JP2017005990A - 管理サーバ、局所気象情報生成システム、および局所気象情報生成方法 - Google Patents

管理サーバ、局所気象情報生成システム、および局所気象情報生成方法 Download PDF

Info

Publication number
JP2017005990A
JP2017005990A JP2016154071A JP2016154071A JP2017005990A JP 2017005990 A JP2017005990 A JP 2017005990A JP 2016154071 A JP2016154071 A JP 2016154071A JP 2016154071 A JP2016154071 A JP 2016154071A JP 2017005990 A JP2017005990 A JP 2017005990A
Authority
JP
Japan
Prior art keywords
power generation
power
information
actual measurement
measurement value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016154071A
Other languages
English (en)
Other versions
JP6153651B2 (ja
Inventor
一正 七里
Kazumasa Shichiri
一正 七里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012096554A priority Critical patent/JP5985871B2/ja
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016154071A priority patent/JP6153651B2/ja
Publication of JP2017005990A publication Critical patent/JP2017005990A/ja
Application granted granted Critical
Publication of JP6153651B2 publication Critical patent/JP6153651B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】自然エネルギーを利用した発電装置を用いて高精度な気象情報への加工が可能な情報を生成する。
【解決手段】電力管理装置12は検出部21と記憶部25と制御部23とを有する。検出部21は自然エネルギーにより発電を行う第1の発電装置16の発電量の実測値を検出する。記憶部25は実測値を特定の時刻別に複数日分記憶する。制御部23は記憶部25に記憶した一定の日数の実測値の特定の時刻別の最大値である最大実測値および検出部21が新規に検出する実測値を発電情報として生成する。
【選択図】図2

