JP2016539005A - 粗面を有する基板の内部にマーキングを施すための方法及び装置 - Google Patents

粗面を有する基板の内部にマーキングを施すための方法及び装置 Download PDF

Info

Publication number
JP2016539005A
JP2016539005A JP2016531986A JP2016531986A JP2016539005A JP 2016539005 A JP2016539005 A JP 2016539005A JP 2016531986 A JP2016531986 A JP 2016531986A JP 2016531986 A JP2016531986 A JP 2016531986A JP 2016539005 A JP2016539005 A JP 2016539005A
Authority
JP
Japan
Prior art keywords
substrate
refractive index
laser
coating material
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016531986A
Other languages
English (en)
Inventor
チョウ,ハイビン
リコウ,マシュー
ヤン,チュアン
ダーウィン,マイケル,ジェイ
Original Assignee
エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド
エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド, エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド filed Critical エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド
Publication of JP2016539005A publication Critical patent/JP2016539005A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/009Working by laser beam, e.g. welding, cutting or boring using a non-absorbing, e.g. transparent, reflective or refractive, layer on the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/55Working by transmitting the laser beam through or within the workpiece for creating voids inside the workpiece, e.g. for forming flow passages or flow patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0235Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24364Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.] with transparent or protective coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)

Abstract

レーザ加工方法は、コーティング材料(130)を基板(44)の粗面(42)に塗布して表面(42)の粗さにより生じるであろう光学的な悪影響を軽減する。好適なパラメータのレーザ出力のレーザパルス(52)を方向付けて焦点を合わせることで、コーティング材料(130)を通過後に粗面(42)にダメージを与えることなく、基板(44)材料の内部にマーキングを施すことができる。

