JP2016539461A - 液体金属電池の熱管理 - Google Patents

液体金属電池の熱管理 Download PDF

Info

Publication number
JP2016539461A
JP2016539461A JP2016526277A JP2016526277A JP2016539461A JP 2016539461 A JP2016539461 A JP 2016539461A JP 2016526277 A JP2016526277 A JP 2016526277A JP 2016526277 A JP2016526277 A JP 2016526277A JP 2016539461 A JP2016539461 A JP 2016539461A
Authority
JP
Japan
Prior art keywords
cell
fluid flow
energy storage
thermal management
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016526277A
Other languages
English (en)
Other versions
JP6649883B2 (ja
JP2016539461A5 (ja
Inventor
ブラッドウェル,デイビッド・ジェイ
ネイヤー,ハリ
モデスト,ザカリー・ティー
ゴルモン,ステファニー・エル
Original Assignee
アンブリ・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アンブリ・インコーポレイテッド filed Critical アンブリ・インコーポレイテッド
Publication of JP2016539461A publication Critical patent/JP2016539461A/ja
Publication of JP2016539461A5 publication Critical patent/JP2016539461A5/ja
Application granted granted Critical
Publication of JP6649883B2 publication Critical patent/JP6649883B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本開示は、エネルギー貯蔵システムおよびエネルギー貯蔵システムの運用方法を提供する。このシステムおよび方法は、エネルギー貯蔵システムのフレーム等の構造部材に熱管理流体を流すことができる。その目的は、システムをある動作温度に維持すること、システムをエネルギー効率よく運用すること、システムの動作寿命を延ばすこと、緊急動作特徴を提供すること、および/または、最適もしくは高い価値を提供しうる期間の間、システムを稼働可能にすること、である。【選択図】図8

