JP2016536871A - WiFi用の距離延長モード - Google Patents

WiFi用の距離延長モード Download PDF

Info

Publication number
JP2016536871A
JP2016536871A JP2016524452A JP2016524452A JP2016536871A JP 2016536871 A JP2016536871 A JP 2016536871A JP 2016524452 A JP2016524452 A JP 2016524452A JP 2016524452 A JP2016524452 A JP 2016524452A JP 2016536871 A JP2016536871 A JP 2016536871A
Authority
JP
Japan
Prior art keywords
preamble
generating
field
data unit
legacy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016524452A
Other languages
English (en)
Other versions
JP6464493B2 (ja
JP2016536871A5 (ja
Inventor
ツアン、ホンユアン
ロウ、ヒュイ−リン
ヨン、ス、ヒオン
Original Assignee
マーベル ワールド トレード リミテッド
マーベル ワールド トレード リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マーベル ワールド トレード リミテッド, マーベル ワールド トレード リミテッド filed Critical マーベル ワールド トレード リミテッド
Publication of JP2016536871A publication Critical patent/JP2016536871A/ja
Publication of JP2016536871A5 publication Critical patent/JP2016536871A5/ja
Application granted granted Critical
Publication of JP6464493B2 publication Critical patent/JP6464493B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • H04L27/2698Multicarrier modulation systems in combination with other modulation techniques double density OFDM/OQAM system, e.g. OFDM/OQAM-IOTA system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes

Abstract

通信チャネルを介した送信のための、第1の通信プロトコルに準拠する物理層(PHY)データユニットを生成する方法が説明される。PHYデータユニットのデータフィールドに対する直交周波数分割多重(OFDM)シンボルは、第1の通信プロトコルの距離延長モードに対応する距離延長符号化スキームに従って生成される。PHYデータユニットのプリアンブルが生成され、プリアンブルは、i)PHYデータユニットの持続時間を示す第1の部分と、ii)データフィールドの少なくともいくつかのOFDMシンボルが距離延長符号化スキームに従って生成されるか否かを示す第2の部分を有するように生成される。プリアンブルの第1の部分は、プリアンブルの第1の部分が、第1の通信プロトコルに準拠しないが、第2の通信プロトコルに準拠するレシーバデバイスによりデコード可能であるようにフォーマットされ、プリアンブルの第1の部分に基づいてPHYデータユニットの持続時間を判断する。PHYデータユニットは、プリアンブルおよびデータフィールドを含むように生成される。

Description

[関連出願の相互参照]
本開示は、2013年10月25日出願の「Range Extension PHY」という名称の米国仮特許出願第61/895,591号、2014年1月9日に出願の「Range Extension PHY」という名称の米国仮特許出願第61/925,332号、および2014年3月10日に出願の「Range Extension PHY」という名称の米国仮特許出願第61/950,727号、および2014年5月2日に出願の「Range Extension PHY」という名称の米国仮特許出願第61/987,778号の利益を主張し、これらの各々の開示はその全体が、参照により本明細書に組み込まれる。
本開示は、概ね通信ネットワークに関し、より具体的には距離延長モードを使用する無線ローカルエリアネットワークに関する。
通常、あるインフラストラクチャのモードで動作する場合、無線ローカルエリアネットワーク(WLAN)は、アクセスポイント(AP)および1または複数のクライアント局を含む。WLANは、過去十年で急速に進化した。米国電気電子学会(IEEE)802.11a、802.11b、802.11gおよび802.11n規格等のWLAN規格の発展により、シングルユーザピークデータスループットは、改善されてきている。例えば、IEEE802.11b規格は11メガビット/秒(Mbps)のシングルユーザピークスループットを指定し、IEEE802.11aおよび802.11g規格は、54Mbpsのシングルユーザピークスループットを指定し、IEEE802.11n規格は、600Mbpsのシングルユーザピークスループットを指定し、IEEE802.11ac規格は、ギガビット/秒(Gbps)範囲のシングルユーザピークスループットを指定する。将来的な規格は、数十Gbpsの範囲のスループット等、より大きいスループットを提供することを保証する。
一実施形態において、通信チャネルを介した送信のために、第1の通信プロトコルに準拠した物理層(PHY)データユニットを生成する方法は、第1の通信プロトコルの距離延長モードに対応する距離延長符号化スキームに従って、PHYデータユニットのデータフィールドに対する複数の直交周波数分割多重(OFDM)シンボルを生成する段階を備える。方法は、PHYデータユニットのプリアンブルを生成する段階も備え、プリアンブルは、i)PHYデータユニットの持続時間を示す第1の部分、およびii)データフィールドの少なくともいくつかのOFDMシンボルが距離延長符号化スキームに従って生成されるか否かを示す第2の部分を含み、プリアンブルの第1の部分は、プリアンブルの第1の部分に基づいてPHYデータユニットの持続時間を判断するべく、第2の通信プロトコルに準拠し、第1の通信プロトコルに準拠しないレシーバデバイスによりプリアンブルの第1の部分がデコード可能になるようにフォーマットされる。方法は、プリアンブルおよびデータフィールドを含むPHYデータユニットを生成する段階も備える。
別の実施形態において、装置は、1または複数の集積回路を有するネットワークデバイスを備える。複数の集積回路は、物理層(PHY)データユニットが準拠する、第1の通信プロトコルの距離延長モードに対応する距離延長符号化スキームに従って、PHYデータユニットのデータフィールドに対する複数の直交周波数分割多重(OFDM)シンボルを生成するように構成される。また、複数の集積回路は、PHYデータユニットのプリアンブルを生成するように構成され、プリアンブルは、i)PHYデータユニットの持続時間を示す第1の部分、およびii)データフィールドの少なくともいくつかのOFDMシンボルが距離延長符号化スキームに従って生成されるか否かを示す第2の部分を含み、プリアンブルの第1の部分は、プリアンブルの第1の部分に基づいてPHYデータユニットの持続時間を判断するべく、第2の通信プロトコルに準拠し、第1の通信プロトコルに準拠しないレシーバデバイスによりプリアンブルの第1の部分がデコード可能になるようにフォーマットされる。また、複数の集積回路は、プリアンブルおよびデータフィールドを含むPHYデータユニットを生成するように構成される。
なおも別の実施形態において、通信チャネルを介した送信のために、第1の通信プロトコルに準拠する物理層(PHY)データユニットを生成する方法は、PHYデータユニットに含まれるべきプリアンブルの第1のフィールドに対する第1の複数の直交周波数分割多重(OFDM)シンボルを生成する段階を備える。第1の複数のOFDMシンボルの各OFDMシンボルは、少なくとも、予め定められたシーケンスを第2の通信プロトコルの第2のロングトレーニングシーケンスを掛けることにより取得される第1の通信プロトコルの第1のロングトレーニングシーケンスに対応する。また、方法は、プリアンブルの第2のフィールドに対する第1の複数の情報ビットをエンコードして、第1の複数のエンコード済みビットを生成する段階を備える。方法は、第1の複数のエンコード済みビットを第1の複数のコンスタレーションシンボルにマッピングする段階を備える。方法は、第1の複数のコンスタレーションシンボルを予め定められたシーケンスを掛ける段階を含む、第1の複数の修正済みコンスタレーションシンボルを生成する段階も備える。方法は、第1の複数の修正済みコンスタレーションシンボルを含む第2の複数の直交周波数分割多重(OFDM)シンボルを生成する段階を備える。方法は、第1のフィールドに対する第1の複数のOFDMシンボルと、第2のフィールドに対する第2の複数のOFDMシンボルとを含むプリアンブルを生成する段階も備える。方法は、少なくともプリアンブルを含むPHYデータユニットを生成する段階も備える。