Description

著作権表示
(c) 2014 Electro Scientific Industries社。この特許文書の開示の一部には、著作権保護を受ける構成要素が含まれている。この特許文書又は特許開示は米国特許商標庁の特許ファイル又は記録に記載されているので、著作権者は、いかなる者による特許文書又は特許開示のファクシミリによる複製に対して異議を唱えることはないが、それ以外についてはどのようなものであってもすべての著作権を留保する。米国連邦規則集第37巻第1.71条(d)。
本出願は、基板のレーザ加工に関するものであり、特に、粗面を有する基板の内部にマーキングを施すための方法及び装置に関するものである。
背景
販売されている製品は、一般に、商業目的、規制目的、装飾目的、又は機能目的のために製品上に何らかの種類のマーキングを必要とする。マーキングのために望ましい属性には、一貫した外観、耐久性、及び適用し易さが含まれる。外観とは、確実にかつ反復可能にマークに対して選択された形状、色、及び光学密度を持たせることができることをいう。耐久性とは、マークが付けられた表面に対する摩耗にも関わらず変更されないまま残る性質をいう。適用し易さとは、材料のコストや、プログラム可能であることを含む、マークを生成する時間と資源をいう。プログラム可能であるとは、画面やマスクなどのハードウェアを変更するのではなく、ソフトウェアを変更することによって、マークされる新しいパターンでマーキング装置をプログラミングできることをいう。従来から、種々の材料からなる表面にマーキングを施したり、種々の材料からなる表面をスクライブしたりするためにレーザが用いられている。
概要
本概要は、例示の実施形態の詳細な説明においてさらに述べられる概念を厳選したものを簡略化した形態で紹介するために提供されるものである。本概要は、特許請求の範囲に記載された主題の重要な又は必須の創作的な概念を特定すること意図しているものでも、あるいは、特許請求の範囲に記載された主題の範囲を限定することを意図しているものでもない。
ある実施形態においては、互いに反対側にある基板材料からなる第1の面と第2の面とを有し、上記第1の面と上記第2の面との間に基板材料からなるコアを有する基板をレーザ加工するための方法では、上記第1の面及び上記第2の面の少なくとも一方は、粗面テクスチャを有する粗面を有し、上記基板材料からなるコアは基板屈折率を有し、上記粗面にはコーティング材料が塗布され、上記コーティング材料は、上記基板材料の上記基板屈折率に光学的に匹敵するコーティング屈折率を有する、上記基板を用意し、上記コーティング材料を通過後に上記粗面にダメージを与えることなく上記基板材料からなる上記コアにマーキングを施すのに好適なレーザ加工パラメータを有するレーザ出力を生成し、上記レーザ加工パラメータはレーザ波長を含み、焦点で最小ビームウェストを有するように上記レーザ出力のレーザパルスの焦点を合わせ、上記コーティング材料を通過し、上記粗面を通過するように上記レーザ出力を方向付けて、上記粗面にダメージを与えることなく上記基板からなる上記コアにマーキングを施すように、上記レーザパルスの上記焦点を上記基板材料からなる上記コアの内部に位置決めし、上記コーティング材料は、上記レーザ波長に対して少なくとも部分的に光学的に透過性を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板は、部分的に上記レーザ波長に対して光学的に透過性を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板はウェハ材料を含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板は、サファイヤウェハ、ダイヤモンドウェハ、又はシリコンウェハを含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板はサファイヤウェハを含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板は未研磨ウェハを含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板材料はダイヤモンドを含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板材料はプラスチックを含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記レーザ波長は、200nmから3000nmの間の波長を含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記レーザ波長はIR波長を含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記レーザ波長は1064nm波長を含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記レーザ加工パラメータは、1fsから500nsの間のパルス幅を含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記レーザ加工パラメータは、500fsから10nsの間のパルス幅を含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記レーザ加工パラメータは、1psから100psの間のパルス幅を含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記レーザ加工パラメータは、1psから25psの間のパルス幅を含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記レーザ加工パラメータは、1ミクロンから50ミクロンの間のスポットサイズ又はビームウェストを含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記レーザ加工パラメータは、1ミクロンから25ミクロンの間のスポットサイズ又はビームウェストを含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記レーザ加工パラメータは、1ミクロンから5ミクロンの間のスポットサイズ又はビームウェストを含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料は流動体又はゲルである。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料は油である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料は、(760mmHgのような圧力で)摂氏180度よりも高い沸点を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング屈折率は、(摂氏25度のような温度で)上記基板屈折率である2以内である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング屈折率は、上記基板屈折率である1以内である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング屈折率は、上記基板屈折率である0.5以内である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング屈折率は、上記基板屈折率である0.2以内である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング屈折率は1.2から2.5の間である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング屈折率は1.5から2.2の間である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング屈折率は1.7から2.0の間である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング屈折率は1.75から1.85の間である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料は、(摂氏25度のような温度で)2g/ccから5g/ccの間の濃度を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料は、2.5g/ccから4g/ccの間の濃度を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料は、3g/ccから3.5g/ccの間の濃度を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料はヨウ化メチレンを含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料はジェムレフラクトメータ液(gem refractometer liquid)を含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料は、レーザ加工中に流動性を維持する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料は、レベリング組成(leveling composition)を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料は、レーザ加工後に上記粗面から容易に除去しやすい。