Description

本発明は、自然エネルギーにより発電を行う発電装置の発電量の実測値を用いて有用な情報を生成する電力管理装置、管理サーバ、局所気象情報生成システム、および局所気象情報生成方法に関するものである。
衛星からの雲の写真および各地の気象台の気象観測装置おいて観測している観測情報に基づいて、気象予測を行うことが知られている。従来の気象予測では、広範な領域の平均的な気象を予測することが可能である。一方で、気象予測の詳細化、すなわち局所的な気象予測が求められている。気象予測の局所化のためには、高精細な雲の写真および/または局所的な観測情報が必要である。しかし、衛星からの雲の写真において、精細化を図るには限界がある。また、観測情報の局所化のためには多くの気象観測装置を点在させる必要がるが、その設置数にも限界がある。
ところで、近年、太陽光発電装置および風力発電装置などの自然エネルギーを利用した発電装置が普及している。これらの発電装置の発電量は日射量などの気象情報に応じて変動するので(特許文献1参照)、発電量から気象情報を取得できる可能性がある。それゆえ、各地に点在している発電装置の発電量から局所的な気象情報を取得できる可能性がある。
特開2005−086953号公報
しかし、自然エネルギーを利用した発電装置による発電量は、気象情報以外の多くのパラメータから影響を受ける。例えば、太陽光発電装置であれば、太陽電池の種類、定格容量、直並列数、設置方位、傾斜角度、パネル温度、配線ロス、電力変換装置の変換効率、パネル面の汚れ、影の入る傾向などがパラメータに挙げられる。これらのパラメータは、個々の需要家に設けられる太陽光発電装置毎に異なっている。
それゆえ、精度の高い日射量を得るためには、多くのパラメータを正確に検出し、最適な換算式を事前に求める必要がある。しかし、一般的に、これらのパラメータを正確に検出することは煩雑であるため、太陽光発電装置から精度の高い日射量を得ることは困難であった。
また、太陽光発電のみならず、例えば風力発電のように自然エネルギーを利用する他の発電装置においても、太陽光発電と同様に多くのパラメータによって影響を受ける。それゆえ、自然エネルギーを利用した他の発電装置においても、パラメータを正確に検出することは困難であり、発電量に基づいて高精度の気象情報を得ることが困難である。
したがって、かかる事情に鑑みてなされた本発明の目的は、自然エネルギーを利用した発電装置を用いて高精度な気象情報への加工が可能な情報を生成する電力管理装置、管理サーバ、局所気象情報生成システム、および局所気象情報生成方法を提供することにある。
上述した諸課題を解決すべく、本発明による電力管理装置は、
自然エネルギーにより発電を行う第1の発電装置の発電量の実測値を検出する検出部と、
実測値を、特定の時刻別に複数日分記憶する記憶部と、
記憶部に記憶した一定の日数の実測値の特定の時刻別の最大値である最大実測値、および検出部が新規に検出する実測値を発電情報として生成する制御部とを備える
ことを特徴とするものである。
なお、発電情報を出力する出力部を備えることが好ましい。
また、出力部は第1の発電装置の位置情報を出力することが好ましい。
また、制御部は、発電情報に基づいて、第1の発電装置を含む電力管理システムにおける第2の発電装置および負荷機器の少なくとも一方を制御することが好ましい。
また、本発明による第1の管理サーバは、
電力管理装置が出力する発電情報を取得する管理サーバであって、
電力管理装置により発電量が検出される第1の発電装置の位置を含む領域を第1の領域として、該第1の領域における広域気象情報の一定の日数における特定の時刻別の最大値を、広域最大値として取得する取得部と、
発電情報および広域最大値に基づいて、第1の発電装置の位置における局所気象情報を生成する情報生成部とを備える
ことを特徴としている。
また、本発明による第2の管理サーバは、
自然エネルギーにより発電を行う第1の発電装置の位置を含む領域を第1の領域として、該第1の領域における広域気象情報の一定の日数における特定の時刻別の最大値を広域最大値として取得し、第1の発電装置の発電量の実測値を取得する取得部と、
実測値を、特定の時刻別に、複数日分記憶する記憶部と、
記憶部に記憶した一定の日数の実測値の特定の時刻別の最大値である最大実測値、取得部が新規に取得した現在の実測値、および広域最大値に基づいて第1の発電装置の位置における局所気象情報を生成する情報生成部とを備える
ことを特徴としている。
また、本発明による局所気象情報生成システムは、
自然エネルギーにより発電を行う第1の発電装置の発電量の実測値を検出する検出部と、実測値を特定の時刻別に複数日分記憶する記憶部と、記憶部に記憶した一定の日数の実測値の特定の時刻別の最大値である最大実測値および検出部が新規に検出する現在の実測値を発電情報として生成する制御部とを有する電力管理装置と、
電力管理装置が出力する発電情報を取得する管理サーバであって、電力管理装置により発電量が検出される第1の発電装置の位置を含む領域を第1の領域として該第1の領域における広域気象情報の一定の日数における特定の時刻別の最大値を、広域最大値として取得する取得部と、発電情報および広域最大値に基づいて第1の発電装置の位置における局所気象情報を生成する情報生成部とを有する管理サーバとを備える
ことを特徴としている。
また、本発明による局所気象情報生成方法は、
自然エネルギーにより発電を行う第1の発電装置の発電量の実測値を、特定の時刻別に、複数日分蓄積する蓄積ステップと、
一定の日数の実測値の特定の時刻毎の最大値を、最大実測値として検索する検索ステップと、
第1の発電装置の位置を含む領域を第1の領域として、該第1の領域における広域気象情報の一定の日数における特定の時刻別の最大値を、広域最大値として取得する第1の取得ステップと、
第1の発電装置の発電量の実測値を新規に取得する第2の取得ステップと、
最大実測値、広域最大値、および取得ステップにおいて新規に取得した実測値に基づいて第1の発電装置の位置における局所気象情報を生成する生成ステップとを備える
ことを特徴としている。
上記のように構成された本発明に係る電力管理装置、管理サーバ、局所気象情報生成システム、および局所気象情報生成方法によれば、自然エネルギーを利用した発電装置を用いて高精度な局所気象情報への加工が可能な情報を生成することが可能である。
本発明の第1の実施形態に係る電力管理装置および管理サーバを含む局所気象情報生成システムの概略構成を示すブロック図である。 図1における電力管理システムの概略構成を示す機能ブロック図である。 図1における管理サーバの概略構成を示す機能ブロック図である。 地図上における第1の領域〜第16の領域の位置を説明するための図である。 第1の領域の11時における過去30日の日射量を示す棒グラフである。 特定の時刻の局所気象地図である。 図6の局所気象地図に基づく、局所気象分布図である。 局所気象分布図の時間変化に基づく、局所気象情報の推定について説明する図である。 第1の実施形態に係る局所気象情報生成システムにおける局所気象情報の生成の動作についてのシーケンス図である。 本発明の第2の実施形態に係る管理サーバを含む局所気象情報生成システムの概略構成を示すブロック図である。 図10における管理サーバの概略構成を示す機能ブロック図である。 第2の実施形態に係る局所気象情報生成システムにおける局所気象情報の生成の動作についてのシーケンス図である。
以下、本発明の実施形態について、図面を参照して説明する。
図1は、第1の実施形態に係る電力管理装置および管理サーバを含む局所気象情報生成システムの概略構成を示すブロック図である。図1に示すように、第1の実施形態に係る局所気象情報生成システム10は、ネットワーク11、電力管理装置12、事業者サーバ13、および管理サーバ14を含んで構成される。
ネットワーク11は、管理サーバ14、事業者サーバ13、および複数の電力管理装置12を接続する。ネットワーク11は、管理サーバ14、事業者サーバ13、および複数の電力管理装置12間の情報およびデータの通信を行う。