一実施形態において、装置は、1または複数の集積回路を有するネットワークインターフェースデバイスを備える。複数の集積回路は、物理層(PHY)データユニットに含まれるべきプリアンブルの第1のフィールドに対する第1の複数の直交周波数分割多重(OFDM)シンボルを生成するように構成される。第1の複数のOFDMシンボルの各OFDMシンボルは、少なくとも、予め定められたシーケンスを第2の通信プロトコルの第2のロングトレーニングシーケンスを掛けることにより取得される第1の通信プロトコルの第1のロングトレーニングシーケンスに対応する。また、複数の集積回路は、プリアンブルの第2のフィールドに対する第1の複数の情報ビットをエンコードして、第1の複数のエンコード済みビットを生成するように構成される。複数の集積回路は、第1の複数のエンコード済みビットを第1の複数のコンスタレーションシンボルにマッピングするように構成される。また、複数の集積回路は、第1の複数の修正済みコンスタレーションシンボルを生成ように構成され、第1の複数のコンスタレーションシンボルを予め定められたシーケンスを掛けることを含む。複数の集積回路は、第1の複数の修正済みコンスタレーションシンボルを含む第2の複数の直交周波数分割多重(OFDM)シンボルを生成ように構成される。また、複数の集積回路は、第1のフィールドに対する第1の複数のOFDMシンボルと、第2のフィールドに対する第2の複数のOFDMシンボルとを含むプリアンブルを生成ように構成される。複数の集積回路は、少なくともプリアンブルを含むPHYデータユニットを生成するように構成される。
一実施形態による、例示的な無線ローカルエリアネットワーク(WLAN)のブロック図である。
従来技術のデータユニットフォーマットの図である。 従来技術のデータユニットフォーマットの図である。
別の従来技術のデータユニットフォーマットの図である。
別の従来技術のデータユニットフォーマットの図である。
別の従来技術のデータユニットフォーマットの図である。
従来技術のデータユニットにおいて複数のシンボルを変調するのに用いられる変調の図のグループである。
一実施形態による、例示的データユニットにおいて複数のシンボルを変調するのに用いられる複数の変調の図のグループである。
一実施形態による、直交周波数分割多重(OFDM)データユニットの図である。
一実施形態による、図7Aに図示されるデータユニットにおいて複数のシンボルを変調するのに用いられる複数の変調の図のグループである。
一実施形態によるOFDMシンボルのブロック図である。
一実施形態による、標準符号化スキームがデータユニットのプリアンブルに用いられる例示的なデータユニットを図示する図である。
一実施形態による、標準符号化スキームがデータユニットのプリアンブルの一部のみに用いられる例示的なデータユニットを図示する図である。
一実施形態による、トーンの間隔調整がブロック符号化との組み合わせで用いられる例示的データユニットを図示する図である。
別の実施形態による、トーンの間隔調整がブロック符号化との組み合わせで用いられる例示的データユニットを図示する図である。
一実施形態による、標準モードデータユニットを図示する図である。
一実施形態による、距離延長モードデータユニットを図示する図である。
2つの例示的な実施形態による、ロングトレーニングフィールドの2つの可能なフォーマットを各々図示する図である。 2つの例示的な実施形態による、ロングトレーニングフィールドの2つの可能なフォーマットを各々図示する図である。
一実施形態による、図11Aの標準モードデータユニットの非レガシ信号フィールドを図示する図である。
一実施形態による、図11Bの距離延長モードデータユニットの非レガシ信号フィールドを図示する図である。
一実施形態による、距離延長モードデータユニットを図示するブロック図である。
一実施形態による、図14Aの距離延長モードデータユニットのレガシ信号フィールドを図示する図である。
一実施形態による、図14Bのレガシ受信デバイスにおけるレガシ信号フィールド用の高速フーリエ変換(FFT)ウィンドウを図示する図である。
一実施形態による、非レガシ信号フィールドのフォーマットを図示するブロック図である。
一実施形態による、標準符号化スキームを用いて複数の標準モードデータユニットを生成する例示的なPHY処理ユニットを図示するブロック図である。
一実施形態による、距離延長符号化スキームを用いて、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニットのブロック図である。
別の実施形態による、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニットのブロック図である。
別の実施形態による、距離延長符号化スキームを用いて、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニットのブロック図である。
別の実施形態による、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニットのブロック図である。
別の実施形態による、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニットのブロック図である。
別の実施形態による、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニットのブロック図である。
一実施形態による、距離延長モードデータユニットのプリアンブルにおける複数のOFDMシンボルの反復を示す図である。
一実施形態による、距離延長モードデータユニットのプリアンブルにおける複数のOFDMシンボルの反復を示す図である。
一実施形態による、複数のOFDMシンボルの時間領域反復スキームを示す図である。
別の実施形態による、複数のOFDMシンボルの反復スキームを示す図である。
一実施形態による、データユニットを生成する例示的な方法のフロー図である。
一実施形態による、10MHzのサブバンドを有する距離延長データユニットの反復を伴った20MHzの帯域幅全体の図である。
一実施形態による、10MHzのサブバンドを有する距離延長データユニットの反復を伴った40MHzの帯域幅全体の図である。
一実施形態による、32点FFTモードの例示的なトーンプランの図である。
一実施形態による、距離延長モードがデータユニットのプリアンブルに用いられる例示的なデータユニットの図である。
別の実施形態による、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニットのブロック図である。
一実施形態による、1/2のトーンの間隔を有する例示的な20MHzの全帯域幅の図である。
一実施形態による、1/2のトーンの間隔を有する例示的な20MHzの全帯域幅の図である。
一実施形態による、サイズ64のFFTおよび1/2のトーンの間隔を有する距離延長モードの非レガシトーンプランの図である。
一実施形態による、128FFTの大きさおよび1/2のトーンの間隔を有する距離延長モードの非レガシトーンプランの図である。
一実施形態による、サイズ256のFFTおよび1/2のトーンの間隔を有する距離延長モードの非レガシトーンプランを図示する図である。
一実施形態による、データユニットを生成する例示的な方法のフロー図である。
別の実施形態による、データユニットを生成する例示的な方法のフロー図である。
下記の複数の実施形態において、無線ローカルエリアネットワーク(WLAN)のアクセスポイント(AP)等の無線ネットワークデバイスは、1または複数のクライアント局に複数のデータストリームを送信する。APは、少なくとも第1の通信プロトコルに準拠して、複数のクライアント局と動作するように構成されている。第1の通信プロトコルは、本明細書において「高効率Wi−Fi」、「HEW」通信プロトコル、または802.11ax通信プロトコルと称される場合がある。いくつかの実施形態において、AP付近の異なる複数のクライアント局は、HEW通信プロトコルと同一の周波数帯域であるが、一般により低いデータスループットによる動作を規定する1または複数の他の通信プロトコルに準拠して動作するように構成されている。より低いデータスループットの通信プロトコル(例えば、IEEE802.11a、IEEE802.11n、および/またはIEEE802.11ac)は、本明細書において集合的に「レガシ」通信プロトコルと称される。少なくともいくつかの実施形態において、レガシ通信プロトコルは一般に、屋内通信チャネルで使用され、HEW通信プロトコルは、少なくとも時々は屋外通信、距離延長通信、または送信信号の信号雑音比(SNR)が低減された区域における通信において使用される。
一実施形態によれば、APにより送信される複数のシンボルは、シンボルまたはシンボル内でエンコードされた情報ビットの増大した冗長性を提供する距離延長符号化スキームにより生成される。冗長性は、特に減少したSNRを有する区域においてAPから複数のシンボルを受信するデバイスにより、シンボルが首尾よくデコードされる可能性を増大させる。一般に、低減したSNRを軽減するのに必要とされる冗長性の量は、遅延チャネル広がり(例えば、屋外通信チャネルに対する)、シンボルおよび/または他の要因と干渉する他の複数の信号に依存する。一実施形態において、HEW通信プロトコルは、標準モードおよび距離延長モードを規定する。一実施形態において、標準モードは一般に、より短いチャネル遅延広がり(例えば、屋内通信チャネル)または一般により高いSNR値を特徴とする複数の通信チャネルと共に用いられるが、距離延長モードは一般に、比較的長いチャネル遅延広がり(例えば、屋外通信チャネル)または一般により低いSNR値を特徴とする通信チャネルと共に用いられる。一実施形態において、標準符号化スキームは、標準モードで用いられ、距離延長符号化スキームは、距離延長モードで用いられる。