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、さらに、上記コーティング材料を塗布するステップの後、上記レーザ出力を方向付けるステップの前に、上記コーティング上にカバーを配置する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは、上記レーザ波長に対して透明である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは上記基板材料を含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは、上記波長で反射しない滑らかなカバー表面を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーはガラスを含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは、サファイヤ、ダイヤモンド、シリコン、又はプラスチックを含む。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは、(摂氏25度のような温度で)上記基板屈折率の屈折率である2以内であるカバー屈折率を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは、上記基板屈折率の屈折率である1以内であるカバー屈折率を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは、上記基板屈折率の屈折率である0.5以内であるカバー屈折率を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは、上記基板屈折率の屈折率である0.2以内であるカバー屈折率を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは、1.2から2.5の間にあるカバー屈折率を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは、1.5から2.2の間にあるカバー屈折率を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは、1.7から2.0の間にあるカバー屈折率を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記カバーは、1.75から1.85の間にあるカバー屈折率を有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コアは、コア厚さを有し、上記カバーは、上記コア厚さよりも小さいカバー厚さを有する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板の上記粗面上に上記コーティング材料を含むように上記カバーの形が作られている。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記コーティング材料は上面を有し、上記コーティング材料の上記上面を平坦にするように上記カバーの形が作られている。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記粗面の上記粗面テクスチャは、上記レーザ出力の散乱を生じる自然状態(native state)を有し、上記コーティング材料は、上記コーティング材料がなければ上記粗面の上記自然状態により生じるであろう上記レーザ出力の上記散乱を低減する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記レーザ加工パラメータは出力パワーを含み、上記粗面の上記粗面テクスチャは、上記出力パワーを減衰する自然状態を有しており、上記コーティング材料は、上記コーティング材料がなければ上記粗面テクスチャの上記自然状態により生じるであろう上記出力パワーの減衰を軽減する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記粗面の上記粗面テクスチャは、所定のサイズでの上記ビームウェストの形成に干渉する自然状態を有し、上記コーティング材料は、上記コーティング材料がなければ上記粗面テクスチャの上記自然状態により生じるであろう上記所定のサイズでの上記ビームウェストの形成に対する干渉を軽減する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記粗面の上記粗面テクスチャは、上記レーザ出力の波面歪みを生じる自然状態を有し、上記コーティング材料は、上記コーティング材料がなければ上記粗面の上記自然状態により生じるであろう上記レーザ出力の上記波面歪みを軽減する。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板屈折率は1.2から2.5の間である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板屈折率は1.5から2.2の間である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板屈折率は1.7から2.0の間である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板屈折率は1.75から1.85の間である。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板は、インゴットから切断されたウェハである。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板は、ダイヤモンド刃によりインゴットから切断されたウェハである。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、上記基板は、その自然状態で上記粗面を確立するようにインゴットから切断されたウェハである。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、アセトン、四塩化炭素、エチルエーテル、塩化メチレン、トルエン、キシレン、又はこれらの組み合わせにより上記粗面から上記コーティング材料を清浄できる。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、水により上記粗面から上記コーティング材料を清浄できる。
他の実施形態、追加の実施形態、又は累積的な実施形態においては、アルコールにより上記粗面から上記コーティング材料を清浄できる。
また、累積的な実施形態は、先に述べた実施形態又は以下に述べる実施形態を任意の数だけ選択的に省略することができることも理解できよう。
追加の態様及び利点は、添付図面を参照して述べられる以下の好ましい実施形態の詳細な説明から明らかになるであろう。
図1は、改良2DIDコードのスポットを生成するのに好適なレーザ微細加工システムの例における一部の構成要素の部分簡略化模式的斜視図である。 図2は、レーザパルスの焦点スポットとそのビームウェストの図を示している。 図3は、コーティング材料及びカバーにより覆われた粗面を有するサファイヤウェハのようなウェハ基板の即断面図である。
好ましい実施形態の詳細な説明
以下に、添付図面を参照して例示の実施形態が述べられる。本開示の精神及び教示から逸脱することなく、多くの異なる形態及び実施形態が考えられ、したがって、本開示は、本明細書で述べる例示の実施形態に限定されるものとして解釈すべきではない。むしろ、これらの例示の実施形態は、本開示が、完全なものですべてを含み、本発明の範囲を当業者に十分に伝えるように提供されるものである。図面においては、理解しやすいように、構成要素のサイズや相対的なサイズが誇張されている場合がある。本明細書で使用される用語は、特定の例示の実施形態を説明するためだけのものであり、本発明に対して限定するものとして意図されているものではない。本明細書で使用される限りにおいて、内容が明確にそうではないことを示している場合を除き、単数形は複数形を含むことを意図している。さらに、「備える」及び/又は「備えている」という用語は、本明細書で使用されている場合には、述べられた特徴、整数、ステップ、動作、要素、及び/又は構成要素の存在を特定するものであり、1つ以上の他の特徴、整数、ステップ、動作、要素、構成要素、及び/又はそのグループの存在又は追加を排除するものではないことは理解されよう。
図1は、ワークピース46の基板44上に又はワークピース46の基板44内にレーザマークの1以上のマーキングスポット32を生成するのに好適なレーザ微細加工システム40の一例の一部の構成要素の簡略化模式的部分斜視図である。図1を参照すると、ウェハ100(図3)のようなワークピース46又は他の半導体工業材料基板44をマーキングするためにレーザが使用されている。基板材料の例としては、セラミック、ガラス、プラスチック、及び金属、又はこれらの組み合わせが挙げられる。材料例は結晶であっても非結晶であってもよい。材料例は天然のものでも合成のものでもよい。
例えば、レーザ微細加工システムは、アルミナ又はサファイヤのような半導体ウェハ材料上又は半導体ウェハ材料内に適切なサイズのマークを作成することができる。レーザ微細加工システムは、ガラス、強化ガラス、及びコーニングゴリラガラス(商標)上に又はガラス、強化ガラス、及びコーニングゴリラガラス(商標)内に適切なサイズのマークを作成することもできる。レーザ微細加工システムは、ポリカーボネート及びアクリル上又はポリカーボネート及びアクリル内に適切なサイズのマークを作成することもできる。レーザ微細加工システムは、アルミニウム、鋼鉄、及びチタン上に又はアルミニウム、鋼鉄、及びチタン内に適切なサイズのマークを作成することもできる。