電力管理装置12は需要家毎の電力管理システム15に設けられ、電力管理システム15における構成機器を制御および管理する。電力管理装置12は、ネットワーク11を介して後述する発電情報を管理サーバ14に通知する。
事業者サーバ13は、気象台などから取得する実測の観測情報に基づいて、後述する広域最大値を求め、ネットワーク11を介して管理サーバ14に通知する。
管理サーバ14は、ネットワーク11を介して電力管理装置12毎の発電情報を取得する。また、管理サーバ14は、ネットワーク11を介して広域最大値を取得する。後述するように、管理サーバ14は、発電情報および広域最大値に基づいて局所気象情報を生成する。
次に、電力管理システム15の詳細な構成について図2を用いて説明する。図2は、電力管理システム15の概略構成を示す機能ブロック図である。図2に示すように、電力管理システム15は、太陽光発電装置16、蓄電装置17、燃料電池装置18、パワーコンディショナ19、分電盤20、第1の検出部21、第2の検出部22、および電力管理装置12を含んで構成される。
図2において、各機能ブロックを結ぶ実線は、電力の流れを表す。また、図2において、各機能ブロックを結ぶ破線は、制御信号または通信される情報の流れを表し、当該破線は有線としてもよいし、無線としてもよい。例えば、電力管理装置12の制御部23と、パワーコンディショナ19、第1の検出部21、第2の検出部22、出力部24、および記憶部25との通信には、ZigBee(登録商標)などの近距離通信方式による通信を採用することができる。また、制御部23と負荷機器27との通信には、赤外線通信、電力線搬送通信(PLC;Power Line Communication)、ZigBeeなど、種々の方式による通信を採用することができる。
図2に示す電力管理システムでは、商用電源26から供給される電力の他、太陽光発電装置16が発電する電力、および蓄電装置17から放電された電力を、負荷機器27に供給することができる。
図2において、電力管理システムに接続される負荷機器27は、例えば、テレビ、エアコン、冷蔵庫など、種々の電化製品などである。これらの負荷機器27には、分電盤20を介して接続されるパワーコンディショナ19が電力を供給する。
太陽光発電装置16は、太陽光を利用して発電する。このため、太陽光発電装置16は、太陽電池パネルを備えており、太陽光のエネルギーを直流の電力に変換する。第1の実施形態において、太陽光発電装置16は、例えば家の屋根などに太陽電池パネルを設置して、太陽光を利用して発電するような態様を想定している。しかしながら、本発明において、太陽光発電装置16は、太陽光のエネルギーを電力に変換できるものであれば、任意のものを採用することができる。
蓄電装置17は、蓄電池を備えており、この蓄電池に充電された電力を放電することにより、電力を供給することができる。また、蓄電装置17は、商用電源26、太陽光発電装置16、または燃料電池装置18等から供給される電力を充電することもできる。
燃料電池装置18は、燃料電池を備えており、水素を用いて空気中の酸素との化学反応により直流の電力を発電する。燃料電池は、SOFC(Solid Oxide Fuel Cell)が挙げられるが、PEFC(Polymer Electrolyte Fuel Cell)、MCFC(Molten Carbonate Fuel Cell)などの他の方式により水素と空気中の酸素との化学反応により発電を行う。発電に用いる水素に関しては、直接貯蔵して燃料電池に供給する形態でも、炭化水素ガスとして貯蔵して改質により水素を生成して燃料電池に供給する形態であってもよい。
燃料電池装置18における発電量は、燃料電池に供給する水素および空気の量などに応じて変化する。燃料電池装置18は、制御部23の制御に基づいて、燃料電池に供給する水素および空気の量などを調整することにより、発電量を調整する。
パワーコンディショナ19は、太陽光発電装置16、蓄電装置17、および燃料電池装置18から供給される直流の電力を、交流の電力に変換する。また、パワーコンディショナ19は、商用電源26から供給される交流の電力を、蓄電装置17に充電するための直流の電力への変換も行う。
パワーコンディショナ19は、変換した交流の電力および商用電源26から供給される交流の電力を分電盤20に供給可能である。また、パワーコンディショナ19は、太陽光発電装置16および燃料電池装置18が発電した直流の電力および商用電源26から供給され直流に変換された電力を、蓄電装置17に供給可能である。また、パワーコンディショナ19は、変換した交流の電力を、第2の検出部22を介して電力会社に売電可能である。パワーコンディショナ19は、制御部23の制御に基づいて、電力の供給を行う。
分電盤20は、供給される電力を、各負荷機器27に分配する。
第1の検出部21は、太陽光発電装置16に接続される。第1の検出部21は、例えば30秒毎に、太陽光発電装置16が発電した電力の発電量の瞬間的な実測値を検出する。第1の検出部21は、検出した発電量の実測値を制御部23に通知する。第1の検出部21は、パワーコンディショナ19に内蔵されていてもよい。
第2の検出部22は、例えばスマートメータであって、商用電源26に接続されて、商用電源26から供給される電力を検出する。また、第2の検出部22は、パワーコンディショナ19にも接続されて、太陽光発電装置16が発電して電力会社に売電する電力を検出する。第2の検出部22は、パワーコンディショナ19に内蔵されていてもよい。第2の検出部22は、検出した商用電源26から供給される電力および電力会社に売電する電力を制御部23に通知する。
電力管理装置12は、例えばHEMSに代表されるEMS(Energy Management System)などにより構成することができる。電力管理装置12は、出力部24、記憶部25、および制御部23を含んで構成される。
出力部24はネットワーク11に接続されるI/Fであって、発電情報を含む様々な情報をネットワーク11と通信可能である。出力部24は制御部23に接続され、通信する情報を制御部23から取得する。なお、出力部24は、ネットワーク11を介して情報を取得し、制御部23に通知することも可能である。
記憶部25は制御部23に接続され、制御部23が収集した各種の情報を蓄積する。記憶部25は任意のメモリ装置などにより構成することができる。
制御部23は、パワーコンディショナ19、第1の検出部21、第2の検出部22、および負荷機器27から情報を取得する。制御部23は、取得した情報に基づいて、電力管理システム15における構成機器を制御および管理する。また、制御部23は、取得した情報に基づいて発電情報などの情報を生成する。
具体的には、例えば、制御部23は、負荷機器27に有線または無線で接続されることにより、これら負荷機器27の消費電力を制御する。
また、制御部23は、パワーコンディショナ19に有線または無線で接続されることにより、パワーコンディショナ19から分電盤20を介して負荷機器27に供給される電力を監視する。
また、制御部23は、パワーコンディショナ19を介して、蓄電装置17に充電される電力も監視する。
また、制御部23は、前述のように、太陽光発電装置16が発電する電力、蓄電装置17が放電する電力、燃料電池装置18が発電する電力、および商用電源26からの電力の負荷機器27への供給と、太陽光発電装置16、燃料電池装置18、および商用電源26からの電力の蓄電装置17への供給と、太陽光発電装置16および燃料電池装置18が発電する電力の電力会社への売電とを制御する。
さらに、制御部23は、記憶部25と共に、発電情報を生成する。制御部23による発電情報の生成について、以下に詳細に説明する。