Description

[関連出願の相互参照]
本出願は、2013年11月1日に出願された米国仮特許出願第61/898,642号の優先権を主張する。同特許出願は、その全体が参照によって本願明細書に援用されている。
さまざまな装置が、上昇(elevated)温度もしくは高温での使用を念頭に置いて構成されている。かかる装置の例として、エネルギー貯蔵装置、例えば昇温温度もしくは高温で使用できる電池(例えば、液体金属電極を含むもの)等が挙げられる。それらは貯蔵された化学エネルギーを電気エネルギーに変換することができる装置である。かかる装置は、ときに300℃またはそれを超える温度で動作することがありうる。エネルギー貯蔵装置(例えば電池)は送配電網内において、あるいはスタンドアロンシステムの一部として使用されうる。電池は多くの家庭用途および工業用途で使用されうる。電池は電源(例えば、風力または太陽光等の再生可能なエネルギー資源によって生成される電力)から充電し、後に電気エネルギーの消費が求められたときの放電に備えることができる。
本明細書では、昇温温度もしくは高温で使用できる装置、例えば、電池システム(本明細書では「電池」ともいう)等に関連してさまざまな制約が認識されている。例えば、一部の電池システムは、高温(例えば、少なくとも約100℃または300℃)において動作し、かつ反応性物質(例えば、リチウム、ナトリウム、カリウム、マグネシウム、またはカルシウムの反応性金属蒸気)を含有する。かかる電池は動作によって発熱することがあり、そのような熱は安定な動作温度を維持するためにシステムから除去する必要がありうる。ある場合において、例えば電池が遊休状態等のとき、熱は発生せず、電池をある所与の稼働状態に維持するために(例えば、電極および/または電解質を溶融状態に維持するために)システムに熱を付与することが必要になる。
本開示は、エネルギー貯蔵システム、ならびにエネルギー貯蔵システムを運用するシステムおよび方法を提供する。エネルギー貯蔵システムの運用(例えば、熱管理または温度制御)は、熱管理流体をエネルギー貯蔵システムに、もしくはエネルギー貯蔵システムから、提供する工程を含みうる。ある場合において、熱管理流体は、エネルギー貯蔵システムならびにシステムの他の部分(例えば、貯蔵容器、コンデンサ、またはシステム内の他の構成要素)に提供され(例えば、接触させられ)うる。熱管理流体はエネルギー貯蔵システムの1つ以上の部分と接触しうる。例えば、本明細書中のシステムおよび方法は、エネルギー貯蔵システムのフレーム内に熱管理流体を貫流させることができる。その目的は、システムをある動作温度に維持すること、システムをエネルギー効率よく運用すること、システムの動作寿命を延ばすこと、および/または顧客に最大の価値を供給できる(例えば、システムの稼働から最大の利益(価値)を引き出すことができる)期間(例えば、時間的な期間、またはある所与の供給および/または需要レベルにある期間)にわたってシステムを稼働(例えば、ピークエネルギー需要の時間帯にわたって放電)できるようにすること、である。
本開示の一態様において、エネルギー貯蔵システムは、負電極、電解質、および正電極をそれぞれ含む複数の電気化学セルを備える。負電極、電解質、および正電極の少なくとも1つ、2つ、またはすべては電気化学セルの動作温度において液体状態にある。上記複数の電気化学セルは直列および/または並列に接続される。エネルギー貯蔵システムはまた、上記複数の電気化学セルを支持するフレームを備える。フレームは、熱管理流体を上記複数の電気化学セルの少なくともサブセットと熱的に連通させる1つ以上の流体流通路を備える。
一実施形態において、フレームは管、パイプ、または筒型トラスを含む。別の実施形態において、熱管理流体は空気、ガス、オイル、溶融塩、水、または蒸気である。別の実施形態において、ガスはアルゴンまたは窒素である。別の実施形態において、動作温度は約150℃と750℃の間である。別の実施形態において、システムはフレーム要素を囲む断熱材をさらに備える。別の実施形態において、少なくとも2日に一度の頻度で充電および/または放電されるとき、システムは断熱材によって自己発熱構成において連続動作が可能である。別の実施形態では、自己発熱構成にあるとき、システムは断熱材によって規則動作(regular operation)中にその内部温度を動作温度より高い温度に昇温できる。ここにおいて、システムは、アクチュエータを作動させ、自然対流によって駆動される1つ以上の流体流通路に熱管理流体を貫流させることによって、その内部温度をほぼ動作温度に維持する。
一実施形態において、システム内の所定位置からの熱除去を助けるために、システムは流体流通路の少なくとも一部分に沿って断熱材をさらに備える。別の実施形態において、断熱材は、流体流通路のうちシステムの加熱域に隣接する部分において厚さが他より薄い。
一実施形態において、熱管理流体は電気化学セルと接触しない。別の実施形態において、フレームは電気化学セルを直列および/または並列構成で機械的/構造的に支持する。別の実施形態において、フレームは耐食性を有する。別の実施形態において、フレームはステンレス鋼を含有する。別の実施形態において、フレームは熱管理流体に対して化学的耐性を有する。別の実施形態において、フレームは反応性金属に対して化学的耐性を有する。別の実施形態において、システムは、フレームの1つ以上の流体流通路に熱管理流体を通すように構成および配置される流体流通系をさらに備える。別の実施形態において、流体流通系は、システムの温度を動作温度に維持するように選択されるある調整可能な流量で熱管理流体を提供するように、構成またはプログラムされる。別の実施形態において、システムは少なくとも10個の電気化学セルを備える。別の実施形態において、フレームは、上記複数の電気化学セルの少なくともサブセットを含むチャンバを備える。別の実施形態において、上記複数の電気化学セルの少なくともサブセットは直列に接続されている。
一実施形態において、フレームは複数の並列流体流通路を備える。別の実施形態において、並列流体流通路の少なくとも2つを流れる流体流量は別々に制御可能である。別の実施形態において、フレームは複数の直交する流体流通路を備える。別の実施形態において、フレームは矩形の箱である。別の実施形態において、フレームの寸法は、熱伝達を選択的に加速するように構成される。
一実施形態において、システムは、熱エネルギーを貯蔵するように構成される循環流体流通系をさらに備える。ここにおいて、1つ以上の流体流通路が循環流体流通系の流体流通路と流体連通している。別の実施形態において、循環流体流通系は熱エネルギー貯蔵媒体を備える。別の実施形態において、熱エネルギー貯蔵媒体は溶融塩、砂利、砂、蒸気、または水を含有する。
一実施形態において、負電極はアルカリもしくはアルカリ土類金属を含有する。別の実施形態において、アルカリもしくはアルカリ土類金属はリチウム、ナトリウム、カリウム、マグネシウム、カルシウム、またはその組み合わせである。
一実施形態において、正電極は第12族元素を含有する。別の実施形態において、第12族元素は亜鉛、カドミウム、および水銀から成る群から選択される。別の実施形態において、正電極は錫、鉛、ビスマス、アンチモン、テルル、およびセレンの1つ以上をさらに含有する。別の実施形態において、正電極は錫、鉛、ビスマス、アンチモン、テルル、およびセレンの1つ以上を含有する。
一実施形態において、電解質はアルカリもしくはアルカリ土類金属の塩を含有する。別の実施形態において、システムは、断熱材料の1つ以上の層を含む断熱パッケージをさらに備える。別の実施形態において、システムは、エネルギー貯蔵システムの高温域と低温域との間の接続を容易にするように構成および適合された貫通部をさらに備える。別の実施形態において、システムは、貫通部を遠回り経路上で通過する少なくとも1本のワイヤをさらに備える。ここにおいて、ワイヤの長さは貫通部の長さの少なくとも2倍である。別の実施形態において、接続はワイヤ、センサ、セル電流接続部、またはセル電圧接続部を含む。
本開示の別の態様において、エネルギー貯蔵システムの運用方法は、(a)フレーム構造体によって支持される複数の電気化学セルを備えたエネルギー貯蔵システムを提供する工程であって、上記複数の電気化学セルの個々のセルは負電極、電解質、および正電極を含み、負電極、電解質、および正電極の少なくとも1つ、2つ、またはすべては個々の電気化学セルの動作温度において液体状態であり、フレーム構造体は、熱管理流体を上記複数の電気化学セルの少なくともサブセットと熱的に連通させる1つ以上の流体流通路を備える、工程と、(b)熱管理流体を1つ以上の流体流通路に通す工程と、を含む。
一実施形態において、熱管理流体は、個々のセルもしくはセルの複数部分の温度を動作温度に維持するために1つ以上の流体流通路に通される。別の実施形態において、熱管理流体を1つ以上の流体流通路に通すとき、個々のセルの温度は約±60℃の範囲内に維持される。別の実施形態において、熱管理流体を1つ以上の流体流通路に通すとき、個々のセルの温度の変動幅は、10時間、9時間、8時間、7時間、6時間、5時間、4時間、3時間、2時間、1時間、またはそれ未満の期間において最大で約±60℃である。
一実施形態において、熱管理流体を通す工程は、エネルギー貯蔵システムの効率および/または動作寿命を最大化するために実施される。別の実施形態において、熱管理流体は経時的に変動する流量で通される。別の実施形態において、熱管理流体は、(i)エネルギー貯蔵システムまたはその電気化学セルの温度;(ii)エネルギー貯蔵システムまたはその電気化学セルの温度の変化率;(iii)エネルギー貯蔵システムは充電中か放電中か遊休中か;(iv)エネルギー貯蔵システムの予想される将来の動作;および(v)現在の、もしくは予想される市場環境、のうちの少なくとも1つに依存する流量で通される。別の実施形態において、熱管理流体は、(i)〜(v)の少なくとも1つ、2つ、3つ、4つ、または少なくともすべてに依存する流量で通される。別の実施形態において、エネルギー貯蔵システムの予想される将来の動作は、エネルギー貯蔵システムの将来の充電、放電、および/または遊休動作の時間および程度(extent)を含む。別の実施形態において、現在の、もしくは予想される市場環境はエネルギー価格を含む。
一実施形態において、熱管理流体は、1つ以上の流体流通路と流体連通する流体流通系の助力のもとで1つ以上の流体流通路に通される。別の実施形態において、流体流通系はファン、ポンプ、または対流支援による流れを含む。
一実施形態において、熱管理流体を1つ以上の流体流通路に通す工程は、上記複数の電気化学セルからの熱エネルギーを少なくとも約1ワット(W)の速度で放散または付与する。別の実施形態において、熱管理流体を1つ以上の流体流通路に通す工程は、最大約100キロワット(kW)の速度で上記複数の電気化学セルから熱エネルギーを放散する、または上記複数の電気化学セルに熱エネルギーを付与する。
一実施形態において、上記方法は、エネルギー貯蔵システムの少なくとも一部分を潜在的に危険な事象に応答して急速冷却する工程をさらに含む。別の実施形態において、潜在的に危険な事象は地震またはセルの破断(breach)である。別の実施形態において、急速冷却時、上記複数の電気化学セルの最高温部の温度がその動作温度から電解質の凝固点を下回る温度まで約4時間未満で降下する。
一実施形態において、熱管理流体を1つ以上の流体流通路に通す工程は、熱管理流体を複数の流体流通路に通す工程を含む。別の実施形態において、熱管理流体は強制および/または自然対流を用いて通される。別の実施形態において、熱管理流体の流れは自然対流を用いて通され、かつ1つ以上の流体流通路のうちのある所与の流体流通路を開くアクチュエータによって制御される。
本開示の別の態様は、1つ以上のコンピュータプロセッサと、それに結合されたメモリとを備えたシステムを提供する。メモリは、1つ以上のコンピュータプロセッサによる実行時に、上記または本明細書の別所に記載のいずれかの方法を実施する機械実行可能なコードを含む、コンピュータ可読媒体を含む。
一部の実施形態において、エネルギー貯蔵システムを調整する制御システムは、(a)少なくとも1つのコンピュータプロセッサと、(b)コンピュータプロセッサに動作可能に結合されるメモリと、を備え、メモリは、コンピュータプロセッサによる実行時に、ある方法を実施する機械実行可能なコードを含み、上記方法は、エネルギー貯蔵システムを支持するフレーム構造体の中の1つ以上の流体流通路に熱管理流体を通す工程を含み、ここにおいて、流体流通路は、熱管理流体をエネルギー貯蔵システムの複数の電気化学セルの少なくともサブセットと熱的に連通させ、ここにおいて、上記複数の電気化学セルの個々のセルは負電極、電解質、および正電極を含み、ここにおいて、負電極、電解質、および正電極の少なくとも2つは個々の電気化学セルの動作温度において液体状態にある。
一実施形態において、コンピュータプロセッサとメモリとは、エネルギー貯蔵システムの高温域の外側に位置する。別の実施形態において、エネルギー貯蔵システムは、高温域に、または高温域と熱的に連通する状態にある、温度センサをさらに備える。別の実施形態において、温度センサはコンピュータプロセッサと電子的な通信状態にある。
一部の実施形態において、熱管理流体をエネルギー貯蔵システムの1つ以上の流体流通路に通すようにプログラムされたコンピュータシステムが提供される。エネルギー貯蔵システムは、フレーム構造体によって支持される複数の電気化学セルを備え、上記複数の電気化学セルの個々のセルは負電極、電解質、および正電極を含み、ここにおいて、負電極、電解質、および正電極の少なくとも1つ、2つ、またはすべては個々の電気化学セルの動作温度において液体状態にあり、ここにおいて、フレーム構造体は、熱管理流体を上記複数の電気化学セルの少なくともサブセットと熱的に連通させる1つ以上の流体流通路を備える。
一実施形態において、熱管理流体を通す工程は、個々のセルもしくはセルの複数部分の温度を動作温度に維持するために実施される。別の実施形態において、熱管理流体を通す工程は、エネルギー貯蔵システムの効率および/または動作寿命を最大化するために実施される。別の実施形態において、熱管理流体は経時的に変動する流量で通される。
一実施形態において、熱管理流体は、(i)エネルギー貯蔵システムまたはその電気化学セルの温度、(ii)エネルギー貯蔵システムまたはその電気化学セルの温度の変化率;(iii)エネルギー貯蔵システムは充電中か放電中か遊休中か;(iv)エネルギー貯蔵システムの期待される(または予想される)将来の動作;(v)現在の、もしくは予想される市場環境、の少なくとも1つに依存する流量で通される。別の実施形態において、熱管理流体は、(i)〜(v)の少なくとも1つ、2つ、3つ、4つ、または少なくともすべてに依存する流量で通される。別の実施形態において、エネルギー貯蔵システムの予想される将来の動作は、エネルギー貯蔵システムの将来の充電、放電、および/または遊休動作の時間および程度を含む。別の実施形態において、現在の、もしくは予想される市場環境はエネルギー価格を含む。
本開示の別の態様は、1つ以上のコンピュータプロセッサによる実行時に、上記または本明細書の別所に記載のいずれかの方法を実施する機械実行可能なコードを備えた、コンピュータ可読媒体を提供する。
一部の実施形態において、コンピュータ可読媒体が提供され、コンピュータ可読媒体は、1つ以上のコンピュータプロセッサによる実行時に、ある方法を実施する機械実行可能なコードを含み、上記方法は、エネルギー貯蔵システムを支持するフレーム構造体の中の1つ以上の流体流通路に熱管理流体を通す工程を含み、ここにおいて、流体流通路は、熱管理流体をエネルギー貯蔵システムの複数の電気化学セルの少なくともサブセットと熱的に連通させ、ここにおいて、上記複数の電気化学セルの個々のセルは負電極、電解質、および正電極を含み、ここにおいて、負電極、電解質、および正電極の少なくとも2つは個々の電気化学セルの動作温度において液体状態にある。
一実施形態において、熱管理流体は、個々のセルもしくはセルの複数部分の温度を動作温度に維持するために1つ以上の流体流通路に通される。別の実施形態において、熱管理流体は、エネルギー貯蔵システムの効率および/または動作寿命を最大化するために1つ以上の流体流通路に通される。別の実施形態において、熱管理流体は経時的に変動する流量で1つ以上の流体流通路に通される。別の実施形態において、熱管理流体は、(i)エネルギー貯蔵システムまたはその電気化学セルの温度;(ii)エネルギー貯蔵システムまたはその電気化学セルの温度の変化率;(iii)エネルギー貯蔵システムが充電中か放電中か遊休中か;(iv)エネルギー貯蔵システムの予想される将来の動作;および(v)現在の、もしくは予想される市場環境、の少なくとも1つ、2つ、3つ、4つ、または少なくともすべてに依存する流量で、1つ以上の流体流通路に通される。別の実施形態において、エネルギー貯蔵システムの予想される将来の動作は、エネルギー貯蔵システムの将来の充電、放電、および/または遊休動作の時間および程度を含む。別の実施形態において、現在の、もしくは予想される市場環境はエネルギー価格を含む。
本開示のさらなる態様および利点は、以下に詳述する説明から当業者には容易に明らかになるであろう。ただし、以下では本開示の例示的な実施形態を図示および説明しているにすぎない。言うまでもなく、本開示はそれ以外の異なる実施形態が可能であり、いずれも開示内容を逸脱することなく、そのいくつかの詳細はさまざまな自明な点で改変が可能である。したがって、図面および明細書は限定ではなく例示であるとみなすべきである。
[参照による援用]
本明細書中に言及されるすべての刊行物、特許、および特許出願は、参照によって本明細書に援用される。これは、各個別の刊行物、特許、または特許出願が参照によって援用されることを具体的かつ個別に示すのと同じ作用をもつ。
本発明の新規の特徴は、添付の特許請求の範囲に詳細に記載している。本発明の特徴および利点は、本発明の原理が内包される例示的な実施形態について記載する以下の詳細な説明、ならびに以下に挙げる添付の図面(本明細書では「図」ともいう)を参照することによってさらによく理解されるであろう。
電気化学セル(A)、および電気化学セルの集積体(すなわち電池)(BおよびC)の説明図である。 集電体と電気的に連通し、かつハウジングの開口部を貫通する、導体を有する、バッテリハウジングの概略的な説明用断面図である。 電気化学セルまたは電池の側断面図である。 金属間化合物層を有する電気化学セルまたは電池の側断面図である。 セルパックの例を示す図である。 導電フィードスルーの上面とセルの底面との間のろう付け接続の例を示す図である。 セルパックの積層体(コアともいう)の例を示す図である。 熱管理流体がフレームを流れる例を示す図である。 中央ボックス管の断熱インサートの例を示す図である。 熱管理流体用のダクトを備えた電気化学セルのコアの例を示す図である。 本開示のコンピュータシステムの例を示す図である。 複数の断熱層と1つの貫通部を備えた断熱構造体部分の例を示す図である。 終端キャップを備えた貫通部の例を示す図である。 図13Aの貫通部にワイヤを設けたものを示す図である。
本明細書では本発明のさまざまな実施形態について図示および記載してきたが、かかる実施形態が一例を示すにすぎないことは当業者には自明であろう。本発明から逸脱することなく、当業者は多くの変形、変更、および置換に想到しうる。また、本明細書に記載する本発明の諸実施形態に対してさまざまな代替的形態が使用されうることを理解するべきである。
本明細書にいう「セル」の語は概ね電気化学セルを指す。セルは材料「A」の負電極と材料「B」の正電極とを含むことができ、これをA||Bと書く。正電極と負電極は電解質によって隔てることができる。セルはまた、ハウジング、1つ以上の集電体、および高温電気分離シールをも含むことができる。ある場合において、セルは幅約4インチ、奥行き約4インチ、高さ約2.5インチとすることができる。ある場合において、セルは幅約8インチ、奥行き約8インチ、高さ約2.5インチとすることができる。いくつかの例において、電気化学セルの任意の所与の寸法(例えば、高さ、幅、または奥行き)は、少なくとも約1、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、12、14、16、18、または20インチとすることができる。一例において、セル(例えば各セル)は、約4インチ×4インチ×2.5インチの寸法をもつことができる。別の例において、セル(例えば各セル)は、約8インチ×8インチ×2.5インチの寸法をもつことができる。ある場合において、セルはおよそ少なくとも約70ワット時のエネルギー貯蔵容量を有しうる。ある場合において、セルは少なくとも約300ワット時のエネルギー貯蔵容量を有しうる。
本明細書にいう「モジュール」の語は、概ね互いに並列に取り付けられた(例えば、あるセルのセルハウジングを、隣接するセルのセルハウジングに機械的に接続することによる)複数個のセル(例えば、概ね水平な結束面上に互いに接続されるセル)を指す。ある場合において、セルは、セル本体の一部を成す、および/またはセル本体に接続される、結合要素部(例えば、セル本体の主要部から突き出たタブ)によって互いに接続される。モジュールは複数の並列セルを含むことができる。モジュールは任意の数のセル、例えば少なくとも約2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20個、またはそれより多いセルを含むことができる。ある場合において、モジュールは少なくとも約4、9、12、または16個のセルを含む。ある場合において、モジュールは約700ワット時のエネルギーの貯蔵、および/または少なくとも約175ワット(W)の電力の供給を行うことができる。ある場合において、モジュールは少なくとも約1080ワット時のエネルギーの貯蔵、および/または少なくとも約500ワットの電力の供給を行うことができる。ある場合において、モジュール少なくとも約1080ワット時のエネルギーの貯蔵、および/または少なくとも約200ワット(例えば、約500ワット)の電力の供給を行うことができる。ある場合において、モジュールは単一のセルを含むことができる。
本明細書にいう「パック」の語は、概ね異なる電気的接続によって(例えば鉛直方向に)互いに取り付けられたモジュール群を指す。パックは任意の数のモジュール、例えば少なくとも約1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20個、またはそれより多いモジュールを含むことができる。ある場合において、パックは少なくとも約3つのモジュールを含む。ある場合において、パックは少なくとも約2キロワット時のエネルギーの貯蔵、および/または少なくとも約0.4キロワット(例えば、少なくとも約0.5キロワットまたは1.0キロワット)の電力の供給を行うことができる。ある場合において、パックは少なくとも約3キロワット時のエネルギーの貯蔵、および/または少なくとも約0.75キロワット(kW)(例えば、少なくとも約1.5キロワット)の電力の供給を行うことができる。ある場合において、パックは少なくとも約6つのモジュールを含む。ある場合において、パック約6キロワット時のエネルギーの貯蔵、および/または少なくとも約1.5キロワット(例えば、約3キロワット)の電力の供給を行うことができる。
本明細書にいう「コア」の語は、概ね異なる電気的接続によって(例えば、直列および/または並列に)互いに取り付けられた複数のモジュールまたはパックを指す。コアは任意の数のモジュールまたはパック、例えば少なくとも約1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、45、50個、またはそれより多いパックを含むことができる。ある場合において、コアが制御された状態で電気エネルギーを効率的に貯蔵および還流(return)できるようにする、機械的、電気的、および熱的システムをもコアは含む。ある場合において、コアは少なくとも約12個のパックを含む。ある場合において、コアは少なくとも約35キロワット時のエネルギーの貯蔵、および/または少なくとも約7キロワットの電力の供給を行うことができる。ある場合において、コアは少なくとも約25キロワット時のエネルギーの貯蔵、および/または少なくとも約6.25キロワットの電力の供給を行うことができる。ある場合において、コアは少なくとも約36個のパックを含む。ある場合において、コアは少なくとも約200キロワット時のエネルギーの貯蔵、および/または少なくとも約40、50、60、70、80、90、または100キロワット、またはそれを超える電力の供給を行うことができる。
本明細書にいう「コア筐体」または「CE」の語は、概ね異なる電気的接続によって(例えば、直列および/または並列に)互いに取り付けられた複数のコアを指す。CEは任意の数のコア、例えば少なくとも約1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20個、またはそれより多いコアを含むことができる。ある場合において、CEは、適切なバイパス電子回路と並列に接続されるコアを含む。それにより、あるコアが通電されていない間、それ以外のすべてのコアが引き続きエネルギーを貯蔵および還流できる。ある場合において、CEは少なくとも4つのコアを含む。ある場合において、CEは少なくとも約100キロワット時のエネルギーの貯蔵、および/または約25キロワットの電力の供給を行うことができる。ある場合において、CEは4つのコアを含む。ある場合において、CEは約100キロワット時のエネルギーの貯蔵、および/または約25キロワットの電力の供給を行うことができる。ある場合において、CEは約400キロワット時のエネルギーの貯蔵、および/または少なくとも約80キロワット、例えば、少なくとも、または約80、100、120、140、160、180、または200キロワット、またはそれを超える電力の供給を行うことができる。
本明細書にいう「システム」の語は、概ね異なる電気的接続によって(例えば、直列および/または並列に)互いに取り付けられた複数のコアまたはCEを指す。システムは任意の数のコアまたはCE、例えば、少なくとも約2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20個、またはそれより多いコアを含むことができる。ある場合において、システムは20個のCEを含む。ある場合において、システムは約2メガワット時のエネルギーの貯蔵、および/または少なくとも約400キロワット(例えば、約500キロワットまたは約1000キロワット)の電力の供給を行うことができる。ある場合において、システムは5つのCEを含む。ある場合において、システムは約2メガワット時のエネルギーの貯蔵、および/または少なくとも約400キロワット、例えば、少なくとも約400、500、600、700、800、900、1000キロワット、またはそれを超える電力の供給を行うことができる。
ある所与のエネルギー容量と電力容量を有する一群のセル(例えば、コア、CE、システム等)(例えば、ある所与量のエネルギーを貯蔵可能なCEもしくはシステム)は、ある所与の(例えば、定格)電力レベルの少なくとも約10%、少なくとも約20%、少なくとも約30%、少なくとも約40%、少なくとも約50%、少なくとも約60%、少なくとも約70%、少なくとも約80%、少なくとも約90%、少なくとも約95%、または約100%を供給するように構成されうる。例えば、1000kWシステムは500kWで動作することもできうるが、500kWシステムは1000kWで動作することは不可能でありうる。ある場合において、ある所与のエネルギー容量と電力容量を有するシステム(例えば、ある所与量のエネルギーを貯蔵可能なCEもしくはシステム)は、ある所与の(例えば、定格)電力レベルの約100%未満、約110%未満、約125%未満、約150%未満、約175%未満、または約200%未満等を供給するように構成されうる。例えば、システムは、そのエネルギー容量を供給中の電力レベルで消費するのに要しうる時間より短い時間にわたってその定格電力容量を超える電力を供給するように(例えば、システムの定格電力より大きい電力を、その定格エネルギー容量の約1%未満、約10%未満、または約50%未満に対応する時間にわたって供給するように)構成しうる。
本明細書にいう「電池」の語は、概ね直列および/または並列に接続された1つ以上の電気化学セルを指す。電池は任意の数の電気化学セル、モジュール、パック、コア、CE、またはシステムを含むことができる。電池は少なくとも1回の充電/放電または放電/充電サイクル(「サイクル」)を行いうる。
本明細書にいう「鉛直」の語は、概ね重力加速度ベクトル(g)に平行な方向を指す。
本明細書にいう「充電カットオフ電圧」または「CCV」の語は、概ねセルが満充電もしくは実質的に満充電状態のときの電圧、例えば定電流モードのサイクルにあるときに電池において使用される電圧カットオフ限界値を指す。
本明細書にいう「開路電圧」または「OCV」の語は、概ねあらゆる回路もしくは外部負荷から切断されているとき(すなわち、電流がセル内を流れていないとき)のセル(例えば、満充電もしくは部分充電状態)の電圧を指す。
本明細書にいう「電圧」または「セル電圧」の語は、概ねセル(例えば、何らかの充電状態または充電/放電条件にあるもの)の電圧を指す。ある場合において、電圧またはセル電圧は開路電圧でありうる。ある場合において、電圧またはセル電圧は充電中または放電中の電圧とすることができる。
本開示の電圧は、接地(0ボルト(V))等の基準電圧、または電気化学セル内の対向電極の電圧を基準として解釈もしくは表示されうる。
[電気化学セル、装置、およびシステム]
本開示は、電気化学エネルギー貯蔵装置(例えば電池)およびシステムを提供する。電気化学エネルギー貯蔵装置は一般に、ハウジング内にシールされた(例えば、気密密閉された)少なくとも1つの電気化学セル(本明細書では「セル」や「電池セル」ともいう)を備えている。セルは、電気エネルギー(例えば、電位が印加された電子)を負荷、例えば、電子機器、別のエネルギー貯蔵装置、または送配電網等に供給するように構成することができる。
本開示の電気化学セルは、負電極と、負電極に隣接する電解質と、電解質に隣接する正電極と、を含むことができる。負電極は電解質によって正電極から分離することができる。負電極は放電時にアノードになることができる。正電極は放電時にカソードになることができる。
いくつかの例において、電気化学セルは液体金属電池セルである。いくつかの例において、液体金属電池セルは、液体(例えば溶融)金属負電極と液体(例えば溶融)金属、メタロイド、および/または非金属正電極との間に配置される液体電解質を含むことができる。ある場合において、液体金属電池セルは、溶融アルカリ土類金属(例えば、マグネシウム、カルシウム)もしくはアルカリ金属(例えば、リチウム、ナトリウム、カリウム)の負電極、電解質、および溶融金属の正電極を有する。溶融金属の正電極は、例えば、錫、鉛、ビスマス、アンチモン、テルル、およびセレンの1つ以上を含むことができる。例えば、正電極はPbまたはPb−Sb合金を含むことができる。正電極は、1種類以上の遷移金属またはdブロック元素(例えば、Zn、Cd、Hg)をも、単体で、または例えばZn−Sn合金もしくはCd−Sn合金等、他の金属、メタロイド、もしくは非金属と組み合わせて含むことができる。いくつかの例において、正電極は、安定な酸化状態を1つのみ有する金属またはメタロイド(例えば、酸化状態が1つのみの金属)を含むことができる。本明細書では、金属もしくは溶融金属の正電極、または正電極の説明は、金属、メタロイド、および非金属の1つ以上を含む電極を指しうる。正電極は、列記した材料例の1つ以上を含みうる。一例において、溶融金属の正電極は鉛およびアンチモンを含むことができる。いくつかの例において、溶融金属の正電極は、正電極内部で合金化したアルカリもしくはアルカリ土類金属を含みうる。
いくつかの例において、電気化学エネルギー貯蔵装置は液体金属の負電極、液体金属の正電極、および液体金属の負電極と液体金属の正電極とを分離する液体塩電解質を含む。負電極は、アルカリもしくはアルカリ土類金属、例えばリチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、バリウム、カルシウム、ナトリウム、またはその組み合わせを含むことができる。正電極は、遷移金属またはdブロック元素(例えば第12族)、元素の周期表の第IIIA族、第IVA族、第VA族、および第VIA族から選択される元素、例えば亜鉛、カドミウム、水銀、アルミニウム、ガリウム、インジウム、けい素、ゲルマニウム、錫、鉛、ピニコゲン(例えば、砒素、ビスマス、およびアンチモン)、カルコゲン(例えば、硫黄、テルル、およびセレン)、またはその組み合わせを含むことができる。いくつかの例において、正電極は、元素の周期表の第12族元素、例えば亜鉛(Zn)、カドミウム(Cd)、および水銀(Hg)の1つ以上を含有する。ある場合において、正電極は共晶または非共晶(off−eutectic)混合物(例えば、ある場合においてセルの動作温度の低下が可能となるもの)を形成しうる。いくつかの例において、正電極は第1の正電極化学種と第2の正電極化学種とを含有し、第2の電極化学種に対する第1の正電極化学種の比(モル%)は約20:80、40:60、50:50、または80:20である。いくつかの例において、正電極はSbとPbとを含有し、Pbに対するSbの比(モル%)は約20:80、40:60、50:50、または80:20である。いくつかの例において、正電極は約20モル%〜80モル%の第1の正電極化学種を含有し、それが第2の正電極化学種と混合された状態にある。ある場合において、正電極は約20モル%〜80モル%のSbを(例えばPbと混合された状態で)含有する。ある場合において、正電極は約20モル%〜80モル%のPbを(例えばSbと混合された状態で)含有する。いくつかの例において、正電極は、Zn、Cd、Hgの1つ以上、またはそれ以外の金属、メタロイド、もしくは非金属と組み合わされた(1または複数の)かかる材料を含有する。上記それ以外の金属、メタロイド、もしくは非金属には、例えば、Zn−Sn合金、Zn−Sn合金、Cd−Sn合金、Zn−Pb合金、Zn−Sb合金、またはBi等がある。一例において、正電極は15:85、50:50、75:25、または85:15モル%のZn:Snを含有することができる。
電解質は塩(例えば溶融塩)、例えばアルカリもしくはアルカリ土類金属塩を含むことができる。アルカリもしくはアルカリ土類金属塩は、活性アルカリもしくはアルカリ土類金属のふっ化物、塩化物、臭化物、またはよう化物等のハロゲン化物、またはその組み合わせとすることができる。一例において、電解質(例えば、タイプ1またはタイプ2の化学構成(chemistry)のもの)は塩化リチウムを含む。いくつかの例において、電解質は、ふっ化ナトリウム(NaF)、塩化ナトリウム(NaCl)、臭化ナトリウム(NaBr)、よう化ナトリウム(NaI)、ふっ化リチウム(LiF)、塩化リチウム(LiCl)、臭化リチウム(LiBr)、よう化リチウム(LiI)、ふっ化カリウム(KF)、塩化カリウム(KCl)、臭化カリウム(KBr)、よう化カリウム(KI)、ふっ化カルシウム(CaF)、塩化カルシウム(CaCl)、臭化カルシウム(CaBr)、よう化カルシウム(CaI)、またはその任意の組み合わせを含有することができる。別の例において、電解質は塩化マグネシウム(MgCl)を含む。代替例として、活性アルカリ金属の塩は、例えば、非塩化物のハロゲン化物、炭酸塩、水酸化物、硝酸塩、亜硝酸塩、硫酸塩、亜硫酸塩、またはその組み合わせとすることができる。ある場合において、電解質は塩の混合物(例えば、25:55:20モル%のLiF:LiCl:LiBr、50:37:14モル%のLiCl:LiF:LiBr等)を含有することができる。電解質は低い(例えば、最小の)電子コンダクタンスを示しうる(例えば、PbCl⇔PbClの原子価反応を経て電解質中に電子短絡が生じ、電子コンダクタンスが上昇しうる)。例えば、電解質は、電子輸率(すなわち電子の輸送によって生じる(電子とイオンの)電荷のパーセンテージ)が約0.03%または0.3%以下でありうる。
