それぞれ圧力計5、ポンプ17,18,19、切換え弁14,15と接続されている。図2は、膜洗浄制御装置10を示す概略構成図である。図2に示すように、膜洗浄制御装置10は、値取得部31と、洗浄強度決定部32と、洗浄条件決定部33と、膜洗浄制御部34と、を備える。膜洗浄制御装置10が備える各機能部は、CPU(Central Processing Unit)によってRAM(Random Access Memory)に読み出されたプログラムが実行されることによって実現される。   The membrane cleaning control device 10 is connected to a pressure gauge 5, pumps 17, 18, 19 and switching valves 14, 15 via signal lines C1, C2, C3, C4, C5, and C6, respectively. FIG. 2 is a schematic configuration diagram showing the film cleaning control device 10. As shown in FIG. 2, the film cleaning control apparatus 10 includes a value acquisition unit 31, a cleaning strength determination unit 32, a cleaning condition determination unit 33, and a film cleaning control unit 34. Each functional unit included in the film cleaning control device 10 is realized by executing a program read into a RAM (Random Access Memory) by a CPU (Central Processing Unit).

値取得部31は、信号線C1を介して圧力計5と接続されている。値取得部31は、圧力計5で測定されたろ過膜の二次側の圧力を取得する。値取得部31は、取得されたろ過膜の二次側の圧力に基づいて、TMP値を取得する。   The value acquisition unit 31 is connected to the pressure gauge 5 via the signal line C1. The value acquisition unit 31 acquires the pressure on the secondary side of the filtration membrane measured by the pressure gauge 5. The value acquisition unit 31 acquires the TMP value based on the acquired pressure on the secondary side of the filtration membrane.

洗浄強度決定部32は、値取得部31によって取得されたTMP値に基づいて、次に膜モジュール4を薬液洗浄する際の洗浄強度を決定する。洗浄強度は、2段階に分けられてもよいし、3段階以上に分けられてもよい。   Based on the TMP value acquired by the value acquisition unit 31, the cleaning strength determination unit 32 determines the cleaning strength when the membrane module 4 is next subjected to chemical cleaning. The cleaning strength may be divided into two stages or may be divided into three or more stages.

洗浄条件決定部33は、洗浄強度決定部32によって決定された洗浄強度に基づいて、薬液洗浄の際に用いられる薬液の濃度、又は薬液洗浄の洗浄時間を決定する。   Based on the cleaning strength determined by the cleaning strength determination unit 32, the cleaning condition determination unit 33 determines the concentration of the chemical solution used for the chemical solution cleaning or the cleaning time for the chemical solution cleaning.

膜洗浄制御部34は、信号線C2,C3,C4,C5,C6を介して、ポンプ17,18,19、切換え弁14,15と接続されている。膜洗浄制御部34は、洗浄条件決定部33で決定された薬液の濃度に基づいて、薬液槽7から薬液濃度調整槽8へ供給する薬液の供給量を制御する。これにより、薬液濃度調整槽8において薬液の濃度が、洗浄条件決定部33で決定された薬液の濃度に調整される。   The membrane cleaning control unit 34 is connected to the pumps 17, 18, 19 and the switching valves 14, 15 via signal lines C 2, C 3, C 4, C 5, C 6. The film cleaning control unit 34 controls the supply amount of the chemical solution supplied from the chemical solution tank 7 to the chemical solution concentration adjusting tank 8 based on the concentration of the chemical solution determined by the cleaning condition determination unit 33. As a result, the concentration of the chemical solution is adjusted to the concentration of the chemical solution determined by the cleaning condition determination unit 33 in the chemical solution concentration adjustment tank 8.

膜洗浄制御部34は洗浄条件決定部33で決定された洗浄時間の間、切換え弁14を閉として、薬液が膜内部に入った状態を保持する。洗浄条件決定部33で決定した洗浄時間経過後、薬液は切換え弁14,15、送水経路L8を通って、洗浄薬液排出槽9に排出される。   During the cleaning time determined by the cleaning condition determination unit 33, the film cleaning control unit 34 closes the switching valve 14 and maintains the state in which the chemical solution has entered the film. After the elapse of the cleaning time determined by the cleaning condition determination unit 33, the chemical liquid is discharged to the cleaning chemical liquid discharge tank 9 through the switching valves 14 and 15 and the water supply path L8.