前述のように、制御部23は、30秒毎に第1の検出部21からその瞬間の発電量の実測値を取得する。制御部23は、第1の検出部21から取得した発電量に基づいて、特定の時刻毎、例えば0時から23時30までの間の30分間隔の時刻毎の発電量の実測値を算出する。特定の時刻の発電量の実測値は、特定の時刻を基準とした一定の時間の発電量の平均値である。例えば、0時の発電量の実測値は、23時45分〜0時15分までの30分間の発電量の平均値である。制御部23は特定の時刻の発電量の実測値を算出すると、記憶部25に格納する。記憶部25は、複数日数分、例えば30日分の発電量の実測値を記憶可能である。
記憶部25に新規に発電量の実測値を格納するときに、制御部23は、記憶部25に記憶した30日分の実測値の中で、新規に格納する実測値の時刻と同じ時刻の実測値の最大値を検索する。例えば、新規に格納する発電量の実測値の時刻が11時30分である場合には、制御部23は、過去30日間の11時30分における発電量の実測値の中の最大値を検索する。
制御部23は、検索した最大値である最大実測値を、新規に第1の検出部21から取得する実測値すなわち最新の特定の時刻の実測値とともに発電情報として生成する。制御部23は、出力部24およびネットワーク11を介して生成した発電情報を管理サーバ14に通知する。制御部23は、発電情報とともに電力管理システム15が設けられる位置情報、たとえば緯度および経度、または住所などの位置情報を管理サーバ14に通知する。
次に、管理サーバ14の詳細な構成について、図3を用いて説明する。図3は、管理サーバ14の概略構成を示す機能ブロック図である。図3に示すように、第1の実施形態に係る管理サーバ14は、取得部28および情報生成部29を含んで構成される。
取得部28は、発電情報および位置情報を、需要者毎の個々の電力管理装置12からネットワーク11を介して取得する。また、取得部28は、後述する広域最大値を、事業者サーバ13からネットワーク11を介して取得する。
情報生成部29は、発電情報、位置情報、および広域最大値に基づいて、電力管理システム15が設けられる位置における局所的な日射量を局所気象情報として生成する。情報生成部29は、生成した局所気象情報をデータベース31に格納する。また、情報生成部29は、生成した局所気象情報に基づいて、局所気象地図を作成可能である。また、情報生成部29は、局所気象地図に基づいて、局所気象分布図を作成可能である。情報生成部29は作成した局所気象地図および局所気象分布図をモニタ30に表示させることも可能である。さらに、情報生成部29は、局所気象分布図の時間変化に基づいて、局所気象を推定可能である。
広域最大値、局所気象情報、局所気象地図、局所気象分布図、および局所気象の推定について、以下に詳細に説明する。
前述のように、衛星からの雲の写真および各地の気象台の気象観測装置おいて観測している観測情報に基づいて、広域な領域の日射量などを広域気象情報として算出することが可能である。事業者サーバ13が観測情報を取得すると、事業者サーバ13は第1の領域〜第16の領域における広域気象情報を特定の時刻別に算出する。第1の領域〜第16の領域は、例えば、図4に示すように、北緯a〜北緯bおよび東経c〜東経dによって囲まれる範囲を16等分した領域である。
事業者サーバ13は、各領域における特定の時刻別の広域気象情報について、30日前から前日までの最大値を、当該領域の特定の時刻別の広域最大値に認定する。例えば、第1の領域における11時の広域気象情報(日射量)が図5のように記録されている場合には、最大となる22日前の日射量が広域最大値に認定される。管理サーバ14は、ネットワーク11を介して、事業者サーバ13から広域最大値を取得する。広域最大値が提供される第1の領域〜第16の領域は例であって、日射量および広域最大値を求めることが可能な領域は第1の領域〜第16の領域に限定されない。
局所気象情報を算出するために、情報生成部29は、取得した発電情報に含まれる最新の実測値の時刻を判別する。さらに、情報生成部29は、取得した位置情報に対応する位置を含む領域が第1の領域〜第16の領域のいずれの領域に属するかを判別する。
情報生成部29は、判別した時刻と同じ時刻における、判別した領域の広域最大値を検索する。例えば、11時を最新の実測値の時刻とする発電情報を、第1の領域内に存在する電力管理システム15から取得した場合には、情報生成部29は第1の領域の11時の広域最大値を検索する。
情報生成部29は、現在の実測値Bおよび広域最大値Dの積を、最大実測値Aで除す、すなわち(B×D)/Aを計算することにより局所気象情報を生成する。すなわち、局所気象情報とは、想定される最大発電量に対する現在の発電量という相対度数を、日射量などの広域気象情報に乗算した値である。管理サーバ14は多様な位置に点在する電力管理システム15から発電情報および位置情報を取得しており、情報生成部29は電力管理装置12毎に局所気象情報を生成する。
情報生成部29は、生成した各電力管理装置の特定の時刻における局所気象情報のテーブルをデータベース31に格納する(表1参照)。
Figure 2017005990
表1は、例えば11時の局所気象情報のテーブルであり、情報生成部29は、他の特定の時刻に対しても時刻別に局所気象情報のテーブルをデータベース31に格納する。
情報生成部29は、局所気象情報のテーブルを用いて、局所気象地図を作成可能である。局所気象地図は、例えば図6に示すように、特定の時刻における局所気象情報の値を地図上にプロットした図である。
また、情報生成部29は、局所気象地図を用いて、図7に示すような、局所気象分布図を作成可能である。局所気象分布図は、同じ局所気象情報を有する領域を境界線で区切った図である。
さらに、情報生成部29は、異なる時刻の局所気象分布図に基づいて、局所気象の変化を推定することが可能である。例えば、30分前の局所気象分布図(図8(a)参照)から現在の局所気象分布図(図8(b)参照)への同じ局所気象情報(日射量)である領域の変化から、30分後の局所気象分布図(図8(c)参照)が作成される。
次に、図1に示した第1の実施形態に係る局所気象情報生成システムの動作について、図9のシーケンス図を参照して説明する。
電力管理装置12は、定期的に特定の時刻の発電量の実測値を算出する(符号“s1”参照)。電力管理装置12は、算出した実測値の時刻と同じ時刻の最大実測値を記憶部25から検索する(符号“s2”参照)。電力管理装置12は、新規に算出した実測値および検索した最大実測値を発電情報として管理サーバ14に通知する(符号“s3”参照)。また、電力管理装置12は、位置情報を管理サーバ14に通知する。
事業者サーバ13は、定期的に第1の領域〜第16の領域別の広域気象情報を算出する(符号“s1”参照)。事業者サーバ13は、算出した広域気象情報に基づいて、第1の領域〜第16の領域別の広域最大値を認定する(符号“s2”参照)。事業者サーバ13は、広域気象情報を管理サーバ14に通知する(符号“s3”参照)。
管理サーバ14は、取得した発電情報、位置情報、および広域最大値に基づいて、電力管理装置12毎の局所気象情報を生成する(符号“s4”参照)。管理サーバ14は、生成した局所気象情報をデータベース31に格納する(符号“s5”参照)。
以後、電力管理装置12、事業者サーバ13、および管理サーバ14における同様の処理により、各時刻の局所気象情報がデータベース31に蓄積される(符号“s6”参照)。管理サーバ14が局所気象地図の作成を指示する入力を検知すると、管理サーバ14はデータベース31に蓄積された局所気象情報に基づき局所気象地図を作成する(符号“s7”参照)。
以上のような構成の第1の実施形態の電力管理装置によれば、局所的な気象情報を従来に比べて高い精度で算出可能にする発電情報を作成することが可能である。このような効果について、以下に説明する。
各太陽光発電装置16において、発電量に対する当該発電量を生じさせる日射量の比(以後第1の比と呼ぶ。)は一定なので、この比に発電量の実測値を乗じることにより、電力管理システム15周辺の日射量(局所気象情報)を算出することが可能である。第1の比を求めるためには、電力管理システム15周辺の日射量を個々に測定する必要がある。しかし、前述のように、現在の気象観測では、各電力管理システム15周辺の日射量を測定することは困難であり、第1の比を求めることは困難である。