ある場合において、電気化学エネルギー貯蔵装置の負電極および正電極は、エネルギー貯蔵装置の動作温度において液体状態にある。両電極を液体状態に維持するため、電池セルを任意の好適な温度に加熱してもよい。いくつかの例において、電池セルは約100℃、約150℃、約200℃、約250℃、約300℃、約350℃、約400℃、約450℃、約500℃、約550℃、約600℃、約650℃、または約700℃の温度に加熱、および/または維持しうる。電池セルは、少なくとも約100℃、少なくとも約150℃、少なくとも約200℃、少なくとも約250℃、少なくとも約300℃、少なくとも約350℃、少なくとも約400℃、少なくとも約450℃、少なくとも約500℃、少なくとも約550℃、少なくとも約600℃、少なくとも約650℃、少なくとも約700℃、少なくとも約800℃、または少なくとも約900℃の温度に加熱、および/または維持しうる。その場合、負電極、電解質、および正電極を液体(または溶融)状態とすることができる。いくつかの状況において、電池セルは約200℃から約600℃までの間、約500℃から約550℃までの間、または約450℃から約575℃までの間に加熱される。
いくつかの実装において、電気化学セルまたはエネルギー貯蔵装置は、少なくとも部分的に、または完全に、自己発熱型でありうる。例えば、サイクル動作の非効率性のもとでもシステムが十分な発熱を行い、動作温度を維持するためにシステムに追加エネルギーを供給しなくても、セルをある所与の動作温度(例えば、液体成分の少なくとも1つの凝固点より高いセル動作温度)に維持できるよう、電池は十分に断熱、十分な速度で充電、放電、および/または調和されうる、および/または十分なパーセンテージの時間、サイクル動作を行われうる。
本開示の電気化学セルは、充電(またはエネルギー貯蔵)モードと放電モードとの間でサイクル動作するように適合されうる。いくつかの例において、電気化学セルは、満充電、部分充電もしくは部分放電、または完全放電することができる。
いくつかの実装において、電気化学エネルギー貯蔵装置の充電モード中に、外部電力源(例えば、発電機または送配電網)から受け取る電流によって金属正電極中の金属原子が1つ以上の電子を放出し、正電荷を有するイオン(すなわちカチオン)として電解質中に溶出しうる。同時に、それと同じ化学種のカチオンは電解質中を移動することができ、そのカチオンは負電極において電子を受け取って中性の金属化学種に変化しうる。これは負電極の質量を増加させる。正電極から活性金属化学種が失われ、かつ負電極に活性金属が付加することによって、電気化学エネルギーが貯蔵される。ある場合において、正電極から金属が失われ、かつそのカチオンが電解質に付加することにより、電気化学エネルギーが貯蔵できる。ある場合において、正電極から活性金属化学種が失われ、かつそれが負電極に付加することと、正電極から1種類以上の金属(例えば異なる金属)が失われ、かつそれが(例えばカチオンとして)電解質に付与されることを組み合わせることで、電気化学エネルギーが貯蔵できる。エネルギー放出モードでは、電気的負荷を電極に結合すると、それまでに付加された負電極中の金属化学種が金属負電極から放出され、電解質中をイオンとして通過し、中性化学種として正電極に堆積(場合によっては正電極材料と合金化)しうる。このとき、このイオンの流れとともに、それと調和する電子の外部流が外部回路/負荷を流れる。ある場合において、以前に電解質中に放出された正電極材料の1種類以上のカチオンは、中性化学種として正電極に堆積(場合によっては正電極材料と合金化)しうる。このとき、このイオンの流れとともに、それと調和する電子の外部流が外部回路/負荷を流れる。電気化学的に促進されるこの金属合金化反応は、それまでに蓄積された電気化学エネルギーを電気的負荷に放出する。
充電状態において、負電極は負電極材料を含むことができ、正電極は正電極材料を含むことができる。放電時(例えば電池を負荷に結合しているとき)、負電極材料は1つ以上の電子と負電極材料のカチオンとを生成する。いくつかの実装において、カチオンは電解質中を正電極材料まで移動し、正電極材料と反応(例えば、それによって合金を形成)する。いくつかの実装において、正の金属化学種のイオン(例えば正電極材料のカチオン)は正電極において電子を受け取り、正電極において金属として析出する。充電時には、いくつかの実装において、正電極の合金は分解して負電極材料のカチオンを生成する。これは電解質中を負電極まで移動する。いくつかの実装において、正電極における1種類以上の金属化学種は分解して負電極材料のカチオンを電解質中に生成する。いくつかの例において、イオンは電解質中をアノードからカソードへ、またはその逆向きに移動することができる。ある場合において、イオンは、ある種のイオンが入ると同じ種類のイオンが電解質から放出される押し出し方式で電解質中を移動することができる。例えば、放電時、アルカリ金属のアノードとアルカリ金属塩化物の電解質とは、アルカリ金属のカチオンをカソードに提供できる。それをもたらす過程は、アノードにおいて形成されるアルカリ金属カチオンが電解質と反応し、アルカリ金属カチオンを電解質からカソードに放出する過程である。このときアノードにおいて形成されるアルカリ金属カチオンは必ずしも電解質中をカソードまで移動しなくてもよい。カチオンはアノードと電解質との界面において形成され、カソードと電解質との界面において受け取られうる。
本開示はタイプ1とタイプ2のセルを提供する。それらのセルは活性成分(例えば、負電極、電解質、および正電極)の組成に基づいて変動しえ、またこの組成によって定義することができ、さらにセルの動作モード(例えば、低電圧モードか高電圧モードか)に基づいて変動しうる。セルは、タイプ2モードの動作で使用するように構成された材料を含有することができる。セルは、タイプ1モードの動作で使用するように構成された材料を含有することができる。ある場合において、セルは高電圧(タイプ2)動作モードと低電圧(タイプ1)動作モードの両方で動作できる。例えば、通常はタイプ1モードで使用するように構成された正および負電極材料を有するセルは、タイプ2の動作モードで動作することができる。セルは、タイプ1とタイプ2の動作モードの間で循環することができる。セルは、最初にタイプ1モードである電圧(例えば0.5V〜1V)に充電(または放電)した後に、タイプ2モードでそれより高い電圧(例えば1.5V〜2.5V、または1.5V〜3V)に充電(その後に放電)することができる。ある場合において、タイプ2モードで動作するセルは、タイプ1モードで動作するセルの電圧を超えうる電極間電圧で動作することができる。ある場合において、タイプ2のセルの化学構成は、タイプ1モードで動作するタイプ1のセルの化学構成の電圧を超えうる電極間電圧で動作することができる。タイプ2のセルはタイプ2モードで動作することができる。
例示的なタイプ1のセルでは、放電時に、負電極において形成されたカチオンが電解質中に移動することができる。同時に、電解質は、それと同じ化学種のカチオン(例えば負電極材料のカチオン)を正電極に提供することができる。それはカチオンから中性電荷の金属化学種に還元され、正電極と合金化しうる。放電状態では、負電極から負電極材料(例えば、Li、Na、K、Mg、Ca)が(例えば、部分的もしくは完全に)失われうる。充電時、正電極の合金は分解して負電極材料のカチオン(例えば、Li、Na、K、Mg2+、Ca2+)を生成できる。これは電解質へと移動する。次に、電解質はカチオン(例えば、負電極材料のカチオン)を負電極に提供することができる。そこでカチオンは外部回路からの1つ以上の電子を受け取り、中性の金属化学種に戻される。この金属化学種は負電極に再び付加してセルを充電状態にする。タイプ1のセルは押し出し方式で動作することができる。この方式では、カチオンが電解質に入り込むことで同じ種類のカチオンが電解質から放出される。
例示的なタイプ2のセルでは、放電状態において、電解質は負電極材料のカチオン(例えば、Li、Na、K、Mg2+、Ca2+)を含有し、正電極は正電極材料(例えば、Sb、Pb、Sn、Bi、Zn、Hg)を含有する。充電時、電解質による負電極材料のカチオンは、1つ以上の電子(例えば、負極集電体からのもの)を受け取り、負電極材料を含有する負電極を形成する。いくつかの例において、負電極材料は液体であり、湿潤して負極集電体の発泡(または多孔質)構造体となる。いくつかの例において、負極集電体は発泡体(または多孔質)構造体を含有しなくてよい。いくつかの例において、負極集電体は、金属、例えばタングステン(例えばZnによる腐食を回避するため)、炭化タングステン、またはモリブデンの、Fe−Ni発泡体を含有しない負極集電体を含有しうる。同時に、正電極の正電極材料は電子を(例えば正極集電体に)与え、正電極材料のカチオン(例えば、Sb3+、Pb2+、Sn2+、Bi3+、Zn2+、Hg2+)として電解質中に溶解する。電解質中の鉛直近傍において、正電極材料のカチオンの濃度は、電解質のカチオン材料の原子量および拡散運動の仕方に基づいて(例えば、正電極材料からの上向き距離の関数として)変動しうる。いくつかの例において、正電極材料のカチオンは正電極に近い電解質において濃度が高い。
いくつかの実装において、タイプ2モードで動作できるセルの組立時には負電極材料の提供が不要でありうる。例えば、(1または複数の)かかるセルを備えたLi||Pbセルもしくはエネルギー貯蔵装置は、Li塩電解質とPbもしくはPb合金(例えばPb−Sb)の正電極のみを有する放電状態において組立可能である(すなわち、組立時に必ずしもLi金属は必要ない)。
本開示の電気化学セルについて、これまでいくつかの例においてタイプ1モードまたはタイプ2モードで動作するものとして記載してきたが、これ以外の動作モードが可能である。タイプ1モードおよびタイプ2モードは例として提示するものであり、本明細書に開示する電気化学セルのさまざまな動作モードを制限するものではない。
ある場合において、電気化学セルは、液体金属の負電極(例えばナトリウム(Na)もしくはリチウム(Li))と、イオン伝導性(例えばβ’’アルミナセラミック)固体電解質と、液体正電極と、を含む。かかるセルは高温電池とすることができる。1つ以上のかかるセルを電気化学エネルギー貯蔵装置内に設けることができる。負電極は、アルカリもしくはアルカリ土類金属、例えばリチウム、ナトリウム、カリウム、マグネシウム、カルシウム、またはその組み合わせを含むことができる。正電極は、液体カルコゲンまたは溶融カルコゲニド(例えば、硫黄(S)、セレン(Se)、またはテルル(Te))、および/または遷移金属のハロゲン化物(例えばNiCl、FeCl)および/または他の(例えば担持)化合物(例えば、NaCl、NaF、NaBr、NaI、KCl、LiCl、臭化物塩)を含有する溶融塩、またはその任意の組み合わせを含有しうる。いくつかの例において、イオン伝導性固体電解質は、昇温温度もしくは高温(例えば、約200℃超、約250℃超、約300℃超、または約350℃超)においてナトリウムイオンを伝導できるベータアルミナ(例えば、β’’アルミナ)セラミックである。いくつかの例において、イオン伝導性固体電解質は約100℃超、約150℃超、約200℃超、約250℃超、約300℃超、または約350℃超で動作する。
[電池とハウジング]
本開示の電気化学セルは、さまざまな使用および用途に好適でありうるハウジングを含むことができる。ハウジングは1つのセルまたは複数のセルを含むことができる。ハウジングは電極をスイッチに電気的に結合するように構成でき、スイッチはさらに外部電力源および電気的負荷に接続できる。セルハウジングは例えば、スイッチの第1の極および/または別のセルハウジングに電気的に結合された導電性の容器と、スイッチの第2の極および/または別のセルハウジングに電気的に結合された導電性の容器蓋と、を備えうる。セルは容器の空洞部内に配置することができる。セルの電極のうち第1のもの(例えば、正電極)は、容器のある端壁に接触させて電気的に結合することができる。セルの電極のうち第2のもの(例えば、負電極)は、容器蓋において導電フィードスルーもしくは導体(例えば、負極用電流リード)に接触させて電気的に結合することができる。絶縁シール(例えば、接着されたセラミック環)がセルの負電位部分と容器の正電位部分とを電気的に分離(例えば、負極用電流リードと正極用電流リードとを絶縁)しうる。一例において、負極用電流リードと容器蓋(例えば、セルキャップ)とを互いに電気的に分離することができ、このとき負極用電流リードとセルキャップとの間に誘電性シーラント材料を設けることができる。代替例として、ハウジングは絶縁シース(例えば、アルミナ製シース)または耐食性かつ導電性のシースもしくはるつぼ(例えば、グラファイト製のシースもしくはるつぼ)を備えることができる。ある場合において、ハウジングおよび/または容器はバッテリハウジングおよび/または容器でありうる。
本明細書にいう電池は複数の電気化学セルを含むことができる。(1または複数の)セルはハウジングを含むことができる。個々のセルは直列および/または並列の構成で互いに電気的に結合することができる。直列接続の場合、第1のセルの正端子は第2のセルの負端子に接続される。並列接続の場合、第1のセルの正端子は、第2のセルおよび/または追加的な(1または複数の)セルの正端子に接続できる。同様に、セルモジュール、パック、コア、CE、およびシステムは、セルについて上述したのと同じ要領で直列および/または並列に接続することができる。
以下に図面を参照する。図中、同じ参照番号は同様の部分を表す。推察されるように、図中の形状および特徴部分は必ずしも同じ縮尺ではない。
図1を参照すると、電気化学セル(A)はアノードとカソードとを備えたユニットである。本明細書に記載のとおり、セルは電解質を含み、ハウジング内に封止されうる。ある場合において、電気化学セルは積層(B)されて電池(すなわち、1つ以上の電気化学セルの集積体)を形成できる。セルは並列、直列、または並列と直列の両方の構成(C)に配置できる。さらに、セルモジュール、パック、コア、CE、および/またはシステムを直列および/または並列に接続できる。相互接続部101が個々のセルおよび/またはセルのグループどうしを接続しうる。
セルは複数のグループ(例えば、それぞれ1つ以上の電気化学セルを含む複数のモジュール、パック、コア、CE、システム、またはその他のグループ)単位に構成することができる。ある場合において、電気化学セルのかかるグループは、(例えば、個々のセルを調整/制御するのと合わせて、または調整/制御する代わりに)ある所与の数のセルをグループレベルでまとめて制御または調整可能にしてもよい。
電池は、個々のセルまたはセルのグループを繰り返し付加する形で組み立てうる。一例において、セルをモジュールの形態に組み立て、それを積層してパックを形成し、さらにそれを相互接続してコアを形成することができる。ある場合において、パックをトレイ上に(例えば、鉛直方向および/または水平方向に)組み立ててもよい。これは電気化学セルのグループの別の例である。トレイを(例えば、鉛直方向および/または水平方向に)組み立ててコアを形成することができる。また、コアをさらに相互接続してCEおよびシステムを形成することができる。別の例において、コアをモジュールの形態に組み立て、それを(例えば、鉛直方向および水平方向に)相互接続してコアを形成することができる。さらに別の例において、セルを積層して1つのセルタワーを形成することができる(例えば図1の構成Bを参照)。これは電気化学セルのグループのさらに別の例である。次に、互いに鉛直方向に積み重ねた複数のセルをそれぞれ備えた複数のセルタワーをまとめて、例えば、パックを形成することができる。このように、一例において、それぞれ4つのセルを有する4つのタワーを(2×2型配列のタワーの形態に配置して)相互接続することにより、各モジュールが2×2型配列のセルを備えた、4モジュールの積層体を備えたパックを組み立てることもできる。組立のために使用されるセルのグループは、調整/制御のために使用されるセルのグループと同じであってもよいし、同じでなくてもよい。セルのグループはさまざまなフレームによって支持されてもいい(例えば、パックまたはコア)し、さまざまなフレームを含んでいてもいい(例えば、トレイまたはタワー)。セルの異なるグループのフレームは組立時に接続しうる。
本明細書の別所により詳細に記載するように、個々のセルもしくはその(1または複数の)部分、セルのグループ、または(1または複数の)かかるセルを備えた装置もしくはシステム(例えば、電池等のエネルギー貯蔵装置を備えたエネルギー貯蔵システム)は、例えば熱管理システムにより、温度について維持および/または調整することができる。熱管理システムは、エネルギー貯蔵装置/システムを運用するために、エネルギー貯蔵装置/システムのさまざまな部分にわたって、および/またはシステム全体にわたって分散配置されうる。いくつかの実装では、本明細書のシステムの熱管理のために1つ以上のフレームが使用されうる。かかる熱管理フレームは構造上の支持をも提供しうる。熱管理システムの少なくとも一部分はフレームの接続によって組み立てうる。フレームは、例えば、熱管理流体を含む流体流通路および/またはダクトの系を形成するように構成しうる。ある場合において、フレームは、1つ以上の電気化学セルと(例えば、熱管理流体を介して)熱的接触を行うように構成しうる。
本開示の電気化学セル(例えば、タイプ2モードで動作するタイプ1のセル、タイプ1モードで動作するタイプ1のセル、またはタイプ2のセル)は、適切な多量のエネルギー(例えば、かなり多量のエネルギー)の貯蔵、かかる入力の受け取り(「取り込み」)、放出、および/または還流が可能でありうる。いくつかの例において、セルは約1ワット時(Wh)、約5Wh、25Wh、約50Wh、約100Wh、約250Wh、約500Wh、約1キロワット時(kWh)、約1.5kWh、約2kWh、約3kWh、約5kWh、約10kWh、約15kWh、約20kWh、約30kWh、約40kWh、または約50kWhを貯蔵、取り込み、放出、および/または還流できる。いくつかの例において、電池は少なくとも約1Wh、少なくとも約5Wh、少なくとも約25Wh、少なくとも約50Wh、少なくとも約100Wh、少なくとも約250Wh、少なくとも約500Wh、少なくとも約1kWh、少なくとも約1.5kWh、少なくとも約2kWh、少なくとも約3kWh、少なくとも約5kWh、少なくとも約10kWh、少なくとも約15kWh、少なくとも約20kWh、少なくとも約30kWh、少なくとも約40kWh、または少なくとも約50kWhを貯蔵、取り込み、放出、および/または還流できる。ある電気化学セルおよび/または電池に貯蔵されるエネルギーの量は、その電気化学セルおよび/または電池に取り込まれるエネルギーの量よりも(例えば、非効率性および損失によって)少ないことがあると認識されている。セルは、本明細書に記載するどの電流密度で動作するときにも、かかるエネルギー貯蔵容量を有することができる。
セルは、少なくとも約10ミリアンペア毎平方センチメートル(mA/cm)、20mA/cm、30mA/cm、40mA/cm、50mA/cm、60mA/cm、70mA/cm、80mA/cm、90A/cm、100mA/cm、200mA/cm、300mA/cm、400mA/cm、500mA/cm、600mA/cm、700mA/cm、800mA/cm、900mA/cm、1A/cm、2A/cm、3A/cm、4A/cm、5A/cm、または10A/cmの電流密度で電流を供給可能とすることができる。ここに、電流密度は電解質の有効断面積に基づいて決定される。また断面積は、充電または放電過程において電解質中のイオンの正味の流れの方向に直交する面積である。いくつかの例において、セルは、少なくとも約10%、20%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、90%、95%等の直流(DC)効率で動作可能とすることができる。いくつかの例において、セルは、少なくとも約10%、20%、30%、40%、50%、60%、70%、80%、85%、90%、95%、98%、99%、99.5%、99.9%、99.95%、99.99%等の充電効率(例えば、クーロン充電効率)で動作可能とすることができる。
充電状態において、本開示の電気化学セル(例えば、タイプ2モードで動作するタイプ1のセル、タイプ1モードで動作するタイプ1のセル、またはタイプ2のセル)は、少なくとも約0.5V、0.6V、0.7V、0.8V、0.9V、1.0V、1.1V、1.2V、1.3V、1.4V、1.5V、1.6V、1.7V、1.8V、1.9V、2.0V、2.1V、2.2V、2.3V、2.4V、2.5V、2.6V、2.7V、2.8V、2.9V、または3.0Vの電圧を有することができる(または、かかる電圧で動作できる)。ある場合において、セルは、少なくとも約0.5V、0.6V、0.7V、0.8V、0.9V、1.0V、1.1V、1.2V、1.3V、1.4V、1.5V、1.6V、1.7V、1.8V、1.9V、2.0V、2.1V、2.2V、2.3V、2.4V、2.5V、2.6V、2.7V、2.8V、2.9V、または3.0Vの開路電圧(OCV)を有することができる。一例において、セルは、約0.5V超、約1V超、約2V超、または約3V超の開路電圧を有する。ある場合において、セルの充電カットオフ電圧(CCV)は充電状態において約0.5V〜1.5V、1V〜3V、1.5V〜2.5V、1.5V〜3V、または2V〜3Vである。ある場合において、セルの充電カットオフ電圧(CCV)は少なくとも約0.5V、0.6V、0.7V、0.8V、0.9V、1.0V、1.1V、1.2V、1.3V、1.4V、1.5V、1.6V、1.7V、1.8V、1.9V、2.0V、2.1V、2.2V、2.3V、2.4V、2.5V、2.6V、2.7V、2.8V、2.9V、または3.0Vである。ある場合において、セルの電圧(例えば、動作電圧)は充電状態において約0.5Vと1.5Vの間、1Vと2Vの間、1Vと2.5Vの間、1.5Vと2.0Vの間、1Vと3Vの間、1.5Vと2.5Vの間、1.5Vと3Vの間、または2Vと3Vの間である。セルは(1または複数の)かかる電圧(例えば、電圧、OCV、および/またはCCV)を、約10サイクル、20サイクル、30サイクル、40サイクル、50サイクル、100サイクル、200サイクル、300サイクル、400サイクル、500サイクル、600サイクル、700サイクル、800サイクル、900サイクル、1,000サイクル、2,000サイクル、3,000サイクル、4,000サイクル、5,000サイクル、10,000サイクル、20,000サイクル、50,000サイクル、100,000サイクル、または1,000,000サイクル、またはそれより多いサイクル(本明細書では「充電/放電サイクル」ともいう)以下および超で動作しているときに提供できる。セルは、容量の実質的な低下なく動作できる。セルの動作温度での動作中、セルは液体(または溶融)状態の負電極、電解質、および正電極を有することができる。
本開示の電気化学セルは、任意の好適な(例えば、送配電網の外乱に応答するのに好適な)値の応答時間を有することができる。いくつかの例において、応答時間は約100ミリ秒(ms)、約50ms、約10ms、約1ms等である。ある場合において、応答時間は約100ミリ秒(ms)以内、約50ms以内、約10ms以内、約1ms以内等である。
セルの集積体もしくは配列(例えば、電池)は、例えば、少なくとも約2、少なくとも約5、少なくとも約10、少なくとも約50、少なくとも約100、少なくとも約500、少なくとも約1000、少なくとも約5000、少なくとも約10000等、任意の好適な数のセルを含むことができる。いくつかの例において、電池は1、2、3、4、5、6、7、8、9、10、15、20、30、40、50、60、70、80、90、100、200、300、400、500、600、700、800、900、1,000、2,000、5,000、10,000、20,000、50,000、100,000、500,000、または1,000,000個のセルを備える。
いくつかの実装において、1種類以上のセルを本開示のエネルギー貯蔵システムに含むことができる。例えば、エネルギー貯蔵装置は、タイプ2のセル、またはタイプ1のセルとタイプ2のセルとの組み合わせ(例えば、50%のタイプ1セルと50%のタイプ2セル)を備えることができる。かかるセルはタイプ2モードで動作できる。ある場合において、セルの第1の部分がタイプ1モードで動作しえ、セルの第2の部分がタイプ2モードで動作しうる。
本開示の電池は、送配電網とともに使用する(すなわち、グリッドスケールの電池)、またはその他の負荷もしくは用途とともに使用するのに好適な多量のエネルギー(例えば、かなり多量のエネルギー)を貯蔵、取り込み、放出、および/または還流可能でありうる。いくつかの例において、電池は約5キロワット時(kWh)、約25kWh、約50kWh、約100kWh、約500kWh、約1メガワット時(MWh)、約1.5MWh、約2MWh、約3MWh、約5MWh、約10MWh、約25MWh、約50MWh、また約100MWhを貯蔵、取り込み、放出、および/または還流できる。いくつかの例において、電池は少なくとも約1kWh、少なくとも約5kWh、少なくとも約25kWh、少なくとも約50kWh、少なくとも約100kWh、少なくとも約500kWh、少なくとも約1MWh、少なくとも約1.5MWh、少なくとも約2MWh、少なくとも約3MWh、少なくとも約4MWh、少なくとも約5MWh、少なくとも約10MWh、少なくとも約25MWh、少なくとも約50MWh、または少なくとも約100MWhを貯蔵、取り込み、放出、および/または還流できる。
いくつかの例において、セルおよびセルハウジングは積み重ね可能である。任意の好適な数のセルを積み重ねることができる。セルは横に並べて、上下に重ねて、またはその両方の形態に積み重ねることができる。いくつかの例において、少なくとも約3、6、10、50、100、または500個のセルが積層される。ある場合において、100個のセルの積層体は、少なくとも50kWhのエネルギーを貯蔵、取り込み、放出、および/または還流できる。セルの第1の積層体(例えば、10個のセル)をセルの第2の積層体(例えば、別の10個のセル)に電気的に接続し、それによって電気的に連通するセルの個数を増やす(例えば、この例では20)ことができる。いくつかの例において、エネルギー貯蔵装置は1〜10、11〜50、51〜100、またはそれより多い電気化学セルの積層体を含む。
電気化学エネルギー貯蔵装置は1つ以上の個別の電気化学セルを含むことができる。電気化学セルは容器内に収容でき、容器は容器蓋(例えば、セルキャップ)とシール要素とを含むことができる。装置は少なくとも1、2、3、4、5、6、7、8、9、10、20、30、40、50、100、200、300、400、500、1000、10,000、100,000、または1,000,000個のセルを含むことができる。容器蓋は、例えば、容器を容器蓋から電気的に分離するためにシール(例えば、環状誘電性ガスケット)を用いうる。かかる構成要素は絶縁材料から製造されうる。絶縁材料としては、例えば、ガラス、酸化物セラミック、窒化物セラミック、カルコゲニド、またはその組み合わせ(例えば、セラミック、酸化けい素、酸化アルミニウム、窒化ほう素、窒化アルミニウム、窒化ジルコニウム、窒化チタンを含む窒化物、炭化けい素、炭化チタンを含む炭化物、または酸化リチウム、酸化カルシウム、酸化バリウム、酸化イットリウム、酸化けい素、酸化アルミニウムを含むその他の酸化物、または窒化リチウム、酸化ランタン、あるいはその任意の組み合わせ)等が挙げられる。シールは1つ以上の方法によって気密密閉性をもつようにしうる。例えば、絶縁性に加えて密閉性も実現するため、容器蓋と容器の間において比較的高い圧縮力(例えば、約1,000psi超または約10,000psi超)をシールに与えうる。あるいは、溶接、ろう付け、または該当セル構成要素を絶縁性シーラント材料に接合するその他の化学接着材料によって、シールを接着してもよい。
図2に、導電ハウジング201と導体202とを備える電池を概略的に示す。導体202は、集電体203と電気的に連通する。図2の電池はエネルギー貯蔵装置のセルとすることができる。導体はハウジングとは電気的に分離することができ、ハウジングの開口部を通ってハウジングから突き出ることができる。それにより、第1と第2のセルが積層されるときに、第1のセルの導体は第2のセルのハウジングと電気的に連通する。
ある場合において、セルは負極集電体と、負電極と、電解質と、正電極と、正極集電体とを含む。負電極は負極集電体の一部とすることができる。代替例として、負電極は負極集電体から隔たっているが、負極集電体とは電気的に連通している。正電極は正極集電体の一部とすることができる。代替例として、正電極は正極集電体から隔たっているが、正極集電体と電気的に連通している。
セルハウジングは、導電性容器と、集電体と電気的に連通する導体と、を含むことができる。導体は容器の開口部を通ってハウジングから突き出てもよく、容器とは電気的に分離されうる。第1と第2のハウジングが積層されるとき、第1のハウジングの導体は第2のハウジングの容器と接触しうる。
いくつかの例において、導体がハウジングおよび/または容器から突き出す開口部の面積は、ハウジングおよび/または容器の面積に比して小さい。ある場合において、ハウジングの面積に対する開口部の面積の比は、約0.001、約0.005、約0.01、約0.05、約0.1、約0.15、約0.2、約0.3、約0.4、または約0.5である。ある場合において、ハウジングの面積に対する開口部の面積の比は、約0.001以下、約0.005以下、約0.01以下、約0.05以下、約0.1以下、約0.15以下、約0.2以下、または約0.3以下、約0.4以下、または約0.5以下である。
セルは、導電ハウジングと、集電体と電気的に連通する導体と、を含むことができる。導体はハウジングの開口部を通ってハウジングから突き出し、ハウジングとは電気的に分離されうる。ハウジングの面積に対する開口部の面積の比は、約0.3、0.2、0.15、0.1、0.05、0.01、0.005、または0.001未満(例えば、約0.1未満)でありうる。
セルハウジングは、導電性容器と、集電体と電気的に連通する導体と、を含むことができる。導体は容器の開口部を通って容器から突き出ることができ、容器とは電気的に分離されている。容器の面積に対する開口部の面積の比は、約0.3、0.2、0.15、0.1、0.05、0.01、0.005、または0.001未満(例えば、約0.1未満)でありうる。ハウジングは、約100Wh未満のエネルギー、約100Whのエネルギー、または約100Wh超のエネルギーを貯蔵、取り込み、放出、および/または還流できるセルを内包可能とすることができる。ハウジングは、少なくとも約25Whのエネルギーを貯蔵、取り込み、放出、および/または還流できるセルを内包可能とすることができる。セルは、少なくとも約1Wh、5Wh、25Wh、50Wh、100Wh、500Wh、1kWh、1.5kWh、2kWh、3kWh、5kWh、10kWh、15kWh、20kWh、30kWh、40kWh、または50kWhのエネルギーを貯蔵、取り込み、放出、および/または還流可能とすることができる。
図3は電気化学セルまたは電池300の側断面図である。電気化学セルまたは電池300は、ハウジング301と、ハウジングの開口部を貫通し、かつ液体金属の負電極303と電気的に連通する導電フィードスルー(すなわち、導体、例えば導体棒)302と、液体金属の正電極305と、液体金属電極303、305の間の液体塩電解質304と、を含む。本明細書の別所に開示するとおり、セルまたは電池300は、低電圧モード(「タイプ1モード」)または高電圧モード(「タイプ2モード」)で稼働されるセル化学構成とともに使用するように構成できる。導体302は、(例えば、絶縁シールを用いて)ハウジング301とは電気的に分離されうる。負極集電体307は、スポンジのように挙動する発泡材303を含みえ、負電極液体金属が発泡体内にしみこんでいる。液体金属の負電極303は溶融塩電解質304と接触している。液体塩電解質は液体金属の正電極305とも接触している。液体金属の正電極305は、ハウジングの両側壁に沿って、および/または底壁に沿って、ハウジング301と電気的に連通することができる。
ハウジングは容器と容器蓋(例えば、セルキャップ)とを含みうる。容器と容器蓋とは機械的に接続され(例えば、溶接され)うる。ある場合において、機械的接続は化学的接続を含みうる。いくつかの例において、容器蓋は容器とは電気的に分離されている。その場合、セルの蓋は負極用電流リードとは電気的に分離されていてもいいし、されていなくてもよい。いくつかの例において、容器蓋は容器(例えば、セル本体)と電気的に接続されている。そのとき、セルの蓋は負極用電流リードとは電気的に分離されうる。動作時(例えば、溶融状態にあるとき)、容器蓋と容器とは、電子的に(例えば、直接的な電気接続により、例えば蓋とセル本体との間の溶接接合等を介して、あるいは電解質と電極の間のイオンの働きによって)接続することができる。負極用電流リードは、例えば絶縁性の気密シールの使用によって、容器および/または容器蓋(例えば、セルキャップ)に対して電気的に分離しうる。いくつかの例において、負極用電流リードと容器蓋との間に絶縁障壁(例えば、シール)が設けられうる。代替例として、シールはガスケットの形態で例えば容器蓋と容器との間に設置することができる。いくつかの例において、電気化学セルまたは電池300は、1つ以上の開口部を貫通し、かつ液体金属の負電極303と電気的に連通する、2つ以上の導体を含みうる。いくつかの例において、液体負電極303と(液体)正電極305との間の電解質304内に分離構造体(図示せず)を配置してもよい。
ハウジング301は導電性材料から製造することができる。導電性材料としては、例えば、鋼、鉄、ステンレス鋼、低炭素鋼、グラファイト、ニッケル、ニッケル基合金、チタン、アルミニウム、モリブデン、タングステン、または窒化物(例えば、炭化けい素または炭化チタン)等の導電性化合物、あるいはその組み合わせ(例えば、合金)等が挙げられる。
ハウジング301はハウジング内部要素306を備えうる。ハウジング内部要素306は、シース(例えば、グラファイト製シース)、コーティング、るつぼ(例えば、グラファイト製のるつぼ)、表面処理、ライニング、またはその任意の組み合わせ)を含みうるが、これらには限定されない。一例において、ハウジング内部要素306はシースである。別の例において、ハウジング内部要素306はるつぼである。さらに別の例において、ハウジング内部要素306はコーティングまたは表面処理である。ハウジング内部要素306は伝熱性、断熱性、導電性、絶縁性、またはその任意の組み合わせを有しうる。ある場合において、ハウジング内部要素306はハウジング保護のため(例えば、ハウジングのステンレス鋼材料の防食のため)に提供されうる。ある場合において、ハウジング内部要素は液体金属の正電極に対して濡れ防止性を有することができる。ある場合において、ハウジング内部要素は液体電解質に対して濡れ防止性を有することができる。
ハウジングは、単体金属もしくは化合物のライニング要素(例えば、セル本体より薄いライニング要素)、またはコーティング(例えば、導電性コーティング)を備えうる。例として、グラファイト製ライニングを施した鋼製ハウジング、または窒化物コーティングもしくはライニング(例えば、窒化ほう素、窒化アルミニウム)、チタンコーティングもしくはライニング、または炭化物コーティングもしくはライニング(例えば、炭化けい素、炭化チタン)を施した鋼製ハウジング、等が挙げられる。コーティングは、正電極液体金属に対して濡れ防止性を有する表面をはじめ、好ましい特性および機能を示すことができる。ある場合において、ライニング(例えば、グラファイト製ライニング)は、セルハウジング内に設ける前もしくは後に、空気中において室温より高温で加熱することによって乾燥する、または真空オーブンで乾燥する、ことができる。ライニングの乾燥または加熱により、電解質、正電極、または負電極をセルハウジングに加える前に、ライニングから水分を除去することができる。