次に、上述した水処理システム1による膜洗浄制御方法について、図1及び図2を参照して説明する。
先ず、実施形態の膜洗浄制御方法について説明する前に、水処理システム1による原水の処理方法について説明する。水処理システム1では、先ず、原水が送水経路L1を介して無酸素槽2に供給される。無酸素槽2に供給された原水は、活性汚泥と混合された状態で返送経路L2を介して無酸素槽2及び好気槽3を循環する。
Next, the membrane cleaning control method by the water treatment system 1 described above will be described with reference to FIG. 1 and FIG.
First, before explaining the membrane cleaning control method of the embodiment, a raw water treatment method by the water treatment system 1 will be explained. In the water treatment system 1, first, raw water is supplied to the anoxic tank 2 through the water supply path L1. The raw water supplied to the anaerobic tank 2 is circulated through the anaerobic tank 2 and the aerobic tank 3 through the return path L2 in a state of being mixed with the activated sludge.

無酸素槽2内において、脱窒菌の働きにより硝酸性窒素が窒素ガスに分解される。生成した窒素ガスは大気中に放出されることで水中の窒素成分が除去される。また、有機物の一部は、活性汚泥中の微生物の働きにより、低分子化されるとともに脱窒菌に利用されることでCO2まで分解される。 In the anaerobic tank 2, nitrate nitrogen is decomposed into nitrogen gas by the action of denitrifying bacteria. The generated nitrogen gas is released into the atmosphere to remove nitrogen components in the water. A part of the organic matter is reduced in molecular weight by the action of microorganisms in the activated sludge and is also decomposed to CO 2 by being used for denitrifying bacteria.

また、好気槽3内において、好気微生物群の働きにより、有機物が低分子化され、その大半が水とCOに分解される。さらに、硝化菌の働きにより、好気槽3内のアンモニア性窒素が、硝酸性窒素に酸化分解される。生成した硝酸性窒素は、返送経路L2を介して無酸素槽2へ供給され、無酸素槽2において分解される。 Also within the aerobic tank 3, by the action of aerobic microorganisms, organic matter is low molecular weight, the majority is decomposed into water and CO 2. Furthermore, ammonia nitrogen in the aerobic tank 3 is oxidatively decomposed into nitrate nitrogen by the action of nitrifying bacteria. The produced nitrate nitrogen is supplied to the anoxic tank 2 through the return path L2, and is decomposed in the anoxic tank 2.

次に、膜モジュール4により、有機物及び窒素成分が除去された水(処理水)が分離、ろ過されて取り出される。   Next, water (treated water) from which organic substances and nitrogen components have been removed is separated, filtered and taken out by the membrane module 4.

以上の工程により、原水が処理される。上記処理により、膜モジュール4の膜面上や膜内に濁質や浮遊物質などが付着又は堆積するため、膜洗浄制御方法により、膜モジュール4を洗浄する必要が生じる。   Raw water is treated by the above steps. As a result of the above processing, turbidity, suspended substances, and the like adhere or deposit on the membrane surface of the membrane module 4 or in the membrane, so that the membrane module 4 needs to be cleaned by the membrane cleaning control method.

次に、実施形態の膜洗浄制御方法について説明する。図3は、実施形態の膜洗浄制御方法の流れを示すフローチャートである。図3に示すように、実施形態の膜洗浄制御方法は、取得工程S1と、決定工程S2と、洗浄工程S3とを含む。実施形態の膜洗浄制御方法では、取得工程S1、決定工程S2、洗浄工程S3をこの順番で行うことにより、膜モジュール4を薬液洗浄する。なお、薬液洗浄は、ろ過膜のTMP値が所定の値を超えた場合に実施される。   Next, the film cleaning control method of the embodiment will be described. FIG. 3 is a flowchart showing a flow of the film cleaning control method of the embodiment. As shown in FIG. 3, the film cleaning control method of the embodiment includes an acquisition step S1, a determination step S2, and a cleaning step S3. In the membrane cleaning control method of the embodiment, the membrane module 4 is subjected to chemical cleaning by performing the acquisition step S1, the determination step S2, and the cleaning step S3 in this order. The chemical cleaning is performed when the TMP value of the filtration membrane exceeds a predetermined value.