そこで、第1の実施形態の電力管理装置12は、快晴時には雲の影響がなくなることを利用して、電力管理システム15周辺の日射量を取得している。すなわち、雲の影響がなければ、広範な領域における日射量と局所的な領域における日射量とが実質的に等しく、快晴時の広範な領域の日射量を各電力管理システム15周辺における日射量に近似的にみなすことができる。また、快晴時には日射量および発電量は最大となること、および30日間の中には快晴となる日があると考えられる。それゆえ、過去30日間における日射量および発電量の最大値を、快晴時の日射量および発電量とみなすことができる。
したがって、第1の実施形態では、最大実測値および広域最大値を、各太陽光発電装置16の特定の発電量および特定の発電量を生じさせる日射量とみなすことにより、当該太陽光発電装置16の第1の比を従来に比べて高い精度で算出することが可能となる。
また、第1の実施形態では、日射量および各太陽光発電装置16の発電量の時刻による変動要因の影響を低減化可能である。各太陽光発電装置16の設置場所は多様であり、設置場所によっては特定の時間帯に太陽電池パネルに近隣の建築物や山などの影が入ることがある。このような影などの時刻による変動要因に起因して、第1の比が時刻に応じて変動し得る。そこで、第1の実施形態においては、特定の時刻別の最大実測値および広域最大値を用いることにより、時刻に応じた第1の比の変動を低減化させている。
また、第1の実施形態では、日射量および各太陽光発電装置16の発電量の季節的変動要因の影響を低減化可能である。例えば、夏と冬とでは、パネル温度および太陽の高さなどが異なっている。このような季節的変動要因に起因して、第1の比が季節に応じて変動し得る。そこで、第1の実施形態においては、現在を基準として一定の期間の最大実測値および広域最大値を用いることにより、季節に応じた第1の比の変動を低減化させている。
次に、本発明の第2の実施形態に係る管理サーバを含む局所気象情報生成システムについて説明する。第2の実施形態では管理サーバにおいて最大実測値を求める点において第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第2の実施形態について説明する。なお、第1の実施形態と同じ機能および構成を有する部位には同じ符号を付す。
図10は、第2の実施形態の管理サーバを含む局所気象情報生成システムの概略構成を示すブロック図である。図10に示すように、第2の実施形態に係る局所気象情報生成システム100は、ネットワーク11、第3の検出部320、事業者サーバ13、および管理サーバ140を含んで構成される。ネットワーク11および事業者サーバ13の構成および機能は第1の実施形態と同じである。
第3の検出部320は、第1の実施形態における第1の検出部21と同様に、太陽光発電装置に接続され、例えば30秒毎に、太陽光発電装置が発電した電力の発電量の瞬間的な実測値を検出する。さらに、第3の検出部320はネットワーク11に接続され、ネットワーク11を介して検出した瞬間的な実測値を管理サーバ140に通知する。また、第3の検出部320は瞬間的な実測値とともに、太陽光発電装置が設けられる位置情報を管理サーバ140に通知する。なお、第2の実施形態において、太陽光発電装置は、例えば街灯33および信号機34などに設置される。
管理サーバ140は、ネットワーク11を介して第3の検出部320毎の実測値を取得する。また、管理サーバ140はネットワーク11を介して広域最大値を取得する。以下に説明するように、管理サーバ140は、実測値および広域最大値に基づいて局所気象情報を生成する。
管理サーバ140は、図11に示すように、取得部280および情報生成部290を含んで構成される。
取得部280は、個々の第3の検出部320から発電量の瞬間的な実測値および位置情報を、ネットワーク11を介して取得する。また、取得部280は、ネットワーク11を介して事業者サーバ13から広域最大値を取得する。
情報生成部290は、発電量の瞬間的な実測値、位置情報、および広域最大値に基づいて、太陽光発電装置が設けられる位置における局所的な日射量を局所気象情報として生成する。情報生成部290は、生成した局所気象情報をデータベース310に格納する。また、情報生成部290は、生成した局所気象情報に基づいて、局所気象地図を作成可能である。また、情報生成部290は、局所気象地図に基づいて、局所気象分布図を作成可能である。情報生成部290は作成した局所気象地図および局所気象分布図をモニタ30に表示させることも可能である。さらに、情報生成部290は、局所気象分布図の時間変化に基づいて、局所気象を推定可能である。
情報生成部290における局所気象情報の生成について、以下に詳細に説明する。
情報生成部290は、第1の実施形態の電力管理装置12の制御部23と同様に、特定の時刻の発電量の実測値を算出する。算出のために、情報生成部290は30秒毎にネットワーク11から、個々の第3の検出部320の瞬間の発電量の実測値を取得する。情報生成部290は、取得した瞬間の発電量の実測値に基づいて、特定の時刻の発電量の実測値を算出する。情報生成部290は、算出した実測値をデータベース31に格納する。データベース31は、複数日数分、例えば30日分の個々の第3の検出部320における実測値を記憶可能である。なお、情報生成部290は、位置情報に基づいて、実測値を送信した第3の検出部320を判別する。データベース310に新規に算出した実測値を格納するときに、情報生成部290は、データベース310に記憶した30日分の実測値の中で、新規に格納する実測値の時刻と同じ時刻の実測値の最大値を検索する。
また、情報生成部290は、第1の実施形態と同様に、位置情報に基づいて算出した実測値に対応する第3の検出部320の位置を含む領域が第1の領域〜第16の領域のいずれの領域に属するかを判別する。情報生成部290は、ネットワーク11から第1の領域〜第16の領域の広域最大値を取得する。情報生成部290は、新規に算出した実測値の時刻と同じ時刻における、判別した領域の広域最大値を検索する。
情報生成部290は、第1の実施形態と同様に、現在の実測値Bおよび広域最大値Dの積を、最大実測値Aで除す、すなわち(B×D)/Aを計算することにより局所気象情報を生成する。管理サーバ140は多様な位置に点在する第3の検出部320から瞬間の実測値および位置情報を取得しており、情報生成部290は第3の検出部320毎に局所気象情報を生成する。
情報生成部290は、第1の実施形態と同様に、生成した個々の第3の検出部320の特定の時刻における局所気象情報のテーブルをデータベース310に格納する。また、情報生成部290は、局所気象情報のテーブルを用いて、局所気象地図を作成可能である。また、情報生成部290は、局所気象地図を用いて、局所気象分布図を作成可能である。さらに、情報生成部290は、異なる時刻の局所気象分布図に基づいて、局所気象の変化を推定することが可能である。
次に、図10に示した第2の実施形態に係る局所気象情報生成システムの動作について、図12のシーケンス図を参照して説明する。
第3の検出部320は、発電量の瞬間的な実測値を検出する(符号“s1”参照)。第3の検出部320は、新規に検出した実測値および位置情報を管理サーバ140に通知する。
事業者サーバ13は、定期的に第1の領域〜第16の領域別の広域気象情報を算出する(符号“s2”参照)。事業者サーバ13は、算出した広域気象情報に基づいて、第1の領域〜第16の領域別の広域最大値を認定する(符号“s3”参照)。事業者サーバ13は、広域気象情報を管理サーバ140に通知する(符号“s4”参照)。