一実施形態において、APにより送信されるデータユニットは、プリアンブルおよびデータ部分を含み、プリアンブルは、少なくとも部分的に、受信デバイスに対して、データ部分の送信に用いられる様々なパラメータをシグナリングするべく用いられる。様々な実施形態において、データユニットのプリアンブルは、受信デバイスに、データユニットの少なくともデータ部分を使用する特定の符号化スキームをシグナリングするべく用いられる。いくつかの実施形態において、距離延長モードと同一のプリアンブルフォーマットが標準モードにおいて用いられる。そのような一実施形態において、プリアンブルは、標準符号化スキームまたは距離延長符号化スキームがデータユニットの少なくともデータ部分に用いられているか否かを示す表示セットを含む。いくつかの実施形態において、示される標準符号化スキームまたは距離延長符号化スキームは、データユニットのデータ部分に加えて、データユニットのプリアンブルの少なくとも一部に用いられる。一実施形態において、受信デバイスは、データユニットのプリアンブルにおける表示に基づいて使用されている特定の符号化スキームを判断し、次に特定の符号化スキームを用いてデータユニットの適切な残余部分(例えば、データ部分またはプリアンブルおよびデータ部分の一部)をデコードする。
別の実施形態において、距離延長モードで用いられるプリアンブルは、標準モードで用いられるプリアンブルとは異なるようにフォーマットされる。例えば、距離延長モードで用いられるプリアンブルは、データユニットが距離延長モードに対応することを、受信デバイスが(例えばデコード前に)自動的に検出し得るようにフォーマットされる。一実施形態において、データユニットが距離延長モードに対応すると受信デバイスが検出した場合、受信デバイスは、距離延長符号化スキームを用いてデータユニットのデータ部分をデコードし、少なくともいくつかの実施形態において、プリアンブルの少なくとも一部ならびにデータユニットのデータ部分をデコードする。他方、データユニットが距離延長モードに対応していないと受信デバイスが検出した場合、受信デバイスは一実施形態において、データユニットが標準モードに対応するものと想定する。次に、一実施形態において受信デバイスは、標準符号化スキームを用いてデータユニットの少なくともデータ部分をデコードする。
更に、少なくともいくつかの実施形態において、標準モードおよび/または距離延長モードデータユニットのプリアンブルは、HEW通信プロトコルではなくレガシプロトコルに準拠して動作するクライアント局が、データユニットの持続時間等のデータユニットに関する特定の情報、および/またはデータユニットがレガシプロトコルに準拠していないことを判断することができるようにフォーマットされる。更に、データユニットのプリアンブルは、一実施形態において、HEWプロトコルに準拠して動作するクライアント局が、データユニットがHEW通信プロトコルに準拠していること、およびデータユニットが標準モードまたは距離延長モードに従ってフォーマットされているか否かを判断することができるようにフォーマットされる。同様に、HEW通信プロトコルに準拠して動作するように構成されたクライアント局は、一実施形態において上記のような複数のデータユニットも送信する。
少なくともいくつかの実施形態において、例えば、複数の異なる通信プロトコルに準拠するクライアント局、および/または複数のクライアント局が複数の異なる通信プロトコルに準拠して動作する複数のWLANと共に動作するように構成されたAPを有する上記のフォーマットされたデータユニットが有用である。上記の例を続けると、HEW通信プロトコル(標準モードおよび距離延長モードを含む)およびレガシ通信プロトコルの双方に準拠して動作するように構成された通信デバイスは、所与のデータユニットがレガシ通信プロトコルではなくHEW通信プロトコルに準拠してフォーマットされていると判断することができ、データユニットが標準モードではなく距離延長モードに従ってフォーマットされていると更に判断することができる。同様に、HEW通信プロトコルではなく、レガシ通信プロトコルに準拠して動作するように構成された通信デバイスは、データユニットがレガシ通信プロトコルに準拠してフォーマットされていないことを判断し、および/またはデータユニットの持続時間を判断する。
図1は、一実施形態による、例示的な無線ローカルエリアネットワーク(WLAN)10のブロック図である。AP14は、ネットワークインターフェース16に結合されたホストプロセッサ15を含む。ネットワークインターフェース16は、媒体アクセス制御(MAC)処理ユニット18および物理層(PHY)処理ユニット20を含む。PHY処理ユニット20は、複数のトランシーバ21を含み、複数のトランシーバ21は、複数のアンテナ24に結合されている。3つのトランシーバ21および3つのアンテナ24が図1に図示されているが、複数の他の実施形態において、AP14は他の好適な数(例えば、1、2、4、5等)のトランシーバ21およびアンテナ24を含む。一実施形態において、MAC処理ユニット18およびPHY処理ユニット20は、第1の通信プロトコルの少なくとも第1のモードおよび第2のモードを含む第1の通信プロトコル(例えば、HEW通信プロトコル)に準拠して動作するように構成されている。いくつかの実施形態において、第1のモードは、距離延長符号化スキーム(例えば、ブロックエンコード、ビット様式のレプリケーション、もしくはシンボルレプリケーション)、信号変調スキーム(例えば、位相偏移変調もしくは直交振幅変調)、または距離延長符号化スキームおよび信号変調スキームの双方を用いる距離延長モードに対応する。距離延長モードは、第2のモード(例えば、標準符号化スキームを用いる標準モード)と比較して距離を増大させ、および/または信号雑音(SNR)比を低減するように構成され、このSNRで、距離延長モードに準拠するPHYデータユニットの首尾よいデコードが実行される。様々な実施形態において、距離延長モードは、標準モードと比較して送信のデータレートを低減し、増大した距離および/または低減したSNR比の首尾よいデコードを実現する。また、別の実施形態において、MAC処理ユニット18およびPHY処理ユニット20は、第2の通信プロトコル(例えば、IEEE802.11ac規格)に準拠して動作するように構成されている。なおも別の実施形態において、MAC処理ユニット18およびPHY処理ユニット20は、第2の通信プロトコル、第3の通信プロトコル、および/または第4の通信プロトコル(例えば、IEEE802.11a規格および/またはIEEE802.11n規格)に準拠して動作するように更に構成される。
WLAN10は、複数のクライアント局25を含む。4つのクライアント局25が図1に図示されているが、様々なシナリオおよび実施形態において、WLAN10は他の好適な数(例えば、1、2、3、5、6等)のクライアント局25を含む。複数のクライアント局25のうち少なくとも1つ(例えば、クライアント局25−1)は、少なくとも第1の通信プロトコルに準拠して動作するように構成されている。いくつかの実施形態において、複数のクライアント局25のうち少なくとも1つは、第1の通信プロトコルに準拠して動作するように構成されないが、第2の通信プロトコル、第3の通信プロトコル、および/または第4の通信プロトコルのうち少なくとも1つに準拠して動作するように構成されている(本明細書において「レガシクライアント局」と称される)。
クライアント局25−1は、ネットワークインターフェース27に結合されたホストプロセッサ26を含む。ネットワークインターフェース27は、MAC処理ユニット28およびPHY処理ユニット29を含む。PHY処理ユニット29は、複数のトランシーバ30を含み、複数のトランシーバ30は、複数のアンテナ34に結合されている。3つのトランシーバ30および3つのアンテナ34が図1に図示されているが、複数の他の実施形態において、クライアント局25−1は他の好適な数(例えば、1、2、4、5等)のトランシーバ30およびアンテナ34を含む。
一実施形態によれば、クライアント局25−4はレガシクライアント局である。すなわち、クライアント局25−4が、第1の通信プロトコルに準拠してAP14または別のクライアント局25により送信されるデータユニットを受信し、完全にデコードすることは可能とならない。同様に、一実施形態によれば、レガシクライアント局25−4が、第1の通信プロトコルに準拠して複数のデータユニットを送信することは可能とならない。他方、レガシクライアント局25−4は、第2の通信プロトコル、第3の通信プロトコル、および/または第4の通信プロトコルに準拠してデータユニットを受信して完全にデコードし、送信することが可能となる。
一実施形態において、クライアント局25−2および25−3の一方または双方は、クライアント局25−1と同一またはこれに類似する構造を有する。一実施形態において、クライアント局25−4は、クライアント局25−1に類似する構造を有する。これらの実施形態において、クライアント局25−1と同一または類似する構造の複数のクライアント局25は、同一または異なる数のトランシーバおよびアンテナを有する。例えば、一実施形態によれば、クライアント局25−2は、2つのトランシーバおよび2つのアンテナ(図示せず)のみを有する。