取得工程S1では、膜モジュール4を薬液洗浄した後に膜ろ過を再開した直後のろ過膜のTMP値を取得する。具体的には、先ず、圧力計5により、信号線C1を介して、膜モジュール4を薬液洗浄した後に膜ろ過を再開した直後のろ過膜の二次側の圧力値を値取得部31に送信する。次に、値取得部31により、圧力計5から送信されたろ過膜の二次側の圧力値に基づいてTMP値を取得する。   In acquisition process S1, the TMP value of the filtration membrane immediately after restarting membrane filtration after carrying out chemical | medical solution washing | cleaning of the membrane module 4 is acquired. Specifically, first, the pressure value on the secondary side of the filtration membrane immediately after the membrane filtration is resumed after the membrane module 4 is cleaned with the chemical solution is transmitted to the value acquisition unit 31 via the signal line C1. To do. Next, the TMP value is acquired by the value acquisition unit 31 based on the pressure value on the secondary side of the filtration membrane transmitted from the pressure gauge 5.

決定工程S2では、取得した膜間差圧値に基づいて、次の薬液洗浄を行う際の洗浄強度を決定する。具体的には、先ず、値取得部31で取得したTMP値を、洗浄強度決定部32へ送信する。洗浄強度決定部32では、下記表1に示すようにTMP値から洗浄強度を決定するための条件が予め設定されており、送信されたTMP値に基づいて洗浄強度を決定する。   In the determination step S2, the cleaning strength when performing the next chemical cleaning is determined based on the acquired transmembrane pressure difference value. Specifically, first, the TMP value acquired by the value acquisition unit 31 is transmitted to the cleaning intensity determination unit 32. In the cleaning strength determination unit 32, conditions for determining the cleaning strength from the TMP value are set in advance as shown in Table 1 below, and the cleaning strength is determined based on the transmitted TMP value.

Figure 2017018859
Figure 2017018859

洗浄工程S3では、決定した洗浄強度に基づいて薬液の濃度及び洗浄時間を決定し、決定した薬液の濃度及び洗浄時間により薬液洗浄を行う。具体的には、先ず、洗浄強度決定部32で決定した洗浄強度を、洗浄条件決定部33へ送信する。洗浄強度決定部32では、上記表1に示すように洗浄強度から薬液の濃度及び洗浄時間を決定するための条件が予め設定されており、送信された洗浄強度に基づいて薬液の濃度及び洗浄時間を決定する。   In the cleaning step S3, the concentration and cleaning time of the chemical solution are determined based on the determined cleaning strength, and the chemical solution cleaning is performed based on the determined concentration and cleaning time of the chemical solution. Specifically, first, the cleaning strength determined by the cleaning strength determination unit 32 is transmitted to the cleaning condition determination unit 33. In the cleaning strength determination unit 32, as shown in Table 1 above, conditions for determining the chemical concentration and cleaning time from the cleaning strength are set in advance, and the chemical concentration and cleaning time are determined based on the transmitted cleaning strength. To decide.

次に、洗浄条件決定部33で決定した薬液の濃度及び洗浄時間を、膜洗浄制御部34へ送信する。膜洗浄制御部34は、薬液の濃度に基づいて、薬液濃度調整槽8への被処理水及び薬液の供給量を決定し、その決定に基づいて信号線C2,C3を介してポンプ17及びポンプ18を制御する。   Next, the chemical concentration and the cleaning time determined by the cleaning condition determination unit 33 are transmitted to the film cleaning control unit 34. The membrane cleaning control unit 34 determines the supply amount of the water to be treated and the chemical solution to the chemical concentration adjusting tank 8 based on the concentration of the chemical solution, and the pump 17 and the pump via the signal lines C2 and C3 based on the determination. 18 is controlled.

ポンプ17及びポンプ18により、所定の量の処理水及び薬液を薬液濃度調整槽8に供給する。ここで、薬液洗浄後、膜ろ過を再開した直後の膜間差圧値(TMP)がP以下の場合は、薬液洗浄に用いる薬液として次亜塩素酸ナトリウムを用い、P以上の場合はシュウ酸を用いる。その後、薬液濃度調整槽8において、薬液を処理水で薄めることにより、洗浄条件決定部33で決定した濃度の薬液を調製する。 A predetermined amount of treated water and chemical solution are supplied to the chemical concentration adjusting tank 8 by the pump 17 and the pump 18. Here, when the transmembrane pressure difference value (TMP 0 ) immediately after resuming membrane filtration after chemical solution cleaning is Pn or less, sodium hypochlorite is used as the chemical solution used for chemical solution cleaning, and Pn or more Uses oxalic acid. Thereafter, in the chemical solution concentration adjusting tank 8, the chemical solution having the concentration determined by the cleaning condition determination unit 33 is prepared by diluting the chemical solution with treated water.