管理サーバ140は、取得した瞬間的な実測値から特定の時刻の実測値を算出する(符号“s2”参照)。管理サーバ140は、算出した実測値の時刻と同じ時刻の最大実測値をデータベース310から検索する(符号“s3”参照)。管理サーバ140は、算出した実測値、検出した最大実測値、位置情報、および広域最大値に基づいて、個々の第3の検出部320の局所気象情報を生成する(符号“s5”参照)。管理サーバ140は、生成した局所気象情報をデータベース310に格納する(符号“s6”参照)。
以後、第3の検出部320、事業者サーバ13、および管理サーバ140における同様の処理により、各時刻の局所気象情報がデータベース310に蓄積される。管理サーバ140が局所気象地図の作成を指示する入力を検知すると、管理サーバ140はデータベース310に蓄積された局所気象情報に基づき局所気象地図を作成する(符号“s7”参照)。
以上のような構成の第2の実施形態の管理サーバおよび局所気象情報生成システムによれば、局所的な気象情報を従来に比べて高い精度で算出可能である。また、第2の実施形態においても、日射量および各太陽光発電装置16の発電量の時刻による変動要因の影響を低減化可能である。また、第2の実施形態においても、日射量および各太陽光発電装置16の発電量の季節的変動要因の影響を低減化可能である。
本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。
例えば、第1の実施形態において、電力管理装置12が発電情報を、局所気象情報の生成のために管理サーバ14に通知する構成であるが、電力管理装置12が電力管理システム15の制御に用いてもよい。例えば、現在の実測値を最大実測値で除した値の時間推移により、天候の変化を簡易に判別し、電力管理システム15における燃料電池装置18および負荷機器27の制御に用いてもよい。日射量が減少している場合には、以後に太陽光発電装置16の発電量が減少することが考えられ、その場合に予め燃料電池装置18を起動することなどが考えられる。
また、第1の実施形態および第2の実施形態において、事業者サーバ13が広域最大値の認定を行う構成であるが、管理サーバ14、140が広域最大値を認定する構成であってもよい。例えば、事業者サーバ13においては広域気象情報のみが算出され、管理サーバ14、140が事業者サーバ13から広域気象情報を取得し、取得した広域気象情報に基づいて広域最大値の認定を行うことも可能である。
また、第1の実施形態および第2の実施形態において、事業者サーバ13が広域気象情報に基づいて広域最大値を認定する構成であるが、広域最大値を統計的に求めることも可能である。例えば、過去の気象観測から、統計的に季節毎の第1の領域〜第16の領域の時刻毎の快晴時の広域気象情報を得ることが可能であり、この快晴時の広域気象情報を広域最大値として用いることができる。なお、快晴時の広域気象情報は予め算出することが可能なので、データベース31、310に記憶させ、局所気象情報の生成のために管理サーバ14、140に読み出させることも可能である。
また、第1の実施形態および第2の実施形態において、局所気象情報として太陽光発電装置16周辺の日射量を算出する構成であるが、局所気象情報として生成されるのは日射量に限定されない。例えば、例えば、風力発電装置における風量などのように、自然エネルギーにより発電を行う発電装置の発電量に基づいて当該発電を生じさせる自然エネルギーに係る気象情報を生成する構成であってもよい。
10、100 局所気象情報生成システム
11 ネットワーク
12 電力管理装置
13 事業者サーバ
14、140 管理サーバ
15 電力管理システム
16 太陽光発電装置
17 蓄電装置
18 燃料電池装置
19 パワーコンディショナ
20 分電盤
21 第1の検出部
22 第2の検出部
23 制御部
24 出力部
25 記憶部
26 商用電源
27 負荷機器
28、280 取得部
29,290 情報生成部
30 モニタ
31、310 データベース
320 第3の検出部
33 街灯
34 信号機
本発明は、自然エネルギーにより発電を行う発電装置の発電量の実測値を用いて有用な情報を生成する管理サーバ、局所気象情報生成システム、および局所気象情報生成方法に関するものである。
したがって、かかる事情に鑑みてなされた本発明の目的は、自然エネルギーを利用した発電装置を用いて高精度な気象情報への加工が可能な情報を生成する管理サーバ、局所気象情報生成システム、および局所気象情報生成方法を提供することにある。
上述した諸課題を解決すべく、本発明による管理サーバは、
情報生成部を備え、
前記情報生成部は、
自然エネルギーにより発電を行う発電装置から得られる瞬間の発電量の実測値と、
前記発電装置の位置情報と、
前記発電装置の位置を含む領域を第1の領域として、該第1の領域における広域気象情報の一定の日数における特定の時刻別の最大値である広域最大値と、
に基づいて局所気象情報を生成する。
なお、前記情報生成部は、前記実測値に基づいて、前記特定の時刻を基準とした一定の時間の発電量の平均値である特定の時刻の発電量、及び前記特定の時刻の発電量のうち一定の日数における前記特定の時刻別の最大値である最大実測値を算出することが好ましい。
また、前記情報生成部は、前記特定の時刻における前記局所気象情報の値を地図上にプロットした局所気象地図を作成することが好ましい。
また、前記情報生成部は、前記局所気象地図を用いて、同一の前記局所気象情報を有する領域を境界線で区切った局所気象分布図を作成することが好ましい。
また、前記情報生成部は、異なる時刻の前記局所気象分布図に基づいて、前記局所気象情報の変化を推定することが好ましい。
また、取得部をさらに備え、
前記取得部は、事業者サーバによって算出された広域気象情報を前記事業者サーバから取得し、
前記情報生成部は、取得した前記広域気象情報に基づいて、前記広域最大値を認定することが好ましい。
また、本発明による第1の局所気象情報生成システムは、
自然エネルギーにより発電を行う発電装置から得られる瞬間の発電量の実測値を検出する検出部と、前記実測値に基づいて特定の時刻を基準とした一定の時間の発電量の平均値である特定の時刻の発電量を算出し、前記特定の時刻の発電量のうち一定の日数における前記特定の時刻別の最大値である最大実測値及び最新の前記特定の時刻の発電量を発電情報として生成する制御部と、を有する電力管理装置と、
前記電力管理装置が出力する前記発電情報及び前記発電装置の位置情報を取得する取得部と、前記発電装置の位置を含む領域を第1の領域として、該第1の領域における広域気象情報の一定の日数における前記特定の時刻別の最大値である広域最大値、前記発電情報、及び前記位置情報に基づいて局所気象情報を生成する情報生成部と、を有する管理サーバと、
を備える。
また、本発明による第2の局所気象情報生成システムは、
自然エネルギーにより発電を行う発電装置から得られる瞬間の発電量の実測値を検出する検出部と、
前記検出部が出力する前記実測値及び前記発電装置の位置情報を取得する取得部と、前記発電装置の位置を含む領域を第1の領域として、該第1の領域における広域気象情報の一定の日数における特定の時刻別の最大値である広域最大値、前記実測値、及び前記位置情報に基づいて局所気象情報を生成する情報生成部と、を有する管理サーバと、
を備える。
また、本発明による局所気象情報生成方法は、
自然エネルギーにより発電を行う発電装置から得られる瞬間の発電量の実測値を検出するステップと、
前記発電装置の位置を含む領域を第1の領域として、該第1の領域における広域気象情報の一定の日数における特定の時刻別の最大値である広域最大値を認定するステップと、
前記実測値、前記発電装置の位置情報、及び前記広域最大値に基づいて前記発電装置の位置における局所気象情報を生成するステップと、
を含む。
上記のように構成された本発明に係る管理サーバ、局所気象情報生成システム、および局所気象情報生成方法によれば、自然エネルギーを利用した発電装置を用いて高精度な局所気象情報への加工が可能な情報を生成することが可能である。

