JP2017016772A - X線発生装置及びx線撮影システム - Google Patents

X線発生装置及びx線撮影システム Download PDF

Info

Publication number
JP2017016772A
JP2017016772A JP2015129719A JP2015129719A JP2017016772A JP 2017016772 A JP2017016772 A JP 2017016772A JP 2015129719 A JP2015129719 A JP 2015129719A JP 2015129719 A JP2015129719 A JP 2015129719A JP 2017016772 A JP2017016772 A JP 2017016772A
Authority
JP
Japan
Prior art keywords
cathode
voltage
temperature
steady
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015129719A
Other languages
English (en)
Inventor
青木 修司
Shuji Aoki
修司 青木
浜元 康弘
Yasuhiro Hamamoto
康弘 浜元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015129719A priority Critical patent/JP2017016772A/ja
Publication of JP2017016772A publication Critical patent/JP2017016772A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Abstract

【課題】X線発生装置21における所定の管電流の即応性を向上させるとともに、無効被爆を抑制した、より安定したX線発生装置21を提供すると共に、このX線発生装置21を用いた安定したX線撮影システム22を提供する。【解決手段】X線の曝射開始前に、カソード4の温度に関わるカソード情報を取得し、取得したカソード情報に基づいて選択した運転モードでX線発生管21が運転されるようにする。【選択図】図1