次に、膜洗浄制御部34は洗浄条件決定部33で決定された洗浄時間の間、切換え弁14を閉として、薬液が膜内部に入った状態を保持する。洗浄条件決定部33で決定した洗浄時間経過後、薬液は切換え弁14,15、送水経路L8を通って、洗浄薬液排出槽9に排出される。   Next, the membrane cleaning control unit 34 closes the switching valve 14 during the cleaning time determined by the cleaning condition determination unit 33, and maintains the state in which the chemical solution has entered the membrane. After the elapse of the cleaning time determined by the cleaning condition determination unit 33, the chemical liquid is discharged to the cleaning chemical liquid discharge tank 9 through the switching valves 14 and 15 and the water supply path L8.

次に、膜洗浄制御部34は、信号線C6を介して、切換え弁15を制御することで、薬液洗浄で使用した薬液を洗浄薬液排出槽9へ排出する。
以上の工程により膜モジュール4を薬液洗浄することができる。
Next, the membrane cleaning control unit 34 controls the switching valve 15 via the signal line C6 to discharge the chemical used in the chemical cleaning to the cleaning chemical discharge tank 9.
The membrane module 4 can be subjected to chemical cleaning by the above steps.

上記実施形態では、洗浄条件決定部33において、洗浄強度に基づいて薬液の濃度及び洗浄時間を決定したが、薬液の濃度又は洗浄時間のどちらか一方のみを決定し、他方は初期の設定値を用いるものであってもよい。   In the above embodiment, the cleaning condition determination unit 33 determines the concentration of the chemical solution and the cleaning time based on the cleaning strength, but determines only one of the concentration of the chemical solution or the cleaning time, and the other sets the initial set value. It may be used.

ポンプ17,18の流量はインバータにより制御するものとしたが、ポンプ吐出側に設置された流量調節弁でポンプ流量を制御する構成であってもよい。   Although the flow rate of the pumps 17 and 18 is controlled by an inverter, a configuration in which the pump flow rate is controlled by a flow rate adjusting valve installed on the pump discharge side may be used.

以上説明した実施形態の膜洗浄制御方法によれば、取得工程と、決定工程とを持つことにより、少ない薬液で効率的にろ過膜を洗浄することができる。
実施形態の膜洗浄制御装置10は、複数の装置を用いて構成されてもよい。例えば、図2に示される膜洗浄制御装置10の機能部のうち、一部が他の装置に実装され、通信を行うことによって膜洗浄制御方法が実行されてもよい。
According to the membrane cleaning control method of the embodiment described above, the filtration membrane can be efficiently cleaned with a small amount of chemical solution by having an acquisition step and a determination step.
The film cleaning control device 10 of the embodiment may be configured using a plurality of devices. For example, a part of the functional units of the film cleaning control apparatus 10 shown in FIG. 2 may be mounted on another apparatus, and the film cleaning control method may be executed by performing communication.

実施形態の膜洗浄制御装置10は、水処理システム1の各装置と離れた位置に設けられ、水処理システム1が備える制御装置とネットワークを介して接続されてもよい。この場合、膜洗浄制御装置10は、制御装置からネットワークを介した通信により、圧力計5などの装置で測定された値を取得する。膜洗浄制御装置10は、取得された値に基づいて、洗浄強度を決定する。膜洗浄制御装置10は、決定された洗浄強度を、ネットワークを介して水処理システム1が備える制御装置に送信する。水処理システム1が備える制御装置は、受信された洗浄強度に基づいて洗浄を行う。   The membrane cleaning control device 10 of the embodiment may be provided at a position away from each device of the water treatment system 1 and may be connected to a control device provided in the water treatment system 1 via a network. In this case, the membrane cleaning control device 10 acquires a value measured by a device such as the pressure gauge 5 through communication from the control device via a network. The film cleaning control device 10 determines the cleaning strength based on the acquired value. The membrane cleaning control device 10 transmits the determined cleaning strength to the control device included in the water treatment system 1 via the network. The control device provided in the water treatment system 1 performs cleaning based on the received cleaning intensity.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

尚、本明細書では、薬液洗浄した後のろ過再開直後の膜間差圧で薬品の洗浄強度を判定するものとしたが、フラックス変動の大きい処理場では、膜ろ過抵抗で判定をした方が好ましい。   In this specification, the chemical cleaning strength is determined based on the transmembrane pressure difference immediately after the resumption of filtration after the chemical cleaning, but in the treatment field where the flux fluctuation is large, it is better to make the determination based on the membrane filtration resistance. preferable.