Claims (8)

  1. 自然エネルギーにより発電を行う第1の発電装置の発電量の実測値を検出する検出部と、
    前記実測値を、特定の時刻別に複数日分記憶する記憶部と、
    前記記憶部に記憶した一定の日数の前記実測値の前記特定の時刻別の最大値である最大実測値、および前記検出部が新規に検出する前記実測値を発電情報として生成する制御部とを備える
    ことを特徴とする電力管理装置。
  2. 請求項1に記載の電力管理装置であって、前記発電情報を出力する出力部を備えることを特徴とする電力管理装置。
  3. 請求項2に記載の電力管理装置であって、前記出力部は、前記第1の発電装置の位置情報を出力することを特徴とする電力管理装置。
  4. 請求項1から請求項3のいずれか1項に記載の電力管理装置であって、前記制御部は、前記発電情報に基づいて、第1の発電装置を含む電力管理システムにおける第2の発電装置および負荷機器の少なくとも一方を制御することを特徴とする電力管理装置。
  5. 請求項2または請求項3に記載の電力管理装置が出力する前記発電情報を取得する管理サーバであって、
    前記電力管理装置により発電量が検出される第1の発電装置の位置を含む領域を第1の領域として、該第1の領域における広域気象情報の前記一定の日数における前記特定の時刻別の最大値を、広域最大値として取得する取得部と、
    前記発電情報および前記広域最大値に基づいて、前記第1の発電装置の位置における局所気象情報を生成する情報生成部とを備える
    ことを特徴とする管理サーバ。
  6. 自然エネルギーにより発電を行う第1の発電装置の位置を含む領域を第1の領域として、該第1の領域における広域気象情報の一定の日数における特定の時刻別の最大値を広域最大値として取得し、前記第1の発電装置の発電量の実測値を取得する取得部と、
    前記実測値を、前記特定の時刻別に、複数日分記憶する記憶部と、
    前記記憶部に記憶した一定の日数の前記実測値の前記特定の時刻別の最大値である最大実測値、前記取得部が新規に取得した現在の前記実測値、および前記広域最大値に基づいて前記第1の発電装置の位置における局所気象情報を生成する情報生成部とを備える
    ことを特徴とする管理サーバ。
  7. 自然エネルギーにより発電を行う第1の発電装置の発電量の実測値を検出する検出部と、前記実測値を特定の時刻別に複数日分記憶する記憶部と、前記記憶部に記憶した一定の日数の前記実測値の前記特定の時刻別の最大値である最大実測値および前記検出部が新規に検出する現在の前記実測値を発電情報として生成する制御部とを有する電力管理装置と、
    前記電力管理装置が出力する前記発電情報を取得する管理サーバであって、前記電力管理装置により発電量が検出される第1の発電装置の位置を含む領域を第1の領域として該第1の領域における広域気象情報の前記一定の日数における前記特定の時刻別の最大値を、広域最大値として取得する取得部と、前記発電情報および前記広域最大値に基づいて前記第1の発電装置の位置における局所気象情報を生成する情報生成部とを有する管理サーバとを備える
    ことを特徴とする局所気象情報生成システム。
  8. 自然エネルギーにより発電を行う第1の発電装置の発電量の実測値を、特定の時刻別に、複数日分蓄積する蓄積ステップと、
    一定の日数の前記実測値の前記特定の時刻毎の最大値を、最大実測値として検索する検索ステップと、
    前記第1の発電装置の位置を含む領域を第1の領域として、該第1の領域における広域気象情報の一定の日数における前記特定の時刻別の最大値を、広域最大値として取得する第1の取得ステップと、
    前記第1の発電装置の発電量の実測値を新規に取得する第2の取得ステップと、
    前記最大実測値、前記広域最大値、および前記取得ステップにおいて新規に取得した前記実測値に基づいて前記第1の発電装置の位置における局所気象情報を生成する生成ステップとを備える
    ことを特徴とする局所気象情報生成方法。
JP2016154071A 2012-04-20 2016-08-04 管理サーバ、局所気象情報生成システム、および局所気象情報生成方法 Active JP6153651B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012096554A JP5985871B2 (ja) 2012-04-20 2012-04-20 電力管理装置、管理サーバ、局所気象情報生成システム、および局所気象情報生成方法
JP2016154071A JP6153651B2 (ja) 2012-04-20 2016-08-04 管理サーバ、局所気象情報生成システム、および局所気象情報生成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012096554A JP5985871B2 (ja) 2012-04-20 2012-04-20 電力管理装置、管理サーバ、局所気象情報生成システム、および局所気象情報生成方法
JP2016154071A JP6153651B2 (ja) 2012-04-20 2016-08-04 管理サーバ、局所気象情報生成システム、および局所気象情報生成方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012096554A Division JP5985871B2 (ja) 2012-04-20 2012-04-20 電力管理装置、管理サーバ、局所気象情報生成システム、および局所気象情報生成方法