ハウジング301は、断熱性および/または絶縁性のシースもしくはるつぼ306を含みうる。この構成において、負電極303は、正電極305に対して電気的に接続される(すなわち、短絡される)ことなく、シースもしくはるつぼによって規定されるハウジング301の両側壁間を横方向に伸びうる。あるいは、負電極303は、負電極の第1の末端303aと負電極の第2の末端303bとの間を横方向に伸びうる。シースもしくはるつぼ306が備わらない場合、負電極303の直径(または、図3に303aから303bまでの距離として示される他の特徴的寸法)は、ハウジング301によって規定される空洞部の直径(または、図3に距離Dとして示される直方体容器に対する幅等の、他の特徴的寸法)より小さい値でありうる。
るつぼは、るつぼとセルハウジングとの間に位置する液体金属もしくは半固体金属の導電性合金の薄層を用いて、セルハウジングと電子的に接触するように作成することができる。材料としては、例えば、元素Pb、Sn、Sb、Bi、Ga、In、Te、またはその組み合わせが挙げられる。
ハウジング内部要素(例えば、シース、るつぼ、および/またはコーティング)306は、断熱性、伝熱性、および/または絶縁性、もしくは導電性の材料から製造することができる。そのような材料としては、例えば、グラファイト、炭化物(例えば、SiC、TiC)、窒化物(例えば、BN)、アルミナ、チタニア、シリカ、マグネシア、窒化ほう素、または混合酸化物、例えば、酸化カルシウム、酸化アルミニウム、酸化けい素、酸化リチウム、酸化マグネシウム等が挙げられる。例えば、図3に示すように、シース(またはその他の)ハウジング内部要素306は、第1のシース端部306aと第2のシース端部306bとの間を横方向に伸びることができる環状断面形状を有する。シースの寸法(図3に306aから306bまでの距離として示されるもの)は、シースがハウジング空洞部301によって規定される空洞部の両側壁と接触し、かつ両側壁に押しつけられるときのものでありうる。代替例として、ハウジング内部要素306は容器の腐食を防止する、および/またはカソード材料が側壁を濡らすのを防止するために使用でき、電子伝導性の材料から製造されうる。そのような材料としては、鋼、ステンレス鋼、タングステン、モリブデン、ニッケル、ニッケル基合金、グラファイト、チタン、または窒化チタンが挙げられる。例えば、シースは極めて薄くてもよく、コーティングであってもよい。コーティングは壁面の内側のみを被覆することができ、かつ/または容器の内側の底面をも被覆することができる。ある場合において、シース(例えば、グラファイト製シース)は、セルハウジング内に設ける前もしくは後に、空気中において室温より高温で加熱することによって乾燥しうるか、または真空オーブンで乾燥しうる。ライニングの乾燥または加熱により、電解質、正電極、または負電極をセルハウジングに加える前にライニングから水分を除去しうる。
セルの1つ以上の壁との短絡を最小限に抑える、もしくは防止するために、セルは、セルの1つ以上の壁と、負電極、電解質、および/または正電極との間に、絶縁性もしくは導電性を有し、かつ化学的に安定な、シースもしくはコーティングを含むことができる。ある場合において、セルは、非鉄容器もしくは容器ライニングで形成することができる。非鉄容器もしくは容器ライニングとして、炭素含有材料(例えば、グラファイト)、または炭化物(例えば、SiC、TiC)、または窒化物(例えば、TiN、BN)、または化学的に安定な金属(例えば、Ti、Ni、B)が挙げられる。容器または容器ライニングの材料は導電性でありうる。
セルは、シースの代わりに、セルハウジングの両側壁および底部内面を内張りする導電性るつぼまたはコーティングを含みうる。これはセルハウジングライナと呼ばれ、正電極がセルハウジングと直接的に接触するのを防止する。セルハウジングライナは、セルハウジングとセルハウジングライナもしくはシースとの間における正電極の濡れを防止しえ、また正電極がセルハウジングの底面と直接的に接触するのを防止しうる。シースは極めて薄くてもよく、コーティングであってもよい。コーティングは壁面の内側のみを被覆することができ、かつ/または容器の内側の底面をも被覆することができる。シースはハウジング301に完璧に適合する寸法でなくてよい。完璧に適合すると、セルライニングとセルハウジングとの間の電流の流れが阻害されうる。セルハウジングとセルライニングとの間に十分な電子伝導を実現するため、融点が低い金属(例えば、Pb、Sn、Bi)の液体を用いて、シース/コーティングとセルハウジングとの間に強い電気的接続を実現することができる。この層によってセルの製造および組立を簡単化できる。
ハウジング301は、第1の(例えば、負極)集電体もしくはリード307と、第2の(例えば、正極)集電体308とをも含むことができる。負極集電体307は導電性材料、例えば、ニッケル−鉄(Ni−Fe)発泡体、穴のあいた鋼製ディスク、複数枚の波形鋼板、複数枚の膨張金属メッシュ等から製造しうる。負極集電体307はプレートまたは発泡体として構成しえ、第1の集電体端部307aと第2の集電体端部307bとの間を横方向に伸びることができる。負極集電体307は、ハウジング301によって規定される空洞部の直径より小さいか同様の集電体直径を有しうる。ある場合において、負極集電体307は、負電極303の直径(または、図3に303aから303bまでの距離として示される他の特徴的寸法)より小さいか同様の集電体直径(または、図3に307aから307bまでの距離として示される他の特徴的寸法)を有しうる。正極集電体308はハウジング301の一部として構成されうる。例えば、ハウジングの底部端壁は図3に示すように正極集電体308として構成しうる。あるいは、集電体はハウジングとは別個のものでありえ、ハウジングに電気的に接続されうる。ある場合において、正極集電体はハウジングに電気的に接続されなくてもよい。本開示は、負極および/または正極集電体の構成についていかなる特定の構成にも限定されない。
負電極303は負極集電体(例えば、発泡体)307の内部に包含することができる。この構成において、電解質層は発泡体307の底面、両側面、および/または上面と接触する。発泡体(すなわち、負電極材料)内に含まれる金属は、例えば液体金属の負電極が発泡体内に吸収および保持されること等により、ハウジング301の両側壁から離れた状態に維持することができ、したがって、絶縁シース306がなくともセルは動作可能となる。ある場合において、グラファイト製シースまたはグラファイト製セルハウジングライナ(例えば、グラファイト製のるつぼ)は、正電極が両側壁に沿って濡れるのを防止するために用いられうる。それによってセルの短絡が防止できる。
電流は、一表面に沿って電解質と接触する液体金属の正電極および/または負電極の全体にわたって実質的に均等に分布しうる(すなわち、表面を流れる電流は、表面の任意の部分を流れる電流が平均電流密度から実質的に逸脱しない程度に均一でありうる)。いくつかの例において、表面のある面積にわたって流れる電流の最大密度は、表面全体にわたって流れる電流の平均密度の約105%未満、または約115%以下、約125%以下、約150%以下、約175%以下、約200%以下、約250%以下、または約300%以下である。いくつかの例において、表面のある面積にわたって流れる電流の最小密度は、表面全体にわたって流れる電流の平均密度の約50%以上、約60%以上、約70%以上、約80%以上、約90%以上、または約95%以上である。
図3に「上方視点」および「下方視点」とそれぞれ記載したように、上または下方向から見ると、セルまたは電池300の断面形状は、電池の設計要件に基づいて円形、楕円形、正方形、長方形、多角形、湾曲形状、対称形、非対称形、またはその他の複合形状とすることができる。一例において、セルまたは電池300は円形もしくは正方形断面を有する軸対称である。セルまたは電池300の構成要素(例えば、図3の構成要素)は、セルまたは電池内で軸対称に配置されうる。ある場合において、1つ以上の構成要素は、例えば軸309の中心から外れる等、非対称に配置されうる。
正電極および負電極材料の合計体積は、電池の体積(例えば、出荷容器等、電池の最外ハウジングによって規定されるもの)の少なくとも約5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、または95%でありうる。ある場合において、アノードとカソード材料の合計体積は、セルの体積の少なくとも約5%、少なくとも約10%、少なくとも約20%、少なくとも約30%、少なくとも約40%、少なくとも約60%、少なくとも約75%である。正電極および負電極材料の合計体積は、正電極または負電極の成長もしくは膨張、または縮小もしくは収縮によって、動作中に(例えば、高さにおいて)それぞれ増加または減少しうる。一例において、放電時、負電極(放電中はアノード)の体積は負電極材料が正電極(放電中はカソード)に移動することによって減少しうる。このとき正電極の体積は(例えば、合金化反応の結果として)増加する。負電極の体積減少は正電極の体積増加と等しくてもいいし、等しくなくてもいい。正電極と負電極材料は互いに反応して固体もしくは半固体の相互反応化合物(本明細書では「相互反応生成物」ともいう)を形成しうる。これは正電極および/または負電極材料の密度と同じか、より低い、またはより高い密度を有しうる。電気化学セルまたは電池300内の材料の質量は一定でありうるが、1種類、2種類、またはそれより多い相(例えば、液体または固体)が存在してもよく、かかる相のそれぞれはある材料組成を含みうる(例えば、セルの材料および相中にアルカリ金属が変動濃度で存在しうる:液体金属の負電極は高濃度のあるアルカリ金属を含みえ、液体金属の正電極はそのアルカリ金属の合金を含みえ、そのアルカリ金属の濃度は動作中に変動しえ、かつ液体金属の正電極と負電極の相互反応生成物はそのアルカリ金属をある一定もしくは可変の化学量論比で含みうる)。相および/または材料は異なる密度を有しうる。材料は両電極の相間および/または材料間を輸送されるため、合計電極体積の変動が生じうる。
ある場合において、セルは、液体、半液体(もしくは半固体)、または固体である1種類以上の合金生成物を含むことができる。合金生成物は、負電極、正電極、および/または電解質とは混合しない(または、ある場合には溶解可能な)ものとすることができる。合金生成物はセルの充電または放電中の電気化学過程から形成することができる。
合金生成物は負電極、正電極、および/または電解質の元素成分を含むことができる。合金生成物は負電極、正電極、または電解質とは異なる密度、または同様もしくは実質的に同じ密度を有することができる。合金生成物の位置は、負電極、電解質、および正電極と比較した合金生成物の密度の関数とすることができる。合金生成物は、負電極、正電極、または電解質の中、または負電極と電解質との間もしくは正電極と電解質との間のある位置(例えば、界面)、またはその任意の組み合わせに存在しうる。一例において、合金生成物は正電極と電解質との間の金属間化合物である(例えば、図4参照)。ある場合において、いくらかの電解質が金属間化合物と正電極との間にしみこみうる。別の例において、合金生成物は、セルの化学構成、温度、および/または充電状態に応じて、セル内の別の位置に存在したり、異なる化学量論比/組成の材料で形成したりすることができる。
図4は、金属間化合物層410を有する電気化学セルまたは電池400の側断面図である。金属間化合物層410は、負電極403および正電極材料405に由来する材料の相互反応化合物を含むことができる。例えば、液体金属の負電極403はアルカリもしくはアルカリ土類金属(例えば、Na、Li、K、Mg、またはCa)を含むことができ、液体金属の正電極405は遷移金属、dブロック(例えば第12族)、第IIIA族、第IVA族、第VA族、または第VIA族元素(例えば、鉛、および/またはアンチモン、および/またはビスマス)の1つ以上を含むことができ、金属間化合物層410はその相互反応化合物または生成物(例えば、アルカリ鉛化物、アンチモン化物、またはビスマス化物、例えば、NaPb、LiSb、KSb、MgSb、CaSb、またはCaBi)を含むことができる。金属間化合物層410の上側界面410aは電解質404と接触し、金属間化合物層410の下側界面410bは正電極405と接触する。相互反応化合物は、放電中に、液体金属の正電極(この構成では液体金属のカソード)405と液体塩電解質404との間の界面において形成されうる。相互反応化合物(または生成物)は固体または半固体とすることができる。一例において、金属間化合物層410は、液体金属のカソード405と液体塩電解質404との間の界面において形成することができる。ある場合において、金属間化合物層410は液体特性を示しうる(例えば、金属間化合物は半固体でありうるか、または隣接する1つ以上の相/材料より粘度もしくは密度が高いものでありうる)。
セル400は第1の集電体407と第2の集電体408とを備える。第1の集電体407は負電極403と接触し、第2の集電体408は正電極405と接触する。第1の集電体407は導電フィードスルー402と接触する。セル400のハウジング401は、断熱性および/または絶縁性のシース406を含むことができる。一例において、液体金属の負電極403はマグネシウム(Mg)を含み、液体金属の正電極405はアンチモン(Sb)を含み、金属間化合物層410はMgとSb(MgSb、ただし「x」は0より大きい数)、例えばアンチモン化マグネシウム(MgSb)等を含む。Mg||Sbの化学構成を有するセルは、電解質内にマグネシウムイオンならびに他の塩(例えば、MgCl、NaCl、KCl、またはその組み合わせ)を含みうる。ある場合において、セルは放電状態において負電極にMgが不足し、正電極はMg−Sbの合金を含む。そのような場合、充電時にMgが正電極から供給され、陽イオンとして電解質中を通過し、Mgとして負極集電体上に堆積する。いくつかの例において、セルは少なくとも約550℃、600℃、650℃、700℃、または750℃の動作温度を有し、ある場合において約650℃から約750℃の間の動作温度を有する。充電状態において、セルのすべて、もしくは実質的にすべての構成要素を液体状態とすることができる。代替的な化学構成が存在する。その例として、電解質中にハロゲン化カルシウム成分(例えば、CaF、KF、LiF、CaCl、KCl、LiCl、CaBr、KBr、LiBr、またはその組み合わせ)を含有し、約500℃より高温で動作するCa−Mg||Bi、電解質中にハロゲン化カルシウム成分(例えば、CaF、KF、LiF、CaCl、KCl、LiCl、CaBr、KBr、LiBr、またはその組み合わせ)を含有し、約500℃より高温で動作するCa−Mg||Sb−Pb、リチウムイオンを含有するハロゲン化物電解質(例えば、LiF、LiCl、LiBr、またはその組み合わせ)を含有し、約350℃と約550℃との間で動作するLi||Pb−Sbセル、および電解質の一部としてハロゲン化ナトリウム(例えば、NaCl、NaBr、NaI、NaF、LiCl、LiF、LiBr、LiI、KCl、KBr、KF、KI、CaCl、CaF、CaBr、CaI、またはその組み合わせ)を含有し、約300℃より高温で動作するNa||Pbセルが挙げられる。ある場合において、放電反応の生成物は金属間化合物(例えば、Mg||Sbセルの化学構成ではMgSb、Li||Pb−Sbの化学構成ではLiSb、Ca−Mg||Biの化学構成ではCaBi、またはCa−Mg||Pb−Sbの化学構成ではCaSb)でありうる。ここに、金属間化合物層は、例えば、正電極と電解質との界面における、x方向に沿った水平方向の成長および膨張、および/またはy方向に沿った鉛直方向の成長もしくは膨張により、明確な固相として発達しうる。この成長は、セルまたは電池400の中心に位置する対称軸409について軸対称であってもいいし、軸非対称であってもよい。ある場合において、金属間化合物層は、タイプ1の動作モードにおいて観察されるが、タイプ2の動作モードでは観察されない。例えば、金属間化合物層(例えば、図4の金属間化合物層)は、タイプ2のセルの動作中には形成されないことがありうる。
個々の電気化学セルどうし、および/または電気化学セルのグループ(例えば、モジュール、タワー、パック、トレイ、コア、CE、システム、または1つ以上の電気化学セルを含むその他のグループ)どうしの間に有線もしくは無線の相互接続を形成してもよい。ある場合において、セルのグループどうしを1つ以上のセル間相互接続を介して連結しうる。ある場合において、セルのグループどうしをグループレベルの相互接続を介して連結しうる。グループレベルの相互接続は、グループの1つ以上の個々のセルとの1つ以上の相互接続をさらに含みうる。相互接続は構造的および/または電気的でありうる。セルおよび/またはセルのグループは、水平方向または鉛直方向に組み立て(または積み重ね)うる。組み立てた、かかるセルおよび/またはセルのグループは、直列または並列構成に配置しうる。さらに、セルのグループはさまざまなフレームによって支持されうる。フレームは、構造的な支持を提供しえ、相互接続の形成に関与、もしくは形成を支援しえ(例えば、セルのグループ上のフレームどうしを係合させる、または接続する)、および/または熱管理システムの一部となりうる(例えば、熱管理フレームと協調しうる)。例えば、相互接続は構造的、電気的、および/または熱的でありうる。
電気化学セルは直列および/または並列に配置することによって電気化学エネルギー貯蔵システム(例えば、電池)を形成できる。エネルギー貯蔵システムは、フレーム(例えば、構造的な支持およびシステムの熱管理の両方に使用できるフレーム)に囲まれた、電気化学セルのモジュール、パック、コア、CE、および/またはシステムを含むことができる。
図5は、3つのモジュール505を備えたセルパック500の例を示す。各モジュールは、並列接続510された12個のセル530を備える。モジュールはセルパックフレーミング(本明細書では「フレーム」ともいう)515によって定位置に保持されている。フレーム515はフレームの最上部要素520を含む。セルは直接上下に積み重ねられ、あるセルの負極電流端子525は別のセル(例えば、その上のセル)のハウジングと直接的に接触している。セル群の最上層の負極電流端子には、直上の別のセルのハウジングは存在せず、代わりに負極バスバー535と接触(例えば、ろう付け、溶接)可能となっている。
いくつかの構成において、モジュール内に形成される並列接続510は、1つの個片(または構成要素)を、セル材料のための複数のポケットと合わせて用いて形成できる。この個片は打ち抜きで作製した構成要素とすることができ、セルどうしを直接電気的に接続できる。いくつかの例において、打ち抜きによるポケット付き導電ハウジングは、セル間に障壁を形成しない。ある場合において、ポケット付き導電ハウジングはポケットを互いに対してシールする。この導電ハウジングは個別的な導電性セルハウジングよりも製造と組み立てを容易にできる。いくつかの構成において、並列接続510はモジュール内のセルのハウジングの直接的な接触によって形成できる。
鉛直方向に積み重ねる場合、電気化学セルはその上に積み重ねられたセルの重量を支える。セルはこの重量を支持するように製造することができる。ある場合において、セルの層間にセル間スペーサ640が設けられる。これらのスペーサはその上のセルの重量を分散する、および/または負極電流端子にかかる重量のいくらかを軽減することができる。ある場合において、負極電流端子はシールによってハウジングとは電気的に分離される。このシールは電気化学セルの構造的構成要素の中で最も弱い可能性があるため、スペーサはシールにかかる力の量を低減することができる。
いくつかの実装において、液体金属電池は、それぞれが導電ハウジングと、集電体と電気的に連通する導体と、を備えた複数の電気化学セルを備える。導電ハウジングは、セルの動作温度において液体状態にある、負電極、電解質、および正電極を含むことができる。導体は導電ハウジングの開口部を通って導電ハウジングから突き出ることができ、またシールによって導電ハウジングとは電気的に分離することができる。この複数の電気化学セルは直列に積み重ねることができ、このとき、第1のセルの導体は第2のセルの導電ハウジングと電気的に接触する。液体金属電池は、電気化学セルどうしの間に配置される複数の非ガス式スペーサをも含むことができる。ある場合において、電気化学セルは鉛直方向に積層される。例えば、少なくとも2、3、4、5、6、7、8、9、10、15、20、25、30、36、40、48、50、60、70、80、90、100、120、140、160、180、200、216、250、256、300、350、400、450、500、750、1000、1500、2000個、またはそれより多い電気化学セルを直列に積層できる。ある場合において、電池は、直列に積層された上記複数の電気化学セルのそれぞれと並列に接続される、少なくとも1つの追加的な電気化学セルをさらに備える。例えば、鉛直方向に積層される各セルは、少なくとも1、2、3、4、5、6、7、8、9、10、15、16、20、25、30、40、50、60、70、80、90、100、120、140、160、180、200、250、300、350、400、450、500、750、1000、1500、2000個、またはそれより多い追加的な電気化学セルと並列に接続することができる。ある場合において、導電ハウジングは導電経路の一部である。
非ガス式スペーサ(本明細書では「スペーサ」ともいう)は固体材料とすることができる。ある場合において、スペーサはセラミック材料を含む。セラミック材料の非限定的な例として、窒化アルミニウム(AlN)、窒化ほう素(BN)、酸化イットリウム(Y)、酸化ジルコニウム(ZrO)、イットリア部分安定化ジルコニア(YPSZ)、酸化アルミニウム(Al)、カルコゲニド、酸化エルビウム(Er)、二酸化けい素(SiO)、石英、ガラス、またはその任意の組み合わせが挙げられる。ある場合において、スペーサは絶縁性を有する。スペーサは任意の好適な厚さを有することができる。ある場合において、スペーサの厚さは、導体が導電ハウジングから突き出す距離にほぼ等しい(例えば、スペーサの厚さは、導体が導電ハウジングから突き出す距離の約0.005%、約0.01%、約0.05%、約0.1%、または約0.5%以内とすることができる)。
セルどうしの接続は、許容差および最適な導電経路に基づいてさまざまな方式で構成できる。ある構成において、あるセルにおける負極用電流リードの上面をその上のセルの底面に直接接合(例えば、ろう付け、溶接)することができる(例えば、図6参照)。他の構成としては、例えば、代替的な直接接合の(例えば、代替的なろう付け接合の)構成、例えば、内側の棒と外側の固定具との熱膨張率(CTE)の違いによって強化される外径ろう付けがある。例えば、第2のセルの導電ハウジングの凹部に嵌合する第1のセルの導体によって、2つのセルを接続できる。ただし、導体のCTEは導電ハウジングのCTEより大きい。
ある場合において、図6に示すように、第1のセル610の導体605は第2のセル625の導電ハウジング620にろう付け615されている。ろう付け材料は任意の好適な材料とすることができる。ろう付け材料の非限定的ないくつかの例としては、鉄(Fe)、ニッケル(Ni)、チタン(Ti)、クロム(Cr)、ジルコニウム(Zr)、りん(P)、ほう素(B)、炭素(C)、けい素(Si)、またはその任意の組み合わせを含有する材料が挙げられる。セルは、カソード630と、電解質635と、集電体および導体605に接続されたアノード640と、を含むことができる。導体はセルの蓋650を貫いて挿入できる。ある場合において、セルはいくらかの空きヘッドスペース645を有する。
いくつかの実装において、導体605はセルの蓋650内のシール660を貫いて挿入できる。導体(例えば、負極用電流リード)605は剛体でありうる。シール660は剛体でなくてもよい。組立時に追加セルが追加されると、最下位セル610の導体605に(例えば、位置615において)かかる重量は最上位セル625のハウジング620の分が増える可能性がある。いくつかの例において、圧縮力の結果、シール660が(導体605およびアノード640とともに)セル610へと下がる場合、セル610と625との間の鉛直間隔は減少しうる。モジュールが互いに電気的に分離される状態を確実にするため、セルの表面にわたってスペーサ(例えば、セラミック)655を設けることで、その上のセルを支えることができる。この構成において、セルハウジングはシステムに対する主構造支持体として用いることができる。セラミックスペーサ655は、最上位セル625(および組立時に追加される任意の追加セル)の重量を支える必要性からシール660を解放することができる。いくつかの構成において、スペーサ655の上面と最上位セル625のハウジング620の底面との間に最初は隙間がありえ(例えば、スペーサの厚さは、最初は、導体が導電ハウジングから突き出る距離より若干小さくすることができる)、(1または複数の)追加セルを追加する(例えば、最下位セル610のハウジングの上面と最上位セル625のハウジングの底面との隙間が減少する)組立中に、スペーサ(例えば、セラミック)を圧縮状態に置くことができる。その結果、アノードとカソードの間の変位(本明細書では「アノード・カソード変位」ともいう)(例えば、セル610におけるアノード640とカソード630の間の組立後の最終変位)は、ある場合に、非ガス式スペーサによって決定できる。いくつかの構成において、スペーサを直ちに圧縮状態に置くことができる(例えば、スペーサの厚さを、導体が最初に導電ハウジングから突き出る距離より若干大きくする場合)。
鉛直方向に直列に積層されるセルどうしは、650から640までの高さ、および/またはアノード・カソード変位(ACD)が655の寸法許容差によって決まるように、直接的な(例えば、柔軟性のない(hard))電気的接続を介して連結できる。いくつかの例において、650から640までの高さは、少なくとも約3ミリメートル(mm)、少なくとも約5mm、少なくとも約7mm、少なくとも約10mm、少なくとも約15mm等とすることができる。いくつかの例において、ACDは約3mm、約5mm、約7mm、約10mm、約15mm、またはそれより大きい値とすることができる。図6は、かかる接続が構成される様子の一例を示している。
鉛直方向に直列に積層されるセルどうしは、セル接続1つ当たりの抵抗値が例えば約100ミリオーム(mΩ)、10mΩ、1mΩ、または0.1mΩ未満に下がるような、直接的な電気的接続を用いて接続できる。図6は、かかる接続が構成される様子の一例を示している。図6はまた、異なるCTEを用いたシール接続の例を提示している。
複数のセルパックをさまざまな構成で直列および並列に連結してコア、CE、またはシステムを構成することができる。電気化学セルの各種グループの数および配置は、所望のシステム電圧ならびにエネルギー貯蔵容量を得るように選択できる。そのパック、コア、CE、またはシステムを高温断熱でまとめて密閉し、それによって、充電および/または放電中にセルから提供される(例えば、放出される)エネルギーを用いて自己加熱できるシステムを構築できる。例えば、図7はパックを構成する様子の一例であり、ある面内の複数のセルパックが並列または直列に互いに接続される(705)一方、パックが直接上下に直列に接続される(710)様子を示している。
(例えば、ろう付けや溶接等の直接接続でありうる、1つのパック内のセル間接続とは異なり、)パックそれ自体を1つ以上のバスバーを介して鉛直方向および水平方向に互いに接続することができる。ある場合において、バスバーは(例えば、昇温および動作の全期間を通してシステムの非等温膨張に対応するために)可撓性であるか、または可撓性部分を備える。ある場合において、バスバーは、柔軟な(compliant)相互接続要素(例えば、編組の金属もしくは金属合金、または湾曲したシート状金属)を含むか、またはかかる要素を介して接続される。かかる要素はバスバー(の残り部分)と同じ材料を含んでもいいし、含まなくてもよい。上記バスバーおよび/または柔軟な相互接続要素は、導電性材料(例えば、ステンレス鋼、ニッケル、銅、アルミニウム−銅基合金、またはその任意の組み合わせ)を含むことができる。パックは、(例えば、そのパックを追加パックと相互接続できるように)他の、もしくは追加的な相互接続をさらに備えうる、もしくは形成しうる。いくつかの実装において、バスバーはパックレベルの電気的接続/相互接続を提供するために使用されうる(例えば、パックレベルの電気的接続/相互接続に対してバスバーのみを使用するようにしてもよい)。
バスバーはセルとの電気的接続を並列連結の形で行う(例えば、セルの並列連結体、パックの並列連結体、等)ために使用できる。いくつかの例において、バスバーは一群のセルもしくはセルモジュールを並列連結構成に構成するために使用できる。その方法として、バスバーはそれらのセルもしくはセルモジュールのすべてにおいて同じ端子(例えば、セルもしくはセルモジュールのすべての負端子、あるいはセルもしくはセルモジュールのすべての正端子)と電気的に接続される。例えば、正極バスバーおよび/または負極バスバーを使用しうる。正極バスバーはハウジングに接続できる。また可撓性である必要があってもいいし、なくてもよい。いくつかの場合には、正極バスバーを使用しなくてもよい。負極バスバーをセル本体(例えば、パック内の個々のセルのセル本体)の1つ以上の内部(または表面上)の特徴部と結合し、強固な電気的接続を行うことができる。ある場合において、負極バスバーを導電フィードスルー(例えば、負極用電流リード)に取り付けることができる。ただし、その場合は熱膨張に備えて柔軟性がいくらか必要になりうる。例えば、比較的剛性のバスバーコアと上記フィードスルーとの可撓性接続が、フィードスルーとバスバーとの間の柔軟な特徴部(例えば、1つまたは複数のスパイラルアームを備えたスパイラルパターン)を用いて実現しうる。ある場合において、バスバーは十分に柔軟であり、柔軟な特徴部が不要でありうる。セルが鉛直方向に互いに上下に積層される構成では、セル積層体(例えば、セルパック積層体)の上面にあるバスバーは、負極バスバーのみを含むことが可能である(例えば、積層体の正端子が積層体の最下位セルにあることによる)。
コアは、電気的に直列および/または並列に接続される複数のパックの形態で設計されうる。コアの一部を成すパックは、熱管理下にある単一のチャンバ(本明細書では「熱チャンバ」ともいう)内に含まれ(例えば、すべてが含まれ)うる。例えば、ある一群のパックを断熱材で囲み、それによってパック(例えば、すべてのパック)どうしを良好な熱的接触状態に維持(例えば、キープ)し、かつパック(例えば、パックのすべて)を周囲環境から断熱しうる。ある場合において、コアは、断熱材の少なくとも一部分の内面近くに設けた電気ヒータ、内部加熱域の全体に分散する、および/またはセルパックに接続された電気ヒータ、またはその組み合わせを含む。コアは、フレーム(例えば、内部金属フレーム)をさらに備えうる。ある場合において、パックは、鉛直および/または水平方向の積層体の形態に配置されたトレイ上に配置される。各トレイはパックに対する機械的な支持を提供できる(例えば、トレイはフレームを備えることができる)。複数のトレイ(例えば、2、3、4、5、10、15、20、25、30、またはそれより多いトレイ)をコアに組み立てることができる。トレイはコア内の内部金属フレームによって支えることができる。
断熱材および/またはフレームは、本明細書に記載するセルのさまざまなグループに対して提供されうる。断熱材および/または(1または複数の)フレームは、ある一群のセルが冷却可能なように、断熱材が除去可能なように、およびセルの個々の、もしくは複数群のサブグループ(もしくは個々のセル)を切り離し、除去、および/または交換可能なように、構成しうる。例えば、断熱材および/またはフレームは、コア(および/または本開示の任意のシステム)が冷却可能なように、断熱材が除去可能なように、個々の、もしくは複数群のパックをコアから切り離しおよび除去して1個のパックを切り離し、除去、および交換可能なように、またはその任意の組み合わせが可能なように、設計しうる。ある場合において、トレイはコアから切り離しおよび除去して、1個のパックを切り離し、除去、および交換可能なように、またはその任意の組み合わせが可能なようにできる。動作を再開できるよう、その後にコアを組み立て直して動作温度まで加熱することができる。断熱材および/またはフレームは、個々のセルもしくはその(1または複数の)部分、セルのグループ、または(1または複数の)かかるセルを含む装置もしくはシステム、の熱管理(例えば、モジュール式の熱管理)ができるようにさらに構成しうる。
[熱管理]
本開示の、上昇温度もしくは高温で動作するシステム/装置(例えば、電池等のエネルギー貯蔵装置)は、熱管理システムを含むことができる。ある場合において、上昇温度装置は高温装置でありえ、またその逆もありうる。いくつかの例において、エネルギー貯蔵システム/装置は複数の電気化学セルを備えることができる。各電気化学セルは、負電極と、電解質と、正電極と、を含むことができる。負電極、電解質、および正電極の少なくとも1つは電気化学セルの動作温度において液体状態とすることができる。
いくつかの実装において、本明細書中の装置(例えば、電池)の熱管理は、正常動作中の過断熱(過剰な断熱を行うこと)および冷却を含みうる。加熱は装置の始動時に行うことができる。例えば、1つ以上のセル(セルはセルの1つ以上のグループに体系化されうる)を備えた電池を含む電池システムの始動時に、(例えば、1つ以上のセルの金属電極および/または電解質の少なくとも1つが溶融するために、および/または電池が機能するために)加熱を実施することができる。加熱は任意の形態のヒータを用いて実現しうる。ヒータの例として、例えば、電力源(例えば、送配電網を経由した発電機、バックアップ用電池システム、ディーゼル発電機等のオンサイト発電機、風車タービンや太陽光システム等の再生可能発電機)からの電気エネルギーを変換する電気抵抗式ヒータが挙げられる。システムの加熱完了後にもシステムに対して加熱を行うことができる。その目的は、充電、放電、および/または休止の動作モード中、または長期休止期間中、もしくは規則的な(もしくは正常な)または意図した動作パワーレートより低いパワーレートで電池の充電および/または放電が行われる期間中に、システムの温度を管理することにある。電池がその動作温度付近またはそれより高温にあるとき、電池は電池内に貯蔵したエネルギーから電力を供給することによって電池自身を温かい温度に維持できうる(例えば、電池はそれ自身のヒータにそのエネルギーを放出しうる)。電池の断熱は、ひとたび加熱されれば、遊休時間中(例えば、電池が充電も放電も行っていないとき)は電池が(例えば、電池の熱チャンバ内で)熱を保持するように設計できる。しかし、電池の動作中は、ある場合において熱チャンバが過熱しうる。サイクル期間中(例えば、電池の充電中および/または放電中)の装置の温度(例えば、装置チャンバもしくは容器内の温度)を調整するため、熱管理システムが(例えば、高温域の冷却のために)使用できる。セルの構成要素は動作のために熱を必要としうるため、セルおよび/またはセルのグループ(例えば、パック)を過度に断熱してできるだけ多くの熱を捕捉して保持する一方で、所与の(例えば、最適な)熱境界の維持を助けるために1つ以上の熱管理流体に自然運動もしくは強制運動を行わせる(1または複数の)機構を提供するように、システムを構成しうる。この(1または複数の)機構は、熱管理システムによって作動させうる。かかる作動式冷却機構は、高いシステム信頼性、性能のロバスト性、および高効率動作を可能にしうる。ある場合において、この(1または複数の)冷却機構は、作動式の受動型冷却を含みうる(例えば、通気口/対流チャネルを開く、通気口/弁を開いて自然対流によるシステム冷却を可能にする)。ある場合において、この(1または複数の)冷却機構は、能動型冷却を含みうる(例えば、熱管理流体の流れを開始する、もしくは増やす)。ある場合において、冷却機構は作動式の受動型冷却と能動型冷却の組み合わせを含みうる。
一例において、システムがシステムの内部温度を規則動作中でのシステムの動作温度よりも高い温度に(例えば、標準動作温度よりも高い温度に)上げることができる量の断熱材をシステムは備える。システムは、アクチュエータ、例えば、弁もしくはリフトゲート等を作動させることにより、内部温度をほぼある所与の(例えば、所望の)動作温度に、または同温度より約10℃、20℃、50℃、100℃、もしくは200℃低い温度以内に維持し、それにより、自然対流によって駆動される1つ以上の流体流通路を流体(例えば、熱管理流体)が貫流可能にしうる。システムは、正常/規則動作下において自己発熱しえ、かつその動作温度の維持のために作動式の受動的冷却による冷却を必要としうる。