Description

本発明は、医療機器及び産業技術分野でのX線撮影等に適応できるX線発生装置及びそれを用いたX線撮影システムに関する。
一般に、X線発生装置では、熱電子放出源を構成するカソードに電圧を印加し、カソードに電流を流して加熱し、それにより放出された電子を高電圧によりアノードのターゲットに衝突させることによりX線を発生させる。カソードからアノードへの電子の照射として流れる管電流の制御方法には、カソードへの印加電圧を増減する方法がある。カソードへの印加電圧を増減させることによりカソードの温度が変化して、カソードから放出される電子の量が変化し、それに応じて管電流も変化する。しかし、カソードには熱慣性があるため、カソードへの印加電圧の変動に対して温度が追随するのにある程度の遅延を生じる。
一般的には、スイッチを入れること等でX線の曝射開始指令が出されたとき、管電圧印加とともに、カソードへの電圧印加を開始する。しかし、上記熱慣性により、カソード温度が設定温度で安定するまでの数秒程度の期間は、実際の管電流は設定値に達していない状態となる。従って、曝射開始指令が出されてから、カソード温度が設定温度に達するまでの数秒程度の期間は、実際の管電流は設定値に達しておらず、この期間の透視画像は、濃度不足を起こしており、診断を行う術者にとって最適な画像とはなり得ない。
これを改善する方法として、X線曝射開始時から、所定の管電流に対応するカソード電流よりも高い電流を流すことで、所定の管電流への即応性を向上させる放射線撮影装置がある(例えば、特許文献1参照)。
特開2004−139790号公開
しかしながら、特許文献1の改善方法によっても、カソードに熱慣性があるため、X線曝射開始直後の透視画像は濃度不足となることから、無効被爆が発生してしまうことがあった。
本発明の課題は、X線発生装置における所定の管電流の即応性を向上させるとともに、無効被爆を抑制した、より安定したX線発生装置を提供することである。さらに、このX線発生装置を用いた安定したX線撮影システムを提供することにある。
本発明は電子の照射によりX線を発生するターゲットを有するアノードと、加熱により電子を発生させるカソードと、複数のグリッド電極とを有するX線発生管を有するX線発生装置であって、
X線の曝射開始前に、前記カソードの温度に関わるカソード情報を取得し、取得した前記カソード情報に基づいて選択した作動モードで前記X線発生管が動作されることを特徴とするX線発生装置を提供するものである。
また、本発明は、上記本発明に係るX線発生装置と、前記X線発生装置から放出され、被検体を透過したX線を検出するX線検出装置と、前記X線発生装置と前記X線検出装置とを連携制御する制御装置とを備えたことを特徴とするX線撮影システムを提供するものでもある。
本発明のX線発生装置によれば、X線の曝射開始直前のカソードの温度状態に応じて、例えばごく短時間で所定の管電流に達する作動モードを選択したり、カソードが所定温度に達するまでX線の発生を遅延させる作動モードを選択したりすることができる。つまり、カソード情報を取得し、これに基づいて作動モードを選択することにより、管電流の即応性を向上させることができると共に、無効被曝をゼロに近付けることができる。
本発明のX線撮影システムによれば、上記と同様にして、管電流の即応性を向上させることができ、無効被曝を大きく抑制しつつ安定したX線撮影を行うことができる。
一実施形態に係る本発明のX線発生装置を用いた本発明のX線撮影システムの一実施形態を示す図である。 X線発生装置のメインシーケンスの一例を示すフローチャート図である。 X線発生装置のプリエミッション工程の一例を示すフローチャート図である。 X線発生装置の加熱非曝射モードの一例を示すフローチャート図である。 X線発生装置の低温曝射モードの一例を示すフローチャート図である。 X線発生管各部の動作波形状態の第1の例を示す図である。 X線発生管各部の動作波形状態の第2の例を示す図である。 X線発生管各部の動作波形状態の第3の例を示す図である。 X線発生管各部の動作波形状態の第4の例を示す図である。
以下に、本発明の好ましい実施形態を添付の図面を用いて詳細に説明するが、本発明は下記実施形態に限定されるものではない。なお、本明細書で特に図示又は記載されていない部分に関しては、当該技術分野の周知又は公知技術を適用する。また、以下に参照する図面において、同じ記号は同様の構成要素を示す。
X線発生装置及びX線撮影システムは、例えば医用分野、非破壊検査分野等の様々な分野で適用されているが、ここでは、医用分野を例に説明する。また、X線発生装置及びX線撮影システムは、医用分野の中でも、X線診断装置やX線CT等、様々な装置に装備される。
図1は、本発明のX線発生装置を用いた本発明のX線撮影システムの一例を示す図である。本例のX線撮影システムについて簡単に説明すると、本例のX線撮影システムは、X線発生装置21とX線検出装置22とを連携制御するシステム制御装置23を有している。また、システム制御装置23は、X線発生装置21へ各種の制御信号を出力するものとなっている。X線発生装置21は、システム制御装置23からの制御信号を制御ユニット8で受け、X線発生管1から放出されるX線の放出状態が制御されるものとなっている。X線発生装置21の構成についての詳細は後述する。
X線発生装置21から放出されたX線は、被検体27を透過してX線検出装置22で検出される。X線検出装置22は、フラットパネル又はイメージインテンシファイア24とテレビカメラ25との組み合わせで構成され、検出したX線を画像信号に変換してシステム制御装置23へ出力する。システム制御装置23は、入力された画像信号に基づいて、表示装置26に画像を表示させるための表示信号を、表示装置26へ出力する。表示装置26は、表示信号に基づく画像を、被検体27の撮影画像として画面又はスクリーンに表示する。なお、28は、例えば初期設定条件などを入力するための入力部である。
図1のX線発生装置21は、X線発生管1、管電圧制御部2及びX線曝射制御部3を備えている。X線発生管1は、真空容器14の内部に、熱電子源であるカソード4、第一グリッド電極5、第二グリッド電極6、透過型のターゲット7が配置されている。また、カソード4との対向方向にはアノード15が設けられている。カソード4は、加熱により電子を発生する熱電子源である。カソード4としは、例えばタングステンフィラメントや含浸型カソードのような熱陰極を用いることができる。第一グリッド電極5と第二グリッド電極6は、カソード4からターゲット7に照射される電子の軌道に沿って設けられている。第一グリッド電極5は、カソード4から電子を引き出す引き出し電極で、第二グリッド電極6よりカソード4に近い位置に設けられている。第二グリッド電極6は、カソード4から引き出された電子を加速してターゲット7へと照射するための加速電極で、第一グリッド電極5よりアノード15に近い位置に設けられている。アノード15は、真空容器14の一部を構成しており、ターゲット7はこのアノード15に電気的に接続された状態で、カソード4と対向する位置でアノード15に保持されている。カソード4で発生した電子は、第一グリッド電極5で引き出され、第二グリッド電極6によりフォーカスされ、加速電圧により加速されて、ターゲット7に照射される。ターゲット7は、電子の照射に応答してX線を放出する。
加速電圧は、カソード4とアノード15の間に印加される管電圧で、カソード4の電位に対してターゲット7(アノード15)の電位が高くなるように印加される。加速電圧(管電圧)は、通常80kV〜120kV程度である。管電圧制御部2は、管電圧を制御するもので、高電圧を発生する管電圧回路(不図示)と管電圧検出部(不図示)とを備えている。管電圧制御部2は、制御ユニット8からの信号を受けて、管電圧回路(不図示)から所要の管電圧をX線発生管1のカソード4とターゲット7(アノード15)との間に印加する。
X線曝射制御部3は、カソード電圧制御部9、第一グリッド電圧制御部10、第一グリッド電流検出部11、第二グリッド電圧制御部12、管電流検出部13を備えている。
カソード電圧制御部9は、カソード4の加熱のためにカソード4に印加するカソード電圧を制御するもので、カソード電圧回路(不図示)を備えている。カソード電圧制御部9は、制御ユニット8からX線曝射制御部3に送られてきた信号に基づいて、カソード電圧回路(不図示)から所要のカソード電圧をカソード4に印加してカソード4を加熱し、カソード4から電子を発生させる。
第一グリッド電圧制御部10は、第一グリッド電極5に印加する電圧である第一グリッド電圧を制御するもので、第一グリッド電圧回路(不図示)を備えている。第一グリッド電圧制御部10は、制御ユニット8からX線曝射制御部3に送られてきた信号に基づいて、第一グリッド電圧回路(不図示)から所要の第一グリッド電圧を第一グリッド電極5に印加する。カソード4から電子を引き出すための電圧である引き出し電圧、カソード4からの電子の引き出しを止める電圧であるカットオフ電圧等を、第一グリッド電圧として第一グリッド電極5に印加することができる。
第一グリッド電流検出部11は、カソード4から電子を引き出すときの第一グリッド電極5への電子の流入量を第一グリッド電流として検出する。
第二グリッド電圧制御部12は、第二グリッド電極6に印加する電圧である第二グリッド電圧を制御するもので、第二グリッド電圧回路(不図示)を備えている。第二グリッド電圧制御部12は、制御ユニット8からX線曝射制御部3に送られてきた信号に基づいて、第二グリッド電圧回路(不図示)から所要の第二グリッド電圧を第二グリッド電極6に印加する。第一グリッド電極5でカソード4から引き出された電子をフォーカスするための電圧の他、第一グリッド電極5でカソード4から引き出された電子を遮断するための電圧等を、第二グリッド電圧として第二グリッド電極6に印加することができる。
管電流検出部は13、電子がターゲット7に照射されたときの電子の照射量を管電流として検出する。