ある実施形態においては、基板は、1.2から2.5の基板屈折率を有している。ある実施形態においては、基板屈折率は、1.5から2.2である。ある実施形態においては、基板屈折率は、1.7から2.0である。ある実施形態においては、基板屈折率は、1.75から1.85である。
一般的に、マーキングは、基板44又はそのコーティングのクラッキング、濃度修正、ボイド生成、応力場、又は再結晶化のうちの1つ以上を含み得る。一般的に、内部マーキングは、基板44の表面間のコア材料のクラッキング、濃度修正、ボイド生成、応力場、又は再結晶化のうちの1つ以上を含み得る。内部マーキングは、一般的に、マーキングプロセスを行うのに使用される波長に対して少なくとも部分的に透明な任意の基板材料上に行うことができる。
基板44のレーザマーキングの確実性と反復性を改善するために選択され得るレーザパルスパラメータの例としては、レーザの種類、波長、パルス持続時間、パルス補充速度、パルス数、パルスエネルギー、パルス時間的形状、パルス空間的形状、焦点サイズ及び形状が挙げられる。付加的なレーザパルスパラメータとしては、基板44の表面に対する焦点の位置を特定することや基板44に対するレーザパルスの相対運動を方向付けることが挙げられる。
再び図1を参照すると、ワークピース46の基板 44の表面104(図3)上又は表面104の下でスポット32をマーキング可能なレーザ加工システムのいくつかの例としては、ESI MM5330微細加工システム、ESI ML5900微細加工システム、及びESI 5955微細加工システムが挙げられる。これらはすべてオレゴン州97229ポートランドのElectro Scientific Industries社により製造されている。
これらのシステム40は、典型的には、固体ダイオード励起レーザのようなレーザ50を利用する。このレーザは、50MHzまでのパルス繰り返し率又はそれより高いパルス繰り返し率で約266nm(紫外(UV))から約1320nm(赤外(IR))の波長を出射するように構成され得る。しかしながら、これらのシステムは、適切なレーザ、レーザ光学系、部品ハンドリング装置、及び制御ソフトウェアの置換又は付加により基板44上に又は基板44内に選択されたスポット32を確実に繰り返し生成するように適合させることができる。これらの改良により、レーザ微細加工システム40は、所望の速度でレーザスポット間又はパルス間のピッチを所望の値として適切なレーザパラメータを有するレーザパルスを適切に位置決めされ保持されたワークピース46上の所望の位置に照射し、所望の色、コントラスト、及び/又は光学濃度を有する所望のスポット32を生成することが可能となる。
ある実施形態において、レーザ微細加工システム40は、ドイツ連邦共和国カイザースラウテルンのLumera Laser社により製造されるモデルRapidのような、1064nm波長で動作するダイオード励起Nd:YVO4固体レーザ50を用いる。このレーザ50は、必要に応じて固体調波発生器を用いて波長を532nmに下げて二逓倍され、これにより可視(緑色)レーザパルスを生成することができ、あるいは、約355nmに三逓倍され、あるいは、約266nmに四逓倍され、これにより紫外(UV)レーザパルスを生成することができる。このレーザ50は、6ワットの連続パワーを生成するとされており、1000KHzの最大パルス繰り返し率を有する。このレーザ50は、コントローラ54と連係して1ピコ秒から1,000ナノ秒の持続時間を有するレーザパルス52(図2)を生成する。
ある実施形態において、レーザ微細加工システム40は、約1030〜1550nmの範囲内の基本波長を有するダイオード励起エルビウム添加ファイバレーザを用いる。これらのレーザは、必要に応じて固体調波発生器を用いて波長を約515nmに下げて二逓倍され、これにより可視(緑色)レーザパルスを生成することができ、あるいは約775nmに下げて二逓倍され、されにより可視(暗赤色)レーザパルスを生成することができ、あるいは、例えば、約343nm又は約517nmに三逓倍され、あるいは、約257nm又は約387.5nmに四逓倍され、これにより紫外(UV)レーザパルスを生成することができる。より一般的には、ある実施形態において、レーザ波長は200nmから3000nmの波長である。
これらのレーザパルス52は、ガウス型であるか、あるいはレーザ光学系62、典型的には、光路60に沿って配置された1以上の光学構成要素を備えたレーザ光学系によって特別に整形され、スポット32で所望の特性を実現する。例えば、基板44に当たるスポット32の全領域にわたって均一な照射量のレーザパルス12を伝達する「トップハット」空間プロファイルを使用してもよい。回折光学素子や他の光学ビーム整形素子を用いてこのように特別に整形された空間プロファイルを生成してもよい。レーザスポット32の空間照射プロファイルを修正することについての詳細な説明は、本出願の譲受人に譲渡されたCorey Dunsky等による米国特許第6,433,301号に開示されている。この米国特許は参照により本明細書に組み込まれる。
レーザパルス52は、折り畳みミラー64、(音響光学デバイス又は電子光学デバイスのような)減衰器又はパルス選別器66、及び(エネルギー用、タイミング用、又は位置用などの)フィードバックセンサ68も含み得る光路60に沿って伝搬される。
光路60に沿ったレーザ光学系62及び他の光学要素は、コントローラ54により方向付けられるレーザビーム位置決めシステム70と協働して、光路60に沿って伝搬するレーザパルス52のビーム軸72を方向付けてレーザスポット位置で基板44の表面42の近傍にレーザ焦点スポット80(図2)を形成する。レーザビーム位置決めシステム70は、レーザ50をX軸などの移動軸に沿って移動可能なレーザステージ82と、ファーストポジショナ(図示せず)をZ軸などの移動軸に沿って移動させるファーストポジショナステージ84とを含み得る。典型的なファーストポジショナは、基板44の大きな領域にわたってビーム軸72の方向を高速で変えることができる1対のガルバノメータ制御ミラーを利用する。そのような領域は、典型的には、後述するように、ワークピースステージ86による移動の領域よりも小さい。ワークピースステージ86は、Y軸及び/又はX軸のような1以上の軸に沿ってワークピースを移動させる。
ガルバノメータミラーよりビーム偏向範囲が小さい傾向があるものの、ファーストポジショナとして音響光学デバイス又は変形可能ミラーを用いてもよい。あるいは、ガルバノメータミラーに加えて音響光学デバイス又は変形可能ミラーを高速位置決めデバイスとして用いてもよい。
加えて、ワークピース46は、ビーム軸72に対して基板44を位置決め可能な運動制御要素を有するワークピースステージ86により支持されていてもよい。ワークピースステージ86は、Y軸のような単一軸に沿って移動可能であってもよく、あるいは、ワークピースステージ86は、X軸及びY軸のような横断軸に沿って移動可能であってもよい。あるいは、ワークピースステージ86は、Z軸周りなどにワークピース46を回転(回転だけ、あるいはワークピース46をX軸及びY軸に沿って移動させるとともに)できるものであってもよい。
コントローラ54は、レーザビーム位置決めシステム70及びワークピースステージ86の動作を協働させ、複合ビーム位置決め能力を提供することができる。これにより、ワークピース46をビーム軸72に対して連続的に相対的に移動させつつ、基板42上で、あるいは基板42内でスポット32をマーキングすることが容易になる。この能力は、基板42上にスポット32をマーキングするためには必要ではないが、この能力は、スループットを上げるためには望ましい場合がある。この能力は、本件出願の譲受人に譲渡されたDonald R. Cutler等の米国特許第5,751,585号に述べられている。この米国特許は参照により本明細書に組み込まれる。
ビーム位置決めの付加的な方法又は代替的な方法を用いることができる。ビーム位置決めの付加的な方法又は代替的な方法がSpencer Barrett等の米国特許第6,706,999号及びJay Johnsonの米国特許第7,019,891号に述べられている。これらの米国特許のいずれも、本件出願の出願人に譲渡されており、参照により本明細書に組み込まれる。
図2は、焦点スポット80とそのビームウェスト90の図を示している。図2を参照すると、レーザパルス52の焦点スポット80は、主としてレーザ光学系62によって決定されるビームウェスト90(断面)及びレーザエネルギー分布を有する。マーキングしているスポット32の空間長軸dは、典型的には、ビームウェストの長軸の関数であり、これら2つは同じであるか又は類似のものであり得る。しかしながら、マーキングしているスポット32の空間長軸dは、ビームウェスト90の長軸よりも長くてもよいし、短くてもよい。
レーザ光学系62を用いてビームウェストの焦点の深さ、ひいては基板44上又は基板44内のレーザスポット32の深さを制御することができる。焦点の深さを制御することにより、コントローラ54は、スポット32を基板44上又は基板44の近傍のいずれかに繰り返し高精度で位置決めするようにレーザ光学系62及びファーストポジショナZ軸ステージ84を方向付けることができる。基板44の表面42の上方又は下方に焦点スポット80を位置決めすることでマークを生成することにより、特定の量だけレーザビームの焦点を外すことができ、これによりレーザパルスにより照射される領域を増やし、表面42でのレーザフルエンスを(その表面42での材料の損傷閾値よりも少ない量に)低減することができる。ビームウェスト90の幾何的配置が既知であるので、基板44の実際の表面42の上方又は下方又は実際の表面42内で焦点スポット80を正確に位置決めすることにより、空間長軸及びフルエンスに対する付加的な精度制御が可能となる。