いくつかの実装において、熱管理システムは、(例えば、設置地域における自然災害等によって電池システムの緊急シャットダウンが求められる状況において)緊急冷却のための機構を提供しうる。緊急冷却は、1つ以上の特定信号を受信したときに熱管理コンピュータシステムによって起動されうる。かかる(1または複数の)信号は、システム(例えば、電池システム、または電池システムを包含するより大規模なシステム)内から受信される(1または複数の)信号、および/または緊急冷却手続きを開始するべき旨を示す(1または複数の)外部信号(例えば、地震警報)を含みうる。緊急冷却は、熱を電池システムから熱管理流体および/または環境(例えば、周囲大気)中に放出/排出する1つ以上の機構を備えうる。例えば、緊急冷却は、熱管理流体の流量の増加、システム内の(1または複数の)通気口もしくはその他の(1または複数の)熱除去構造体の部分もしくは完全開放、および/またはシステムから除去可能な熱エネルギーが増えるように、システムに供給される熱管理流体の温度を変更する過程を含みうる。
かかる(1または複数の)機構を実装するように構成される(例えば、電池システム内の)熱管理システムは、電池のフレーム(例えば、支持フレーム)内に組み込み、(1または複数の)熱管理流体がシステム(例えば、電池システム)内を貫流するようにできる。ある場合において、熱管理流体はどのセルまたはセル構成要素にも接触することなくシステム(例えば、電池システム)内を貫流しうる。ある場合において、かかる機能/機構は、電池もしくはその一部の1つ以上の構造部材(例えばコアの構造支持部材、例えばフレーム等)と一体的に(integrally)形成され(例えば、同構造部材に組み込まれ)うる。ある場合において、かかる機能/機構は、1つ以上の構造支持部材(例えば、コアの構造支持部材)に取り付けられうる。ある場合において、構造支持部材は(例えば、構造支持を提供するとともに、必要に応じて排熱する機構を提供する)両用構成要素として設計できる。
高温セルを備えた高温システム(例えば、コア)の動作時、セルは充電および/または放電過程中に発熱しうる。システムがある期間内に連続的に、十分な頻度で、および/また十分な稼働強度(intensity)(例えば、十分に高い充電/放電速度)で運用される場合、および充電および/または放電過程を通して生じる熱が(例えば、セルの1つ以上のパックを囲む断熱材によって)少なくとも部分的に閉じ込められるようにシステムが構成されている場合、そのようなシステムは、追加的な熱を(例えば、電気ヒータの使用によって)付与しなくても、セルをその動作温度またはそれより高い温度に連続的に維持しうる。ある場合において、正常または規則的な(例えば、意図した)動作(例えば、5時間の充電、続く7時間の休止、続く5時間の放電、続く7時間の休止を毎日繰り返す)を通して生じる熱の量は、環境中に失われる熱の量と同等でありうる。
正常または規則的な動作は、充電/放電動作の1つ以上の測定指標、例えば、全体的な(例えば、平均)充電/放電速度(例えば、満充電に要する時間、完全放電に要する時間)、充電もしくは放電されるエネルギーの量(例えば、充電/放電時におけるエネルギー貯蔵容量の変化)、および/またはエネルギー効率(例えば、ある期間にわたるエネルギー効率)等を含みうる、または上記測定指標で定義されうる。動作パラメータ(例えば、充電もしくは放電速度)は経時的に変動しうる。そのため、動作の測定指標は平均または全体的な値で提供されうる(例えば、たとえ放電速度が経時的に変動する場合でも24時間の平均放電を指定しうる;充電/放電プロファイルにかかわらず、同じ充電の状態に戻ったときにシステムは充電/放電についてある所与の測定指標を有しうる)。かかる(1または複数の)充電/放電測定指標を有するシステムは、自己発熱しうる(例えば、かかる条件下での充電/放電時、非効率性によってエネルギーの一部が放散して必要な熱を供給しうる)か、またはある所与量の追加エネルギー(例えば、送配電網に放電されるエネルギーの約10%未満)を使用して熱を供給しうる。
正常または規則的な動作は、少なくとも約1時間、2時間、3時間、4時間、5時間、6時間、7時間、8時間、10時間、12時間、14時間、または20時間でシステムを(例えば、最低から完全もしくは最大充電に)満充電できる速度でシステムを充電する過程を含みうる。正常または規則的な動作は、少なくとも約1時間、2時間、3時間、4時間、5時間、6時間、7時間、8時間、10時間、12時間、14時間、または20時間でシステムを完全に放電できる速度でシステムを(例えば、完全もしくは最大充電から最低充電に)放電する過程を含みうる。正常または規則的な動作は、約1時間未満、約2時間未満、約4時間未満、約6時間未満、約8時間未満、約12時間未満、約14時間未満、約18時間未満、約20時間未満、約24時間未満、約36時間未満、または約48時間未満の期間システムを充電および/または放電する過程を含みうる。正常または規則的な動作は、システムの充電および/または放電中に通過した蓄積電荷もしくはエネルギー(例えば、1回の充電および/または放電サイクル、または複数の充電/放電サイクルによる蓄積エネルギーで、例えば、1Whの充電、1Whの放電、1.5Whの充電、および1.5Whの放電、したがって全体で2.5Whの放電(すなわち、1Wh+1.5Wh)を行うことによるもの)を含み、それによってその定格エネルギー貯蔵容量の少なくとも約10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、100%、110%、125%、150%、175%、200%、250%、300%、400%、500%、750%、1000%、2000%、5000%、または10,000%であるエネルギー量をある所与の期間(例えば、約2週間、1週間、4日、48時間、24時間、12時間、8時間、4時間、または1時間以下)以内に(例えば、送配電網に)放出しうる。システムは、部分的および/または完全な放電および/または充電サイクルをある所与の期間内に複数回行うことにより、その定格エネルギー容量より多くのエネルギーをその所与の期間内に放出しうる)。正常または規則的な動作は、ある所与の(例えば、いくらかの)期間にわたって休止する過程を、充電および/または放電の間に含みうる。休止期間は、約1時間、2時間、3時間、4時間、5時間、6時間、7時間、8時間、10時間、12時間、14時間、18時間、20時間、24時間、36時間、または48時間未満でありうる。システムは、ある所与の平均効率のもとでかかる充電/放電の測定指標で運用されうる。例えば、全体的なDC間エネルギー効率は少なくとも約30%、40%、50%、60%、70%、80%、90%、95%、または99%でありうる。正常または規則的な動作は、あるエネルギー蓄積量(例えば、その定格エネルギー容量の少なくとも約50%、その定格エネルギー容量の少なくとも約80%)を放電する過程、あるエネルギー蓄積量(例えば、その定格エネルギー容量の少なくとも約50%、またはその定格エネルギー容量のなくとも約80%)を充電する過程、ある期間にわたって休止しない、もしくは、充電/放電、および/または充電/充電、および/または充電/放電の動作モードの間のある蓄積期間(例えば、約20時間未満、約16時間未満)にわたって休止する過程、あるDC間往復エネルギー効率(例えば、約90%未満、約80%未満、または約70%未満)を達成する過程、および/またはある所与の期間(例えば、約48時間未満もしくは約24時間未満)以内にかかる充電/放電の測定指標で動作する過程、を含みうる。
かかるシステムは、システムがこのように動作しているかぎりにおいて、そのセルを、ある所与のセル動作温度(例えば、目標セル動作温度)またはそれより高い温度に維持可能でありうる。このように、好適な量の断熱材を提供することにより、および他の熱損失経路を介して(例えば、断熱材経由ではなく、通気口、熱管理流体、等を介して)熱損失を管理することにより、電池システムは、発生する熱と環境中に放出される熱とがバランスするように構成できる。ある場合において、好適な量の断熱材を提供することにより、他の熱損失経路を介して(例えば、断熱材経由ではなく、通気口、熱管理流体、等を介して)熱損失を管理することにより、さらにはシステムを規則的に(例えば、連続的に、高頻度で)稼働させることにより、電池システムは、発生する熱と環境中に放出される熱とがバランスするように構成できる。
ある場合において、セル内には(例えば、長期的な)不活動の期間(例えば、セルが充電も放電もしていない期間)が存在できる。断熱材は、(例えば、セルの充電もしくは放電によっても熱が生じていないときに金属電極を溶融状態に維持するために)セルからの熱損失を防止するために使用できる。断熱材は、セルが不活動のとき、および/またはヒータによる補足的な加熱力が供給されないときに、ある所与の期間(例えば、ある有限の期間、例えば、少なくとも約30分、1時間、2時間、4時間、6時間、8時間、10時間、12時間、18時間、24時間、2日、5日、10日、20日、1カ月、またはそれより長い期間)にわたってセルを動作温度またはそれより高い温度に維持するように設計しうる。
ある場合において、システム(例えば、電池システム等のエネルギー貯蔵システム)は、システムが(例えば、本来意図される、もしくはシステム仕様によって指定されるものより、正常または規則的な動作より)低い規則性、および/または低い稼働強度で使用されるときでさえ、加熱しなくても動作するように設計しうる。システムの動作の規則性の指標は、ある場合において、ある所与の(例えば、指定の)期間中におけるシステムの使用のパーセンテージに基づきうる。例えば、システムが能動的に充電および/または放電しうる期間は、所与の期間の約99.5%、99%、95%、90%、85%、80%、75%、70%、65%、60%、55%、50%、45%、40%、35%、30%、25%、20%、15%、10%、5%以下、またはそれより低い値以下である(例えば、電池は3日間にわたる時間の約20%未満において充電または放電モードでありうる)。システムの動作の稼働強度の指標は、ある場合において、ある所与の(例えば、指定の)期間中における平均充電または放電電力をその最大定格電力容量に対するパーセンテージで表した値に基づきうる。この所与の期間は休止(例えば、定格電力の0%)の期間を含みうる。例えば、システムは、所与の期間において、その定格電力の約99%、95%、90%、80%、70%、60%、50%、40%、30%、20%、10%、5%、1%以下、またはそれより低い値以下の平均充電または放電電力を有しうる。いくつかの例において、所与の(例えば、指定の)期間は、少なくとも約1時間、2時間、5時間、10時間、12時間、24時間、36時間、2日、3日、4日、5日、1週間、2週間、または4週間に等しいか、またはそれ以上でありうる。
正常に/規則的に動作するとき(例えば、少なくとも2日に1サイクル、もしくはそのエネルギー容量の少なくとも50%が少なくとも2日ごとに放電されるようにサイクル動作するとき)、システムは断熱材によって(例えば、完全に)自己発熱できうる。例えば、少なくとも2日に1回の頻度で充電および放電(またはサイクル動作)を行うとき、システムは断熱材によって自己発熱構成において連続動作が可能である。いくつかの例において、正常/規則動作は、少なくとも1日、2日、3日、4日等に1回のサイクル動作(かかる動作に関わる充電/放電の測定指標の一例)を含みうる。
その場合(例えば、不活動の期間中、あるいは、より低い規則性、またはより低い稼働強度で用いられるとき)、熱損失速度を向上させ、それによって過熱を防止するために、過剰量の断熱材(例えば、熱損失速度の低減)ならびに作動式の受動的冷却、例えば、弁、リフトゲート、もしくは(1または複数の)その他の熱除去機構の開放、を行う能力をもつようにシステムを構成することが望ましいかもしれない。ある場合において、システムの熱維持区域(例えば、熱チャンバを備えた区域)の外側から空気を輸送できる、システム内の冷却チャネルを作動させ、システムの(例えば、内部の)1つ以上の(例えば、専用)チャネルを空気が移動するようにしうる。システム内で加熱された空気は、システムの1つ以上のチャネルを通ってシステムの外に(例えば、安全に)流出できる。このとき、強制空気対流システム(例えば、ファン、ブロワ、エアハンドラ等)を用いてもいいし、用いなくてもよい。ある場合において、空気輸送チャネルは、熱除去機能が作動するときに自然対流が生じるように構成しうる。
不活動の期間中、あるいは、より低い規則性、またはより低い稼働強度で用いられるとき、システムは、システムに熱を付与しなくても、ある所与の温度(例えば、ある所定の最低動作下限温度、例えば、少なくとも約300℃、350℃、400℃、450℃、475℃、500℃、550℃、または600℃等)より高い温度で継続して動作し(または「休止」動作モードで存在し、いつでも充電もしくは放電できる状態にあり)うる。したがって、高温電池のロバストシステム設計は、システムの過断熱と作動式の受動的冷却の実施とを含みうる。かかるシステム構成は、不活動の期間中、および/またはより低い規則性/稼働強度での使用中に、より効率的な動作を可能にしうるとともに、正常に(例えば、セルが充電もしくは放電される活動期間中、および/または規則的/高い稼働強度での使用中に、意図したとおりに)動作するときに効率的な動作を可能にしうる。過断熱と作動式の受動的冷却は、ある場合において、システムがより低い規則性またはより低い稼働強度で用いられる期間に、より高い効率となりうる(例えば、最も効果的に利用されうる)。
熱管理システムは、過熱防止のため(例えば、特にシステムが断熱されうるため)、充電および/または放電中に生じる熱を(例えば、能動的冷却もしくは作動式の受動的冷却を用いて)放散する必要がありうる。例えば、熱管理システムは、正常な/規則的な充電中、および/または、より強い電力放電中に生じる熱を放散するように構成できる。ある場合において、休止期間中、および/または低い稼働強度での動作中(例えば、低い充電および/または放電速度での動作時)にシステムを最低動作温度より高い温度に維持するため、ヒータを用いてシステムに熱を付与することができる。
[フレームを用いた熱管理]
熱管理システムは、冷却用コンジットとして構成される、装置の1つ以上の構造部材の助力のもとで、実装されうる。ある場合において、熱管理システムは、装置上の1つ以上のフレームの助力のもとで、実装されうる。本明細書には、例えば高温電池等の、上昇温度もしくは高温装置における(1または複数の)熱管理用コンジットを備えたフレーム構造体の例をいくつか記載している。
本開示のエネルギー貯蔵システムは、複数の電気化学セルの少なくとも一部を支持するフレームを備えることができる。フレームは、熱管理流体を上記複数の電気化学セルの少なくともサブセットと熱的に連通させる1つ以上の流体流通路を有することができる。熱管理流体は任意の好適な流体とすることができる。これには、空気、浄化/清浄化空気、ガス(例えば、ヘリウム、アルゴン、超臨界CO)、オイル、水、溶融塩、または蒸気が挙げられるが、これらには限定されない。ガスの例として、アルゴンまたは窒素が挙げられる。ある場合には周囲空気を使用しうる。ある場合に、熱管理流体は大きい熱容量を有する。
図8は、電池(例えば、液体金属電池)等のエネルギー貯蔵装置のフレーム801構造体を熱管理流体が流れる例を示す。フレームは、装置内もしくは装置を備えたシステム内に1つ以上の機能(例えば、複数のクリティカルな機能)を有しうる。かかる(1または複数の)機能の例として以下のものが挙げられるが、これらには限定されない:(i)装置/システム内のセルおよび/またはセルのグループ(例えば、モジュール、パック、および/またはコア)に対して機械的な支持を提供する、(ii)セルまたはセルのグループが互いに直接短絡しない、または接地された接続部と短絡しないようにする、(iii)セルおよび/またはセルのグループ(例えば、モジュールおよび/またはパック)と他の電気的に活性でない構造部材との間に絶縁性を維持する、および/または(iv)電池(または電池システム)の熱管理を助けるために熱管理流体が流れる経路を提供する。ある場合において、フレーム801はフレーム要素805(例えば、フレームを構築するためにつなぎあわせることができるフレームの個片)を含む(例えば、同個片で構築する)ことができる。フレーム要素805は、例えば、管、パイプ、または筒型トラスを含むことができる。フレーム要素は互いに溶接できる。ある場合において、フレーム801は一体的に形成できる。ある場合において、フレーム801および/またはその(1または複数の)部分は装置/システム内の他の(1または複数の)フレームと連結できる。ある場合において、熱管理流体の流通路はフレーム構造体の1つ以上の部分と溶接、または他の方法で接続もしくは連結しうる。例えば、フレーム801もしくは個々の(1または複数の)フレーム要素805上の1つ以上の流体導入口または放出口に対して外部配管を連結しうる。(1または複数の)流体導入口/(1または複数の)放出口は、フレーム内または(1または複数の)フレーム要素内の流体流コンジットと流体連通しうる。
フレームは任意の好適なサイズまたは形状とすることができる。ある場合において、フレームは矩形の箱であり、例えば、図8に示すように任意の数の鉛直および水平フレーム要素805を含む。フレームは、電気化学セルを直列および/または並列構成で機械的および/または構造的に支持できる。ある場合において、フレームは、任意の数のセルを有する複数のサブセット(例えば、本明細書の別所に記載するようなセルのグループ)に電気化学セルを区分する。サブセット内の電気化学セルは並列および/または直接に接続できる。さらに、本明細書の別所により詳しく記載するように、フレームは他の(1または複数の)フレームと連結および/または他の方法で接続できる。例えば、セルのグループはフレームを含む(および/またはフレーム内部に包含されるか、もしくはフレームによって支持される)ことができ、またフレームを用いてセルのグループをより大きなユニットに組み立てることができる。組立は隣接フレーム内の流体コンジットの連結過程を含みうる。
フレーム(またはその任意の一部分)は断熱材とインタフェースするように構成しうる。いくつかの実装において、フレームは、断熱材を取り付ける拘束もしくはつなぎ位置の働きをする1つ以上の特定領域もしくは部分を含むことができる。いくつかの例において、断熱材は、フレーム(またはその任意の一部分)に恒久的に接続(例えば、溶接もしくは接合)されうる剛性の金属接続部を介してフレームに取り付けうる。他の例において、断熱材は、(例えば、点検時のアクセスや定期的な交換を容易にするために)接続点が取り外し可能もしくは交換可能となるようにフレームに接続しうる。フレームに対する断熱材の組立は、組立体の断熱領域(例えば、断熱材および/または断熱材を貫通するコンジットもしくは接続部を含む領域)が、組立体の被断熱領域(例えば、装置の熱チャンバを含む領域、またはシステムの熱維持区域)と、組立体の非断熱領域および/または周囲環境との間に直接的な熱経路を形成しないように行いうる。
絶縁体の実装は、多層構成(例えば、図12参照)を含みうる。例えば、断熱構造体(例えば、図12の断熱材の部分1200等)は、少なくとも約1、2、3、4、5、6、7、8、9、10、12、14、16、18、20、25、30、35、または40の層を含みうる。これらの層(またはその任意のサブセット)は、同一、類似(例えば、化学的に類似の材料を含む、もしくは少なくとも約10% 40%、50%、60%、70%、80%、または90%の共通材料を含む混合物を含む)、または異なる材料で、形成されうる。ある場合において、ある所与の断熱構造体内の層の少なくとも約、または約5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、または100%、またはほぼいずれかの値未満、は同一または類似である。ある場合において、層構造は断熱性能を補強しうる。例えば、層間の空気もしくは結合材料の薄膜は、追加的な断熱界面を形成しうる。
フレームは、上記複数の電気化学セルの少なくともサブセットを含有するチャンバを含むことができる。フレームまたはチャンバは、任意の数の電気化学セル(例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、またはそれより多い個数)を含有できる。ある場合において、フレームまたはチャンバは、少なくとも約5、少なくとも約10、少なくとも約20、少なくとも約30、少なくとも約40、少なくとも約50、少なくとも約60、少なくとも約80、少なくとも約100、少なくとも約200、少なくとも約300、少なくとも約400、少なくとも約500、少なくとも約600、または少なくとも約700個の電気化学セルを含む。チャンバは熱チャンバとすることができる。ある場合において、フレームまたはチャンバは複数の熱チャンバを含むことができる。
図8を引き続き参照すると、フレームは1つまたは複数の流体流通路を含むことができる。いくつかの実装において、それらの流体流通路は並行でありうる。例えば、並行流体流通路は複数備わりうる。流体流通路の少なくとも一部分は(例えば、本開示の制御システムによって)別々に制御可能でありうる。かかる制御は、1つ以上の流通路の開放/閉止、(1または複数の)流量の制御もしくは維持、流体温度の制御もしくは維持、等を含みうる。例えば、並行流体流通路の少なくとも2つの流体流量(例えば、質量流量、体積流量)を別々に制御可能にできる。熱管理流体は例えば810において1つ以上の開口を通って流体流通路に入ることができる。流体はその後、任意の数の(例えば、直交、並行)流体流通路805を通ってフレームを流れることができる。個々の流体流通路は、円形、正方形、長方形、卵形(oval)、または他の好適な形状の断面形状を有しうる。流体流通路は、約0.1cm未満、約0.5cm未満、約1cm未満、約2cm未満、約5cm未満、約10cm未満、約20cm未満、約50cm未満、または約100cm未満の断面積を有しうる。流体は例えば815において1つ以上の開口を通って流体流通路を出ることができる。代替的な構成において、流体は815においてフレームに入り、810において出ることができる。さらに、それに代わりって、もしくはそれに加えて、流体は、フレームの任意の外面もしくは境界において(例えば、導入口/放出口810または815を含む外面/境界に直交もしくは隣接する外面において)フレームに入る、および/またはフレームを出ることができる。ある場合において、熱管理流体は第1の開口を通ってフレームに入り、複数の流体流通路に分割され、第2の開口を通って流出する。ある場合において、熱管理流体は2つ以上の異なる開口を通ってフレームに入る。熱管理流体は、各流通路内の流体を隔てる異なる熱流通路(例えば、それぞれが1つ以上の異なる開口、例えば、別個の導入口および/または別個の放出口等、と流体連通するもの)を流れうる。それにより、システムは各流通路の流体流量を別々に制御可能となる(例えば、それぞれがそれ自身の流体流制御アクチュエータ、例えば、ライフゲートまたは弁等によって制御される)。かかる流体制御は、本開示の方法を実施するように構成された制御システム(例えば、図11のシステム1100)の助力のもとで実現されうる。
ある場合において、熱管理流体は電気化学セルと接触しない(例えば、熱管理流体はフレーム要素内に保持できる)。フレームは、プラスチック、アルミニウム、鋼、またはステンレス鋼を含む任意の好適な材料から製造できる。フレームは耐食性を有することができる。ある場合において、フレームは熱管理流体と接触し、かつ熱管理流体に対して化学的耐性を有する。本開示は、フレームの複数の使用法(「複合使用」)を実現する。これには例えば、高温域の中央と直接的に接触し、装置/システムの最高温点から熱を吸収する(例えば、熱を除去する)ことが含まれる。ある場合において、熱管理流体はセルとは接触しない(例えば、それにより、セルの寿命が延び、かつシステムの複雑さが低減する)。フレームは、反応性物質(例えば、反応性金属)、例えば、電気化学セルに用いられる反応性金属等、に対して化学的耐性を有する(例えば、そのことにより、電気化学セルの1つに漏れが生じた場合にも、フレームはその構造を維持できる)。
フレームは、熱伝達を選択的に加速する特徴もしくは特性(例えば、形状的特徴)を有することができる(例えば、フレーム要素の厚さまたは組成、および/または(1または複数の)流体流通路の断面積もしくは直径を変えることで、電気化学セルと熱管理流体との間を通過する熱量を増減できる)。例えば、フレームもしくはその一部の寸法(例えば、フレーム内の流体流通路の厚さ、断面積、もしくは直径、またはフレーム全体の熱質量)を、(例えば、システム内でのフレームもしくはフレームの一部の位置に従って)熱伝達を選択的に加速するように構成できる。さまざまな形状的特徴によってさまざまな構成の熱管理流体ルーティングが可能になりうる。ある場合において、流体流通路をセルの間またはセルのグループの間(例えば、パックの間)にルーティングすることで、システムからの選択的な熱除去が可能になりうる。ある場合において、流体は1つ以上のセルハウジング(もしくはその一部)、またはフレーム、相互接続部、もしくは個々のセルもしくはセルのグループに関わるその他の構造部材もしくは熱伝達部材上に、直接ルーティングできる。ある場合において、流体は、ダクト、管、フィン、またはその他の熱伝達部材を介してルーティングしえ、かつ同部材は1つ以上のセルハウジング(またはその一部)と接触するか、またはフレーム、相互接続部、もしくは個々のセルもしくはセルのグループに関わるその他の構造部材もしくは熱伝達部材と接触する。
システムは断熱可能である。ある場合において、断熱材がフレーム(またはフレーム要素)を囲む、および/または(1または複数の)流体流チャネルの内部に提供される。流体流チャネル内部の断熱材は、熱伝達流体(本明細書では「熱管理流体」ともいう)と流体流チャネル(例えば、ステンレス鋼フレーム)の1つ以上の構造部分との間に断熱を提供できる。断熱材はシステムの熱管理を促進するように分散できる。システム/装置および/またはフレームの中央における、もしくは中央付近の(例えば、中央に対向する)(例えば、加熱域における、もしくは加熱域付近の)断熱材の量(例えば、体積、質量、厚さ、合計断熱能力、等)は、システム/装置および/またはフレームの周辺部における、もしくは周辺部付近の(例えば、加熱域もしくはその付近ではない、または中央とは逆の方向を向く)断熱材の量より少なくしうる。例えば、システム内の所定位置からの熱除去を助けるために、システムは流体流通路の少なくとも一部分に沿って断熱材を備えうる。任意の部分に沿った断熱材の量は、位置に応じて変化しうる。例えば、加熱域に近い、もしくは隣接する位置には最低量の断熱材が提供されうる(例えば、断熱材は、システムの加熱域に隣接する流体流通路の部分において相対的に薄い、および/または断熱材は、加熱域の中央付近もしくは中央に隣接する流体流通路の部分において相対的に薄い、および/または断熱材は、ある特定のセルのグループの付近もしくは同グループに隣接する流体流通路の部分において相対的に薄い)。
図9は、システムにおいて高温の度合いが低い部分よりシステムにおいて高温の度合いが高い部分からより多くの熱を排出するように構成された断熱材の分布例である。図に示すように、方形管910(高さ(または長さ)925および幅930を有する)の中に断熱インサート905を設け、それによって、(例えば、任意の熱管理流体流通路の長さ(または高さもしくは幅)方向に温度勾配が存在する場合に)上下領域915における管内の断熱を中央部920の断熱よりも強めるようにすることができる。いくつかの例において、装置/システム内部の、または装置/システム(例えば、パック)の一部における、温度勾配を低減もしくは最小化するために、装置/システム(例えば、コア)のある特定位置から熱を選択的に取り出すように、流通路もしくはチャネルに対して断熱材を内張りすることができる。
ある場合において、システムはダクト管を備える。図10を参照すると、電気化学セルのグループ1010(例えば、フレームによって囲まれたもの)の間にダクト管1005を設けることができる。ダクト管には(例えば、フレームを流れる熱管理流体に加えて、もしくは代わりって)熱管理流体を流すことができる。フレーム要素を流れる熱管理流体は、ダクト管を流れる流体と同じまたは異なるものとすることができる。断熱材の端もしくは隙間に沿って、または断熱材を貫通するように、追加的なダクト管を追加できる。いくつかの例において、1、2、3、4、5、6、7、8、9、10、12、14、15、16、18、20個、またはそれより多い水平、鉛直、螺旋形、湾曲型、および/またはその他のダクトが提供されうる。
流体ダクト、流体流通路(例えば、大容量流通路および小容量細管)、および直接流体接触界面は、さまざまなサイズおよび容量(例えば、流体流量、流体種別、セルハウジング材料、ダクト材料、流体流通路材料、等によって決まる熱伝達能力、の熱伝達要素/界面の階層体系を形成できる。異なる領域もしくは状況には異なる種類の熱伝達要素が好適でありうる(例えば、流通路および/またはダクトのサイズは流体と(1または複数の)セルの温度差に応じて構成されうる、または好適な構成は動作温度に基づいて選択されうる)。
システムは、フレームおよび/またはダクト管の1つ以上の流体流通路に熱管理流体を通すように構成および配置される流体流通系をさらに備えることができる。流体流通系はポンプ、ファン、ブロワ、および/または熱管理流体を移動させるその他の好適な装置を備えることができる。流体流の誘導に使用する装置は、流体流通路の導入口付近の低温域、流体流通路の放出口付近、またはシステムの高温域の内部と流体流通路の内部もしくは周辺に、設けることができる。ある場合において、流体流通系は、個々の流体流チャネルもしくは流通路を通して熱管理流体を移動させる、複数のポンプ、ファン、ブロワ、および/またはその他の好適な装置を備えることができる。例えば、ポンプもしくはファンは個々の流体流通路に対して設けることができる。別の例において、流体は、互いに流体連通された複数の(例えば、並列の)流体流通路を、流通路の1つの内部もしくは位置に設けられたポンプもしくはファンによって貫流させられうる;残りの流通路を流れる流体移動は、ベンチュリ効果によって生じうる。ある場合において、流体流(例えば、冷却)流通路への流体の流入を可能にする前(例えば、流体の流入を認める前)に、システムへの熱衝撃を防止するために流体の前処理(例えば、予熱)が行われうる。
いくつかの例において、流体流通系はシステムの高温域内のある特定もしくは異なる領域に対して個別の熱制御を実施できる(例えば、システムは1、2、3、4、5、6、7、8、9、10、12、14、16、18、20、25、30、35、40、50、またはそれより多い個別の制御区域を備えうる)。ある場合において、流体流チャネルは、セルの1つ以上の特定グループ(例えば、パックまたは一群のパック)の目標のある熱管理(例えば、冷却)を行うように構成できる。高温域内の特定領域に対して熱制御を行うことで、熱管理/制御システムは、システム全体(例えば、電池、および/または電池を含むシステム)の等温性を向上させうる。それにより、システム内の温度勾配の存在およびシフトによって生じうるシステムへの応力が低減もしくは最小化される。
いくつかの実装において、流体流通系は常時動作する。例えば、流れが完全に停止した場合、ファン(流体流通系の構成要素の一例)および/または流体流通系の(1または複数の)その他の構成要素が過熱および/または溶解することがある(したがって、例えば、ファンには550℃の環境に適合した定格が求められる)。そのため、システムは遊休期間中に少量の空気流を(例えば、装置もしくはシステム(例えば、コア)の底部において)緩衝域として維持し、それによって流体流(例えば、冷却)流通路もしくは管の内部にわずかな正圧(または過剰圧力)を生成しうる。これにより、システムの底面(または、ある所与の面)を通した熱損失が最小限になり、かつファン(および/または流体流通系の(1または複数の)その他の構成要素)が確実に十分に低温に維持される(例えば、ある指定の低温域内、またはある所与の最高もしくは定格温度未満に確実にとどまる)。ある場合において、少量の空気流はファンによって提供される。
いくつかの実装において、流体流通系は(例えば、能動的に流体を流体流通路に強制流入させるファン、ブロワ、またはポンプがなくても)受動的に動作する。装置もしくはシステムを流れる熱管理流体の運動は主として自然対流によって駆動できる。例えば、システムは、ガスもしくは空気を加熱されるシステム空洞部(例えば、熱チャンバ)へ流入、および/または、同部から流出可能にする、流体流通路の導入口および/または放出口に、弁、ダンパ、または「リフトゲート」の構成要素を備えうる。高温空気(またはガス)が上昇し、それより低温の空気(またはガス)を流体流チャンバに向けて引き下ろす現象を利用することにより、この対流過程は、高温空気を上昇させて(例えば、煙突のような)流体流通路から流出させることができる。ある場合において、自然対流は、流体流通路の導入口(例えば、流体流通路が周囲温度、外部環境からシステムの高温域に移り変わる位置)を加熱域(本明細書では「高温域」ともいう)の底部付近に位置づけることによって、また流体流通路の出口を加熱域の上面付近に位置づけることによって、有効化および/または強化される。
いくつかの例において、流体流通系は、システムもしくはシステムの一部の温度を動作温度(例えば、約150℃と750℃の間、または約450℃と550℃の間)に維持するように選択されるある調整可能な流量で熱管理流体を提供するように、構成またはプログラムされる。流体流通系は、管理/制御システムの(または管理/制御システムと通信状態にある)1つ以上のコンピュータまたはプロセッサによって制御されうる(例えば、流体流通系は熱管理/制御システムによって制御されうる)。いくつかの例において、熱管理システムと流体流通系とは、システムの全体的な信頼性向上のために冗長構成のコンピュータまたはプロセッサによって制御される。
流体流通系は、熱管理流体を提供してシステムの少なくとも一部分もしくはシステム全体(例えば、エネルギー貯蔵装置もしくはシステム)を急速冷却するように構成またはプログラムされうる。急速冷却は、非常もしくは破局的事象(例えば、セル活性成分の破局的な漏れ、火災、地震、洪水等)の場合、または計画もしくは計画外保守工程(例えば、故障セルもしくはセルパック、管理/制御システム用ボード、および/またはその他のシステム構成要素の交換を目的としたもの)の場合に、必要とされうる、および/または所望されうる。例えば、急速冷却は、システム/装置内の1つ以上のセルの(例えば、気密密閉性の喪失に至る)故障もしくは破損時に使用されうる。かかる故障もしくは破損は、熱管理を提供するように構成された制御システムによって検出されうる。ある場合において、セル破損は小規模でありえ、セルおよび/または電池性能が何日または何週間(例えば、1、2、5、10、15、もしくは20日間、または数週間)かにわたって段階的に劣化する状況が生じうる。他の場合において、セル破損はセルおよび/または電池性能における即時的な(例えば、約1、5、10、30、40、50、もしくは60秒未満以内、約1、2、5、10、20、30、40、もしくは50分未満以内、約1、2、3、4、6、8、10、12、16、もしくは20時間未満以内、または約1日未満以内の)劣化を引き起こしえ、システムは充電および/または放電を直ちに停止させる必要がありうる。セル破損によるセルおよび/または電池性能の即時的な劣化の場合、冷却過程を加速するために非常冷却工程、例えば、1つ以上のファン/ブロワの始動、および/または弁/リフトゲートの開放等を開始しうる。熱管理システムのファン/ブロワは、ある場合において、緊急冷却工程中にのみ開始されうる。ある場合において、急速冷却はシステムの温度がある所与の温度(例えば、臨界(安全)温度)、例えば、電解質(例えば、溶融塩)および/または電極(例えば、液体金属)の凝固点等を超えたとき、またはある特定の活性セル材料の可燃温度(flammability temperature)を超えたときにのみ開始されうる。いくつかの例において、臨界温度は約550℃、500℃、450℃、400℃、350℃、300℃、250℃、200℃、150℃、または100℃以上である。急速冷却は、システムの1つ以上の流体流通路における熱管理流体の流量を増加させることを含みうる。流量は選択的に制御されうる。かかる流体流通路の少なくとも一部分は、故障もしくは非常条件が検出されるシステムの部分(例えば、故障セル)に隣接しうる。