次に、本実施形態でのメインシーケンスについて、図2と共に図1も参照して説明する。図2は、本実施形態のメインシーケンスを示すフローチャート図である。
X線発生装置21の電源をONにすると、制御ユニット8から、待機状態となるように、管電圧制御部2及びX線曝射制御部3に制御信号が伝達される。待機状態においては、例えば、管電圧は0kV、カソード電圧は待機時電圧、第一グリッド電圧はカットオフ電圧、第二グリッド電圧は0Vを印加する。この状態で、術者が入力する曝射開始指令信号を待つ待機状態となる。待機状態において曝射開始指令信号が入力されると、プリエミッション工程に移行する。
プリエミッション工程では、詳細は後述するが、X線の曝射開始前に、X線を発生させることなく、カソード4にカソード電圧を印加して通電し、カソード4の温度に関わるカソード情報を取得する動作を行う。X線発生管1は、取得したカソード情報に基づいて選択した運転モードで動作される。カソード情報としては、例えば第一グリッド電流の検出値を用いることができる。第一グリッド電流の値は、カソード4にカソード電圧を印加して電子放出動作をさせることで、第一グリッド電流検出部11で取得することができる。X線を発生させない状態は、印加するカソード電圧と、管電圧及び第一及び第二グリッド電圧との関係から得ることができる。第一グリッド電流は管電流と相関があり、管電流はカソード温度と相関があることが分かっている。従って、カソード情報として第一グリッド電流を検出すれば、検出した電流値から、カソード4の温度を推定できる。
プリエミッション工程でカソード情報を取得した後、このカソード情報が示すカソード4の温度から、曝射可否判定が行われる。この曝射可否判定では、プリエミッション工程で取得したカソード情報が示すカソードの温度が、X線を曝射可能な温度であるか否かを判定する。具体的には、後述する低温曝射モード又は定常運転モードでの運転により、X線を曝射可能な温度(後述する定常温度領域及び準定常温度領域内の温度)であるか否かを判定する。カソード情報が示すカソード4の温度が、X線を曝射可能な温度ではない場合、「曝射不可」と判定され、加熱非曝射モードの運転に移行する。カソード情報が示すカソード4の温度が、X線を曝射可能な温度である場合、「曝射可」と判定され、第一曝射モード判定へ移行する。第一曝射モード判定では、カソード情報が示すカソード4の温度が、後述する定常温度領域内の温度であるか、後述する準定常温度領域内の温度であるかの判定と共に、X線を曝射可能な温度であるか否かを判定する。第一曝射モード判定での、X線を曝射可能な温度であるか否かの判定については後述する。曝射可否判定で「曝射可」と判定された温度は、X線を曝射可能な温度であることを満たしているので、第一曝射モード判定では、後述する定常温度領域内の温度であるか、後述する準定常温度領域内の温度であるかが判定される。カソード情報が示すカソード4の温度が、後述する準定常温度領域内の温度である場合、「定常曝射モード不可」と判定され、低温曝射モードの運転へ移行する。カソード情報が示すカソード4の温度が、後述する定常温度領域内の温度である場合、「定常曝射モード可」と判定され、定常曝射モードの運転へ移行する。
加熱非曝射モードでは、詳細は後述するが、X線を発生させることなく、カソード4を加熱する動作を行う。つまり、管電圧又は第一及び第二グリッド電圧との関係から、X線が発生しない範囲のカソード電圧を印加して、カソード4に通電し、カソード4を通電加熱する動作を行う。この加熱非曝射モードでの運転中に、カソード4の温度を検出するためにカソード情報を取得する。カソード情報としては、プリエミッション工程と同様に、第一グリッド電流を用いることができる。カソード情報が示すカソード4の温度は、第一曝射モード判定で、X線を曝射可能な温度であるか否かと共に、後述する定常温度領域内の温度であるか、後述する準定常温度領域内の温度であるかが判定される。カソード情報が示すカソード4の温度が、X線を曝射可能な温度ではない場合、「曝射不可」と判定され、加熱非曝射モードの運転へ戻る。カソード情報が示すカソード4の温度が、X線を曝射可能な温度であり、後述する準定常温度領域内の温度である場合、「定常曝射モード不可」と判定され、低温曝射モードの運転に移行する。カソード情報が示すカソード4の温度が、X線を曝射可能な温度であり、後述する定常温度領域内の温度である場合、「定常曝射モード可」と判定され、定常曝射モードの運転へ移行する。
定常温度領域とは、後述する準定常温度領域の最高温度より高い温度領域で予め定めたカソード4の温度領域で、後述する低温曝射モードの運転条件に比して電力効率の良い運転条件で必要な線量のX線の曝射が行えるカソード4の温度領域を言う。定常曝射モードとは、カソード4が予め定められた定常温度領域内の温度であるときに、必要な線量のX線の曝射が、後述する低温曝射モードに比して低電力でできるよう予め定められた運転条件での運転モードを言う。準定常温度領域とは、前記定常温度領域の最低温度より低い温度範囲で予め定めたカソード4の温度領域で、運転条件によっては必要な線量のX線曝射が可能であるが、必要な線量のX線の曝射のためには、運転条件が前記定常曝射モードに比して電力効率が悪くなるカソード4の温度領域を言う。低温曝射モードとは、カソード4の温度が前記準低温温度領域にあるとき、前記定常曝射モードに比して電力効率が悪いが、必要な線量のX線を曝射できるように予め定めた運転条件での運転モードを言う。
定常曝射モード及び低温曝射モードの運転条件は、X線発生管1の各部に加える電圧条件である。例えば、引き出し電極である第一グリット電極5に、通常、パルス電圧として印加される第一グリッド電圧のパルス高さ、パルス幅、単位時間当たりのパルス数及び管電圧の組み合わせとして定めることができる。定常曝射モードの運転条件は、カソード4の温度が、予め定められた定常温度領域内の温度である場合に必要な線量のX線を曝射できる、第一グリッド電圧のパルス高さ、パルス幅、単位時間当たりのパルス数及び管電圧の組み合わせとして定めることができる。低温曝射モードの運転条件は、カソード4の温度が、準定常温度領域内の温度である場合に、必要な線量のX線を曝射できる、第一グリッド電圧のパルス高さ、パルス幅、単位時間当たりのパルス数及び管電圧の組み合わせとして定めることができる。定常曝射モードにおける必要なX線の線量は、目的とする透視画像を得るためのX線の線量として予め設定される。低温曝射モードにおける必要なX線の線量は、カソード4の温度が準定常温度領域内の温度である場合に定常曝射モードと同じ運転条件を適用した場合に得られるX線の線量より多いX線の線量で、好ましくは定常曝射モードで得られる線量と同等の線量である。
前記のように、カソード情報が示すカソード4の温度が、準定常温度領域内の温度である場合、低温曝射モードの運転に移行する。低温曝射モードでは、詳細は後述するが、定常曝射モードでの運転に比して電力効率は悪い運転条件ではあるが、必要な線量のX線の曝射が可能な運転条件で運転してX線の曝射を行う。運転は、例えば、第一グリッド電極5へパルス電圧として印加する第一グリッド電圧のパルスを定常曝射モードでの運転時とは異なる方法で印加することで、定常曝射モードでの運転時の透視画像に近い画像又は同等の画像状態が得られるように行われる。この低温曝射モードでの運転中に、カソード情報が取得され、カソード情報が示すカソード4の温度が定常温度領域に達したか否かを第二曝射モード判定で判定する。カソード情報としては、プリエミッション工程及び加熱非曝射モードと同様に、第一グリッド電流を用いることができる。カソード情報が示すカソード4の温度が定常温度領域に達していない場合、「定常曝射モード不可」と判定され、低温曝射モードへ戻る。カソード情報が示すカソード4の温度が定常温度領域に達している場合、「定常曝射モード可」と判定され、定常曝射モードに移行する。
定常曝射モードでは、あらかじめ術者によって設定された撮影条件(例えば、所定の管電圧、管電流等)で曝射を行う。また、術者が曝射終了指令信号を入力すると、定常曝射モードでの運転は停止されて撮影は終了となり、X線発生装置21は待機状態に移行する。待機状態は、次の曝射開始指令信号を待つ状態である。
次に、プリエミッション工程について、図3と共に図1も参照して詳細に説明する。図3は、プリエミッション工程のフローチャート図である。
プリエミッション工程では、X線を発生させることなく、カソード4に、カソード電圧制御部9で制御したカソード電圧を印加して電子放出動作をさせ、カソード4の温度に関わるカソード情報を取得する。カソード情報としては、例えば、カソード4の温度と相関のあることが既知の管電流と相関のある第一グリッド電流を用いることができる。第一グリッド電流は、カソード4から放出される電子の一部であって、第一グリッド電極5に流入する電子の量を表している。X線発生管1の駆動において、管電圧を印加している場合、第一グリッド電圧により引き出された電子は、第一グリッド電極5へ流入する電子(第一グリッド電流)と、ターゲット7へ到達する電子(管電流)とにほぼ一定の割合で分配される。例えば、引き出される電子の全体量の5割がターゲット7へ照射されて管電流となり、残りの5割が第一グリッド電流となる。また、管電圧を印加しない場合においても、加速電圧として第二グリッド電極6へ第二グリッド電圧を印加すれば、第一グリッド電流を第一グリッド電流検出部11で検出することができる。加速電圧として印加する第二グリッド電圧は、第一グリッド電圧よりも大きい電圧であり、第一グリッド電極5に流入しなかった電子は、ターゲット7へ到達して管電流となる代わりに第二グリッド電極6へ流入することになる。従って、管電圧を印加しなくても、第一グリッド電流は検出可能であり、管電圧を印加しないことにより、X線を発生させることなく、第一グリッド電流を検出することができる。