様々な実施形態において、AP14のPHY処理ユニット20は、第1の通信プロトコルに準拠し、本明細書に説明される複数のフォーマットを有する複数のデータユニットを生成するように構成されている。トランシーバ21は、アンテナ24を介して複数の生成済みデータユニットを送信するように構成されている。同様に、トランシーバ21は、アンテナ24を介して複数のデータユニットを受信するように構成されている。様々な実施形態によれば、AP14のPHY処理ユニット20は、第1の通信プロトコルに準拠し、本明細書の以下に説明される複数のフォーマットを有する複数の受信済みデータユニットを処理し、複数のそのようなデータユニットが第1の通信プロトコルに準拠していることを判断するように構成されている。
様々な実施形態において、クライアントデバイス25−1のPHY処理ユニット29は、第1の通信プロトコルに準拠し、本明細書に説明される複数のフォーマットを有する複数のデータユニットを生成するように構成されている。トランシーバ30は、アンテナ34を介して複数の生成済みデータユニットを送信するように構成されている。同様に、トランシーバ30は、アンテナ34を介して複数のデータユニットを受信するように構成されている。様々な実施形態によれば、クライアントデバイス25−1のPHY処理ユニット29は、第1の通信プロトコルに準拠し、本明細書の以下に説明される複数のフォーマットを有する複数の受信済みデータユニットを処理し、複数のそのようなデータユニットが第1の通信プロトコルに準拠していることを判断するように構成されている。
図2Aは、一実施形態による、AP14が直交周波数分割多重(OFDM)変調によりレガシクライアント局25−4に送信するように構成された従来技術のOFDMデータユニット200の図である。一実施形態において、レガシクライアント局25−4も、データユニット200をAP14に送信するように構成され得る。データユニット200は、IEEE802.11a規格に準拠し、20メガヘルツ(MHz)の帯域を占有する。データユニット200は、一般にパケット検出、初期同期および自動利得制御等に用いられるレガシショートトレーニングフィールド(L−STF)202、ならびに一般にチャネル推定および微同期に用いられるレガシロングトレーニングフィールド(L−LTF)204を有するプリアンブルを含む。また、データユニット200は、レガシ信号フィールド(L−SIG)206も含み、これは例えば、データユニットを送信するべく用いられる変調の種類および符号化レート等、データユニット200に関する特定の物理層(PHY)パラメータを搬送するべく用いられる。データユニット200は、データ部分208も含む。図2Bは、例示的なデータ部分208の図であり(低密度パリティ検査はエンコードされていない)、例示的なデータ部分208は、必要であればサービスフィールド、スクランブル物理層サービスデータユニット(PSDU)、テールビットおよびパディングビットを含む。データユニット200は、シングル入力シングル出力(SISO)チャネル構成の1つの空間または空間・時間ストリームを介する送信用に設計されている。
図3は、一実施形態による、AP14が直交周波数分割多重(OFDM)変調によりレガシクライアント局25−4に送信するように構成された従来技術のOFDMデータユニット300の図である。一実施形態において、レガシクライアント局25−4も、データユニット300をAP14に送信するように構成される。データユニット300はIEEE802.11n規格に準拠し、20MHzの帯域を占有し、混合モードの状況、すなわちWLANがIEEE802.11a規格に準拠するが、IEEE802.11n規格には準拠しない1または複数のクライアント局を含む場合のために設計されている。データユニット300は、L−STF302、L−LTF304、L−SIG306、高スループット信号フィールド(HT−SIG)308、高スループットショートトレーニングフィールド(HT−STF)310、およびM個のデータ高スループットロングトレーニングフィールド(HT−LTF)312を有するプリアンブルを含む。一般に、Mは、多入力多出力(MIMO)チャネル構成のデータユニット300を送信するべく用いられる空間ストリームの数により、決定される整数である。具体的には、IEEE802.11n規格に準拠して、データユニット300は、データユニット300が2つの空間ストリームを用いて送信される場合に2つのHT−LTF312を含み、データユニット300が3つまたは4つの空間ストリームを用いて送信される場合には、4つのHT−LTF312を含む。使用される特定の数の空間ストリームの表示は、HT−SIGフィールド308に含まれる。データユニット300は、データ部分314も含む。
図4は、一実施形態による、AP14が直交周波数分割多重(OFDM)変調によりレガシクライアント局25−4に送信するように構成された従来技術のOFDMデータユニット400の図である。一実施形態において、レガシクライアント局25−4も、データユニット400をAP14に送信するように構成される。データユニット400は、IEEE802.11n規格に準拠し、20MHzの帯域を占有し、「グリーンフィールド」の状況、すなわちWLANがIEEE802.11a規格に準拠するクライアント局を含まず、IEEE802.11n規格に準拠するクライアント局のみを含む場合のために設計されている。データユニット400は、高スループットグリーンフィールドショートトレーニングフィールド(HT−GF−STF)402、第1の高スループットロングトレーニングフィールド(HT−LTF1)404、HT−SIG406およびM個のデータHT−LTF408を有するプリアンブルを含む。一般に、Mは、多入力多出力(MIMO)チャネル構成のデータユニット400を送信するべく用いられる空間ストリームの数に対応する整数である。データユニット400は、データ部分410も含む。
図5は、一実施形態による、AP14が直交周波数分割多重(OFDM)変調によりレガシクライアント局25−4に送信するように構成された従来技術のOFDMデータユニット500の図である。一実施形態において、レガシクライアント局25−4も、データユニット500をAP14に送信するように構成される。データユニット500は、IEEE802.11ac規格に準拠し、「混合フィールド」の状況のために設計されている。データユニット500は、20MHzの帯域幅を占有する。複数の他の実施形態またはシナリオにおいて、データユニット500に類似するデータユニットは、40MHz、80MHzまたは160MHzの帯域幅等、異なる帯域幅を占有する。データユニット500は、L−STF502、L−LTF504、L−SIG506、第1の超高スループット信号フィールド(VHT−SIGA1)508−1および第2の超高スループット信号フィールド(VHT−SIGA2)508−2を含む2つの第1の超高スループット信号フィールド(VHT−SIGA)508、超高スループットショートトレーニングフィールド(VHT−STF)510、M個の超高スループットロングトレーニングフィールド(VHT−LTF)512、第2の超高スループット信号フィールド(VHT−SIG−B)514を含むプリアンブルを有する。Mは、整数である。データユニット500は、データ部分516も含む。
図6Aは、IEEE802.11n規格により規定される、図3におけるデータユニット300のL−SIG、HT−SIG1およびHT−SIG2フィールドの変調を図示する1セットの図である。L−SIGフィールドは、二位相偏移変調(BPSK)により変調され、HT−SIG1およびHT−SIG2フィールドは、BPSKによるが、直交軸上で変調される(Q−BPSK)。換言すれば、HT−SIG1およびHT−SIG2フィールドの変調は、L−SIGフィールドの変調と比較して90°回転される。
図6Bは、IEEE802.11ac規格により規定された図5におけるデータユニット500のL−SIG、VHT−SIGA1およびVHT−SIGA2フィールドの変調を図示する1セットの図である。図6AにおけるHT−SIG1フィールドと異なり、VHT−SIGA1フィールドは、L−SIGフィールドの変調と同一のBPSKにより変調される。他方、VHT−SIGA2フィールドは、L−SIGフィールドの変調と比較して90°回転される。
図7Aは、一実施形態による、AP14が直交周波数分割多重(OFDM)変調によりクライアント局25−1に送信するように構成されたOFDMデータユニット700の図である。一実施形態において、クライアント局25−1も、データユニット700をAP14に送信するように構成される。データユニット700は、第1の通信プロトコルに準拠し、20MHzの帯域幅を占有する。複数の他の実施形態において、データユニット700と同様に、第1の通信プロトコルに準拠する複数のデータユニットは、例えば40MHz、80MHz、160MHz、320MHz、640MHz、または他の好適な複数の帯域幅等、他の好適な帯域幅を占有し得る。データユニット700は、「混合モード」の状況、すなわちWLAN10が第1の通信プロトコルではなく、レガシ通信プロトコルに準拠するクライアント局(例えば、レガシクライアント局25−4)を含む場合に好適である。いくつかの実施形態において、データユニット700は、他の複数の状況でも使用される。