緊急冷却過程は急速冷却工程を含みうる。かかる過程(または方法)は、制御システムによって開始および/または制御されうる。その方法は、潜在的に危険な事象(例えば、地震および/またはセル破損)に応答して、エネルギー貯蔵システムの少なくとも一部分を急速冷却するために用いられうる。その方法は、システムがある所与の条件にあるとき、例えば、システム(またはその一部)がある所与の動作温度(例えば、本明細書中の任意の動作温度)以上(例えば、少なくとも約5℃、10℃、20℃、50℃、または100℃超)になったとき、またはある所与の臨界温度(例えば、臨界凝固温度)以上(例えば、少なくとも約5℃、10℃、20℃、50℃、または100℃超)になったときに実行されうる。急速冷却時、システム、装置、またはその一部(例えば、電池内の電気化学セルの少なくとも1つ)の温度は、ある所与のしきい値を下回りうる。一例において、電気化学セルの少なくとも1つにおける温度は、1つ以上のセル構成要素の凝固点を下回りうる(例えば、複数の電気化学セルにおける最高温部は、その動作温度から電解質の凝固点より低い温度まで下がることができる)。降温はある所与の期間(「冷却所要時間」)内に達成されうる。例えば、冷却は約5秒、10秒、30秒、45秒、1分、2分、5分、10分、20分、30分、45分、60分、1時間、2時間、3時間、4時間、5時間、6時間、7時間、8時間、9時間、10時間、12時間、14時間、16時間、18時間、20時間、22時間、24時間、30時間、36時間、42時間、または48時間未満で達成されうる。一例において、複数の電気化学セルにおける最高温部は、その動作温度から電解質の凝固点より低い温度に約4時間未満で低下できる。
システムから除去される熱の少なくとも一部は大気もしくは環境中に放出される(例えば、失われる)。ある場合において、システムから除去される熱の少なくとも一部は別の用途(例えば、家屋の暖房もしくはコージェネレーションによる産業プロセス、または電子部品の低温下の防止)において貯蔵もしくは使用できる。いくつかの実装において、熱エネルギーを貯蔵するように構成された循環流体流通系を含むシステムが提供できる。(例えば、装置の)1つ以上の流体流通路を循環流体流通系のある流体流通路と流体連通させることができる。循環流体流通系は熱エネルギー貯蔵媒体を含むことができる。熱エネルギー貯蔵媒体は、任意の好適な媒体を含むことができる。媒体の例として、溶融塩(例えば、本明細書に記載する任意の溶融塩)、砂利、砂、蒸気、または水が挙げられるが、これらには限定されない。熱エネルギー貯蔵媒体は貯蔵容器内に格納されうる。ある場合において、熱エネルギー貯蔵媒体は熱管理流体とすることができる。
[断熱と熱障壁]
エネルギー貯蔵装置またはシステムの構成要素の少なくとも一部(例えば、電気化学セル、セルのグループ、例えばパックやフレーム等)を、断熱境界によって、エネルギー貯蔵装置またはシステムの他の室温要素から断熱しうる。熱境界(例えば、(1または複数の)熱障壁を含む熱境界)の片側が、セルの動作にとって好適な(例えば、必要な)温度以上に維持できる(例えば、高温域)一方で、熱境界の他方側を室温もしくは周囲温度条件により近い温度に維持可能にする(例えば、低温域)、(1または複数の)熱障壁を規定することを断熱材は支援できる。
断熱材は、熱伝達に関するインピーダンス(本明細書では「熱インピーダンス」ともいう)が既知の(例えば、高い)材料を含有しうる。かかる材料は、シート、タイル、ラップ、テープ、または他の(例えば、同様の)フォームファクタでパッケージ化されえ、このとき、高温の領域(本明細書では「高温域」ともいう)の周囲にパッケージ化されうる。上で図12を参照して説明したように、ある場合において、断熱材の異なる層を同じアセンブリ(例えば、フレームの形に組み立てられた、断熱材を含むアセンブリ)内に用いてもよい。例えば、ある層は第1の熱インピーダンスを有する断熱物を使用しえ、後続の層は1つ以上の異なる熱インピーダンス(例えば、第2の熱インピーダンス、第3の熱インピーダンス等)を有する材料を含有しうる。断熱材は一群もしくはひとパッケージの構成要素を含みうる。断熱パッケージは断熱材の1つ以上の層(例えば、断熱材料の1つ以上の層)を含むことができる。いくつかの例において、断熱材の層には取り外し可能および/または交換可能な構成要素(例えば、タイル)が組み込まれうる。いくつかの例において、断熱パッケージにはモータもしくはサーボドライブによって移動可能な層が含まれえ、もしくは組み込まれえ、システムの温度管理の補助に用いられうる。例えば、制御システムはアクチュエータ(例えば、モータまたはサーボドライブ)を作動させて、断熱パッケージの断熱特性が変化(例えば、低下)するように断熱パッケージの1つ以上の部分の位置もしくは構成を変化させえ、それによってシステムの熱損失の速度を上昇、維持、または低減しうる。かかる過程は制御システムによって制御しえ、またシステムの熱管理制御の一部でありうる。
(例えば、断熱材の内側にある)電気化学セルをエネルギー貯蔵システムの(例えば、断熱材の外側にある)他の構成要素に接続するために、断熱材は、ワイヤ、センサ、および/または大電流/高電圧(例えば、セル電流もしくはセル電圧)接続部(本明細書では「接続部」と総称)が貫通できる専用の領域もしくは部分(「貫通部」)を有しうる。例えば、貫通部は、管理/制御システム(例えば、図11のシステム1100)と通信状態にあるワイヤおよび/またはセンサを保持しうる。かかるセンサは、例えば、システムの高温域に設けられた、またはシステムの高温域と熱的に連通する、1つ以上の温度センサを含みうる。いくつかの例において、貫通部は電圧(例えば、低電圧)検知ワイヤのみを保持する。電圧検知ワイヤは少量の電流(例えば、約10ミリアンペア(mA)未満もしくは約1mA未満)のみを扱う(例えば、耐えられる)ように設計されうる。いくつかの例において、貫通部は、電圧検知ワイヤ、および/または電流をセルへ/から分配するワイヤを保持する。いくつかの例において、貫通部は、バスバーに至る大電流および/または高電圧ワイヤを保持する。貫通部は、例えば、円形、長方形、正方形、卵形、または多角形の断面を有しうる。かかる貫通部は、約0.0001平方センチメートル(cm)超、約0.001cm超、約0.01cm超、約0.1cm超、約1cm超、または約10cm超)の断面積を有しうる)。
図12は断熱構造体部分1200の一例である。断熱構造体部分1200は、第1の断熱層1205と、第2の断熱層1210と、第3の断熱層1215とを備える。第1の断熱層1205の第1の表面は、高温(例えば、内側)域1225内の(もしくはそれに隣接する)フレーム(もしくは(1または複数の)フレーム要素)1220と接触できる、またはそれに隣接する位置に配置できる。フレーム1220は流通路(例えば、空気流通路)1235を含むことができる。第1の断熱層1205の第2の表面は、第2の断熱層1210の第1の表面と接触できる、またはそれに隣接する位置に配置できる。第2の断熱層1210の第2の表面は第3の断熱層1215の第1の表面と接触できる、またはそれに隣接する位置に配置できる。第3の断熱層1215の第2の表面は、外皮1230と接触できる、またはそれに隣接する位置に配置できる。外皮1230は冷温もしくは低温(例えば、外側)域1240と対向しうる。本明細書の装置の断熱材は、ある場合において、少なくとも約1、2、1、2、3、4、5、6、7、8、9、10、12、14、16、18、20、22、24、26、28、30、35、40、45、50、75、または100の断熱構造体部分(例えば、構造体部分1200等)を含みうる。
貫通部(例えば、高熱効率貫通部)1245は、層1205の第1の表面から層1205と層1210と層1215と外皮1230とを通って冷温/低温域1240に至るコンジットを提供する。ワイヤ、センサ、および/または大電流/高電圧接続部(図示せず)が高温域/側1225から冷温/低温域/側1240に貫通しうる。
貫通部は良好な熱効率によって貫通部を経る過剰な熱損失を制限もしくは防止しうる。ある場合において、貫通部には熱インピーダンスが高い(1または複数の)材料を充填でき、それによってシステムの高温域からそれより低温の領域への(例えば、1つ以上の低温域への)熱伝達を制限もしくは低減することができる。充填材料は均一であってもよいし(例えば、1種類の材料が貫通部全体を満たす)、または不均一であってもよい(例えば、1つの貫通部において2種類以上の異なる材料が充填材として使用される)。ある場合において、貫通部は、貫通部を経る熱伝達を制限もしくは低減しうる1つ以上の栓および/または1つ以上の終端キャップを備えることができる。(1または複数の)栓および/または(1または複数の)終端キャップは、熱インピーダンスが高い材料を貫通構造体内に内包しうる。いくつかの例において、点検もしくは修理の一環として貫通部とともにタイル(またはシート、ラップ、テープ等)を取り外しうるようにして、貫通構造体全体を断熱材のタイル(またはシート、ラップ、テープ等)上に搭載することができる。
図13Aは終端キャップ1320を備えた貫通部1300の一例である。貫通部1300は断熱層1305、1310、および1315で囲むことができる。あるいは、貫通部1300は充填材1305、1310、および1315を含む(例えば、それらで充填する)ことができる。貫通部は、導電性の構成要素(図示せず)、例えば、(1または複数の)電圧検知ワイヤ、(1または複数の)大電流通電ワイヤ、または熱測定に関わる(1または複数の)ワイヤ(例えば、熱電対ワイヤ)等を備えうる。断熱層もしくは充填材1305、1310、および1315は、高温域1325と冷温(例えば、室温)域1340の間に配置されうる。貫通部の壁面もしくは境界1330に終端キャップ1320を取り付けうる。壁面1330は貫通部の長さ1345全域にわたって伸びてもいいし、そうでなくてもよい。ある場合において、壁面1330は最後の充填材1315を越えて伸びうる。その場合、充填材1315と終端キャップ1320の間に空隙1335が形成されうる。ある場合において、貫通部は壁面1330を備えなくてもよく、終端キャップ1320が最後の充填材1315に対して直接取り付けられうる。その場合、空隙1335が形成されてもいいし、されなくてもよい。終端キャップ1320は1つ以上のフランジ1350を有することができる。
貫通部を通過するワイヤは、特殊な材料(例えば、システムの動作温度またはそれより高い温度において安定的な材料、抗酸化材料、システムの動作温度において好適な(例えば、十分な、および/または高い)導電性を有する材料)を含有しうる。そのような材料として、例えば、ニッケル、アルミニウム、青銅、真鍮、ステンレス鋼、またはその任意の組み合わせ等が挙げられる。かかる材料は、熱によるワイヤの腐食を制限もしくは低減しうる。貫通部内のワイヤは、高温で安定な材料から、導電性がより高いが高温安定性に劣る材料(例えば、銅)へと(例えば、順次)変化しうる。いくつかの例において、貫通部内のワイヤは、少なくとも約1、2、3、4、5、6、7、8、9、10、12、14、16、18、20、25、30、またはそれより多くの異なる部分を含む。それらの部分は異なる材料を含有しうる。それらの部分は一体的に形成するか、または互いに接合(例えば、溶接)することで、複合ワイヤを形成しうる。ある場合において、これらの材料は、高温側に隣接する貫通部の領域における高温安定性が最も高い(かつ、ある場合に導電性はより低い)材料から、低温側に隣接する領域における導電性が最も高い(かつ、ある場合に高温安定性はより低い)材料へと、順番に配置されうる。
貫通部は、貫通構造体に組み込まれた(例えば、貫通構造体と一体的に形成された)ワイヤを備えうる。ある場合において、システム内の異なる貫通部は、ワイヤ長、貫通部内でのワイヤの位置、および/またはワイヤ間の間隔が上記異なる貫通部の間で同じであるように設計されうる。ある場合において、貫通部は、貫通部内を浮遊するワイヤを備えうる。ある場合において、ワイヤは、熱インピーダンスが高い材料中に鋳込まれ、もしくは設置されうる。このとき、ワイヤは、システムの高い温度(例えば、高温)域と低い温度(例えば、冷温/低温、室温)域との間に直線的な接続を形成しない。このように配線されたワイヤは貫通部内に過剰な長さが組み込まれ、それにより、ワイヤが貫通部内の熱インピーダンス材料の不均一層を通過するときに、ワイヤによって伝達される熱エネルギーが放出できるようにしうる。ワイヤの(実際の)長さは、例えば、高温域から冷温域までの距離(例えば、貫通部の長さ)より少なくとも約1.5倍、少なくとも約2倍、少なくとも約5倍、少なくとも約10倍、少なくとも約50倍、または少なくとも約100倍長いものでありうる。これは、ワイヤと電子部品との相互接続、および/またはシステム点検用アクセス/接触の領域の安全化を容易に、および/または確実に行うのを助けうる。
図13Bは貫通部1300の別の例であり、貫通部1300はワイヤ1355をさらに備える。ワイヤ1355(または複数のかかるワイヤ)は、遠回り(例えば、ジグザグ、スパイラル、ヘリカル)の(貫通部を通る)パターンもしくは経路を有しうる。これにより、高温域1325から冷温域1340への直接的な熱的開口を防止できる。貫通部内の1つ以上のワイヤを通って伝達される熱の速度は、次の1つ以上と関係しうる、もしくはそれらに依存しうる:高温域と冷温域との温度差、(1または複数の)ワイヤの断面積、(1または複数の)ワイヤの(1または複数の)材料の熱伝導率、および(1または複数の)ワイヤの長さの逆数。ある場合において、断面積をさらに低減すると、破断および/または酸化しやすい、機械的にもろいワイヤが生じうる。ワイヤを通って伝達される熱の量を低減するため、ワイヤは貫通部の長さよりかなり長い長さを有しうる。ワイヤの長さは余分なワイヤループ1360によって増加しえ、ワイヤを通って伝達される熱の量が低減されうる。ワイヤはヘリカルコイルの形状、例えば、高温域から冷温域にかけて円形の幾何学的経路に沿って螺旋を描くワイヤ等の形に構成しうる。ヘリカル構造の軸は、高温域から冷温域に至る熱流通路の方向とほぼ並行(例えば、実質的に並行)とすることができる。ワイヤは他の形状、例えば、卵形、正方形、長方形、多角形、および/またはその他の断面形状を有するヘリカル型形状等に構成しうる。熱放散により、熱が冷温側(例えば、室温域)1340の電子部品に結合することを低減もしくは防止しうる。
貫通部は赤外線(IR)反射コーティングを含みうる。IRコーティングは赤外線損失を介した熱伝達を制限もしくは低減するために貫通部に塗布されうる。いくつかの例において、ワイヤを保持する貫通部は、摩擦によるワイヤ断熱材の損失を防止するために、ワイヤ断熱材(例えば、ワイヤ断熱材料)の摩耗を低減するコーティングを備えうる。
[エネルギー貯蔵システムの運用方法]
本開示はエネルギー貯蔵システムの運用方法を提供する。ある場合において、この方法は、フレーム構造体によって支持される複数の電気化学セルを備えたエネルギー貯蔵システムを提供する工程を含む。上記複数の電気化学セルの個々のセルは負電極、電解質、および正電極を含むことができる。負電極、電解質、および正電極の少なくとも1つは、個々の電気化学セルの動作温度において液体状態とすることができる。フレーム構造体は、熱管理流体を上記複数の電気化学セルの少なくともサブセットと熱的に連通させる1つ以上の流体流通路を含むことができる。ある場合において、上記方法は、熱管理流体を1つ以上の流体流通路に通す工程を含む。
上記方法は、任意の数の目的を達成するために実行できる。ある場合において、熱管理流体を通す工程は、個々のセルもしくはその1つ以上の一部(本明細書では「セルの複数部分」ともいう)、セルのグループ、または(1または複数の)かかるセルを備えた装置もしくはシステムの温度を動作温度(例えば、約150℃と750℃の間)に維持するために実施される。ある場合において、熱管理流体を通す工程は、エネルギー貯蔵システムの効率および/または動作寿命を向上させる、もしくは最大化するために実施される。
熱管理流体は経時的に変動する流量で通すことができる。いくつかの例において、熱管理流体は、(a)エネルギー貯蔵システムまたはその電気化学セルの温度;(b)エネルギー貯蔵システムまたはその電気化学セルの温度の変化率;(c)エネルギー貯蔵システムが充電中か放電中か遊休中か;(d)エネルギー貯蔵システムの予想される将来の動作;および/または(e)現在の、もしくは予想される市場環境、に依存する流量で通される。エネルギー貯蔵システムの予想される将来の動作は、エネルギー貯蔵システムの将来の充電、放電、および/または遊休動作の時間および程度を含むことができる。現在の、もしくは予想される市場環境は、エネルギー価格を含むことができる
熱管理流体は、1つ以上の流体流通路と流体連通する流体流通系の助力のもとで1つ以上の流体流通路に通すことができる。いくつかの例において、流体流通系は、通気口、ダンパ、リフトゲート、弁、ファン、ポンプ、または対流支援による流れ(例えば、強制および/または自然対流)を含む。
熱は任意の好適な速度でシステムに付与、またはシステムから除去できる。ある場合において、熱管理流体を1つ以上の流体流通路に通す工程は、上記複数の電気化学セルからの熱エネルギーを約1ワット(W)、約10W、約50W、約100W、約500W、約1キロワット(kW)、約5kW、約10kW、約50kW、約100kW、約500kW、または約1000kWの速度で放散または付与する。いくつかの例において、熱管理流体を1つ以上の流体流通路に通す工程は、上記複数の電気化学セルからの熱エネルギーを、少なくとも約1ワット(W)、少なくとも約10W、少なくとも約50W、少なくとも約100W、少なくとも約500W、少なくとも約1キロワット(kW)、少なくとも約5kW、少なくとも約10kW、少なくとも約50kW、少なくとも約100kW、少なくとも約500kW、または少なくとも約1000kWの速度で放散または付与する。いくつかの例において、熱管理流体を1つ以上の流体流通路に通す工程は、上記複数の電気化学セルからの熱エネルギーを、最大で約1ワット(W)、最大で約10W、最大で約50W、最大で約100W、最大で約500W、最大で約1キロワット(kW)、最大で約5kW、最大で約10kW、最大で約50kW、最大で約100kW、最大で約500kW、または最大で約1000kWの速度で放散または付与する。
システムまたはその任意の個別セルの温度は、任意の好適な許容差で維持できる。ある場合において、熱管理流体を1つ以上の流体流通路に通すとき、温度は、目標温度設定値から約1℃、2℃、5℃、10℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃、150℃、200℃、または250℃低い温度以内に維持される。ある場合において、個々のセルの温度の変動幅は、5時間以内の期間にわたって最大で約1℃、2℃、5℃、10℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃、150℃、200℃、または250℃である。
[制御システム、方法、およびアルゴリズム]
本明細書には、本開示の方法を実施するようにプログラムされたコンピュータ制御システムが提示されている。かかる制御システム(本明細書では「システム」または「管理/制御システム」ともいう)は、熱管理流体を1つ以上の流体流通路に通すようにプログラムされたコンピュータ、および/または熱管理流体を1つ以上の流体流通路に通すアルゴリズムを含むコンピュータ可読媒体を備えることができる。このように、制御システムは熱管理/制御システムを含むことができる。
いくつかの実装において、システムはエネルギー貯蔵システムを含む。エネルギー貯蔵システムは、1つ以上の電気化学エネルギー貯蔵セルを備えた電気化学エネルギー貯蔵装置を含むことができる。システム(例えば、エネルギー貯蔵システム、電気化学エネルギー貯蔵装置)は、熱区域(例えば、高温域)を含むことができる。熱区域は電気化学エネルギー貯蔵セルを含みうる。システムは装置に結合されたコンピュータシステムをさらに備えることができる。コンピュータシステムは、装置の充電および/または放電、装置の熱管理、またはその組み合わせを調整できる。コンピュータシステム(例えば、コントローラ)は、故障(例えば、電気化学エネルギー貯蔵装置の電気化学セルのシールの破れ)を示す条件システム/装置の1つ以上の電気化学セルを監視できる。コンピュータシステムはかかる故障もしくは破れ条件を利用して熱管理応答を開始しうる。コンピュータシステムは、1つ以上のコンピュータプロセッサと、コンピュータプロセッサに結合されたメモリ位置と、を含むことができる。メモリ位置は、コンピュータプロセッサによる実行時に上記または本明細書の別所に記載のいずれかの方法を実施する機械実行可能なコードを含む。コンピュータシステム(例えば、コンピュータプロセッサ、メモリ、および/またはコンピュータシステムの他の構成要素)は熱区域内には存在しない。コンピュータシステムは、熱区域と(例えば、ワイヤ、センサ、および/または大電流/高電圧(例えば、セル電流もしくはセル電圧)接続部を介して)電子的に通信しうる。ある場合において、コンピュータシステムは、熱区域(例えば、高温域)内の1つ以上の構成要素と電子的に通信しうる。例えば、システムの高温域にはには、(例えば、1つ以上の電気化学セルをモニタリングする、または電気化学セルの1つ以上のグループをモニタリングする)1つ以上の温度センサを設置しえ、温度センサは、測定データを高温域の外側のコンピュータシステムに提供しうる。(1または複数の)温度センサは、例えばコンピュータプロセッサと電子的な通信状態にあることができる。
いくつかの実装において、システムは、フレーム構造体によって支持される複数の電気化学セルを備える。上記複数の電気化学セルの個々のセルは負電極、電解質、および正電極を含むことができる。負電極、電解質、および正電極の少なくとも1つ、2つ、またはすべては、個々の電気化学セルの動作温度において液体状態とすることができる。フレーム構造体は、熱管理流体を上記複数の電気化学セルの少なくともサブセットと熱的に連通させる1つ以上の流体流通路を備えることができる。
熱管理流体は、任意の好適な目的のために経時的に変動する流量で通すことができる。いくつかの例において、熱管理流体を通す工程は、個々のセルもしくはセルの複数部分の温度を動作温度に維持するために実施される。いくつかの例において、熱管理流体を通す工程は、エネルギー貯蔵システムの効率および/または動作寿命を向上させる、または最大化するために実施される。本明細書の別所により詳しく記載するように、流量は、例えば、エネルギー貯蔵システムまたはその電気化学セルの温度、エネルギー貯蔵システムまたはその電気化学セルの温度の変化率、エネルギー貯蔵システムは充電中か放電中か遊休中か、エネルギー貯蔵システムの予想される将来の動作、現在の、もしくは予想される市場環境、またはその任意の組み合わせに依存する場合がある。
図11は、本開示のエネルギー貯蔵システムの1つ以上のプロセスパラメータを制御もしくは調整するようにプログラムされた、あるいは構成されたシステム1100を示す。システム1100は、本明細書に開示する方法を実施するようにプログラムされたコンピュータサーバ(「サーバ」)1101を備える。サーバ1101は、中央処理装置(CPU、本明細書では「プロセッサ」および「コンピュータプロセッサ」ともいう)1105を備える。これはシングルコアもしくはマルチコアのプロセッサ、または並列処理のための複数のプロセッサとすることができる。サーバ1101は、メモリ1110(例えば、ランダムアクセスメモリ、読み出し専用メモリ、フラッシュメモリ)、電子記憶装置1115(例えば、ハードディスク)、1つ以上の他のシステムと通信するための通信インタフェース1120(例えば、ネットワークアダプタ)、および周辺機器1125、例えばキャッシュ、その他のメモリ、データストレージ、および/または電子ディスプレイアダプタをも備える。メモリ1110、記憶装置1115、インタフェース1120、および周辺機器1125は、通信用バス(実線)を介してマザーボード等のCPU1105と通信状態にある。記憶装置1115は、データを格納するデータ記憶装置(またはデータリポジトリ)とすることができる。サーバ1101は、通信インタフェース1120の助力のもとでコンピュータネットワーク(「ネットワーク」)1130に動作可能に結合することができる。ネットワーク1130はインターネット、インターネットおよび/またはエクストラネット、またはインターネットと通信状態にあるイントラネットおよび/またはエクストラとすることができる。ネットワーク1130は、ある場合において、電気通信および/またはデータ網である。ネットワーク1130は1つ以上のコンピュータサーバを備えることができ、それによってクラウドコンピューティング等の分散型コンピューティングを可能にできる。ネットワーク1130は、ある場合にサーバ1101の助力のもとで、ピアツーピアネットワークを実現できる。それにより、サーバ1101に結合された装置がクライアントもしくはサーバとして動作しうる。サーバ1101は、直接、もしくはネットワーク1130を介して、エネルギー貯蔵システム1135と結合できる。
システムは管理/制御システムボード(「ボード」)を備えうる。ボードはデータ収集能力を有することができる。例えば、ボードはデータ収集ボードを備えることができる。ボードはデータ(例えば、収集したデータ)の格納および/または処理が可能でありうる。例えば、電池管理システムボードは、入力をデジタル信号に変換するのではなく(あるいはそれに加えて)、データの格納および/または処理が可能でありうる。
記憶装置1115はエネルギー貯蔵システム1135のプロセスパラメータを格納できる。プロセスパラメータは充電および放電パラメータを含むことができる。サーバ1101は、ある場合において、サーバ1101の外部にある(例えば、イントラネットもしくはインターネットを介してサーバ1101と通信状態にあるリモートサーバ上に位置する)1つ以上の追加的データ記憶装置を含むことができる。
サーバ1101はネットワーク1130を介して1つ以上の遠隔コンピュータシステムと通信できる。図示した例において、サーバ1101は遠隔コンピュータシステム1140と通信状態にある。遠隔コンピュータシステム1140は、例えば、パーソナルコンピュータ(例えば、ポータブルPC)、スレートもしくはタブレットPC(例えば、Apple(登録商標)iPad、Samsung(登録商標)Galaxy Tab)、電話機、スマートフォン(例えば、Apple(登録商標)iPhone、Android対応機器、Blackberry(登録商標))、または携帯情報端末(PDA)とすることができる。
いくつかの状況において、システム1100は単一のサーバ1101を備える。他の状況において、システム1100は、イントラネットおよび/またはインターネットを介して互いに通信状態にある複数のサーバを備える。
本明細書に記載する方法は、サーバ1101の電子的格納位置、例えば、メモリ1110もしくは電子記憶装置1115等に格納される、機械(またはコンピュータプロセッサ)で実行可能なコード(またはソフトウエア)によって実施できる。使用時、コードはプロセッサ1105によって実行できる。ある場合において、コードは記憶装置1115から検索でき、プロセッサ1105が容易にアクセスできるようにメモリ1110に格納できる。いくつかの状況において、電子記憶装置1115を含まないようにでき、機械実行可能な命令はメモリ1110に格納される。あるいは、コードは第2のコンピュータシステム1140上で実行できる。コードは、コードを実行するように適合されたプロセッサを有する機械とともに用いるようにプレコンパイルおよび構成できでもいいし、実行時間中にコンパイルできてもよい。コードを供給する際のプログラミング言語は、プレコンパイルされた形態またはコンパイルされる形態でコードが実行可能なように選択できる。
サーバ1101等、本明細書において提供されるシステムおよび方法の諸態様は、プログラミングにおいて具現化できる。技術のさまざまな態様は「製品」または「製造品」であると考えられえ、それは一般に、ある種の機械可読媒体に搭載される、もしくはかかる媒体において具現化される、機械(またはプロセッサ)実行可能なコード、および/または関連データの形態である。機械実行可能なコードは、メモリ(例えば、読み出し専用メモリ、ランダムアクセスメモリ、フラッシュメモリ)等の電子記憶装置、またはハードディスクに格納できる。「ストレージ」タイプの媒体は、コンピュータやプロセッサ等のあらゆる有形のメモリ、またはその関連モジュール、例えば、さまざまな半導体メモリ、テープドライブ、ディスクドライブ等を含むことができる。それらはソフトウエアプログラミングのための非一時的記憶をいつでも提供しうる。ソフトウエアの全部または一部は、インターネットまたはその他の各種電気通信ネットワークを介して時々通信されうる。かかる通信は、例えば、あるコンピュータもしくはプロセッサから別のそれへの、例えば、管理サーバもしくはホストコンピュータからアプリケーションサーバのコンピュータプラットフォームへの、ソフトウエアのロードを可能にしうる。したがって、ソフトウエア要素を搬送しうる別のタイプの媒体は、有線および光陸線ネットワークならびにさまざまな無線リンクを介して、ローカル機器間の物理インタフェースを越えて使用されるような、光波、電波、および電磁波を含む。かかる波を搬送する物理要素、例えば、有線もしくは無線リンク、光リンク等も、ソフトウエアを搬送する媒体とみなしうる。本明細書にいうコンピュータないし機械「可読媒体」等の語は、非一時的な有形の「記憶」媒体に限定されない場合、実行のためにプロセッサに命令を提供する処理に関与する任意の媒体を指す。
したがって、コンピュータ実行可能なコード等の機械可読媒体は多くの形態を取りえる。これには、有形の記憶媒体、搬送波媒体、または物理的な伝送媒体が含まれるが、それらには限定されない。不揮発性記憶媒体は、例えば、光学もしくは磁気ディスク、例えば、(1または複数の)任意のコンピュータ内のあらゆる記憶装置等、例えば、図面に示すようなデータベースの実装に用いられうるもの等を含む。揮発性記憶媒体はダイナミックメモリ、例えば、かかるコンピュータプラットフォームのメインメモリを含む。有形の伝送媒体は、同軸ケーブル;銅線および光ファイバを含む。これにはコンピュータシステム内のバスを含む線が含まれる。搬送波伝送媒体は、電気もしくは電磁信号、または音響波または光波、例えば、無線周波(RF)および赤外線(IR)データ通信中に生成されるもの、の形態を取りうる。したがって、コンピュータ可読媒体の一般的な形態は、例えば次のものを含む:フロッピーディスク、フレキシブルディスク、ハードディスク、磁気テープ、その他の磁気媒体、CD−ROM、DVD、もしくはDVD−ROM、その他の光学媒体、パンチカード紙テープ、穴のパターンをもつその他の物理的記憶媒体、RAM、ROM、PROM、およびEPROM、FLASH−EPROM、その他のメモリチップもしくはカートリッジ、搬送波伝送データもしくは命令、かかる搬送波を伝送するケーブルもしくはリンク、またはコンピュータがプログラミングコードおよび/またはデータを読み出しうるその他の任意の媒体。コンピュータ可読媒体のこれらの形態の多くは、1つ以上の命令の1つ以上のシーケンスを実行のためにプロセッサに送る処理に関与しうる。
エネルギー貯蔵システムのさまざまなパラメータは、ユーザの電子機器のユーザインタフェース(UI)においてユーザに提示することができる。UIの例として、グラフィカルユーザインタフェース(GUI)およびウェブベースのユーザインタフェースが挙げられるが、これらには限定されない。UI(例えば、GUI)はユーザの電子機器のディスプレイに提示できる。ディスプレイは容量型または抵抗型タッチパネルとすることができる。かかるディスプレイは、本開示の他のシステムおよび方法とともに使用できる。
本開示の装置、システム、および方法は、他の装置、システム、および/または方法と組み合わせうる、もしくはそれらによって改変されうる。他の装置、システム、および/または方法には、例えば、米国特許第3,663,295号明細書(「STORAGE BATTERY ELECTROLYTE」)、米国特許第3,775,181号明細書(「LITHIUM STORAGE CELLS WITH A FUSED ELECTROLYTE」)、米国特許第8,268,471号明細書(「HIGH−AMPERAGE ENERGY STORAGE DEVICE WITH LIQUID METAL NEGATIVE ELECTRODE AND METHODS」)、米国特許出願公開第2011/0014503号明細書(「ALKALINE EARTH METAL ION BATTERY」)、米国特許出願公開第2011/0014505号明細書(「LIQUID ELECTRODE BATTERY」)、米国特許出願公開第2012/0104990号明細書(「ALKALI METAL ION BATTERY WITH BIMETALLIC ELECTRODE」)、および米国特許出願公開第2014/0099522号明細書(「LOW−TEMPERATURE LIQUID METAL BATTERIES FOR GRID−SCALED STORAGE」)に記載される電池および電池要素等が挙げられる。上記文献のそれぞれは、その全体が参照によって本願明細書に援用されている。
本開示のエネルギー貯蔵装置は、グリッドスケールの設備または独立した設備において用いられうる。本開示のエネルギー貯蔵装置は、ある場合において、乗り物、例えば、スクーター、オートバイ、自動車、トラック、列車、ヘリコプター、航空機、ならびにロボット等の他の機械的装置への動力供給に使用できる。
バッテリハウジングの構成要素が上記の例以外の材料から製造しうることは当業者ならわかるであろう。導電性バッテリハウジング構成要素の1つ以上は、例えば、鋼以外の金属から、および/または1種類以上の導電性複合材料から製造しうる。別の例において、絶縁性構成要素の1つ以上は上述したガラス、雲母、およびバーミキュライト以外の誘電体から製造しうる。したがって、本発明はいかなる特定のバッテリハウジング材料にも限定されない。
カソードに関連して記載する本開示の任意の態様は、少なくともいくつかの構成においてアノードにも等しく適用できる。同様に、1つ以上の電池電極および/または電解質は、代替的な構成において液体でなくともよい。一例において、電解質はポリマーまたはゲルとすることができる。さらなる例において、少なくとも1つの電池電極は固体またはゲルとすることができる。さらに、いくつかの例において、電極および/または電解質は金属を含有していなくてもよい。本開示の諸態様は、多様なエネルギー貯蔵/変換装置に適用可能であり、液体金属電池に限定されない。
本明細書に用いる用語は具体的な実施形態を説明する目的で用いられており、本発明の範囲を限定する意図はないことを理解するべきである。なお、本明細書で用いる単数形の「a」、「an」、および「the」は、文脈から明らかに不適当である場合を除いて複数形の内容を含む。また、別途定義がないかぎり、本明細書に用いるすべの科学技術用語は、本発明が属する分野の当業者が一般に理解するものと同じ意味をもつ。
本発明の好ましい実施形態についてこれまで図示および説明してきたが、これらの実施形態が一例を示すにすぎないことは当業者には自明であろう。本発明から逸脱することなく当業者は多くの変形、変更、および置換に想到することであろう。本発明の実施にあたっては、本明細書に記載した本発明の諸実施形態に対してさまざまな代替的形態が使用されうることを理解するべきである。以下に示す特許請求の範囲が本発明の範囲を規定すること、およびそれら特許請求の範囲の範囲内にある方法および構造、ならびにその均等物が権利範囲に含まれることが意図されている。