カソード4より引き出される電子の量は、カソード4の温度に依存し、カソード4の温度が定常温度領域に達したときに、最も電子を引き出しやすい状態となる。よって、カソード4の温度と第一グリッド電流値の相関を調べてテーブル化しておけば、第一グリッド電流検出部11で検出した第一グリッド電流値からカソード4の温度を推定することができる。プリエミッション工程では、管電圧を非印加とし、第一及び第二グリッド電極5,6へそれぞれ電子が流入するように、第一及び第二グリッド電圧を印加することで、X線を発生させることなく、第一グリッド電流をカソード情報として取得できる。第一及び第二グリッド電圧は、少なくとも第一グリッド電極5へ電子が照射されるように第一及び第二グリッド電圧制御部10,12で制御される。第一及び第二グリッド電圧は、定常曝射モードで設定した電圧と同じ電圧を用いてもよいし、プリエミッション工程所定用に設定した別の電圧でもよい。
カソード情報としては、第一グリッド電流以外に、管電流を用いることもできる。管電流を発生させるためには管電圧を印加する必要があるが、カソード4から引き出される電子の量は、第一グリッド電圧には依存するが、管電圧の値には依存しない。このため、管電圧は任意の値を設定することができる。カソード情報として計測する管電流を発生させるための管電圧として、X線を発生させる最低電圧未満の電圧を印加して管電流を発生させることで、X線を発生させることなく管電流を発生させることができる。第一グリッド電圧と第二グリッド電圧は、設定された管電圧下において、ターゲット7に電子が照射される電圧に設定される。第一グリッド電圧と第二グリッド電圧は、定常曝射モードで設定した電圧と同じ電圧を用いてもよいし、プリエミッション工程所定用に設定した別の電圧を用いてもよい。カソード情報として取得する管電流は、管電圧として、アノード15へ電子が到達してもX線を放射するまでには至らない低い電圧を印加することで、被爆なしに取得することができる。管電流についても、カソード4の温度との相関を調べてテーブル化しておけば、検出した管電流値からカソード4の温度を推定することができる。カソード情報として第一グリッド電流を取得する方法においても、X線を発生させる最低電圧未満の電圧を管電圧として印加した状態で第一グリッド電流の取得を行うこともできる。しかし、カソード情報として第一グリッド電流を取得する場合、管電流を非印加とすると、管電圧を印加した場合に比して第一グリッド電流を大きくでき、第一グリッド電流の変化を読み取りやすくなるので好ましい。カソード情報として、第一グリッド電流を取得する方法と管電流を取得する方法のいずれの方法においても、被曝無しにカソード情報を取得することができる。
図3のフローチャートでは、定常曝射モード用と同じカソード電圧をカソード4に印加し、定常曝射モード用と同じ第二グリッド電圧を第二グリッド電極6に印加し、プリエミッション工程用に設定された管電圧(例えば0〜10kV)を印加している。更に、定常曝射モードでの運転時の第一グリッド電圧をパルス印加して、第一グリット電流又は管電流をカソード情報として取得するものとなっている。
次に、加熱非曝射モードについて、図4と共に図1も参照して詳細に説明する。図4は、加熱非曝射モードのフローチャート図である。
加熱非曝射モードでは、X線を発生させることなく、カソード4を、X線を曝射可能な温度状態にするために加熱する動作を行う。カソード4の加熱は、定常曝射モードの設定電圧と同じカソード電圧を印加して行ってもよいが、定常曝射モードでの設定電圧よりも高いカソード電圧を印加して行うことが好ましい。定常曝射モードでの電圧より高いカソード電圧にしてカソード4への電流を増加させることで、カソード4の温度はより早く定常温度領域に近づくことができる。カソード電圧を高くし過ぎると、カソード4が故障する虞があるため、故障しない程度の電圧を印加する。カソード4を加熱しながらカソード情報を繰り返し取得することで、カソード4の温度がX線の曝射が可能な温度状態に達したか否かを検出する。カソード情報の取得方法は、前述のプリエミッション工程時と同様に、第一グリッド電流を検出する方法でも、X線を発生させる最低電圧未満の管電圧を印加しての管電流を検出する方法でもよい。どちらにしても、被曝なく行うことができる。そして、カソード4の温度が定常温度領域には満たないが、準定常温度領域内の温度になったところで、低温曝射モードに移行する。
図4のフローチャートでは、加熱非曝射モード用に設定したカソード電圧をカソード4に印加し、定常曝射モードと同じ第二グリッド電圧を第二グリッド電極6に印加し、加熱非曝射モード用に設定した管電圧(例えば0〜10kV)を印加している。更に、定常曝射モード用と同じ第一グリッド電圧をパルス印加して、第一グリット電流又は管電流をカソード情報として取得するものとなっている。
次に、低温曝射モードについて、図5と共に図1も参照して詳細に説明する。図5は、低温曝射モードのフローチャート図である。
低温曝射モードでは、カソード4の温度が定常温度領域の温度には満たないが準定常温度領域内の温度になった状態において、第一グリッド電極5へ印加する電圧パルスを定常曝射モードの時とは異なるパルスとして印加する。定常曝射モードの時とは異なるパルスの印加により、カソード4の温度が準定常温度領域内の温度であるにも拘わらず、定常曝射モードでの運転時の透視画像と同等の画像状態が得られるようにする。定常曝射モードにおける第一グリッド電極5へのパルス電圧印加は、X線発生装置21の構成によっても異なるが、所定の周期で、所定のパルス電圧値及びパルス幅で繰り返し印加する方法が一般的である。低温曝射モードの運転は、定常曝射モードと同じグリッド電圧を第一グリッド電極5へ印加しても、アノード15とカソード4間に流れる管電流が所望の値まで達しないので、管電流を増大させるように制御したグリッド電圧を印加することで行うことができる。低温曝射モードの運転は、管電流が所望の値まで到達するように、パルス電圧値(パルス高さ)を定常曝射モードでの運転時よりも高く設定することで行うことができる。その他の方法としては、定常曝射モードでの運転時よりもパルス幅を広くする方法や、所定の周期の中(単位時間当たり)でパルス数を多くする方法がある。パルス幅を広くすることで、単位時間当たりの管電流量を増やし、定常曝射モード時と同程度の輝度を発生させることができる。また、1周期の中でパルスを増やすことで、単位時間当たりの管電流量を増やし、定常曝射モード時と同程度の輝度を発生させることができる。
低温曝射モードでの運転においても、カソード情報の取得を行い、低温曝射モードでの運転に伴うカソード4の温度上昇により、カソード4の温度が定常温度領域に達したか否かを判定する。カソード情報を取得は、第一グリッド電流値又は管電流値かの検出で行うことができる。このときの撮影条件は、第一グリッド電極5へ第一グリット電圧として印加するパルス電圧を除いて、管電圧、カソード電圧及び第二グリッド電圧は、定常曝射モードでの撮影条件と同じとすることができる。低温曝射モードでの取得画像は、定常曝射モードでの取得画像と同様に利用できるため、低温曝射モードでの被曝は無効被爆とはならない。低温曝射モードでの運転により、カソード4の温度が定常温度領域に達した場合は、定常曝射モードの運転に移行する。
図5のフローチャートでは、定常曝射モード用に設定したカソード電圧をカソード4に印加し、定常曝射モードと同じ第二グリッド電圧を第二グリッド電極6に印加し、プリエミッション工程用に設定した管電圧(例えば0〜10kV)を印加している。更に、低温曝射モード用の設定した第一グリッド電圧をパルス印加して、第一グリット電流又は管電流をカソード情報として取得するものとなっている。
以上説明した構成により、曝射開始指令から定常曝射モードでの運転への移行期間において、プリエミッション工程及び加熱非曝射モード及び低温曝射モード若しくは低温曝射モードを行うことで、管電流の即応性を向上させることができる。また、無効被曝のない安定したX線撮影を行うことができる。
以上の説明においては、第一グリッド電極、第二グリッド電極の2つのグリット電極を有するX線発生管とした。しかし、グリッド電極の数を更に増やしたX線発生管についても適用可能であり、またカソード情報は、第一グリッド電極に流れる電流値に限らず、その他のグリッド電極に流れる電流値を用いる形態としてもよい。3つ以上のグリッド電極を有するX線発生管においては、カソードに最も近いグリッド電極を上述の第一グリッド電極として扱うことができる。カソード情報は、複数のグリッド電極のうちのいずれか一のグリッド電極に流れるグリッド電流の値又は2以上のグリッド電極に流れるグリッド電流の合計値として取得することもできる。但し、カソードの正確な温度変化を取得しやすくするために、カソード情報をグリッド電流として取得するグリッド電極は、カソードの温度変化に対するグリッド電流の変化量の絶対値が最も大きなグリッド電極であることが好ましい。
〔実施例1〕
図1から図5を用いて説明した実施形態のX線発生装置21の電源をONしてから、術者による曝射開始指令が出るまでの撮影待機期間が短い場合について、図6を加えて説明する。なお、待機期間が短いとは、待機状態になってから曝射開始指令信号が入力されるまでの期間が短く、カソード4の温度が、待機状態の間に上昇すべき温度(待機温度)に達していないことを意味する。図6は、本実施例のX線発生管1の各部の動作波形を示す図である。
X線発生装置21の電源をONにすると、制御部8から、待機状態となるように、管電圧制御部2及びX線曝射制御部3に制御信号が伝達される。具体的には、管電圧は0kV、カソード電圧は待機時電圧、第一グリッド電圧はカットオフ電圧、第二グリッド電圧は0Vを印加する。この状態で、術者が入力した曝射開始指令信号を待つ待機状態に移行する。例えば、カソード電圧はDC5V、第一グリッド電圧は、−10Vである。この期間で、通常、カソード4の温度は、待機状態において待機温度まで上昇していくが、上昇が完了する前に曝射開始指令信号が入ってきた場合について説明する。