一実施形態において、データユニット700は、L−STF702、L−LTF704、L−SIG706、第1のHEW信号フィールド(HEW−SIGA1)708−1および第2のHEW信号フィールド(HEW−SIGA2)708−2を含む2つの第1のHEW信号フィールド(HEW−SIGA)708、HEWショートトレーニングフィールド(HEW−STF)710、第3のHEW信号フィールド(HEW−SIGB)714、M個のHEWロングトレーニングフィールド(HEW−LTF)712を有するプリアンブル701を含み、Mは整数である。L−STF702、L−LTF704、L−SIG706、HEW−SIGA708、HEW−STF710、M個のHEW−LTF712、およびHEW−SIGB714の各々は、整数の1または複数のOFDMシンボルを含む。例えば、一実施形態において、HEW−SIGA708は、2つのOFDMシンボルを含み、HEW−SIGA1 708−1フィールドは第1のOFDMシンボルを含み、HEW−SIGA2は第2のOFDMシンボルを含む。例えば別の実施形態において、プリアンブル701は、第3のHEW信号フィールド(HEW−SIGA3、図示せず)を含み、HEW−SIGA708は、3つのOFDMシンボルを含み、HEW−SIGA1 708−1フィールドは、第1のOFDMシンボルを含み、HEW−SIGA2は、第2のOFDMシンボルを含み、HEW−SIGA3は、第3のOFDMシンボルを含む。少なくともいくつかの例において、複数のHEW−SIGA708は集合的に、1つのHEW信号フィールド(HEW−SIGA)708と称される。いくつかの実施形態において、データユニット700は、データ部分716も含む。他の実施形態において、データユニット700は、データ部分716を省略する。
図7Aの実施形態において、データユニット700は、L−STF702、L−LTF704、L−SIG706、複数のHEW−SIGA1 708の各々のうち1つを含む。データユニット700に類似するOFDMデータユニットが20MHz以外の累積的な帯域幅を占有する複数の他の実施形態において、L−STF702、L−LTF704、L−SIG706、複数のHEW−SIGA1 708の各々は、一実施形態のデータユニットの全帯域幅の20MHzサブバンドの対応する数に渡って反復される。例えば、一実施形態において、OFDMデータユニットは、80MHzの帯域幅を占有し、従って一実施形態のL−STF702、L−LTF704、L−SIG706、複数のHEW−SIGA1 708の各々のうちの4つを含む。いくつかの実施形態において、異なる20MHzのサブバンド信号の変調は、異なる角度で回転される。例えば一実施形態において、第1のサブバンドは0°回転し、第2のサブバンドは90°回転し、第3のサブバンドは180°回転し、第4のサブバンドは270°回転する。複数の他の実施形態において、異なる好適な回転が使用される。少なくともいくつかの実施形態において、20MHzのサブバンド信号の異なる複数の位相は、データユニット700におけるOFDMシンボルのピーク対平均電力比(PAPR)の減少をもたらす。一実施形態において、第1の通信プロトコルに準拠するデータユニットが20MHz、40MHz、80MHz、160MHz、320MHz、640MHz等の累積的な帯域幅を占有するOFDMデータユニットである場合、HEW−STF、複数のHEW−LTF、HEW−SIGBおよびHEWデータ部分は、データユニットの対応する全帯域幅を占有する。
図7Bは、一実施形態による、図7Aにおけるデータユニット700のL−SIG706、HEW−SIGA1 708−1およびHEW−SIGA2 708−2の変調を図示する1セットの図である。本実施形態において、L−SIG706、HEW−SIGA1 708−1およびHEW−SIGA2 708−2フィールドは、IEEE802.11ac規格において規定され、図6Bに図示される対応するフィールドの変調と同一の変調を有する。従って、HEW−SIGA1フィールドは、L−SIGフィールドと同様に変調される。他方、HEW−SIGA2フィールドは、L−SIGフィールドの変調と比較して90°回転される。第3のHEW−SIGA3フィールドを有するいくつかの実施形態において、HEW−SIGA2フィールドは、L−SIGフィールドおよびHEW−SIGA1フィールドと同様に変調されるが、HEW−SIGA3フィールドは、L−SIGフィールド、HEW−SIGA1フィールドおよびHEW−SIGA2フィールドの変調と比較して、90°だけ回転する。
一実施形態において、データユニット700のL−SIG706、HEW−SIGA1 708−1およびHEW−SIGA2 708−2フィールドの変調は、IEEE802.11ac規格に準拠するデータユニット(例えば、図5のデータユニット500)における対応する複数のフィールドの変調に対応するので、IEEE802.11a規格および/またはIEEE802.11n規格に準拠して動作するように構成された複数のレガシクライアント局は、少なくともいくつかの条件でデータユニット700がIEEE802.11ac規格に準拠すると想定し、これに応じてデータユニット700を処理する。例えば、IEEE802.11a規格に準拠するクライアント局は、データユニット700のプリアンブルのレガシIEEE802.11a規格部分を理解し、L−SIG706に示された持続時間に従ってデータユニットの持続時間(またはデータユニット持続時間)を設定するであろう。例えば一実施形態によれば、レガシクライアント局25−4は、L−SIGフィールド706に示されたレートおよび長さ(例えばバイト数)に基づいてデータユニットに対する持続時間を算出する。一実施形態において、L−SIGフィールド706におけるレートおよび長さは、レガシ通信プロトコルに準拠して動作するように構成されたクライアント局がレートおよび長さに基づいて、データユニット700の実際の持続時間に対応するか、または少なくともこれに近いパケット持続時間(T)を算出するように設定される。一実施形態において、例えば、レートは、IEEE802.11a規格により規定された最も低いレート(すなわち6Mbps)を示すように設定され、長さは、最も低いレートを用いて計算されたパケットの持続時間がデータユニット700の実際の持続時間に少なくとも近くなるように計算される値に設定される。
一実施形態において、IEEE802.11a規格に準拠するレガシクライアント局は、データユニット700を受信すると、例えばL−SIGフィールド706のレートフィールドおよび長さフィールドを用いてデータユニット700のパケット持続時間を計算し、一実施形態においてクリアチャネル評価(CCA)を実行する前に、計算されたパケット持続時間の終りまで待機する。従って、本実施形態において、通信媒体は、少なくともデータユニット700の持続時間中にレガシクライアント局によるアクセスから保護される。一実施形態において、レガシクライアント局は、データユニット700を継続してデコードするが、データユニット700の終わりで(例えば、フレームチェックシーケンス(FCS)を用いる)エラーチェックに失敗する。
同様に、一実施形態において、IEEE802.11n規格に準拠して動作するように構成されたレガシクライアント局は、データユニット700を受信すると、データユニット700のL−SIG706において示されたレートおよび長さに基づいて、データユニット700のパケット持続時間(T)を計算する。レガシクライアント局は、第1のHEW信号フィールド(HEW−SIGA1)708−1(BPSK)の変調を検出し、データユニット700がIEEE802.11a規格に準拠するレガシデータユニットであると想定する。一実施形態において、レガシクライアント局は、データユニット700を継続してデコードするが、データユニットの最後で(例えば、フレームチェックシーケンス(FCS)を用いる)エラーチェックに失敗する。いずれせよ、IEEE802.11n規格に準拠して、レガシクライアント局は一実施形態において、クリアチャネル評価(CCA)を実行する前に、計算済みのパケット持続時間(T)が終了するまで待機する。従って、一実施形態において通信媒体は、データユニット700の持続時間中にレガシクライアント局によるアクセスから保護される。
一実施形態において、第1の通信プロトコルではなくIEEE802.11ac規格に準拠して動作するように構成されたレガシクライアント局は、データユニット700を受信すると、データユニット700のL−SIG706において示されたレートおよび長さに基づいて、データユニット700のパケット持続時間(T)を計算する。しかし、一実施形態においてレガシクライアント局は、データユニット700の変調に基づいて、データユニット700がIEEE802.11ac規格に準拠しないことを検出することができない。いくつかの実施形態において、データユニット700の1または複数のHEW信号フィールド(例えば、HEW−SIGA1および/またはHEW−SIGA2)は、意図的にデータユニット700をデコードする場合にレガシクライアント局にエラーを検出させ、従ってデータユニット700のデコードを中止させる(または「ドロップ」させる)ようにフォーマットされる。一実施形態において、例えば、データユニット700のHEW−SIGA708は、SIGAフィールドがIEEE802.11ac規格に準拠してレガシデバイスによりデコードされる場合に、意図的にエラーを生じさせるようにフォーマットされる。更に、実施形態において、IEEE802.11ac規格に準拠して、VHT−SIGAフィールドをデコードするときにエラーが検出されると、クライアント局は、データユニット700をドロップし、例えば、クリアチャネル評価(CCA)を実行する前にデータユニット700のL−SIG706に示されたレートおよび長さに基づいて算出された計算済みパケット持続時間(T)が終了するまで待機する。従って、一実施形態において通信媒体は、データユニット700の持続時間中にレガシクライアント局によりアクセスから保護される。