膜ろ過抵抗は一般的には直接計測できないが、下記一般式(1)で示されることが知られている。
TMP=μJR ・・・(1)
上記一般式(1)中、TMPは膜間差圧(kPa)、μは粘性係数[kPa/d]、Jは膜モジュール4のろ過膜を透過する処理水のフラックス[m/d]、Rは膜ろ過抵抗[1/m]、Pはべき定数を示す。
The membrane filtration resistance is generally not directly measurable, but is known to be represented by the following general formula (1).
TMP = μJ P R ··· (1 )
In the above general formula (1), TMP is the transmembrane pressure (kPa), μ is the viscosity coefficient [kPa / d], J is the flux of treated water permeating through the membrane of the membrane module 4 [m / d], R Indicates membrane filtration resistance [1 / m], P indicates a power constant.

すなわち、膜ろ過抵抗Rは下記一般式(2)で示される。
R=TMP/μJ ・・・(2)
上記一般式(2)中、べき乗定数Pは通常、1〜2の間で設定される調整パラメータである。
That is, the membrane filtration resistance R is represented by the following general formula (2).
R = TMP / μJ P (2)
In the general formula (2), the power constant P is usually an adjustment parameter set between 1 and 2.

フラックスは、膜モジュール4のろ過膜がろ過した処理水の量(ろ過水量)を膜面積で除した値で連続測定可能のため、粘性係数が一定と仮定すると、TMPをフラックスのべき乗で除した値が膜ろ過抵抗に相当するものとなる。   The flux can be measured continuously by dividing the amount of treated water filtered by the membrane of the membrane module 4 (filtered water amount) by the membrane area. Therefore, assuming that the viscosity coefficient is constant, TMP was divided by the power of the flux. The value corresponds to the membrane filtration resistance.

すなわち、膜ろ過抵抗Rは下記一般式(3)で示される。
R=B・TMP/J ・・・(3)
上記一般式(3)中、Bを定数とすると、膜ろ過抵抗を膜間差圧とろ過水量から計算されるフラックスの値とから計算することができる。
That is, the membrane filtration resistance R is represented by the following general formula (3).
R = B · TMP / J P ··· (3)
In the above general formula (3), if B is a constant, the membrane filtration resistance can be calculated from the transmembrane pressure difference and the flux value calculated from the amount of filtered water.

1…水処理システム、2…無酸素槽、3…好気槽(槽)、4…膜モジュール、5…圧力計、6…処理水槽、7…薬液槽、8…薬液濃度調整槽、9…洗浄薬液排出槽、10…膜洗浄制御装置、11…撹拌機、12…ブロワ、13,16,17,18,19…ポンプ、14,15…切換え弁、31…値取得部、32…洗浄強度決定部、33…洗浄条件決定部、34…膜洗浄制御部、L1,L3,L4,L5,L6,L7,L8…送水経路、L2…返送経路、C1,C2,C3,C4,C5,C6…信号線 DESCRIPTION OF SYMBOLS 1 ... Water treatment system, 2 ... Anoxic tank, 3 ... Aerobic tank (tank), 4 ... Membrane module, 5 ... Pressure gauge, 6 ... Treated water tank, 7 ... Chemical solution tank, 8 ... Chemical solution concentration adjustment tank, 9 ... Cleaning chemical solution discharge tank, 10 ... Membrane cleaning control device, 11 ... Stirrer, 12 ... Blower, 13, 16, 17, 18, 19 ... Pump, 14, 15 ... Switching valve, 31 ... Value acquisition unit, 32 ... Cleaning strength Determining unit 33 ... Cleaning condition determining unit 34 ... Membrane cleaning control unit, L1, L3, L4, L5, L6, L7, L8 ... Water supply path, L2 ... Return path, C1, C2, C3, C4, C5, C6 …Signal line

Claims (10)