ある実施形態では、サファイヤのような透明な材料にマーキングするためなどに、基板44の表面42上から基板44内で正確な距離だけ離れた位置までレーザスポットの位置を調整することにより基板44のコアでレーザフルエンスを正確に制御することができる。再び図7を参照すると、ビームウェスト90は、半値全幅(FWHM)法により測定されるビーム軸72に沿ったレーザパルス52の空間的エネルギー分布88として表されている。長軸92は、レーザ微細加工システム40が表面42の上方距離96でレーザパルス52を集束する場合における表面42上のレーザパルスのスポットサイズを表している。長軸94は、レーザ加工システムが表面の下方距離98でレーザパルスを集束する場合における表面42上のレーザパルスのスポットサイズを表している。レーザスポット32を用いた内部マーキングが好ましい実施形態の多くにおいては、焦点スポット80は、基板44の表面42の上方や下方ではなく、基板44の内部に位置するように案内される。焦点スポット80を除く基板材料のアブレーション閾値よりも低い量のフルエンス又は放射照度を用いてもよい。焦点スポット80では、基板の材料のアブレーション閾値を超えるほどフルエンス又は放射照度が高まる。
ある実施形態においては、単一のスポット32を生成するためにレーザパルスグループ52を用いることができる。特に、それぞれのレーザパルスが、マーキングするスポット32に対して望ましいサイズよりも小さい領域に影響を与えるようにレーザパラメータを選択してもよい。そのような場合には、スポット32が所望のサイズ(それでも人間の目では検出できないが)になるまで複数のレーザパルスが単一の位置に照射される。レーザパルスグループは、相対運動において、あるいは実質的に相対的に静止している位置において伝搬され得る。
ある実施形態において有利に利用し得るレーザパラメータとしては、IRからUVにわたる波長で、特に約3000nmから約200nmまでの波長で、より詳細には約10.6ミクロンから約266nmまでの波長でレーザ50を使用することが挙げられる。レーザ50は、1Wから100Wの範囲にあり、より好ましくは1Wから12Wの範囲にある2Wで動作し得る。パルス持続時間は、1ピコ秒から1000ns、より好ましくは約1ピコ秒から200nsの範囲にある。レーザ繰り返し率は、1KHzから100MHz、より好ましくは10KHzから1MHzの範囲にあり得る。レーザフルエンスは、約0.1×10-6J/cm2から100.0J/cm2、より詳細には1.0×10-2J/cm2から10.0J/cm2の範囲にあり得る。マーキングされる基板44に対してビーム軸72が移動する速度は、1mm/sから10m/s、より好ましくは100mm/sから1m/sの範囲にある。基板44上のスポット32の隣接する列の間のピッチ又は間隔は、1ミクロンから1000ミクロン、より好ましくは10ミクロンから100ミクロンの範囲にあり得る。レーザビームの焦点80で測定されるレーザパルス52のビームウェスト90の空間長軸は、10ミクロンから1000ミクロン又は50ミクロンから500ミクロンの範囲にあり得る。もちろん、スポット32を目に見えるようにする場合には、空間長軸は50ミクロンよりも短いことが好ましい。ある実施形態において、焦点80のビームウェスト90は、1ミクロンから50ミクロンの間にある。ある実施形態において、焦点80のビームウェスト90は、1ミクロンから25ミクロンの間にある。ある実施形態において、焦点80のビームウェスト90は、1ミクロンから5ミクロンの間にある。
基板44の表面42に対するレーザパルス52の焦点スポット80の上下位置は、−10mm(表面42の10mm下方)から+10mm(表面42の10mm上方)、あるいは−5mmから+5mmの範囲にあり得る。表面マーキング用の多くの実施形態では、焦点スポット80は、基板44の表面42に位置している。
内部マーキングの多くの実施形態について、焦点スポット80は、基板44の表面42の下方(基板44の両面の間)に位置している。内部マーキングの一部の実施形態について、焦点スポット80は、基板44の表面42の少なくとも10ミクロン下方に位置している。内部マーキングの一部の実施形態について、焦点スポット80は、基板44の表面42の少なくとも50ミクロン下方に位置している。内部マーキングの一部の実施形態について、焦点スポット80は、基板44の表面42の少なくとも100ミクロン下方に位置している。
本出願人は、1から1,000ピコ秒の範囲のレーザパルス幅を生成するピコ秒レーザの使用と組み合わせて準表面焦点スポット80を用いることが、サファイヤなどの透明半導体基板内にマークを確実かつ繰り返し生成する良好な方法であることを発見した。ある実施形態においては、1から100psの範囲のパルス幅を用いることができる。ある実施形態においては、5から75psの範囲のパルス幅を用いることができる。ある実施形態においては、10から50psの範囲のパルス幅を用いることができる。あるいは、1から1000フェムト秒(fs)範囲のパルス幅を生成するフェムト秒レーザがよい結果を提供し得ると考えられる。あるいは、1fsから500ナノ秒(ns)の範囲のパルス幅を使用してもよい。ある実施形態においては、500fsから10nsの範囲のパルス幅を使用してもよい。しかしながら、ピコ秒レーザを用いる利点は、既存のフェムト秒レーザによりも非常に安価であり、メンテナンスを必要とすることも非常に少なく、典型的には、動作寿命もずっと長いことにある。一方で、コストが高くなるものの、一部の例ではフェムト秒レーザが好ましい場合がある。
上述したように、様々な波長でマーキングを実現することができるが、本出願人は、ピコ秒の範囲で動作するIRレーザが特に反復性のある良好な結果を提供することを見い出した。1064nm又はその近傍の波長が特に有利であった。例示のレーザ50はLumera6Wレーザであった。ファイバレーザ又は他の種類のレーザを用いることができることは理解できよう。
大迫等による米国特許公開第2011-0287607号は、透明又は半透明ウェハ材料にマークを生成するために使用され得る付加的なパラメータ及び手法について述べている。米国特許公開第2011-0287607号は、本出願の譲受人に譲渡されており、参照により本明細書に組み込まれる。本開示に従い、O'Brien等による米国再発行特許第43,605号に開示されているような、ステッチ切断(stitch-cutting)や他の手法及びパラメータの多くを内部マーキングのために用いることができる。米国再発行特許第43,605号は、本出願の譲受人に譲渡されており、参照により本明細書に組み込まれる。
可視又は不可視の準表面金属又は陽極酸化アルミニウムのような被覆金属を生成するために、本明細書に開示されたものと類似のパラメータも使用することができる。陽極酸化アルミニウム基板44用のマーキングを調整することについては、いずれもHaibin Zhang等による米国特許第8,379,679号及び米国特許公開第2013-0208074号に詳細に述べられている。いずれも本出願の譲受人に譲渡されており、参照により本明細書に組み込まれる。
図3は、コーティング材料130とカバー150により覆われた粗面104を有するサファイヤウェハ100のような基板44の側断面図である。上述したように、基板材料にレーザ出力を選択的に照射することにより透明半導体基板材料の内部にマーキングすることができる。基板44の内部マーキングは、耐水性や汚れ耐性といった表面104及び106の完全性を維持することができる。また、内部マーキングは、表面マーキングにより生じる亀裂の伝搬や他の悪影響を低減することができる。内部マーキングは、上述した数多くの手法により達成することができる。例えば、基板44の上面104と下面106との間にビームウェスト90が位置している焦点スポット80又は基板44の上面104と下面106との間に集束された焦点スポット80を有するようにレーザ出力の焦点を合わせてもよい。内部マーキングは、両面の間のコア材料のクラッキング、濃度修正、ボイド生成、応力場、又は再結晶化のうちの1つ以上を含み得る。
しかしながら、本出願人は、インゴットから切断されたウェハ100又は他の半導体基板の面104及び106が粗い表面テクスチャを有する傾向があることに注目した。インゴット切断プロセスは典型的にダイヤモンド刃を用いている。ある実施形態において、この表面粗さは3nm以上である。ある実施形態において、表面粗さは3nm以上で300ミクロン以下である。ある実施形態において、表面粗さは3nm以上で100ミクロン以下である。ある実施形態において、表面粗さは3nm以上で1ミクロン以下である。ある実施形態において、表面粗さは3nm以上で100nm以下である。ある実施形態において、表面粗さは「着霜効果」を生じる。ある実施形態において、表面粗さは、レーザ出力の波長の2倍以上である。ある実施形態において、表面粗さは、レーザ出力の波長の4倍以上である。
また、本出願人は、手を加えない状態におけるこれらの面104及び106の表面テクスチャが、基板44に照射されるレーザパルス52の光学特性に悪影響を与え得ることに注目した。また、本出願人は、未研磨面のような粗いテクスチャを有する面104及び106を有する基板44の内部に面104又は106にダメージを与えることなくマーキングをすることは難しくなり得ると判断した。