曝射開始指令信号が入力されると、プリエミッション工程に移行する。プリエミッション工程では、カソード4に通電して、カソード4の温度に関わるカソード情報を取得する。本実施例においては、カソード情報として第一グリッド電流を用いた。第一グリッド電流を検出するために、所定の電圧を各所に印加する。カソード電圧としては、定常曝射モードのカソード電圧と同じ電圧(例えば、7V)を印加する。管電圧は印加しないため、被曝は発生しない。第二グリッド電極6には、第一グリッド電圧より高い電圧(例えば、1000V)を印加する。第一グリッド電極5には、定常曝射モードの時に第一グリッド電圧として用いるパルス電圧のパルス幅で1パルス又は複数パルスのパルス電圧を第一グリッド電圧として印加する(例えば、150V、10ms、1パルス)。
プリエミッション工程では、取得した第一グリッド電流値であるカソード情報から、カソード4の温度が必要な線量のX線を曝射可能な温度状態にあるかどうかを判定する。カソード温度が定常温度領域の温度に達していれば、定常曝射モードへ移行する。例えば、準定常温度領域を、定常温領域の最低温度の約70%以上で定常温度領域の最低温度未満の領域に設定し、カソード4の温度が、準定常温度領域内の場合は低温曝射モードへ移行し、準定常温度領域の最低温度未満の場合は加熱非曝射モードへ移行する。第一グリッド電流値として、管電流とほぼ同じ電流値が検出され、管電流値とカソード4の温度がほぼ比例して変化するとする。この場合、カソード4の温度が定常温度領域の最低温度の場合の管電流が20mAであるとすると、それと同じ20mA以上を第一グリッド電流値として検出できていれば、定常曝射モードへ移行する。また、14mA以上で20mA未満であれば低温曝射モードへ、14mA未満であれば加熱非曝射モードへ移行する。
本実施例では、カソード4の温度が待機温度まで上昇していない時期に曝射開始指令信号が入り、プリエミッション工程で取得した第一グリッド電流値が14mA未満であったとして、加熱非曝射モードへ移行する場合について説明する。
加温非曝射モードでは、カソード4の温度を、X線を曝射可能な温度状態にするためにカソード4を加熱する動作を行う。カソード電圧を、定常曝射モードでの設定電圧よりも高い電圧として印加する。高い電圧にしてカソード4への電流を増加させることで、カソード4の温度はより早く定常温度領域に近づくことができるが、高くし過ぎるとカソード4が故障する虞があるため、故障しない程度の電圧を印加することになる。例えば、カソード電圧は、本実施例における定常曝射モードでの運転時のカソード電圧である7Vよりも高い8Vとした。カソード4を加熱しながらカソード情報を繰り返し取得することで、カソード4の温度が必要な線量のX線を曝射可能な温度状態に達したか否かを判定する。カソード情報の取得方法は、前述のプリエミッション工程時と同様に、第一グリッド電流を検出する方法で行う。カソード4の温度が定常温度領域の温度には満たないが、準定常温度領域の温度になった場合は、低温曝射モードに移行する。
加熱非曝射モードにおいては、管電圧は印加しないため、被曝はない。第二グリッド電極6には、定常曝射モード時と同じ電圧(例えば、1500V)を印加する。第一グリッド電極5には、定常曝射モードの時と同じパルス電圧(例えば、100V、パルス幅10ms)を印加する。パルスの印加周期は、1秒間に15周期として、約67msとした。1パルス毎に第一グリッド電流値を検出し、例えば、検出した第一グリッド電流値が、定常曝射モードでの運転時の電流値の70%に達したところで、低温曝射モードへ移行する。
低温曝射モードでは、第一グリッド電極5へ印加するパルス電圧を定常曝射モードでの運転時とは異なるパルス電圧として印加する。これにより、定常曝射モードでの運転時の透視画像に近い画像状態が得られるようにする。本実施例において、第一グリッド電極5へ印加するパルス電圧は、電圧値は定常曝射モードでの運転時の第一グリッド電圧の電圧(例えば、100V)と同じとし、パルス幅を、定常曝射モードにおけるパルス電圧のパルス幅よりも長くした。カソード電圧は、定常曝射モードでの運転時と同じ電圧とした。管電圧は、定常曝射モードでの運転時の管電圧と同じ電圧(例えば、80kV)とし、第二グリッド電極6には、定常曝射モードでの運転時の第二グリッド電圧と同じの電圧(例えば、1500V)を印加した。
第一グリッド電極5へ印加するパルス電圧のパルス幅は、定常曝射モードでの運転時のパルス幅に比べて、初めは約1.4倍とした(例えば、14ms)。このパルス幅の設定は、準定常温度領域の最低温度を、例えば定常温度領域の最低温度の約70%と設定し、このカソード4の温度で必要な線量のX線が得られるパルス幅とすることで設定することができる。また、待機状態における待機温度を、準定常温度領域の最低温度又は準定常温度領域内の適宜の温度に設定しておくと、待機状態の間にカソード4が待機温度になっていれば、プリエミッション工程の後に直ちに低温曝射モードで運転することができる。
第一グリッド電極5へ印加するパルス電圧の印加周期は、1秒間に15周期として、約67msとした。1パルス毎に第一グリッド電流の値を検出し、この電流値が定常曝射モード時の電流値の80%に達したところで定常曝射モード時のパルス幅の約1.25倍(例えば、13ms)にする。そして、検出した第一グリッド電流の値が定常曝射モード時の電流値の90%に達したところで、定常曝射モード時のパルス幅の約1.1倍(例えば、11ms)にする。その後、検出した第一グリッド電流の値が定常曝射モード時の電流値の100%に達したところで、定常曝射モードへ移行する。以下、術者が撮影を終了するとき定常曝射モードでの運転は終了停止となり、X線発生装置21は待機状態に移行する。
以上のように、本実施例では、曝射開始指令から定常曝射モードへの移行期間において、プリエミッション工程、加熱非曝射モード及び低温曝射モードでの運転を行う。これにより、所定の管電流の即応性を向上させるとともに、無効被曝のない安定したX線撮影を行うことができる。
なお、図6のプリエミッション工程及び加熱非曝射モードの期間で、管電圧及び管電流を点線で図示した。これは、管電圧を被曝しない電圧値(例えば、10kV)で印加して、管電流をカソード情報として検出する場合を示したものである。管電圧をカソード情報として取得しても、被曝せずに、曝射開始指令から定常曝射モードへの移行期間、無効被曝のない安定したX線撮影を行うことができる。
〔実施例2〕
図1から図5を用いて説明した実施形態のX線発生装置21の電源をONしてから、術者による曝射開始指令が出るまでの撮影待機期間が長い場合について、図7を加えて説明する。なお、待機期間が長いとは、待機状態になってから曝射開始指令信号が入力されるまでの期間として、待機状態での加熱によりカソード4の温度が待機温度に達するに必要な長さがとられていることを意味する。図7は、本実施例のX線発生管1の各部の動作波形を示す図である。
X線発生装置21の電源をONにすると、制御部8から待機状態となるように、管電圧制御部2及びX線曝射制御部3に制御信号が伝達される。具体的には、管電圧は0kV、カソード電圧は待機時電圧、第一グリッド電圧はカットオフ電圧、第二グリッド電圧は無電圧0Vを印加する。この状態で、術者が入力する曝射開始指令信号を待つ待機状態に移行する。例えば、カソード電圧はDC5V、第一グリッド電圧は、−10Vである。この期間で、カソード4の温度は、待機温度まで上昇していく。待機温度は、術者からの曝射開始指令が出てから定常曝射までの期間に前述の低温曝射モードを速やかに実施可能な温度である。曝射開始指令信号が入力されると、プリエミッション工程に移行する。
プリエミッション工程では、カソード4に通電し、カソード4の温度に関わるカソード情報を取得する。本実施例においては、カソード情報として第一グリッド電流を用いた。第一グリッド電流を検出するために、所定の電圧を各部に印加する。カソード電圧は、定常曝射モード時の電圧(例えば、7V)を印加する。管電圧は印加しないため、被曝はない。第二グリッド電極6には、第一グリッド電圧より高い電圧(例えば、1000V)を印加する。第一グリッド電極5には、パルス状の電圧を一定のパルス幅で1パルス又は複数パルスを印加する(例えば、100V、10ms、1パルス)。このとき、取得した第一グリッド電流の値であるカソード情報からカソード4の温度がX線を曝射可能な温度状態にあるかどうかを判定する。例えば、本実施例においては、第一グリッド電流の値は管電流の値とほぼ同じとなるから、所望の管電流が20mAであるとすると、同じ20mAを検出できていれば、定常曝射モードへ移行できる。しかし、本実施例では、カソード4の温度は待機温度で、本工程で取得した第一グリッド電流の値は14mA以上20mA未満であることから、すぐには定常曝射モードへは移行できず、低温曝射モードへ移行する。即ち、カソード4の温度が、X線を曝射可能な温度状態ではあるが、定常温度領域内の温度ではでないため、低温曝射モードに移行する。
低温曝射モードでは、カソード4の温度が定常温度領域の温度には満たない温度であることから、第一グリッド電極5へ印加するパルス電圧を定常曝射モードでの運転時とは異なるパルス電圧として印加する。これにより、定常曝射モードでの運転時の透視画像に近い画像状態又は同等の画像状態が得られるようにする。