ろ過膜を薬液洗浄した後のろ過再開直後の前記ろ過膜の膜間差圧値又は膜ろ過抵抗値を取得する取得工程と、
前記膜間差圧値又は膜ろ過抵抗値に基づいて、次の前記薬液洗浄を行う際の洗浄強度を決定する決定工程と、
を含む膜洗浄制御方法。
An acquisition step of acquiring a transmembrane differential pressure value or a membrane filtration resistance value of the filtration membrane immediately after resumption of filtration after chemical filtration of the filtration membrane,
Based on the transmembrane pressure difference value or membrane filtration resistance value, a determination step for determining the cleaning strength when performing the next chemical cleaning,
A film cleaning control method comprising:
前記洗浄強度に基づいて前記薬液洗浄に用いる薬液の濃度を決定し、当該濃度の前記薬液を用いて前記薬液洗浄を行う洗浄工程をさらに含む、請求項1に記載の膜洗浄制御方法。   The film cleaning control method according to claim 1, further comprising a cleaning step of determining a concentration of the chemical solution used for the chemical solution cleaning based on the cleaning strength and performing the chemical solution cleaning using the chemical solution having the concentration. 前記洗浄強度に基づいて前記薬液洗浄の洗浄時間を決定し、当該洗浄時間のあいだ前記薬液洗浄を行う洗浄工程をさらに含む、請求項1に記載の膜洗浄制御方法。   The film cleaning control method according to claim 1, further comprising a cleaning step of determining a cleaning time for the chemical cleaning based on the cleaning strength and performing the chemical cleaning for the cleaning time. 前記膜間差圧値又は膜ろ過抵抗値が所定の値を超えた場合に、前記洗浄工程において、前記薬液洗浄に用いる薬液としてシュウ酸又はクエン酸を選択する、請求項2又は請求項3に記載の膜洗浄制御方法。   The oxalic acid or citric acid is selected as the chemical solution used for the chemical cleaning in the cleaning step when the transmembrane pressure difference value or the membrane filtration resistance value exceeds a predetermined value. The film cleaning control method described. 前記洗浄強度が3段階以上に分かれている、請求項1から請求項4のいずれか一項に記載の膜洗浄制御方法。   The film cleaning control method according to any one of claims 1 to 4, wherein the cleaning strength is divided into three or more stages. ろ過膜を薬液洗浄した後のろ過再開直後の前記ろ過膜の膜間差圧値又は膜ろ過抵抗値を取得する値取得部と、
前記膜間差圧値又は膜ろ過抵抗値に基づいて、次の前記薬液洗浄を行う際の洗浄強度を決定する洗浄強度決定部と、
を備える膜洗浄制御装置。
A value acquisition unit for acquiring a transmembrane differential pressure value or a membrane filtration resistance value of the filtration membrane immediately after resumption of filtration after chemical filtration of the filtration membrane;
Based on the transmembrane pressure difference value or membrane filtration resistance value, a cleaning strength determination unit that determines the cleaning strength when performing the next chemical cleaning,
A membrane cleaning control device comprising:
前記洗浄強度に基づいて、前記薬液洗浄に用いる薬液の濃度又は前記薬液洗浄の洗浄時間を決定する洗浄条件決定部をさらに備える、請求項6に記載の膜洗浄制御装置。   The film cleaning control apparatus according to claim 6, further comprising a cleaning condition determining unit that determines a concentration of a chemical solution used for the chemical cleaning or a cleaning time for the chemical cleaning based on the cleaning strength. 被処理水を貯留する槽と、
前記槽内に設けられ、前記被処理水をろ過する膜と、
前記膜の二次側の圧力を測定する圧力計と、
ろ過した後の処理水を貯留する処理水槽と、
薬液を貯留する薬液槽と、
前記処理水槽及び前記薬液槽と接続され、前記薬液と前記処理水とを混合することにより前記薬液の濃度を調整する薬液濃度調整槽と、
請求項6又は請求項7に記載の膜洗浄制御装置と、
を備え、
前記膜洗浄制御装置の前記値取得部は、前記二次側の圧力に基づいて前記膜間差圧値を取得し、
前記膜洗浄制御装置は、前記薬液槽から前記薬液濃度調整槽へ供給する前記薬液の供給量、又は前記薬液濃度調整槽から前記膜への前記薬液の供給時間を制御する、膜洗浄制御部をさらに備える、水処理システム。
A tank for storing treated water;
A membrane provided in the tank for filtering the water to be treated;
A pressure gauge for measuring the pressure on the secondary side of the membrane;
A treated water tank for storing treated water after filtration;