図8は、一実施形態によるOFDMシンボル800の図である。一実施形態において、図7Aのデータユニット700は、OFDMシンボル800等のOFDMシンボルを含む。OFDMシンボル800は、ガードインターバル(GI)部分802および情報部分804を含む。一実施形態において、ガードインターバルは、OFDMシンボルの最後の部分を反復するサイクリックプレフィックスを含む。一実施形態において、ガードインターバル部分802は、受信デバイス(例えばクライアント局25−1)におけるOFDMトーンの直交性を確実にして、OFDMシンボル800が送信デバイス(例えばAP14)から受信デバイスへと送信される通信チャネルでの多経路伝搬によるシンボル間干渉を最小化または除去するのに用いられる。一実施形態において、ガードインターバル部分802の長さは、送信デバイスと受信デバイスとの間の通信チャネルにおいて予期される最悪の場合のチャネルの遅延広がりに基づき、選択される。一実施形態において、例えば、よりロングガードインターバルは、通常はより短いチャネルの遅延広がりにより特徴付けられる複数の屋内通信チャネルに対して選択されたより短いガードインターバルと比較して、通常はより長いチャネルの遅延広がりにより特徴付けられる複数の屋外通信チャネルに対して選択される。一実施形態において、ガードインターバル部分802の長さは、情報部分804が生成されたトーンの間隔(例えば、データユニットにおける全帯域幅の複数のサブキャリア周波数間の間隔)に基づいて選択される。例えば、より広いトーンの間隔(例えば64のトーン)に対してより短いガードインターバルが選択されるので、比較してより狭いトーンの間隔(例えば256のトーン)に、よりロングガードインターバルが選択される。
一実施形態によれば、ガードインターバル部分802は、使用される送信モードに応じてショートガードインターバル、ノーマルガードインターバルまたはロングガードインターバルに対応している。一実施形態において、屋内通信チャネル、比較的短いチャネル遅延広がりを伴う通信チャネルまたは好適な高いSNR比を有する通信チャネルには、ショートガードインターバルまたはノーマルガードインターバルが用いられ、屋外通信チャネル、比較的長い遅延広がりを伴う通信チャネル、または好適な高いSNR比を有しない通信チャネルには、ロングガードインターバルが用いられる。一実施形態において、HEWデータユニット(例えばHEWデータユニット700)が標準モードで送信される場合、HEWデータユニットのいくつか、または全てのOFDMシンボルに、ノーマルガードインターバルまたはショートガードインターバルが用いられ、HEWデータユニットが距離延長モードで送信される場合、HEWデータユニットのうち少なくともいくつかのOFDMシンボルに、ロングガードインターバルが用いられる。
一実施形態において、ショートガードインターバル(SGI)は0.4μsの長さを有し、ノーマルガードインターバルは0.8μsであり、ロングガードインターバル(LGI)は1.2μsまたは1.8μsの長さを有する。一実施形態において、情報部分804は3.2μsの長さを有する。複数の他の実施形態において、情報部分804は、情報部分804が生成されたトーンの間隔に対応する拡大された長さを有する。例えば、情報部分804は、64トーンの第1のトーンの間隔を用いる標準モードに対して3.2μsの第1の長さを有し、128トーンの第2のトーンの間隔に対して6.4μsの第2の長さを有し、第2のトーンの間隔および第2の長さは双方とも、第1のトーンの間隔および第1の長さと比較して2の整数倍、拡大される。一実施形態において、情報部分804の残余の長さは、受信済みの時間領域信号のコピー(例えば、情報部分804は、受信済みの時間領域信号の2つのコピーを含む)で満たされる。複数の他の実施形態において、SGI、NGI、LGIおよび/または情報部分804の複数の他の好適な長さが使用される。いくつかの実施形態において、SGIは、NGIの長さの50%の長さを有し、NGIは、LGIの長さの50%の長さを有する。複数の他の実施形態において、SGIは、NGIの長さの75%またはこれより小さい長さを有し、NGIは、LGIの長さの75%またはこれより小さい長さを有する。複数の他の実施形態において、SGIは、NGIの長さの50%またはこれより小さい長さを有し、NGIは、LGIの50%またはこれより小さい長さを有する。
複数の他の実施形態において、トーンの間隔が小さくなったOFDM変調は、同一のトーンプラン(例えば、どのOFDMトーンがデータトーン、パイロットトーン、および/またはガードトーン用に設計されているかを示す予め定められた一連のインデックス)を用いる距離延長モードで用いられる。例えば、20MHz帯域幅のOFDMデータユニット用の標準モードは、64ポイントの離散フーリエ変換(DFT)を用いて64のOFDMトーン(例えば、インデックス−32〜+31)をもたらし、距離延長モードは、20MHzのOFDMデータユニットに128ポイントのDFTを用いて、同一の帯域幅で128のOFDMトーン(例えば、インデックス−64〜+63)をもたらす。この場合、同一のトーンプランを用いつつ、距離延長モードOFDMシンボルにおけるトーンの間隔は、標準モードOFDMシンボルと比較して2分の1(1/2)だけ低減される。別の例として、20MHz帯域幅のOFDMデータユニット用の標準モードは、64ポイントの離散フーリエ変換(DFT)を用いて64のOFDMトーンをもたらすが、距離延長モードは、20MHzのOFDMデータユニットに256ポイントのDFTを用いて同一の帯域幅の256のOFDMトーンをもたらす。この場合、距離延長モードOFDMシンボルにおけるトーンの間隔は、標準モードOFDMシンボルと比較して4分の1(1/4)だけ低減される。複数のそのような実施形態において、例えば、1.6μsのロングGI持続時間が用いられる。しかし、一実施形態において、距離延長モードOFDMシンボルにおける情報部分の持続時間は(例えば、3.2μsから6.4μsまで)増大し、GI部分の持続時間のOFDMシンボルの全持続時間に対するパーセンテージは、依然として同じである。従ってこの場合、少なくともいくつかの実施形態において、より長いGIシンボルに起因する効率性のロスが回避される。様々な実施形態において、本明細書において用いられる「ロングガードインターバル」という用語は、ガードインターバルの増大した持続時間およびガードインターバルの持続時間を効果的に増大させる小さくしたOFDMトーン間隔を含む。
図9Aは、一実施形態による、標準モードまたは距離延長モードがデータユニットのプリアンブルに用いられる例示的なデータユニット900を図示する図である。一般に、データユニット900は、図7Aのデータユニット700と同一であり、図7Aのデータユニット700と同様の付番の要素を含む。データユニット900のHEW−SIGAフィールド708(例えば、HEW−SIGA1 708−1またはHEW−SIGA2 708−2)は、符号化表示(CI)902を含む。一実施形態によれば、CI表示902は、(i)標準符号化スキームを用いる標準モード、または(ii)距離延長符号化スキームを用いる距離延長モードのうち1つを示すように設定される。一実施形態において、CI表示902は1ビットを含み、当該ビットの第1の値は標準モードを示し、当該ビットの第2の値は距離延長モードを示す。いくつかの実施形態において、CI表示は、変調・符号化スキーム(MCS)インジケータと組み合わされる。例えば一実施形態において、標準モードは、(例えば、IEEE802.11acプロトコルに準拠する)レガシレシーバデバイスにより有効であると判断されるMCS値に対応するが、距離延長モードは、(例えば、IEEE802.11acプロトコルに準拠しない)レガシレシーバデバイスにより無効である(またはサポートされない)と判断されるMCS値に対応する。複数の他の実施形態において、CI表示902は、複数の標準モードMCS値および複数の距離延長モードMCS値を示す複数のビットを有する。図9Aに図示されるように、標準符号化スキームは、データユニット700のプリアンブルの全てのOFDMシンボルに用いられ、図示される実施形態において、CI表示902により示される標準符号化スキームまたは距離延長符号化スキームのうち1つが、データ部分716のOFDMシンボルに用いられる。