Publications (2)

Publication Number Publication Date
JP2017005990A true JP2017005990A (ja) 2017-01-05
JP6153651B2 JP6153651B2 (ja) 2017-06-28

Family

ID=59387829

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012096554A Active JP5985871B2 (ja) 2012-04-20 2012-04-20 電力管理装置、管理サーバ、局所気象情報生成システム、および局所気象情報生成方法
JP2016154071A Active JP6153651B2 (ja) 2012-04-20 2016-08-04 管理サーバ、局所気象情報生成システム、および局所気象情報生成方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012096554A Active JP5985871B2 (ja) 2012-04-20 2012-04-20 電力管理装置、管理サーバ、局所気象情報生成システム、および局所気象情報生成方法

Country Status (1)

Country Link
JP (2) JP5985871B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139604A1 (ja) * 2017-01-27 2018-08-02 京セラ株式会社 電源制御方法、電源制御装置及び電源制御システム
WO2023248484A1 (ja) * 2022-06-22 2023-12-28 日本電信電話株式会社 全天日射量推定装置、全天日射量学習装置、全天日射量推定方法、及び全天日射量推定プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247955B2 (ja) * 2014-02-20 2017-12-13 関西電力株式会社 日射量推定装置
CN113572173B (zh) * 2021-08-13 2024-01-23 国网天津市电力公司 一种基于超级电容的电力系统电压调节控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349960A (ja) * 2000-06-12 2001-12-21 Mitsubishi Cable Ind Ltd 気象予測システムにおける補正方法
JP2003121558A (ja) * 2001-10-12 2003-04-23 Canon Inc 情報処理装置およびその方法
JP2003149350A (ja) * 2001-11-07 2003-05-21 Sharp Corp 太陽光発電を利用した地域情報配信システム
JP2006033908A (ja) * 2004-07-12 2006-02-02 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システムの発電量予測方法、装置、およびプログラム
JP2007173657A (ja) * 2005-12-26 2007-07-05 Mitsubishi Electric Corp 太陽光発電量予測装置
JP2010216967A (ja) * 2009-03-16 2010-09-30 Tokyo Electric Power Co Inc:The 気象情報処理装置及びコンピュータプログラム
JP2011196968A (ja) * 2010-03-24 2011-10-06 Osaka Gas Co Ltd 太陽光発電量予測装置
JP2013186531A (ja) * 2012-03-06 2013-09-19 Yahoo Japan Corp 情報処理装置及び方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3950928B2 (ja) * 2002-06-18 2007-08-01 東北電力株式会社 風力発電における発電出力予測方法、発電出力予測装置及び発電出力予測システム
JP2005086953A (ja) * 2003-09-10 2005-03-31 Nippon Telegr & Teleph Corp <Ntt> エネルギー需給制御方法及び装置
JP2005278338A (ja) * 2004-03-25 2005-10-06 Osaka Gas Co Ltd 電力供給システム
FR2941328B1 (fr) * 2009-01-19 2012-11-02 Commissariat Energie Atomique Procede de prevision de la production electrique d'un dispositif photovoltaique
JP2010249608A (ja) * 2009-04-14 2010-11-04 Chugoku Electric Power Co Inc:The 太陽光発電状況予測装置及びシステム
WO2011092882A1 (ja) * 2010-01-26 2011-08-04 株式会社日立製作所 太陽光発電設備発電量予測システム,気象予測システム及び太陽光発電設備発電量予測方法
JP5466596B2 (ja) * 2010-08-16 2014-04-09 東北電力株式会社 太陽光発電設備の発電出力推定方法
US8165812B2 (en) * 2011-07-25 2012-04-24 Clean Power Research, L.L.C. Computer-implemented system and method for estimating power data for a photovoltaic power generation fleet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349960A (ja) * 2000-06-12 2001-12-21 Mitsubishi Cable Ind Ltd 気象予測システムにおける補正方法
JP2003121558A (ja) * 2001-10-12 2003-04-23 Canon Inc 情報処理装置およびその方法
JP2003149350A (ja) * 2001-11-07 2003-05-21 Sharp Corp 太陽光発電を利用した地域情報配信システム
JP2006033908A (ja) * 2004-07-12 2006-02-02 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システムの発電量予測方法、装置、およびプログラム
JP2007173657A (ja) * 2005-12-26 2007-07-05 Mitsubishi Electric Corp 太陽光発電量予測装置
JP2010216967A (ja) * 2009-03-16 2010-09-30 Tokyo Electric Power Co Inc:The 気象情報処理装置及びコンピュータプログラム
JP2011196968A (ja) * 2010-03-24 2011-10-06 Osaka Gas Co Ltd 太陽光発電量予測装置
JP2013186531A (ja) * 2012-03-06 2013-09-19 Yahoo Japan Corp 情報処理装置及び方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139604A1 (ja) * 2017-01-27 2018-08-02 京セラ株式会社 電源制御方法、電源制御装置及び電源制御システム
WO2023248484A1 (ja) * 2022-06-22 2023-12-28 日本電信電話株式会社 全天日射量推定装置、全天日射量学習装置、全天日射量推定方法、及び全天日射量推定プログラム
WO2023248390A1 (ja) * 2022-06-22 2023-12-28 日本電信電話株式会社 全天日射量推定装置、全天日射量学習装置、全天日射量推定方法、及び全天日射量推定プログラム

Also Published As

Publication number Publication date
JP2013225970A (ja) 2013-10-31
JP6153651B2 (ja) 2017-06-28
JP5985871B2 (ja) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5806132B2 (ja) 発電量予測装置、発電量予測補正方法、および自然エネルギー発電システム
Kaabeche et al. Techno-economic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system
US8600572B2 (en) Smarter-grid: method to forecast electric energy production and utilization subject to uncertain environmental variables
KR101797915B1 (ko) 실시간 태양광 발전 효율에 기반한 태양광 발전 모니터링 시스템
JP6153651B2 (ja) 管理サーバ、局所気象情報生成システム、および局所気象情報生成方法
US20140337002A1 (en) Method and Instrumentation for Sustainable Energy Load Flow Management System (SelfMaster(TM))
CN109494723A (zh) 一种微电网系统及其控制与发电量预测方法
CN105706325A (zh) 电网频率响应
JP5957372B2 (ja) 日射量計算方法及び供給電力決定方法
KR20130092430A (ko) 전력 컨트롤 장치 및 전력 컨트롤 방법
Li et al. An analysis of a medium size grid-connected building integrated photovoltaic (BIPV) system using measured data
JP2004289918A (ja) 電力供給方法
WO2014087539A1 (ja) 電力系統制御システム及び電力系統制御方法
Okundamiya et al. Optimization of a hybrid energy system for reliable operation of automated teller machines
JP6132994B1 (ja) 配電系統状態推定装置および配電系統状態推定方法
Loukakis et al. Feasibility study of microgrid village with renewable energy sources
Shezan Design and demonstration of an islanded hybrid microgrid for an enormous motel with the appropriate solicitation of superfluous energy by using iHOGA and matlab
CN104380556A (zh) 电力管理设备及电力管理方法
Adigüzel et al. Design and development of data acquisition system (DAS) for panel characterization in PV energy systems
JP2010210354A (ja) 気象情報管理システム及び情報処理装置
JP2013240231A (ja) 警報提示装置及び警報提示方法
Mittelman et al. The potential of renewable electricity in isolated grids: The case of Israel in 2050
Chaurasia et al. Performance investigation and estimation of the 1 kWp photovoltaic array for an isolated hilly area in India
KR20110123067A (ko) 스마트 그리드 전력선 통신망과 융합한 기상정보 제공 시스템
Ge et al. Modelling of domestic load demand in the presence of microgrid with wind and photovoltaic resources

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170530

R150 Certificate of patent or registration of utility model

Ref document number: 6153651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150