A chemical tank for storing the chemical,
A chemical concentration adjusting tank that is connected to the treatment water tank and the chemical liquid tank and adjusts the concentration of the chemical liquid by mixing the chemical liquid and the treatment water;
The film cleaning control device according to claim 6 or 7,
With
The value acquisition unit of the membrane cleaning control apparatus acquires the transmembrane pressure difference value based on the pressure on the secondary side,
The film cleaning control device includes a film cleaning control unit that controls a supply amount of the chemical liquid supplied from the chemical liquid tank to the chemical liquid concentration adjustment tank or a supply time of the chemical liquid from the chemical liquid concentration adjustment tank to the film. A water treatment system further provided.
被処理水を貯留する槽と、
前記槽内に設けられ、前記被処理水をろ過する膜と、
前記膜の二次側の圧力を測定する圧力計と、
前記膜がろ過した処理水の量であるろ過水量を計測するろ過水量計と、
ろ過した後の前記処理水を貯留する処理水槽と、
薬液を貯留する薬液槽と、
前記処理水槽及び前記薬液槽と接続され、前記薬液と前記処理水とを混合することにより前記薬液の濃度を調整する薬液濃度調整槽と、
請求項6又は請求項7に記載の膜洗浄制御装置と、
を備え、
前記膜洗浄制御装置の前記値取得部は、前記二次側の圧力と前記ろ過水量に基づいて前記膜ろ過抵抗値を取得し、
前記膜洗浄制御装置は、前記薬液槽から前記薬液濃度調整槽へ供給する前記薬液の供給量、又は前記薬液濃度調整槽から前記膜への前記薬液の供給時間を制御する、膜洗浄制御部をさらに備える、水処理システム。
A tank for storing treated water;
A membrane provided in the tank for filtering the water to be treated;
A pressure gauge for measuring the pressure on the secondary side of the membrane;
A filtered water meter that measures the amount of filtered water that is the amount of treated water filtered by the membrane;
A treated water tank for storing the treated water after filtration;
A chemical tank for storing the chemical,
A chemical concentration adjusting tank that is connected to the treatment water tank and the chemical liquid tank and adjusts the concentration of the chemical liquid by mixing the chemical liquid and the treatment water;
The film cleaning control device according to claim 6 or 7,
With
The value acquisition unit of the membrane cleaning control device acquires the membrane filtration resistance value based on the pressure on the secondary side and the amount of filtered water,
The film cleaning control device includes a film cleaning control unit that controls a supply amount of the chemical liquid supplied from the chemical liquid tank to the chemical liquid concentration adjustment tank or a supply time of the chemical liquid from the chemical liquid concentration adjustment tank to the film. A water treatment system further provided.
前記膜ろ過抵抗値は、前記二次側の圧力に基づき取得した膜間差圧を前記ろ過水量から計算されるフラックスのべき乗で除した値により演算する、請求項9に記載の水処理システム。   The water treatment system according to claim 9, wherein the membrane filtration resistance value is calculated by a value obtained by dividing a transmembrane differential pressure acquired based on the pressure on the secondary side by a power of a flux calculated from the filtered water amount.
JP2015136403A 2015-07-07 2015-07-07 Membrane cleaning control method, membrane cleaning control device, and water treatment system Active JP6611230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015136403A JP6611230B2 (en) 2015-07-07 2015-07-07 Membrane cleaning control method, membrane cleaning control device, and water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015136403A JP6611230B2 (en) 2015-07-07 2015-07-07 Membrane cleaning control method, membrane cleaning control device, and water treatment system