最後に、本出願人は、粗面104及び106の光学的な悪影響は、レーザ出力のパルス52を受ける平坦面を効果的に提供するコーティング材料130及び/又は(コーティング材料上に位置する)カバー150を用いることにより軽減できると判断した。ある実施形態においては、粗面の粗面テクスチャは、レーザ出力の散乱を生じる自然状態を有しており、コーティング材料は、コーティング材料がなければ粗面の自然状態により生じるであろうレーザ出力の散乱を低減する。ある実施形態においては、粗面の粗面テクスチャは、出力パワーを減衰する自然状態を有しており、コーティング材料は、コーティング材料がなければ粗面テクスチャの自然状態により生じるであろう出力パワーの減衰を軽減する。ある実施形態においては、粗面の粗面テクスチャは、所定のサイズでのビームウェストの形成に干渉する自然状態を有しており、コーティング材料は、コーティング材料がなければ粗面テクスチャの自然状態により生じるであろう所定のサイズでのビームウェストの形成に対する干渉を軽減する。ある実施形態においては、粗面の粗面テクスチャは、レーザ出力の波面歪みを生じる自然状態を有しており、コーティング材料は、コーティング材料がなければ粗面の自然状態により生じるであろうレーザ出力の波面歪みを軽減する。
図3を参照すると、ある実施形態においては、平坦面はコーティング材料130の上面140であってもよく、あるいは、平坦面はカバー150の上面142であってもよい。このように、平坦面142は、コーティング材料130に対してだけではなく、カバー150に対しても効果的に平坦面となり得る。
ある実施形態においては、コーティング材料130は、基板屈折率に光学的に匹敵するコーティング屈折率を有する。例えば、コーティング屈折率は、(摂氏25度のような温度で)基板44の屈折率である2以内であってもよい。コーティング屈折率は、基板屈折率の屈折率である1以内であってもよい。コーティング屈折率は、基板屈折率の屈折率である0.5以内であってもよい。コーティング屈折率は、基板屈折率の屈折率である0.2以内であってもよい。コーティング屈折率は1.2から2.5の間であってもよい。コーティング屈折率は1.5から2.2の間であってもよい。コーティング屈折率は1.7から2.0の間であってもよい。コーティング屈折率は1.75から1.85の間であってもよい。
コーティング材料130は、流動体、ゲル、又は油であってもよい。ある実施形態では、コーティング材料130は、(760mmHgのような圧力で)摂氏160度よりも高い沸点を有し得る。ある実施形態では、コーティング材料130は、(760mmHgのような圧力で)摂氏170度よりも高い沸点を有し得る。ある実施形態では、コーティング材料130は、(760mmHgのような圧力で)摂氏180度よりも高い沸点を有し得る。ある実施形態では、コーティング材料130は、(760mmHgのような圧力で)摂氏210度よりも低い沸点を有し得る。ある実施形態では、コーティング材料130は、(760mmHgのような圧力で)摂氏200度よりも低い沸点を有し得る。ある実施形態では、コーティング材料130は、(760mmHgのような圧力で)摂氏190度よりも低い沸点を有し得る。
ある実施形態では、コーティング材料は、(摂氏25度のような温度で)2g/ccから5g/ccの間の濃度を有し得る。ある実施形態では、コーティング材料130は、2.5g/ccから4g/ccの間の濃度を有し得る。ある実施形態では、コーティング材料は、3g/ccから3.5g/ccの間の濃度を有し得る。ある実施形態では、コーティング材料は、3g/ccから3.5g/ccの間の濃度を有し得る。ある実施形態では、コーティング材料130は、1から3の間の粘度を有し得る。
ある実施形態では、コーティング材料は、0.0001cc/℃から0.0015cc/℃の間の熱膨張係数を有し得る。ある実施形態では、コーティング材料は、0.0003cc/℃から0.0011cc/℃の間の熱膨張係数を有し得る。ある実施形態では、コーティング材料は、0.0005cc/℃から0.0009cc/℃の間の熱膨張係数を有し得る。
ある実施形態では、コーティング材料130は、アセトン、四塩化炭素、エチルエーテル、塩化メチレン、トルエン、キシレン、又はこれらの組み合わせのうち少なくとも1つに対して部分的に可溶性を有し得る。ある実施形態では、コーティング材料130は、エタノール、フレオン、ヘプタン、ナフサ、テルペンチン、水、又はこれらの組み合わせのうち少なくとも1つに対して不溶性を有し得る。ある実施形態では、コーティング材料130は、アルミニウム、黄銅、銅、及び鋼鉄に対して腐食性を有し得る。
ある実施形態では、コーティング材料130はヨウ化メチレンを含み得る。ある実施形態では、コーティング材料130は溶解性固形物を含み得る。ある実施形態では、コーティング材料130は溶解性固形物を有するヨウ化メチレンを含み得る。
ある実施形態では、コーティング材料130は、レーザ加工中に流動特性を維持することができる。あるいは、コーティング材料130は、レーザ加工中に一時的に影響を受け得る。
コーティング材料130は、レーザパルス52に対して露出している面が平坦であるだけでなく水平であるようにレベリング組成を有していてもよく、これにより、レーザ衝突に対して直交するなどのように、その平坦面に対して既知の衝突角をレーザパルスに与えることができる。
ある実施形態では、塗布されたコーティング材料130の量は、吸収を避ける程度に十分に薄い。ある実施形態では、塗布されたコーティング材料130は、25ミクロンから2mmの間の厚さを有している。ある実施形態では、塗布されたコーティング材料130は、50ミクロンから1mmの間の厚さを有している。
ある実施形態では、コーティング材料 130は、ジェムレフラクトメータ液を含み得る。一実施形態では、ジェムレフラクトメータ液は、溶解性固形物を有するヨウ化メチレンを含み、摂氏25度で1.81+/-005のコーティング屈折率、760mmHgで摂氏180度より高い沸点、摂氏25度で3.135g/ccの濃度、及び0.0007cc/℃の熱膨張係数を有している。ジェムレフラクトメータ液の例は、米国ニュージャージー州シーダーグローブのCargille Laboratories社により販売されている。
コーティング材料130は、好ましくは、レーザ加工後に粗面により非永久的に支持されるか、あるいは粗面に付着され、これに加えて/これに代えて、レーザ加工後に粗面から除去しやすい。ある実施形態では、アセトン、四塩化炭素、エチルエーテル、塩化メチレン、トルエン、キシレン、又はこれらの組み合わせにより粗面からコーティング材料130を除去又は清浄することができるか、あるいは、水又は石鹸及び水により粗面からコーティング材料130を除去又は清浄することができるか、あるいは、アルコールにより粗面からコーティング材料130を除去又は清浄することができる。
先に述べたように、コーティング材料130はカバー150に含まれ得る。ある実施形態では、コーティング材料は上面を有し、コーティング材料の上面を平坦にするようにカバーの形が作られている。ある実施形態では、基板コアはコア厚さを有しており、カバー150は、コア厚さよりも小さなカバー厚さを有している。
ある実施形態では、カバー材料150は、基板屈折率に光学的に匹敵するカバー屈折率を有している。例えば、カバー屈折率は、(摂氏25度のような温度で)基板44の屈折率である2以内であってもよい。カバー屈折率は、基板屈折率の屈折率である1以内であってもよい。カバー屈折率は、基板屈折率の屈折率である0.5以内であってもよい。カバー屈折率は、基板屈折率の屈折率である0.2以内であってもよい。カバー屈折率は1.2から2.5の間であってもよい。カバー屈折率は1.5から2.2の間であってもよい。カバー屈折率は1.7から2.0の間であってもよい。カバー屈折率は1.75から1.85の間であってもよい。
カバー150は、レーザ波長に対して透明であってもよい。カバー150は、基板材料を含んでいてもよい。カバー150は、その波長で反射しない滑らかなカバー表面を有していてもよい。カバー150は、ガラスを含んでいてもよい。カバー150は、サファイヤ、ダイヤモンド、シリコン、又はプラスチックを含んでいてもよい。
ある実施形態では、カバー150は光学的に平坦である。ある実施形態では、カバー150は元々平坦なものであるか、あるいはつやのあるものである。ある実施形態では、カバー150は光学的等級(optical grade)を有している。
ある実施形態では、カバー150は、吸収を避ける程度に十分に薄く、脆弱性を避ける程度に十分に厚い。ある実施形態では、カバー150は、25ミクロンから2mmの間の厚さを有している。ある実施形態では、カバー150は、50ミクロンから1mmの間の厚さを有している。
上記は、本発明の実施形態を説明したものであって、これに限定するものとして解釈されるものではない。いくつかの特定の例示の実施形態が述べられたが、当業者は、本発明の新規な教示や利点から大きく逸脱することなく、開示された例示の実施形態及び他の実施形態に対して多くの改良が可能であることを容易に認識するであろう。
したがって、そのような改良はすべて、以下の特許請求の範囲において規定される発明の範囲に含まれることを意図している。例えば、当業者は、そのような組み合わせが互いに排他的になる場合を除いて、いずれかの文や段落の主題を他の文や段落の一部又は全部の主題と組み合わせることができることを理解するであろう。
本発明の根底にある原理を逸脱することなく上述の実施形態の詳細に対して多くの変更をなすことが可能であることは当業者にとって自明なことであろう。したがって、本発明の範囲は、以下の特許請求の範囲とこれに含まれるべき請求項の均等物とによって決定されるべきである。