例えば、一実施形態において、距離延長符号化スキームは、PHYデータユニットの良好なデコードが標準データユニットと比較して一般に改善される(すなわち、より長い範囲および/またはより低いSNRで良好にデコードされる)データ部分716のOFDMシンボル、範囲および/またはSNRに用いられる。いくつかの実施形態において、改善された範囲および/またはSNR性能は、必ずしもプリアンブル701のデコードのために得られるものではなく、これは標準符号化スキームを用いて生成される。複数のそのような実施形態において、送信パワーブーストを用いてプリアンブル701の少なくとも一部を送信すると、データ部分716の送信に用いられる送信パワーと比較して、プリアンブル701の一部のデコード範囲を大きくする。いくつかの実施形態において、送信パワーブーストを用いて送信されるプリアンブル701の一部は、L−STF702のようなレガシフィールド、L−LTF704、およびL−SIG708、ならびに/またはHEW−STFおよびHEW−LTF等の非レガシフィールドを含む。様々な実施形態において、送信パワーブーストは、3dB、6dB、または他の好適値である。いくつかの実施形態において、送信パワーブーストは、「ブーストされる」プリアンブル701が同一位置における「ブーストされない」データ部分716と比較して類似の性能でデコード可能となるように決定される。いくつかの実施形態において、L−STF702、L−LTF704および/またはL−SIG706の拡大された長さが、送信パワーブーストと組み合わされて用いられる。複数の他の実施形態において、L−STF702、L−LTF704および/またはL−SIG706の拡大された長さが、送信パワーブーストに代えて用いられる。
図9Bは、一実施形態による、距離延長符号化スキームがデータユニットのプリアンブルの一部のみに用いられる例示的なデータユニット950を図示する図である。一般に、データユニット950は、CI表示902により示される符号化スキームがプリアンブル751の一部の複数のOFDMシンボルおよびデータ部分716の複数のOFDMシンボルに適用されるプリアンブル751を、データユニット950が含むことを除き、図9Aのデータユニット900と同じである。具体的には、図示される実施形態において、標準符号化スキームは、プリアンブル701の第1の部分751−1に用いられ、標準符号化スキームまたは距離延長符号化スキームのうち1つは、CI表示902により示されるように、データ部分716の複数のOFDMシンボルに加えて、プリアンブル751の第2の部分751−2の複数のOFDMシンボルに用いられる。従って、図示される実施形態において、CI表示902により示される符号化スキームは、HEW−STF710に対応するOFDMシンボルをスキップして、HEW−LTF712−1に対応するOFDMシンボルの始めに適用される。少なくともいくつかの実施形態において、HEW−STF710をスキップすることにより、データユニット950を受信するデバイスに、CI表示902をデコードしてレシーバを適切に設定することで、OFDMシンボルを受信する前にCI表示902により示された符号化スキームを用いて、そのような複数のOFDMシンボルのデコードを開始するのに十分な時間を許容する。
図10Aは、一実施形態による、OFDMトーンの間隔調整が距離延長符号化スキームのビットおよび/またはシンボルの反復と組み合わせて用いられる例示的データユニット1000を図示する図である。一般に、データユニット1000は、データユニット1000において距離延長符号化スキームが使用されているとCI表示902が示すときに、データユニット1000の標準モードOFDMシンボルに用いられるトーンの間隔と比較して低減されたトーンの間隔を有するOFDM変調を用いてデータ部分716の複数のOFDMシンボルが生成されることを除き、図7Aのデータユニット900と同じである。
図10Bは、別の実施形態による、OFDMトーンの間隔調整が距離延長符号化スキームのビットおよび/またはシンボルの反復と組み合わせて用いられる例示的データユニット1050を図示する図である。一般に、データユニット1050は、データユニット1050において距離延長符号化スキームが使用されているとCI表示902が示すときに、データユニット1050の標準モードOFDMシンボルに用いられるトーンの間隔と比較して低減されたトーンの間隔を有するOFDM変調を用いて第2の部分751−2の複数のOFDMシンボルおよびデータ部分716の複数のOFDMシンボルが生成されることを除き、図9Bのデータユニット950と同じである。図10Aにおいて示される実施形態において、20MHzの帯域幅全体が用いられ、第1の部分751−1におけるノーマルトーンの間隔およびガードインターバル、ならびにトーンの間隔が2つ減らされ、ロングガードインターバルおよびサイズ64のFFTは、帯域幅全体に渡って2回反復される。いくつかの実施形態において、送信パワーブーストは、第1の部分751−1に適用される。複数の他の実施形態において、4x、8x等の他の倍数、または他の好適な複数の値が低減されたトーンの間隔、増大したガードインターバル、増大したシンボル持続時間、または帯域幅全体における増大した反復のうち1または複数に用いられる。
いくつかの実施形態において、標準モードデータユニットに用いられるプリアンブルと比較して、異なるプリアンブルフォーマットが、距離延長モードデータユニットに用いられる。複数のそのような実施形態において、データユニットを受信するデバイスは、データユニットのプリアンブルのフォーマットに基づいて、データユニットが標準モードデータユニットか、または距離延長モードデータユニットかを自動的に検出し得る。図11Aは、一実施形態による、標準モードデータユニット1100を図示する図である。標準モードデータユニット1100は、標準モードプリアンブル1101を含む。一般に、標準モードプリアンブル1101は、図7Aのデータユニット700のプリアンブル701と同じである。一実施形態において、プリアンブル1101は、第1のHEW−SIGA1フィールド1108−1および第2のHEW−SIGA2フィールド1108−2を含む、HEW−SIGAフィールド1108を含む。一実施形態において、プリアンブル1101のHEW−SIGAフィールド1108(例えば、HEW−SIGA1 1108−1またはHEW−SIGA2 1108−2)は、CI表示1102を含む。一実施形態において、CI表示1102は、データユニット1100におけるデータ部分716のOFDMシンボルに、距離延長符号化スキームが用いられるか、または標準符号化スキームが用いられているか否かを示すように設定される。一実施形態において、CI表示1102は1ビットを含み、当該ビットの第1の値は標準符号化スキームを示し、当該ビットの第2の値は距離延長符号化スキームを示す。以下により詳細に説明されるように、一実施形態においてデータユニット1100を受信するデバイスは、プリアンブル1101のフォーマットに基づいて、プリアンブル1101が延長モードプリアンブルではなく、標準モードプリアンブルであることを検出することができる。一実施形態において、プリアンブル1101が標準モードプリアンブルであることを検出すると、受信デバイスは、CI表示1102に基づいて、データ部分716の複数のOFDMシンボルに、距離延長符号化スキームが用いられているか、または標準符号化スキームが用いられているか否かを判断し、これに応じてデータ部分716をデコードする。いくつかの実施形態において、距離延長符号化スキームが使用されていることをCI表示1102が示すと、プリアンブル1101の一部の複数のOFDMシンボル(例えば、HEW−LTFおよびHEW−SIGB)およびデータ部分716の複数のOFDMシンボルが、データユニット1050における標準モード複数のOFDMシンボルに用いられるトーンの間隔と比較して小さいトーンの間隔を伴うOFDM変調を用いて生成される。
図11Bは、一実施形態による、距離延長モードデータユニット1150を図示する図である。距離延長モードデータユニット1150は、距離延長モードプリアンブル1151を含む。一般に、データユニット1150は、データユニット1150のプリアンブル1151がデータユニット1100のプリアンブル1101とは異なるようにフォーマットされることを除き、図11Aのデータユニット1100に類似する。一実施形態において、プリアンブル1151は、HEW通信プロトコルに準拠して動作する受信デバイスが、プリアンブル1151が標準モードプリアンブルではなく、距離延長モードプリアンブルであると判断することができるようにフォーマットされる。一実施形態において、距離延長モードプリアンブル1151は、L−STF702、L−LTF704、およびL−SIG706、ならびに1または複数の第1のHEW信号フィールド(HEW−SIGA)1152を含む。一実施形態において、プリアンブル1150は、L−SIGフィールド706に続く1または複数の二次L−SIG1154を更に含む。いくつかの実施形態において、複数の二次L−SIG1154の次には、第2のL−LTFフィールド(L−LTF2)1156が続く。複数の他の実施形態において、プリアンブル1151は、L−SIG1154および/またはL−LTF2 1156を省略する。また、いくつかの実施形態において、プリアンブル1151は、HEW−STF1158、1もしくは複数のHEW−LTFフィールド1160、および第2のHEW信号フィールド(HEW−SIGB)1162を含む。複数の他の実施形態において、プリアンブル1151は、HEW−STF1158、HEW−LTF1160、および/またはHEW−SIGB1162を省略している。一実施形態において、データユニット1150は、データ部分716(図11Bに図示せず)も含む。いくつかの実施形態において、複数のHEW信号フィールド(HEW−SIGA)1152は、データフィールド716と同一の距離延長符号化スキームを用いて変調される。