Publications (2)

Publication Number Publication Date
JP2017018859A true JP2017018859A (en) 2017-01-26
JP6611230B2 JP6611230B2 (en) 2019-11-27

Family

ID=57887343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015136403A Active JP6611230B2 (en) 2015-07-07 2015-07-07 Membrane cleaning control method, membrane cleaning control device, and water treatment system

Country Status (1)

Country Link
JP (1) JP6611230B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116938A1 (en) 2017-12-11 2019-06-20 株式会社クボタ Filtering membrane cleaning method
WO2020158895A1 (en) * 2019-01-31 2020-08-06 旭化成株式会社 Method for determining cleaning conditions of filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082027A (en) * 2004-09-16 2006-03-30 Fuji Electric Systems Co Ltd Water treatment method using filtration membrane and its apparatus
WO2008038436A1 (en) * 2006-09-25 2008-04-03 Toray Industries, Inc. Membrane separation method, immersion type membrane separator and membrane separation process
US20100193435A1 (en) * 2007-03-30 2010-08-05 Norit Process Technology B.V. Method for the Filtration of a Fluid
JP2011078889A (en) * 2009-10-06 2011-04-21 Miura Co Ltd Filter member cleaning system
JP2011194325A (en) * 2010-03-19 2011-10-06 Niigata Univ Depth filter type microfiltration membrane and method for producing the same
JP2011212540A (en) * 2010-03-31 2011-10-27 Kurita Water Ind Ltd Device for selecting cleaning conditions and method for selecting cleaning conditions
JP2012170894A (en) * 2011-02-22 2012-09-10 Mitsubishi Rayon Co Ltd Membrane separation treatment device and method for operating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082027A (en) * 2004-09-16 2006-03-30 Fuji Electric Systems Co Ltd Water treatment method using filtration membrane and its apparatus
WO2008038436A1 (en) * 2006-09-25 2008-04-03 Toray Industries, Inc. Membrane separation method, immersion type membrane separator and membrane separation process
US20100193435A1 (en) * 2007-03-30 2010-08-05 Norit Process Technology B.V. Method for the Filtration of a Fluid
JP2011078889A (en) * 2009-10-06 2011-04-21 Miura Co Ltd Filter member cleaning system
JP2011194325A (en) * 2010-03-19 2011-10-06 Niigata Univ Depth filter type microfiltration membrane and method for producing the same
JP2011212540A (en) * 2010-03-31 2011-10-27 Kurita Water Ind Ltd Device for selecting cleaning conditions and method for selecting cleaning conditions
JP2012170894A (en) * 2011-02-22 2012-09-10 Mitsubishi Rayon Co Ltd Membrane separation treatment device and method for operating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116938A1 (en) 2017-12-11 2019-06-20 株式会社クボタ Filtering membrane cleaning method
JP2019103960A (en) * 2017-12-11 2019-06-27 株式会社クボタ Filtration membrane washing method
JP7075751B2 (en) 2017-12-11 2022-05-26 株式会社クボタ How to clean the filtration membrane
US11413583B2 (en) 2017-12-11 2022-08-16 Kubota Corporation Filtering membrane cleaning method
WO2020158895A1 (en) * 2019-01-31 2020-08-06 旭化成株式会社 Method for determining cleaning conditions of filter

Also Published As

Publication number Publication date
JP6611230B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
CN103492054B (en) Method for cleaning membrane module
US20170182465A1 (en) Water treatment method and water treatment apparatus each using membrane
JP2008264772A (en) Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JP5467793B2 (en) Operation method of submerged membrane separator
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
US10159940B2 (en) Method for cleaning hollow fiber membrane module
JP2014188442A (en) Operation method of organic wastewater treatment apparatus and organic wastewater treatment apparatus
JP6611230B2 (en) Membrane cleaning control method, membrane cleaning control device, and water treatment system
US10550009B2 (en) Systems and processes for the treatment of waste streams allowing direct activated carbon and membrane contact
JP4984460B2 (en) Separation membrane cleaning method and organic sewage treatment apparatus
CN101389572B (en) Method of treating wastewater
WO2018043154A1 (en) Method for operating membrane separation device, and membrane separation device
JP6816292B2 (en) Water treatment method and water treatment equipment
CN101516790A (en) Method of wastewater disposal
JP4979519B2 (en) Operation method of membrane separation activated sludge treatment equipment
JP2014213265A (en) Method and device for biologically treating organic matter-containing water
US20220097007A1 (en) Chemical dosing control method
JP2009214062A (en) Operation method of immersion type membrane module
Do et al. Performance of airlift MBR for on-site treatment of slaughterhouse wastewater in urban areas of Vietnam
JP2013248566A (en) Membrane separation activated sludge process and reforming method of activated sludge
KR20150093409A (en) Method of cleaning membrane
US20150368130A1 (en) Process for purification treatment of wastewater and apparatus for purification treatment of wastewater
JP2010046561A (en) Sludge dehydrating and concentrating method and apparatus thereof
Dzihora Combination of moving bed biofilm reactor and membrane bioreactor for wastewater treatment
JP2019103960A (en) Filtration membrane washing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191025

R150 Certificate of patent or registration of utility model

Ref document number: 6611230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150