本実施例においては、第一グリッド電極5へは電圧値を可変にしてパルス電圧を印加した。カソード電圧は、定常曝射モードでの運転時の電圧と同じ電圧を印加した。第二グリッド電極6には、定常曝射モードでの運転時の電圧(例えば、1500V)を印加した。第一グリッド電極5には、定常曝射モード時のパルス電圧の値よりも大きい電圧値のパルス電圧を印加した。この電圧値は、第一グリッド電流の値が定常曝射モード時の第一グリッド電流の値と同じとなるように設定した。第一グリッド電流と第一グリッド電圧との関係は、例えばカソード4の温度が定常温度領域の最低温度の70%のときのデータをあらかじめ取得しておきテーブル化しておくことで対応することができる。パルス電圧の印加周期は、1秒間に15周期として、約67msとした。このパルス電圧のパルス幅は、定常曝射モード時のパルス幅(例えば、10ms)と同じとした。1パルス毎に第一グリッド電流値を検出し、この電流値が定常曝射モード時の80%に達したところで、定常曝射モード時の第一グリッド電流の値と同じとなる第一グリッド電圧に変更した。この電圧の変更は、第一グリッド電流と第一グリッド電圧との関係について、カソード4の温度が定常温度領域の最低温度の80%のときのデータをあらかじめ取得しておき、テーブル化しておくことで対応することができる。そして、検出した第一グリッド電流の値が定常曝射モード時の電流値の90%に達したところで、検出される第一グリッド電流の値が定常曝射モード時の第一グリッド電流の値と同じとなる第一グリッド電圧に変更した。この電圧の変更は、第一グリッド電流と第一グリッド電圧との関係について、カソード4の温度が定常温度領域の最低温度の90%のときのデータをあらかじめ取得しておき、テーブル化しておくことで対応することができる。その後、検出した第一グリッド電流の値が定常曝射モード時の第一グリッド電流の値に達したところで、定常曝射モードへ移行する。以下、術者が撮影を終了するとき定常曝射は終了停止となり、X線発生装置21は待機状態に移行する。
以上のように、本実施例では、曝射開始指令から定常曝射モードへの移行期間において、プリエミッション工程及び低温曝射モードでの運転を行うことで、所定の管電流の即応性を向上させるとともに、無効被曝のない安定したX線撮影を行うことができる。
〔実施例3〕
図1から図5を用いて説明した実施形態において、定常曝射モードが終了してから撮影待機期間に入り、その後、術者による曝射開始指令が出た場合について、図8を加えて説明する。本実施例においては、待機状態で曝射開始指令信号を受けた時のカソード4の温度が、待機温度から定常温度の間にある。図8は、本実施例のX線発生管各部の動作波形を示す図である。
定常曝射モードが終了すると、制御部8から待機状態となるように、管電圧制御部2及びX線曝射制御部3に制御信号が伝達される。具体的には、管電圧としては0kV、カソード電圧としては待機時電圧、第一グリッド電圧としてはカットオフ電圧、第二グリッド電圧としては0Vを印加する。この状態で、術者が入力した曝射開始指令信号を待つ待機状態に移行する。例えば、カソード電圧はDC5V、第一グリッド電圧は−10Vである。この待機期間中、カソード4の温度は、待機温度まで徐々に下降していく。本実施例での曝射開始指令信号は、カソード4の温度が待機温度までの降下の途中又は降下後に入力されることになる。曝射開始指令信号が入力されると、プリエミッション工程に移行する。
プリエミッション工程では、カソード4に電圧を印加して通電し、カソード4の温度に関わるカソード情報を取得する。本実施例においては、カソード情報として第一グリッド電流を用いた。第一グリッド電流を検出するために、所定の電圧をX線発生管1の各部に印加する。カソード電圧としては、定常曝射モード時と同じ電圧(例えば、7V)を印加する。管電圧は印加しないため、被曝はない。第二グリッド電極6には、第一グリッド電圧より高い電圧(例えば、1000V)を印加する。第一グリッド電極5には、パルス状の電圧を、一定のパルス幅で1パルス又は複数パルス印加する(例えば、50V、5ms、1発)。このとき、取得した第一グリッド電流の値であるカソード情報から、カソード4の温度がX線を曝射可能な温度状態にあるかどうかを判定する。例えば、本実施例においては、第一グリッド電流の値が管電流の値とほぼ同じ程度となるから、所望の管電流が10mAであるとすると、同じ10mAを検出できていれば、定常曝射モードへ移行できる。本工程で取得した第一グリッド電流の値が7mA以上、10mA未満であった場合はすぐには定常曝射モードへは移行できず、低温曝射モードへ移行する。即ち、カソード4の温度がX線を曝射可能な温度状態ではあるが、定常温度領域内の温度ではないため、低温曝射モードに移行する。
低温曝射モードでは、カソード4の温度が定常温度領域内の温度には満たない。しかし、この温度下において、必要な線量のX線を曝射できるよう、第一グリッド電極5へ印加するパルス電圧を定常曝射モード時とは異なるパルス電圧とし、これにより、定常曝射モードでの透視画像に近い画像状態又は同等の画像状態が得られるようにする。本実施例においては、第一グリッド電極5へ印加するパルス電圧は、パルスの印加回数を可変して印加した。カソード電圧としては、定常曝射モード時と同じ電圧を印加した。第二グリッド電極6には、定常曝射モード時と同じ電圧(例えば、1500V)を印加した。第一グリッド電極5には、定常曝射モード時と同じ電圧値(例えば、50V)のパルス電圧を印加した。第一グリッド電極5へのパルス電圧の印加は、1秒間に15周期のフレームレートに対応して、約67msの期間に最大12パルスを印加する形態とした。連続して印加したパルスの終わり毎に第一グリッド電流の値を検出した。連続して印加するパルスの幅は2.5msとし、連続したパルスとパルスの間のオフ期間を2.5msとした。検出した第一グリッド電流の値が定常曝射モード時の電流値の80%未満であるならば、約67msの期間で上記パルス電圧を12パルス印加し、第一グリッド電流を検出する動作を繰り返す。検出した第一グリッド電流値が定常曝射モード時の電流値の80%に達したところで、約67msの期間で上記パルス電圧を10パルス印加し、第一グリッド電流を検出する動作に切り換える。そして、検出した第一グリッド電流値が定常曝射モード時の電流値の90%に達したところで、約67msの期間で上記電圧パルスを9パルス印加し、第一グリッド電流を検出する動作に切り換える。その後、検出した第一グリッド電流値が定常曝射モード時の電流値の100%に達したところで、定常曝射モードへ移行する。
定常モードでは、約67msの期間で前記電圧パルスを8パルス印加する動作を繰返し行う。以下、術者が撮影を終了するとき定常曝射は終了停止となり、X線発生装置21は待機状態に移行する。
以上のように、本実施例では、曝射開始指令から定常曝射への移行期間において、プリエミッション工程及び低温曝射モードでの運転を行うことで、無効被曝のない安定したX線撮影を行うことができる。
〔実施例4〕
図1から図5を用いて説明した実施形態のうち、図9を用いて第四の実施例である定常曝射モードが終了してから、説明する。この場合、カソード温度が定常温度を維持していたことを意味する。図9は、本実施例のX線発生管各部の動作波形を示す図である。
図1から図5を用いて説明した実施形態において、定常曝射モードが終了してから、すぐに術者による曝射開始指令が出た場合について、図8を加えて説明する。本実施例においては、曝射開始指令信号を受けた時のカソード4の温度が定常温度領域内の温度を維持している。図9は、本実施例のX線発生管各部の動作波形を示す図である。
定常曝射モードが終了すると、制御部8から待機状態となるように、管電圧制御部2及びX線曝射制御部3に制御信号が伝達される。具体的には、管電圧には0kV、カソード電圧としては待機時電圧、第一グリッド電圧としてはカットオフ電圧、第二グリッド電圧としては0Vを印加する。この状態で、術者が入力した曝射開始指令信号を待つ待機状態に移行する。例えば、カソード電圧はDC5V、第一グリッド電圧は−10Vである。この待機期間中、本来、カソード4の温度は、待機温度まで下降していくが、本実施例では、カソード4の温度がほとんど低下しないうちに曝射開始指令信号が入力されることになる。曝射開始指令信号が入力されると、プリエミッション工程に移行する。
プリエミッション工程では、カソード4に電圧を印加して通電し、カソード4の温度に関わるカソード情報を取得する。本実施例においては、カソード情報として第一グリッド電流を用いた。第一グリッド電流を検出するために、所定の電圧をX線発生管1の各部に印加する。カソード電圧としては、定常曝射モード時と同じ電圧(例えば、7V)を印加する。管電圧は印加しないため、被曝はない。第二グリッド電極6には、第一グリッド電圧より高い電圧(例えば、1000V)を印加する。第一グリッド電極5には、パルス電圧を一定のパルス幅で1パルス又は複数パルス印加する(例えば、100V、10ms、1発)。このとき、取得した第一グリッド電流の値であるカソード情報から、カソード4の温度がX線を曝射可能な温度状態にあるかどうかを判定する。例えば、本実施例においては、第一グリッド電流の値が管電流の値とほぼ同じとなるから、所望の管電流が20mAであるとすると、同じ20mAを検出できていれば、定常曝射モードへ移行できる。本実施例では、本工程で取得した第一グリッド電流の値が20mAを満たしていたためすぐに定常曝射モードへ移行する。即ち、カソード4の温度が定常温度領域内の温度であるため、定常曝射モードへ移行する。以下、術者が撮影を終了するとき定常曝射は終了停止となり、X線発生装置21は待機状態に移行する。
以上のように、本実施例では、曝射開始指令から定常曝射への移行期間において、プリエミッション工程を行うことで、無効被曝のない安定したX線撮影を行うことができる。
1:X線発生管、2:管電圧制御部、3:X線曝射制御部、4:カソード、5:第一グリッド電極、6:第二グリッド電極、7:ターゲット、8:制御ユニット、9:カソード電圧制御部、10:第一グリッド制御部、11:第一グリッド電流検出部、12:第二グリッド制御部、13:管電流検出部、21:X線発生装置、22:X線検出装置、23:制御装置、24:イメージインテンシファイア、25:テレビカメラ、26:表示装置、27:被検体、28:入力部