Claims (77)

  1. a.負電極、電解質、および正電極をそれぞれ含む複数の電気化学セルであって、前記負電極、前記電解質、および前記正電極の少なくとも2つは前記電気化学セルの動作温度において液体状態にあり、前記複数の電気化学セルは直列および/または並列に接続される、複数の電気化学セルと、
    b.前記複数の電気化学セルを支持するフレームであって、前記フレームは、熱管理流体を前記複数の電気化学セルの少なくともサブセットと熱的に連通させる1つ以上の流体流通路を備える、フレームと、
    を備えたエネルギー貯蔵システム。
  2. 前記フレームは管、パイプ、または筒型トラスを含む、請求項1に記載のシステム。
  3. 前記熱管理流体は空気、ガス、オイル、溶融塩、水、または蒸気である、請求項1に記載のシステム。
  4. 前記ガスはアルゴンまたは窒素である、請求項3に記載のシステム。
  5. 前記動作温度は約150℃と750℃の間である、請求項1に記載のシステム。
  6. 前記フレーム要素を囲む断熱材をさらに備える、請求項1に記載のシステム。
  7. 少なくとも2日に一度の頻度で充電および/または放電されるとき、前記システムは前記断熱材によって自己発熱構成において連続動作が可能である、請求項6に記載のシステム。
  8. 自己発熱構成にあるとき、前記システムは前記断熱材によって規則動作中にその内部温度を前記動作温度より高い温度に昇温でき、前記システムはアクチュエータを作動させ、自然対流によって駆動される前記1つ以上の流体流通路に前記熱管理流体を貫流させることによって、その内部温度をほぼ前記動作温度に維持する、請求項7に記載のシステム。
  9. 前記システム内の所定位置からの熱除去を助けるために、前記流体流通路の少なくとも一部分に沿って断熱材をさらに備える、請求項1に記載のシステム。
  10. 前記断熱材は前記流体流通路のうち前記システムの加熱域に隣接する部分において厚さが他より薄い、請求項9に記載のシステム。
  11. 前記熱管理流体は前記電気化学セルと接触しない、請求項1に記載のシステム。
  12. 前記フレームは前記電気化学セルを直列および/または並列構成で機械的/構造的に支持する、請求項1に記載のシステム。
  13. 前記フレームは耐食性を有する、請求項1に記載のシステム。
  14. 前記フレームはステンレス鋼を含有する、請求項1に記載のシステム。
  15. 前記フレームは前記熱管理流体に対して化学的耐性を有する、請求項1に記載のシステム。
  16. 前記フレームは反応性金属に対して化学的耐性を有する、請求項1に記載のシステム。
  17. 前記フレームの前記1つ以上の流体流通路に前記熱管理流体を通すように構成および配置される流体流通系をさらに備える、請求項1に記載のシステム。
  18. 前記流体流通系は、前記システムの温度を前記動作温度に維持するように選択されるある調整可能な流量で前記熱管理流体を提供するように、構成またはプログラムされる、請求項1に記載のシステム。
  19. 前記システムは少なくとも10個の電気化学セルを備える、請求項1に記載のシステム。
  20. 前記フレームは、前記複数の電気化学セルの少なくともサブセットを含むチャンバを備える、請求項1に記載のシステム。
  21. 前記複数の電気化学セルの少なくともサブセットは直列に接続されている、請求項1に記載のシステム。
  22. 前記フレームは複数の並行流体流通路を備える、請求項1に記載のシステム。
  23. 前記並行流体流通路の少なくとも2つを流れる流体流量が別々に制御可能である、請求項22に記載のシステム。
  24. 前記フレームは複数の直交する流体流通路を備える、請求項1に記載のシステム。
  25. 前記フレームは矩形の箱である、請求項1に記載のシステム。
  26. 前記フレームの寸法は、熱伝達を選択的に加速するように構成される、請求項1に記載のシステム。
  27. 熱エネルギーを貯蔵するように構成される循環流体流通系をさらに備え、前記1つ以上の流体流通路は前記循環流体流通系の流体流通路と流体連通している、請求項1に記載のシステム。
  28. 前記循環流体流通系は熱エネルギー貯蔵媒体を備える、請求項27に記載のシステム。
  29. 前記熱エネルギー貯蔵媒体は溶融塩、砂利、砂、蒸気、または水を含有する、請求項28に記載のシステム。
  30. 前記負電極はアルカリもしくはアルカリ土類金属を含有する、請求項1に記載のシステム。
  31. 前記アルカリもしくはアルカリ土類金属はリチウム、ナトリウム、カリウム、マグネシウム、カルシウム、またはその組み合わせである、請求項30に記載のシステム。
  32. 前記正電極は第12族元素を含有する、請求項1に記載のシステム。
  33. 前記第12族元素は亜鉛、カドミウム、および水銀から成る群から選択される、請求項32に記載のシステム。
  34. 前記正電極は錫、鉛、ビスマス、アンチモン、テルル、およびセレンの1つ以上をさらに含有する、請求項32に記載のシステム。
  35. 前記正電極は錫、鉛、ビスマス、アンチモン、テルル、およびセレンの1つ以上を含有する、請求項32に記載のシステム。
  36. 前記電解質はアルカリもしくはアルカリ土類金属の塩を含有する、請求項1に記載のシステム。
  37. 断熱材料の1つ以上の層を含む断熱パッケージをさらに備える、請求項1に記載のシステム。
  38. 前記エネルギー貯蔵システムの高温域と低温域との間の接続を容易にするように構成された貫通部をさらに備える、請求項1に記載のシステム。
  39. 前記貫通部を遠回り経路で通過する少なくとも1本のワイヤをさらに備え、前記ワイヤの長さは前記貫通部の長さの少なくとも2倍である、請求項38に記載のシステム。
  40. 前記接続はワイヤ、センサ、セル電流接続部、セル電圧接続部を含む、請求項38に記載のシステム。
  41. a.フレーム構造体によって支持される複数の電気化学セルを備えたエネルギー貯蔵システムを提供する工程であって、前記複数の電気化学セルの個々のセルは負電極、電解質、および正電極を含み、前記負電極、前記電解質、および前記正電極の少なくとも2つは前記個々の電気化学セルの動作温度において液体状態にあり、前記フレーム構造体は、熱管理流体を前記複数の電気化学セルの少なくともサブセットと熱的に連通させる1つ以上の流体流通路を備える、工程と、
    b.前記熱管理流体を前記1つ以上の流体流通路に通す工程と、
    を含む、エネルギー貯蔵システムの運用方法。
  42. 前記熱管理流体は、前記個々のセルもしくはセルの複数部分の温度を前記動作温度に維持するために前記1つ以上の流体流通路に通される、請求項41に記載の方法。
  43. 前記熱管理流体を前記1つ以上の流体流通路に通すとき、前記個々のセルの前記温度は約±60℃の範囲内に維持される、請求項42に記載の方法。
  44. 前記熱管理流体を前記1つ以上の流体流通路に通すとき、前記個々のセルの前記温度の変動幅は5時間未満の期間において最大で約±60℃である、請求項42に記載の方法。
  45. 前記熱管理流体を通す前記工程は、前記エネルギー貯蔵システムの効率および/または動作寿命を最大化するために実施される、請求項41に記載の方法。
  46. 前記熱管理流体は経時的に変動する流量で通される、請求項41に記載の方法。
  47. 前記熱管理流体は、(a)前記エネルギー貯蔵システムまたはその電気化学セルの温度;(b)前記エネルギー貯蔵システムまたはその電気化学セルの前記温度の変化率;(c)前記エネルギー貯蔵システムが充電中か放電中か遊休中か;(d)前記エネルギー貯蔵システムの予想される将来の動作;および/または(e)現在の、もしくは予想される市場環境、に依存する流量で通される、請求項41に記載の方法。
  48. 前記エネルギー貯蔵システムの前記予想される将来の動作は、前記エネルギー貯蔵システムの将来の充電、放電、および/または遊休動作の時間および程度(extent)を含む、請求項47に記載の方法。
  49. 前記現在の、もしくは予想される市場環境はエネルギー価格を含む、請求項47に記載の方法。
  50. 前記熱管理流体は、前記1つ以上の流体流通路と流体連通する流体流通系の助力のもとで前記1つ以上の流体流通路に通される、請求項41に記載の方法。
  51. 前記流体流通系はファン、ポンプ、または対流支援による流れを含む、請求項50に記載の方法。
  52. 前記熱管理流体を前記1つ以上の流体流通路に通す工程は、前記複数の電気化学セルからの熱エネルギーを少なくとも約1ワットの速度で放散または付与する、請求項41に記載の方法。
  53. 前記熱管理流体を前記1つ以上の流体流通路に通す工程は、最大約100キロワットの速度で前記複数の電気化学セルから熱エネルギーを放散する、または前記複数の電気化学セルに熱エネルギーを付与する、請求項41に記載の方法。
  54. 前記エネルギー貯蔵システムの少なくとも一部分を潜在的に危険な事象に応答して急速冷却する工程をさらに含む、請求項41に記載の方法。
  55. 前記潜在的に危険な事象は地震またはセルの破断(breach)である、請求項54に記載の方法。
  56. 急速冷却時、前記複数の電気化学セルの最高温部の温度がその動作温度から前記電解質の凝固点を下回る温度まで約4時間未満で降下する、請求項54に記載の方法。
  57. 前記熱管理流体を前記1つ以上の流体流通路に通す工程は、前記熱管理流体を複数の流体流通路に通す工程を含む、請求項41に記載の方法。
  58. 前記熱管理流体は強制および/または自然対流を用いて通される、請求項41に記載の方法。
  59. 前記熱管理流体の流れは自然対流を用いて通され、かつ前記1つ以上の流体流通路のうちのある所与の流体流通路を開くアクチュエータによって制御される、請求項58に記載の方法。
  60. (a)コンピュータプロセッサと、
    (b)前記コンピュータプロセッサに動作可能に結合されるメモリと、
    を備えた、エネルギー貯蔵システムを調整する制御システムであって、
    前記メモリは、コンピュータプロセッサによる実行時にある方法を実施する機械実行可能なコードを含み、前記方法は、エネルギー貯蔵システムを支持するフレーム構造体の中の1つ以上の流体流通路に熱管理流体を通す工程を含み、前記流体流通路は、前記熱管理流体を前記エネルギー貯蔵システムの複数の電気化学セルの少なくともサブセットと熱的に連通させ、前記複数の電気化学セルの個々のセルは負電極、電解質、および正電極を含み、前記負電極、前記電解質、および前記正電極の少なくとも2つは前記個々の電気化学セルの動作温度において液体状態にある、制御システム。
  61. 前記コンピュータプロセッサと前記メモリとは、前記エネルギー貯蔵システムの高温域の外側に位置する、請求項60に記載の制御システム。
  62. 前記エネルギー貯蔵システムは、前記高温域に、または前記高温域と熱的に連通する状態にある、温度センサをさらに備える、請求項61に記載の制御システム。
  63. 前記温度センサは前記コンピュータプロセッサと電子的な通信状態にある、請求項62に記載の制御システム。
  64. コンピュータプロセッサによる実行時にある方法を実施する機械実行可能なコードを含むコンピュータ可読媒体であって、前記方法は、エネルギー貯蔵システムを支持するフレーム構造体の中の1つ以上の流体流通路に熱管理流体を通す工程を含み、前記流体流通路は、前記熱管理流体を前記エネルギー貯蔵システムの複数の電気化学セルの少なくともサブセットと熱的に連通させ、前記複数の電気化学セルの個々のセルは負電極、電解質、および正電極を含み、前記負電極、前記電解質、および前記正電極の少なくとも2つは前記個々の電気化学セルの動作温度において液体状態にある、コンピュータ可読媒体。
  65. 前記熱管理流体は、前記個々のセルもしくはセルの複数部分の温度を前記動作温度に維持するために前記1つ以上の流体流通路に通される、請求項64に記載のコンピュータ可読媒体。
  66. 前記熱管理流体は、前記エネルギー貯蔵システムの効率および/または動作寿命を最大化するために前記1つ以上の流体流通路に通される、請求項64に記載のコンピュータ可読媒体。
  67. 前記熱管理流体は経時的に変動する流量で前記1つ以上の流体流通路に通される、請求項64に記載のコンピュータ可読媒体。
  68. 前記熱管理流体は、(a)前記エネルギー貯蔵システムまたはその電気化学セルの温度;(b)前記エネルギー貯蔵システムまたはその電気化学セルの前記温度の変化率;(c)前記エネルギー貯蔵システムが充電中か放電中か遊休中か;(d)前記エネルギー貯蔵システムの予想される将来の動作;および/または(e)現在の、もしくは予想される市場環境、に依存する流量で、前記1つ以上の流体流通路に通される、請求項64に記載のコンピュータ可読媒体。
  69. 前記エネルギー貯蔵システムの前記予想される将来の動作は、前記エネルギー貯蔵システムの将来の充電、放電、および/または遊休動作の時間および程度を含む、請求項68に記載のコンピュータ可読媒体。
  70. 前記現在の、もしくは予想される市場環境はエネルギー価格を含む、請求項68に記載のコンピュータ可読媒体。
  71. 熱管理流体をエネルギー貯蔵システムの1つ以上の流体流通路に通すようにプログラムされたコンピュータプロセッサ、を備えたコンピュータシステムであって、前記エネルギー貯蔵システムは、フレーム構造体によって支持される複数の電気化学セルを備え、前記複数の電気化学セルの個々のセルは負電極、電解質、および正電極を含み、前記負電極、前記電解質、および前記正電極の少なくとも2つは前記個々の電気化学セルの動作温度において液体状態にあり、前記フレーム構造体は、前記熱管理流体を前記複数の電気化学セルの少なくともサブセットと熱的に連通させる前記1つ以上の流体流通路を備える、コンピュータシステム。
  72. 前記コンピュータプロセッサは、前記個々のセルもしくはセルの複数部分の温度を前記動作温度に維持するために前記熱管理流体を前記1つ以上の流体流通路に通すようにプログラムされている、請求項71に記載のコンピュータシステム。
  73. 前記コンピュータプロセッサは、前記エネルギー貯蔵システムの効率および/または動作寿命を最大化するために前記熱管理流体を前記1つ以上の流体流通路に通すようにプログラムされている、請求項71に記載のコンピュータシステム。
  74. 前記コンピュータプロセッサは、前記熱管理流体を経時的に変動する流量で前記1つ以上の流体流通路に通すようにプログラムされている、請求項71に記載のコンピュータシステム。
  75. 前記コンピュータプロセッサは、前記熱管理流体を、(a)前記エネルギー貯蔵システムまたはその電気化学セルの温度;(b)前記エネルギー貯蔵システムまたはその電気化学セルの前記温度の変化率;(c)前記エネルギー貯蔵システムが充電中か放電中か遊休中か;(d)前記エネルギー貯蔵システムの予想される将来の動作;および/または(e)現在の、もしくは予想される市場環境、に依存する流量で前記1つ以上の流体流通路に通すようにプログラムされている、請求項71に記載のコンピュータシステム。
  76. 前記エネルギー貯蔵システムの前記予想される将来の動作は前記エネルギー貯蔵システムの将来の充電、放電、および/または遊休動作の時間および程度を含む、請求項75に記載のコンピュータシステム。
  77. 前記現在の、もしくは予想される市場環境はエネルギー価格を含む、請求項75に記載のコンピュータシステム。
JP2016526277A 2013-11-01 2014-10-30 液体金属電池の熱管理 Active JP6649883B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361898642P 2013-11-01 2013-11-01
US61/898,642 2013-11-01
PCT/US2014/063222 WO2015066359A1 (en) 2013-11-01 2014-10-30 Thermal management of liquid metal batteries