Claims (73)

  1. 互いに反対側にある基板材料からなる第1の面と第2の面とを有し、前記第1の面と前記第2の面との間に基板材料からなるコアを有する基板をレーザ加工するための方法であって、前記第1の面及び前記第2の面の少なくとも一方は、粗面テクスチャを有する粗面を有し、前記基板材料からなるコアは基板屈折率を有し、
    前記粗面にはコーティング材料が塗布され、前記コーティング材料は、前記基板材料の前記基板屈折率に光学的に匹敵するコーティング屈折率を有する、前記基板を用意し、
    前記コーティング材料を通過後に前記粗面にダメージを与えることなく前記基板材料からなる前記コアにマーキングを施すのに好適なレーザ加工パラメータを有するレーザ出力を生成し、前記レーザ加工パラメータはレーザ波長を含み、
    焦点で最小ビームウェストを有するように前記レーザ出力のレーザパルスの焦点を合わせ、
    前記コーティング材料を通過し、前記粗面を通過するように前記レーザ出力を方向付けて、前記粗面にダメージを与えることなく前記基板からなる前記コアにマーキングを施すように、前記レーザパルスの前記焦点を前記基板材料からなる前記コアの内部に位置決めし、前記コーティング材料は、前記レーザ波長に対して少なくとも部分的に光学的に透過性を有する
    方法。
  2. 前記基板は、部分的に前記レーザ波長に対して光学的に透過性を有する、請求項1の方法。
  3. 前記基板はウェハ材料を含む、請求項1の方法。
  4. 前記基板は、サファイヤウェハ、ダイヤモンドウェハ、又はシリコンウェハを含む、請求項1の方法。
  5. 前記基板はサファイヤウェハを含む、請求項1の方法。
  6. 前記基板は未研磨ウェハを含む、請求項1の方法。
  7. 前記基板材料はダイヤモンドを含む、請求項1又は2の方法。
  8. 前記基板材料はプラスチックを含む、請求項1又は2の方法。
  9. 前記レーザ波長は、200nmから3000nmの間の波長を含む、請求項1の方法。
  10. 前記レーザ波長はIR波長を含む、請求項1の方法。
  11. 前記レーザ波長は1064nm波長を含む、請求項1の方法。
  12. 前記レーザ加工パラメータは、1fsから500nsの間のパルス幅を含む、請求項1の方法。
  13. 前記レーザ加工パラメータは、500fsから10nsの間のパルス幅を含む、請求項1の方法。
  14. 前記レーザ加工パラメータは、1psから100psの間のパルス幅を含む、請求項1の方法。
  15. 前記レーザ加工パラメータは、1psから25psの間のパルス幅を含む、請求項1の方法。
  16. 前記レーザ加工パラメータは、1ミクロンから50ミクロンの間のスポットサイズ又はビームウェストを含む、請求項1の方法。
  17. 前記レーザ加工パラメータは、1ミクロンから25ミクロンの間のスポットサイズ又はビームウェストを含む、請求項1の方法。
  18. 前記レーザ加工パラメータは、1ミクロンから5ミクロンの間のスポットサイズ又はビームウェストを含む、請求項1の方法。
  19. 前記コーティング材料は流動体又はゲルである、請求項1の方法。
  20. 前記コーティング材料は油である、請求項1の方法。
  21. 前記コーティング材料は、760mmHgにおいて摂氏180度よりも高い沸点を有する、請求項1の方法。
  22. 前記コーティング屈折率は、摂氏25度で前記基板屈折率である2以内である、請求項1の方法。
  23. 前記コーティング屈折率は、前記基板屈折率である1以内である、請求項1の方法。
  24. 前記コーティング屈折率は、前記基板の屈折率である0.5以内である、請求項1の方法。
  25. 前記コーティング屈折率は、前記基板屈折率である0.2以内である、請求項1の方法。
  26. 前記コーティング屈折率は1.2から2.5の間である、請求項1の方法。
  27. 前記コーティング屈折率は1.5から2.2の間である、請求項1の方法。
  28. 前記コーティング屈折率は1.7から2.0の間である、請求項1の方法。
  29. 前記コーティング屈折率は1.75から1.85の間である、請求項1の方法。
  30. 前記コーティング材料は、摂氏25度で2g/ccから5g/ccの間の濃度を有する、請求項1の方法。
  31. 前記コーティング材料は、2.5g/ccから4g/ccの間の濃度を有する、請求項1の方法。
  32. 前記コーティング材料は、3g/ccから3.5g/ccの間の濃度を有する、請求項1の方法。
  33. 前記コーティング材料はヨウ化メチレンを含む、請求項1の方法。
  34. 前記コーティング材料はジェムレフラクトメータ液を含む、請求項1の方法。
  35. 前記コーティング材料は、レーザ加工中に流動性を維持する、請求項1の方法。
  36. 前記コーティング材料は、レベリング組成を有する、請求項1の方法。
  37. 前記コーティング材料は、レーザ加工後に前記粗面から容易に除去しやすい、請求項1の方法。
  38. 前記レーザ出力を方向付けるステップの前に、前記コーティング上にカバーが配置される、請求項1の方法。
  39. 前記カバーは、前記レーザ波長に対して透明である、請求項38の方法。
  40. 前記カバーは前記基板材料を含む、請求項38又は39のいずれか一項の方法。
  41. 前記カバーは、前記波長で反射しない滑らかなカバー表面を有する、請求項38又は39のいずれか一項の方法。
  42. 前記カバーはガラスを含む、請求項38又は39のいずれか一項の方法。
  43. 前記カバーは、サファイヤ、ダイヤモンド、シリコン、又はプラスチックを含む、請求項38又は39のいずれか一項の方法。
  44. 前記カバーは、摂氏25度で前記基板屈折率の屈折率である2以内であるカバー屈折率を有する、請求項38又は39のいずれか一項の方法。
  45. 前記カバーは、前記基板屈折率の屈折率である1以内であるカバー屈折率を有する、請求項38又は39のいずれか一項の方法。
  46. 前記カバーは、前記基板屈折率の屈折率である0.5以内であるカバー屈折率を有する、請求項38又は39のいずれか一項の方法。
  47. 前記カバーは、前記基板屈折率の屈折率である0.2以内であるカバー屈折率を有する、請求項38又は39のいずれか一項の方法。
  48. 前記カバーは、1.2から2.5の間にあるカバー屈折率を有する、請求項38又は39のいずれか一項の方法。
  49. 前記カバーは、1.5から2.2の間にあるカバー屈折率を有する、請求項38又は39のいずれか一項の方法。
  50. 前記カバーは、1.7から2.0の間にあるカバー屈折率を有する、請求項38又は39のいずれか一項の方法。
  51. 前記カバーは、1.75から1.85の間にあるカバー屈折率を有する、請求項38又は39のいずれか一項の方法。
  52. 前記コアは、コア厚さを有し、前記カバーは、前記コア厚さよりも小さいカバー厚さを有する、請求項38又は39のいずれか一項の方法。
  53. 前記基板の前記粗面上に前記コーティング材料を含むように前記カバーの形が作られている、請求項38又は39のいずれか一項の方法。
  54. 前記コーティング材料は上面を有し、前記コーティング材料の前記上面を平坦にするように前記カバーの形が作られている、請求項38又は39のいずれか一項の方法。
  55. 前記粗面の前記粗面テクスチャは、前記レーザ出力の散乱を生じる自然状態を有し、前記コーティング材料は、前記コーティング材料がなければ前記粗面の前記自然状態により生じるであろう前記レーザ出力の前記散乱を低減する、請求項1の方法。
  56. 前記レーザ加工パラメータは出力パワーを含み、前記粗面の前記粗面テクスチャは、前記出力パワーを減衰する自然状態を有しており、前記コーティング材料は、前記コーティング材料がなければ前記粗面テクスチャの前記自然状態により生じるであろう前記出力パワーの減衰を軽減する、請求項1の方法。
  57. 前記粗面の前記粗面テクスチャは、所定のサイズでの前記ビームウェストの形成に干渉する自然状態を有し、前記コーティング材料は、前記コーティング材料がなければ前記粗面テクスチャの前記自然状態により生じるであろう前記所定のサイズでの前記ビームウェストの形成に対する干渉を軽減する、請求項1の方法。
  58. 前記粗面の前記粗面テクスチャは、前記レーザ出力の波面歪みを生じる自然状態を有し、前記コーティング材料は、前記コーティング材料がなければ前記粗面の前記自然状態により生じるであろう前記レーザ出力の前記波面歪みを軽減する、請求項1の方法。
  59. 前記基板屈折率は1.2から2.5の間である、請求項1の方法。
  60. 前記基板屈折率は1.5から2.2の間である、請求項1の方法。
  61. 前記基板屈折率は1.7から2.0の間である、請求項1の方法。
  62. 前記基板屈折率は1.75から1.85の間である、請求項1の方法。
  63. 前記基板は、インゴットから切断されたウェハである、請求項1の方法。
  64. 前記基板は、ダイヤモンド刃によりインゴットから切断されたウェハである、請求項1の方法。
  65. 前記基板は、その自然状態で前記粗面を確立するようにインゴットから切断されたウェハである、請求項1の方法。
  66. アセトン、四塩化炭素、エチルエーテル、塩化メチレン、トルエン、キシレン、又はこれらの組み合わせにより前記粗面から前記コーティング材料を清浄できる、請求項1の方法。
  67. 水により前記粗面から前記コーティング材料を清浄できる、請求項1の方法。
  68. アルコールにより前記粗面から前記コーティング材料を清浄できる、請求項1の方法。
  69. 請求項2から78のいずれか一項の方法において、その主題が互いに排他的ではない請求項2から78の他のいずれか一項に従属する方法。
  70. 互いに反対側にある基板材料からなる第1の面と第2の面とを有し、前記第1の面と前記第2の面との間に基板材料からなるコアを有する基板をレーザ加工するための方法であって、前記第1の面及び前記第2の面の少なくとも一方は、粗面テクスチャを有する粗面を有し、前記基板材料からなるコアは基板屈折率を有し、
    前記粗面にコーティング材料を塗布し、前記コーティング材料は、前記基板材料の前記基板屈折率に光学的に匹敵するコーティング屈折率を有し、
    前記コーティング材料を通過後に前記粗面にダメージを与えることなく前記基板材料からなる前記コアにマーキングを施すのに好適なレーザ加工パラメータを有するレーザ出力を生成し、前記レーザ加工パラメータはレーザ波長を含み、
    焦点で最小ビームウェストを有するように前記レーザ出力のレーザパルスの焦点を合わせ、
    前記コーティング材料を通過し、前記粗面を通過するように前記レーザ出力を方向付けて、前記粗面にダメージを与えることなく前記基板からなる前記コアにマーキングを施すように、前記レーザパルスの前記焦点を前記基板材料からなる前記コアの内部に位置決めし、前記コーティング材料は、前記レーザ波長に対して少なくとも部分的に光学的に透過性を有する
    方法。
  71. 請求項1に代えて請求項80に従属する請求項2から79のいずれか一項の方法。
  72. レーザ波長でのレーザによる加工用のワークピースであって、
    互いに反対側にある基板材料からなる第1の面と第2の面とを有し、前記第1の面と前記第2の面との間に基板材料からなるコアを有する基板を備え、前記第1の面及び前記第2の面の少なくとも一方は、粗面テクスチャを有する粗面を有し、前記基板材料からなるコアは基板屈折率を有し、前記基板はウェハ材料を含み、前記基板は、前記レーザ波長に対して少なくとも部分的に透過性を有し、
    前記基板の前記粗面により非永久的に支持されるコーティング材料を備え、前記コーティング材料は、流動体、ゲル、又は油を含み、前記コーティング材料は、前記基板屈折率である0.5以内であるコーティング屈折率を有し、前記コーティング屈折率は、1.5から2.5の間であり、前記コーティング材料は、前記レーザ波長に対して少なくとも部分的に透過性を有する
    ワークピース。
  73. 請求項1に代えて請求項82に従属する請求項2から79のいずれか一項の方法。
JP2016531986A 2013-12-05 2014-12-02 粗面を有する基板の内部にマーキングを施すための方法及び装置 Pending JP2016539005A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361912192P 2013-12-05 2013-12-05
US61/912,192 2013-12-05
PCT/US2014/068185 WO2015084860A1 (en) 2013-12-05 2014-12-02 Method and apparatus for internally marking a substrate having a rough surface