Claims (16)

  1. 電子の照射によりX線を発生するターゲットを有するアノードと、加熱により電子を発生するカソードと、複数のグリッド電極とを有するX線発生管を有するX線発生装置であって、
    X線の曝射開始前に、前記カソードの温度に関わるカソード情報を取得し、取得した前記カソード情報に基づいて選択した運転モードで前記X線発生管が動作されることを特徴とするX線発生装置。
  2. 前記カソード情報の取得が、X線を発生させることなく前記カソードに通電する工程を含むプリエミッション工程で行われることを特徴とする請求項1に記載のX線発生装置。
  3. 前記カソード情報が、前記複数のグリッド電極のうちのいずれか一のグリッド電極に流れるグリッド電流の値であることを特徴とする請求項2に記載のX線発生装置。
  4. 前記一のグリッド電極が、前記カソードの温度変化に対する前記グリッド電流の変化量の絶対値が最も大きなグリッド電極であることを特徴とする請求項3に記載のX線発生装置。
  5. 前記カソード情報が、前記複数のグリッド電極のうちの2以上のグリッド電極に流れるグリッド電流の合計値であることを特徴とする請求項2に記載のX線発生装置。
  6. 前記プリエミッション工程において、前記アノードと前記カソードとの間の電圧である管電圧が、X線を発生させる最低電圧未満の電圧又は非印加であることを特徴とする請求項2乃至5のいずれか1項に記載のX線発生装置。
  7. 前記プリエミッション工程において、前記アノードと前記カソードとの間の電圧である管電圧が、X線を発生させる最低電圧未満の電圧で、前記カソード情報が、前記アノードと前記カソードとの間に流れる管電流の値であることを特徴とする請求項2に記載のX線発生装置。
  8. 前記運転モードは、前記カソード情報が示す前記カソードの温度が、予め定められた定常温度領域内にあるときに選択される定常曝射モードと、前記定常温度領域の最低温度より低い温度範囲で予め定められた準定常温度領域内にあるときに選択される低温曝射モードと、前記準定常温度領域の最低温度より低い時に選択される加熱非曝射モードで、
    前記定常曝射モードは、前記カソードの温度が定常温度領域にあるとき、必要な線量のX線を曝射することができるように予め定められた運転条件での運転モードで、
    前記低温曝射モードは、前記カソードの温度が準定常温度領域にあるとき、必要な線量のX線を曝射できるように予め定められた運転条件での運転モードで、
    前記加熱非曝射モードは、前記カソードの温度が準定常温度領の最低温度より低いとき、X線を発生させることなく、前記カソードを加熱できるように予め定められた運転条件での運転モードであることを特徴とする請求項1乃至6のいずれか1項に記載のX線発生装置。
  9. 前記加熱非曝射モードが、前記カソードに、X線が発生しない範囲のカソード電圧を印加して、前記カソードを通電加熱できる運転条件での運転モードであることを特徴とする請求項8に記載のX線発生装置。
  10. 前記加熱非曝射モードにおける前記カソード電圧として、前記定常曝射モードにおける前記カソード電圧より高い電圧が設定されていることを特徴とする請求項9に記載のX線発生装置。
  11. 前記低温曝射モードが、前記定常曝射モードでの運転に比して電力効率が悪い運転条件ではあるが、必要な線量のX線の曝射が可能な運転条件での運転モードであることを特徴とする請求項8乃至10のいずれか1項に記載のX線発生装置。
  12. 前記カソードに最も近い前記グリッド電極に印加するグリッド電圧がパルス電圧で、前記低温曝射モードにおける前記パルス電圧として、前記定常曝射モードにおける前記パルス電圧よりパルス高さが高いパルス電圧、パルス幅が広いパルス電圧又は単位時間当たりのパルス数が多いパルス電圧が設定されていることを特徴とする請求項8乃至11のいずれか1項に記載のX線発生装置。
  13. 前記加熱非曝射モードにおいて、前記カソード情報の取得が行われ、取得した前記カソード情報に基づいて、前記加熱非曝射モードの繰り返し、低温曝射モードでの運転又は定常曝射モードでの運転が選択されることを特徴とする請求項8乃至12のいずれか1項に記載のX線発生装置。
  14. 前記加熱非曝射モードにおいて、前記カソード情報の取得が行われ、取得した前記カソード情報に基づいて、前記加熱非曝射モードの繰り返し又は定常曝射モードでの運転が選択されることを特徴とする請求項8乃至13のいずれか1項に記載のX線発生装置。
  15. 前記加熱非曝射モード及び前記加熱非曝射モードにおいて取得される前記カソード情報が、前記複数のグリッド電極のうちのいずれか一のグリッド電極に流れるグリッド電流の値、又は、前記アノードと前記カソードとの間に流れる管電流の値であることを特徴とする請求項13又は14に記載のX線発生装置。
  16. 請求項1乃至15のいずれか1項に記載のX線発生装置と、前記X線発生装置から放出され、被検体を透過したX線を検出するX線検出装置と、前記X線発生装置と前記X線検出装置とを連携制御する制御装置とを備えたことを特徴とするX線撮影システム。
JP2015129719A 2015-06-29 2015-06-29 X線発生装置及びx線撮影システム Pending JP2017016772A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129719A JP2017016772A (ja) 2015-06-29 2015-06-29 X線発生装置及びx線撮影システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129719A JP2017016772A (ja) 2015-06-29 2015-06-29 X線発生装置及びx線撮影システム