Publications (3)

Publication Number Publication Date
JP2016539461A true JP2016539461A (ja) 2016-12-15
JP2016539461A5 JP2016539461A5 (ja) 2017-12-07
JP6649883B2 JP6649883B2 (ja) 2020-02-19

Family

ID=53005135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016526277A Active JP6649883B2 (ja) 2013-11-01 2014-10-30 液体金属電池の熱管理

Country Status (4)

Country Link
US (1) US20160365612A1 (ja)
EP (1) EP3063825A4 (ja)
JP (1) JP6649883B2 (ja)
WO (1) WO2015066359A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031646A1 (ko) * 2017-08-10 2019-02-14 한양대학교 산학협력단 액체 금속 전지 구조체 및 액체 금속 전지 구조체의 동작 방법
JP2021524983A (ja) * 2018-05-17 2021-09-16 ビサーズ バッテリー コーポレーション 溶融流体電極装置における熱暴走状態を緩和するための装置、システム及び方法
JP2021526286A (ja) * 2018-05-17 2021-09-30 ビサーズ バッテリー コーポレーション 非脆性固体電解質を備えた溶融流体装置
JP2021526287A (ja) * 2018-05-17 2021-09-30 ビサーズ バッテリー コーポレーション 溶解流体電極装置を管理するための装置、システム、及び、方法
JP2021526708A (ja) * 2018-05-17 2021-10-07 ビサーズ バッテリー コーポレーション リチウムイオン輸送特性が改良された固体ヨウ化リチウム電解質を備えた溶融流体電極装置

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2888463C (en) 2012-10-16 2021-01-26 Ambri Inc. Electrochemical energy storage devices and housings
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US9520618B2 (en) 2013-02-12 2016-12-13 Ambri Inc. Electrochemical energy storage devices
US9735450B2 (en) 2012-10-18 2017-08-15 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US9312522B2 (en) 2012-10-18 2016-04-12 Ambri Inc. Electrochemical energy storage devices
US10270139B1 (en) 2013-03-14 2019-04-23 Ambri Inc. Systems and methods for recycling electrochemical energy storage devices
US9502737B2 (en) 2013-05-23 2016-11-22 Ambri Inc. Voltage-enhanced energy storage devices
JP6685898B2 (ja) 2013-10-16 2020-04-22 アンブリ・インコーポレイテッド 高温反応性材料デバイスのためのシール
US10181800B1 (en) 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
US9893385B1 (en) 2015-04-23 2018-02-13 Ambri Inc. Battery management systems for energy storage devices
JP6678302B2 (ja) * 2015-07-24 2020-04-08 パナソニックIpマネジメント株式会社 温度調和ユニット、温度調和システム、車両
WO2017160588A1 (en) * 2016-03-18 2017-09-21 Colorado State University Research Foundation Multi-functional electrolyte for thermal management of lithium-ion batteries
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
WO2018052797A2 (en) * 2016-09-07 2018-03-22 Ambri Inc. Seals for high temperature reactive material devices
DE102016219284A1 (de) * 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit einer Notkühleinrichtung
JP6624084B2 (ja) * 2017-01-12 2019-12-25 トヨタ自動車株式会社 電動車両
EP3607603A4 (en) 2017-04-07 2021-01-13 Ambri Inc. MOLTEN SALT BATTERY WITH SOLID METAL CATHODE
RU2020114201A (ru) 2017-09-29 2021-10-29 Бектел Майнинг Энд Металз, Инк. Системы и способы для управления теплопотерями от электролитической ячейки
US11056680B2 (en) * 2018-05-17 2021-07-06 Vissers Battery Corporation Molten fluid electrode apparatus
US10790534B2 (en) 2018-05-17 2020-09-29 Vissers Battery Corporation Methods, devices and systems to isolate solid products in molten fluid electrode apparatus
AU2019405440A1 (en) * 2018-12-17 2021-08-12 Ambri Inc. High temperature energy storage systems and methods
EP3696875B1 (de) * 2019-02-12 2020-12-23 IPR-Intelligente Peripherien für Roboter GmbH Verfahren zur aufbringung einer isolationsschicht auf einer kfz-batteriezelle und beschichtungsstation sowie beschichtungsanlage zur durchführung des verfahrens
US10925188B1 (en) * 2019-11-11 2021-02-16 Microsoft Technology Licensing, Llc Self-contained immersion cooling server assemblies
GB202012728D0 (en) * 2020-08-14 2020-09-30 Lina Energy Ltd Electric battery assembly
CN112563479B (zh) * 2020-12-10 2024-04-30 香港理工大学 一种水凝胶赋形的锌负极材料及其制备方法、负极和电池
CN112993438A (zh) * 2021-02-08 2021-06-18 中电科创智联(武汉)有限责任公司 一种叉车锂电池半导体热管理系统
CN114388935A (zh) * 2022-01-12 2022-04-22 西安交通大学 一种适用于千瓦级液态金属电池模组的保温系统
CN115832461A (zh) * 2023-01-09 2023-03-21 中国原子能科学研究院 液态金属电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826U (ja) * 1971-05-21 1973-01-05
JPS4912329A (ja) * 1972-05-16 1974-02-02
JPH09167631A (ja) * 1995-12-18 1997-06-24 Ngk Insulators Ltd ナトリウム−硫黄電池
JPH11185800A (ja) * 1997-12-25 1999-07-09 Hitachi Ltd 高温ナトリウム二次電池モジュールの運転方法
WO2011132557A1 (ja) * 2010-04-22 2011-10-27 住友電気工業株式会社 溶融塩電池装置、及び溶融塩電池の温度制御方法
JP2012533865A (ja) * 2009-07-20 2012-12-27 マサチューセッツ インスティテュート オブ テクノロジー 液体電極バッテリ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834131A (en) * 1997-05-02 1998-11-10 Itt Manufacturing Enterprises, Inc. Self warming low cost tactical electronics battery
US7264901B2 (en) * 1998-08-23 2007-09-04 Ovonic Battery Company, Inc. Monoblock battery
JP4030331B2 (ja) * 2002-03-28 2008-01-09 日本碍子株式会社 ナトリウム−硫黄電池の制御装置
US8505322B2 (en) * 2009-03-25 2013-08-13 Pax Scientific, Inc. Battery cooling
US9209495B2 (en) * 2009-03-25 2015-12-08 Lava Energy Systems, Inc. System and method for the thermal management of battery-based energy storage systems
US20120244404A1 (en) * 2009-10-14 2012-09-27 Kem Obasih Prismatic cell system with thermal management features
US20110262794A1 (en) * 2010-04-21 2011-10-27 Jihyoung Yoon Battery pack and cooling system for a battery pack
CN103718374B (zh) * 2011-04-15 2017-11-03 约翰逊控制技术有限责任公司 具有外部热管理系统的电池系统
DE212012000137U1 (de) * 2011-08-15 2014-02-27 Graftech International Holdings Inc. Batteriesatzanordnung
US8716981B2 (en) * 2011-11-11 2014-05-06 Lg Chem, Ltd. System and method for cooling and cycling a battery pack
CN202797170U (zh) * 2012-08-07 2013-03-13 河南超威电源有限公司 水浴冷却架
US20140272508A1 (en) * 2013-03-15 2014-09-18 Vecture Inc. Battery pack system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826U (ja) * 1971-05-21 1973-01-05
JPS4912329A (ja) * 1972-05-16 1974-02-02
JPH09167631A (ja) * 1995-12-18 1997-06-24 Ngk Insulators Ltd ナトリウム−硫黄電池
JPH11185800A (ja) * 1997-12-25 1999-07-09 Hitachi Ltd 高温ナトリウム二次電池モジュールの運転方法
JP2012533865A (ja) * 2009-07-20 2012-12-27 マサチューセッツ インスティテュート オブ テクノロジー 液体電極バッテリ
WO2011132557A1 (ja) * 2010-04-22 2011-10-27 住友電気工業株式会社 溶融塩電池装置、及び溶融塩電池の温度制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031646A1 (ko) * 2017-08-10 2019-02-14 한양대학교 산학협력단 액체 금속 전지 구조체 및 액체 금속 전지 구조체의 동작 방법
JP2021524983A (ja) * 2018-05-17 2021-09-16 ビサーズ バッテリー コーポレーション 溶融流体電極装置における熱暴走状態を緩和するための装置、システム及び方法
JP2021526286A (ja) * 2018-05-17 2021-09-30 ビサーズ バッテリー コーポレーション 非脆性固体電解質を備えた溶融流体装置
JP2021526287A (ja) * 2018-05-17 2021-09-30 ビサーズ バッテリー コーポレーション 溶解流体電極装置を管理するための装置、システム、及び、方法
JP2021526708A (ja) * 2018-05-17 2021-10-07 ビサーズ バッテリー コーポレーション リチウムイオン輸送特性が改良された固体ヨウ化リチウム電解質を備えた溶融流体電極装置
JP7390311B2 (ja) 2018-05-17 2023-12-01 ビサーズ バッテリー コーポレーション 溶解流体電極装置を管理するための装置、システム、及び、方法
JP7390309B2 (ja) 2018-05-17 2023-12-01 ビサーズ バッテリー コーポレーション リチウムイオン輸送特性が改良された固体ヨウ化リチウム電解質を備えた溶融流体電極装置

Also Published As

Publication number Publication date
WO2015066359A1 (en) 2015-05-07
JP6649883B2 (ja) 2020-02-19
US20160365612A1 (en) 2016-12-15
EP3063825A4 (en) 2017-06-28
EP3063825A1 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP6649883B2 (ja) 液体金属電池の熱管理
US11677100B2 (en) Electrochemical energy storage devices
US11909004B2 (en) Electrochemical energy storage devices
US10566662B1 (en) Power conversion systems for energy storage devices
US20160301038A1 (en) Unified structural and electrical interconnections for high temperature batteries
CN110800154B (zh) 一种带有热管理设计电池模块、电池装置与电池系统
US11196091B2 (en) Electrochemical energy storage devices
CN104854726B (zh) 电化学储能装置和外壳
US11611112B2 (en) Electrochemical energy storage devices
US20140099522A1 (en) Low-Temperature Liquid Metal Batteries for Grid-Scaled Storage
US20210376394A1 (en) Electrochemical energy storage devices
US20220013835A1 (en) High temperature energy storage systems and methods
JP2016535392A (ja) 自己回復液体/固体状態バッテリ
WO2019107560A1 (ja) 仕切り部材及び組電池
Khan et al. Advancements in battery thermal management system for fast charging/discharging applications
US11721841B2 (en) Electrochemical energy storage devices
EP3345243B1 (en) Energy storage device with reduced temperature variability between cells
JPH09298070A (ja) モジュール型二次電池及びモジュール型二次電池ユニット
US20230344015A1 (en) Electrochemical energy storage devices
WO2023147070A1 (en) Improved energy storage devices

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200117

R150 Certificate of patent or registration of utility model

Ref document number: 6649883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250