Publications (1)

Publication Number Publication Date
JP2016539005A true JP2016539005A (ja) 2016-12-15

Family

ID=53270208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016531986A Pending JP2016539005A (ja) 2013-12-05 2014-12-02 粗面を有する基板の内部にマーキングを施すための方法及び装置

Country Status (7)

Country Link
US (1) US20150158116A1 (ja)
EP (1) EP3077149A4 (ja)
JP (1) JP2016539005A (ja)
KR (1) KR20160093593A (ja)
CN (1) CN105916626A (ja)
TW (1) TW201531362A (ja)
WO (1) WO2015084860A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101678A (ja) * 2016-12-20 2018-06-28 株式会社ディスコ 被加工物の加工方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9931714B2 (en) * 2015-09-11 2018-04-03 Baker Hughes, A Ge Company, Llc Methods and systems for removing interstitial material from superabrasive materials of cutting elements using energy beams
US20170252868A1 (en) * 2016-03-02 2017-09-07 Tong Li System and method for marking a substrate
CN105679808B (zh) * 2016-04-18 2019-04-16 京东方科技集团股份有限公司 一种柔性显示基板的半切割损伤检测方法和制作方法
JP2019532815A (ja) * 2016-07-28 2019-11-14 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド レーザ加工装置及びワークピースをレーザ加工する方法
CN107470779B (zh) * 2017-09-12 2019-11-08 珠海市魅族科技有限公司 纹理制作方法及基板组件
FR3073324B1 (fr) * 2017-11-08 2019-10-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede utilisant un laser pour le soudage entre deux materiaux metalliques ou pour le frittage de poudre(s), application a la realisation de plaques bipolaires pour piles pemfc
US20190300418A1 (en) * 2018-03-29 2019-10-03 Corning Incorporated Methods for laser processing rough transparent workpieces using pulsed laser beam focal lines and a fluid film
CN112692435A (zh) * 2019-10-23 2021-04-23 大族激光科技产业集团股份有限公司 基于超快激光的磨砂玻璃内微型二维码内雕方法及系统
CN113084349A (zh) * 2021-03-26 2021-07-09 维沃移动通信有限公司 板材的激光雕刻方法、板材和电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990028932A (ko) * 1996-05-13 1999-04-15 토마스 에프. 멀베니 자기매체의 정형 빔 레이저 텍스쳐링
US6506469B2 (en) * 2000-05-26 2003-01-14 Tosoh Corporation Surface-side reproduction type optical recording medium
WO2003033199A1 (en) * 2001-10-19 2003-04-24 U.C. Laser Ltd. Method for improved wafer alignment
US8093490B2 (en) * 2001-12-03 2012-01-10 Nippon Sheet Glass Company, Limited Method for forming thin film, substrate having transparent electroconductive film and photoelectric conversion device using the substrate
US20090242526A1 (en) * 2008-03-26 2009-10-01 Electro Scientific Industries, Inc. Laser micromachining through a protective member
JP5710133B2 (ja) * 2010-03-16 2015-04-30 株式会社ディスコ ワークの分割方法
US20130312460A1 (en) * 2011-02-10 2013-11-28 National University Corporation Saitama University Manufacturing method of single crystal substrate and manufacturing method of internal modified layer-forming single crystal member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018101678A (ja) * 2016-12-20 2018-06-28 株式会社ディスコ 被加工物の加工方法

Also Published As

Publication number Publication date
WO2015084860A1 (en) 2015-06-11
KR20160093593A (ko) 2016-08-08
EP3077149A4 (en) 2017-09-20
TW201531362A (zh) 2015-08-16
US20150158116A1 (en) 2015-06-11
CN105916626A (zh) 2016-08-31
EP3077149A1 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP2016539005A (ja) 粗面を有する基板の内部にマーキングを施すための方法及び装置
JP7090594B2 (ja) レーザ加工するための装置および方法
Krüger et al. Ultrashort pulse laser interaction with dielectrics and polymers
JP3208730B2 (ja) 光透過性材料のマーキング方法
Leone et al. AISI 304 stainless steel marking by a Q-switched diode pumped Nd: YAG laser
US20210053160A1 (en) Method and System for Ultrafast Laser-based Material Removal, Figuring and Polishing
TWI677394B (zh) 使用叢發超快雷射脈衝自脆性材料中切割出特定形狀物的方法
JP2017528322A (ja) 非円形レーザビームを用いる材料の処理
US6674043B2 (en) Method and apparatus for marking glass with a laser
Tunna et al. Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications
KR20200049800A (ko) 어포컬 빔 조정 조립체를 사용하여 투명 가공물을 레이저 가공하는 장치 및 방법
JP2009504415A (ja) レーザーパルスで材料を除去する方法と装置
JP2013031879A5 (ja)
TWI702106B (zh) 用於經塗覆基材之雷射切割及雷射製備的方法
TW201943487A (zh) 使用脈衝式雷射光束焦點線之用於雷射處理及原位材料處理透明工件之方法
Bass et al. Mitigation of laser damage growth in fused silica with a galvanometer scanned CO 2 laser
WO2020038693A1 (en) Mitigating low surface quality
EP4159357A1 (en) Method of and apparatus for cutting a substrate or preparing a substrate for cleaving
Chen et al. Finite element analysis and verification of laser marking on eggshell
Abramov et al. Laser forming of holes in brittle materials assisted by stress reduction through heating
Seiler et al. Beam shaping for efficient femtosecond laser processing of optical glass
Nategh et al. Experimental Investigation into SLS Glass Surface Modification Using KrF Excimer Laser
Wlodarczyk et al. The impact of graphite coating and wavelength on picosecond laser machining of optical glasses
Francis et al. An Experimental Investigation on Nanosecond Laser Ablation of Single Crystalline Silicon Wafers
Lazdauskas Marking of hydrophobic high contrast patterns on surface of special ceramics with femtosecond laser pulses