Publications (1)

Publication Number Publication Date
JP2017016772A true JP2017016772A (ja) 2017-01-19

Family

ID=57830859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129719A Pending JP2017016772A (ja) 2015-06-29 2015-06-29 X線発生装置及びx線撮影システム

Country Status (1)

Country Link
JP (1) JP2017016772A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111670611A (zh) * 2018-01-31 2020-09-15 纳欧克斯影像有限责任公司 X射线管的控制方法和x射线管的控制装置
KR20220107905A (ko) * 2021-01-26 2022-08-02 건국대학교기술지주 주식회사 X-선 튜브를 위한 관전류 제어 방법 및 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111670611A (zh) * 2018-01-31 2020-09-15 纳欧克斯影像有限责任公司 X射线管的控制方法和x射线管的控制装置
KR20220107905A (ko) * 2021-01-26 2022-08-02 건국대학교기술지주 주식회사 X-선 튜브를 위한 관전류 제어 방법 및 장치
KR102594385B1 (ko) 2021-01-26 2023-10-27 주식회사 티인테크놀로지 X-선 튜브를 위한 관전류 제어 방법 및 장치

Similar Documents

Publication Publication Date Title
US8774364B2 (en) X-ray generating apparatus and method of driving X-ray tube
JP5877985B2 (ja) 電子ビーム・システムを動作させる方法及びシステム
US9125619B2 (en) Radiographic examination apparatus and method for the same
CN102415220A (zh) 用于对x射线生成设备的焦斑进行负荷相关尺寸调整的方法和设备
JP2021514105A (ja) X線源およびx線イメージング装置
CN105455829A (zh) 放射性射线照相技术中控制射线管的管电流的方法及相应的系统
JP5129692B2 (ja) X線発生装置及びx線管の駆動方法
JP4774972B2 (ja) X線発生装置およびこれを備えたx線診断装置
JP2017016772A (ja) X線発生装置及びx線撮影システム
JP5984367B2 (ja) 放射線発生装置及びそれを用いた放射線撮影システム
JP7086622B2 (ja) X線コンピュータ断層撮影装置
KR101552318B1 (ko) X선 발생장치, 이를 구비한 ct 시스템 및 그 제어방법
US9374881B2 (en) Radiation generator including cut-off voltage generator and associated detection unit
JP6139262B2 (ja) X線高電圧装置
JP5071676B2 (ja) パルス透視モードを備えたx線装置
JP4648678B2 (ja) X線管のフィラメント加熱装置
JP2010212072A (ja) X線発生装置、およびそれを備えたx線撮影装置
JP4738044B2 (ja) 医用画像診断装置及び医用画像診断装置の制御方法
JP2011238446A (ja) 放射線透視・撮影装置
EP3627976B1 (en) X-ray imaging apparatus and consumption level estimation method for x-ray source
CN104904322B (zh) X射线计算机断层摄影装置及x射线发生装置
JP2012109127A (ja) X線検査装置
JP2007095530A (ja) 高電圧装置およびこれを備えたx線診断装置
JP4654967B2 (ja) X線診断装置
JP5962555B2 (ja) 透視撮影装置