一実施形態において、HEW−SIGA1152の1または複数のシンボルは、例えばBPSKに代えてQBPSKを用いて変調され、HEW通信プロトコルに準拠して動作する受信デバイスによる標準モードと距離延長モードとの間の自動検出を可能にする。例えば一実施形態において、標準モードプリアンブルがL−SIG706フィールドの後に2つのBPSKシンボルと1つのQ−BPSKシンボルとを含む場合、距離延長モードプリアンブルは、L−SIG706フィールドの後に3つのBPSKシンボルと1つのQ−BPSKシンボルとを含む。例えば一実施形態においては、各64FFT(20MHz)の48のデータトーンを有するMCS0の4xビット様式の反復を用いる場合である。例えばいくつかの実施形態において、自動検出が標準モードと距離延長モードを区別する場合、信号帯域幅を示すべく用いられたビット、MCS値、または他の好適なビット等、いくつかのビットはHEW−SIGA1152から省略される。
プリアンブル1151が1または複数の二次L−SIG1154を含む一実施形態において、L−SIG1154の各々の内容は、データユニット1150におけるL−SIG706の内容と同じである。一実施形態において、データユニット1150を受信する受信デバイスは、プリアンブル1151がL−SIGフィールド706、1154の反復を検出することにより、距離延長モードプリアンブルに対応することを判断する。更に、一実施形態において、L−SIG706のレートサブフィールドおよび長さサブフィールドの双方が、従って二次L−SIG1154のレートサブフィールドおよび長さサブフィールドが固定(例えば、予め定められた)値に設定される。この場合、一実施形態において、複数のL−SIGフィールド706、1154の反復を検出すると、受信デバイスは、反復する複数のL−SIGフィールドの固定値を追加のトレーニング情報として用いてチャネル推定を改善する。しかし、いくつかの実施形態において、L−SIG706の少なくとも長さサブフィールド、従って二次L−SIG1154の少なくとも長さフィールドは、固定値に設定されない。例えば、これに代えて一実施形態において、長さフィールドは、データユニット1150の実際の長さに基づいて判断された値に設定される。そのような一実施形態において、受信デバイスは、まずL−SIG706をデコードし、次にL−SIG706における長さサブフィールドの値を用いてL−SIGフィールド706、1154の反復を検出する。別の実施形態において、受信デバイスは、まずL−SIGフィールド706、1154の反復を検出し、次に検出された複数のL−SIGフィールド706、1154を組み合わせてL−SIGフィールド706、1154のデコードの信頼性を改善し、および/または複数のL−SIGフィールド706、1154における冗長情報を用いてチャネル推定を改善する。
プリアンブル1151がL−LTF2 1156を含む実施形態において、L−LTF2 1156のOFDMシンボルは、距離延長符号化スキームを用いて生成される。プリアンブル1151がL−LTF2 1156を含む別の実施形態において、L−LTF2 1156のOFDMシンボルは、標準符号化スキームを用いて生成される。例えば一実施形態において、L−LTF704において用いられるダブルガードインターバル(DGI)が、データユニット1150が受信デバイスから送信デバイスへと通る通信チャネルにとり十分に長い場合、L−LTF2 1156の複数のOFDMシンボルは、標準符号化スキームを用いて生成され、あるいはプリアンブル1151は、L−LTF2 1156を省略する。
別の実施形態において、プリアンブル1151は、二次L−SIG1154を省略するが、L−LTF2 1156を含む。本実施形態において、受信デバイスは、L−LTF2 1156の存在を検出することにより、プリアンブル1151が距離延長モードプリアンブルであることを検出する。図12A〜図12Bは、2つの例示的な実施形態による、L−LTF2 1156として用いるのに好適なLTFの2つの可能なフォーマットを図示する図である。まず図12Aを参照すると、第1の例示的な実施形態において、L−LTF2 1200は、L−LTF704と同様に、すなわちレガシ通信プロトコル(例えば、IEEE802.11a/n/ac規格)により規定されるようにフォーマットされる。具体的には、図示される実施形態において、L−LTF2 1200は、ダブルガードインターバル(DGI)1202を含み、その次にロングトレーニングシーケンス1204、1206の2つの反復が続く。ここで図12Bを参照すると、別の例示的な実施形態において、L−LTF2 1208は、L−LTF704とは異なるようにフォーマットされる。具体的には、図示される実施形態において、L−LTF2 1208は、第1のノーマルガードインターバル1210、ロングトレーニングシーケンス1212の第1の反復、第2のノーマルガードインターバル1214、およびロングトレーニングシーケンス1216の第2の反復を含む。
再び図11Bを参照すると、一実施形態においてHEW−SIGA1152は、距離延長符号化スキームを用いて生成される。一実施形態において、HEW−SIGA1152の数は、標準モードプリアンブル1101のHEW−SIGA1108の数と同じである。同様に、一実施形態においてHEW−SIGA1152の内容は、標準モードプリアンブル1101のHEW−SIGA1108の内容と同じである。複数の他の実施形態において、HEW−SIGA1152の数および/または内容は、標準モードプリアンブル1101のHEW−SIGA1108の数および/または内容と異なる。一実施形態において、データユニット1150を受信するデバイスは、プリアンブル1151が距離延長モードプリアンブルに対応することを検出したことに基づいて、距離延長符号化スキームを用いてHEW−SIGA1152をデコードして、距離延長モードに規定されたように適切にHEW−SIGA1152を解釈する。
プリアンブル1151がL−SIG1154および/またはL−LTF2 1156を省略する実施形態において、受信デバイスは、距離延長符号化スキームおよび標準符号化スキームを用いるHEW−SIGAフィールドの自己相関に基づいて、距離延長符号化スキームまたは標準符号化スキームを用いてプリアンブルにおけるHEW−SIGAフィールドが生成されたかを検出することにより、プリアンブルが距離延長モードプリアンブル1151または標準モードプリアンブル1101に対応するかを判断する。図13A〜図13Bは、一実施形態による、標準モードプリアンブル1101のHEW−SIGA1108および距離延長モードプリアンブル1151のHEW−SIGA1152の各々の図である。図示される実施形態において、標準モードプリアンブル1101のHEW−SIGA1108は、第1のNGI1302、第1のHEW−SIGAフィールド1304、第2のNGI1306、および第2のHEW−SIGAフィールド1308を含む。他方、距離延長モードプリアンブル1151のHEW−SIGA1152は、第1のLGI1310、第1のHEW−SIGAフィールド1312、第2のLGI1314、および第2のHEW−SIGAフィールド1312を含む。一実施形態において、受信デバイスは、図13Aに図示される構造のようなノーマルガードインターバル構造を用いてHEW−SIGAフィールドの第1の自己相関を実行し、図13Bに図示される構造のようなロングガードインターバル構造を用いて第2の自己相関を実行し、自己相関結果の比較を実行する。一実施形態において、ロングガードインターバルを用いるHEW−SIGAフィールドの自己相関がノーマルガードインターバルを用いるHEW−SIGAフィールドの自己相関の結果と比較して大きい結果を生成した場合、受信デバイスは、プリアンブルが距離延長モードプリアンブル1151に対応するものと判断する。他方、一実施形態において、ノーマルガードインターバルを用いるHEW−SIGAフィールドの自己相関がロングガードインターバルを有するHEW−SIGAフィールドの自己相関の結果と比較して大きい結果を生成した場合、受信デバイスは、プリアンブルが標準モードプリアンブル1101に対応すると判断する。
再び図11Bを参照すると、一実施形態において、プリアンブル1151は、レガシクライアント局がデータユニット1150の持続時間および/またはデータユニットがレガシ通信プロトコルに準拠していないことを判断し得るようにフォーマットされる。更に、実施形態において、プリアンブル1151は、データユニットがHEW通信プロトコルに準拠することを、HEWプロトコルに準拠して動作するクライアント局が判断できるようにフォーマットされる。例えば、L−SIG1154および/またはL−LTF2 1156および/またはHEW−SIGA1152等、プリアンブル1151のL−SIG706の直ぐ後の少なくとも2つのOFDMシンボルが、BPSK変調を用いて変調される。この場合、一実施形態において、レガシクライアント局は、データユニット1150をレガシデータユニットとして処理し、L−SIG706に基づいてデータユニットの持続時間を判断し、判断される持続時間中に媒体にアクセスするのを控える。更に、一実施形態において、HEW−SIG1152のうち1または複数等、プリアンブル1151の1または複数の他のOFDMシンボルは、Q−BPSK変調を用いて変調され、HEW通信プロトコルに準拠して動作するクライアント局が、データユニット1150がHEW通信プロトコルに準拠していることを検出することを可能にする。
いくつかの実施形態において、HEW通信プロトコルは、距離延長モードによるビーム形成および/またはマルチユーザMIMO(MU−MIMO)送信を可能にする。複数の他の実施形態において、HEW通信プロトコルは、距離延長モードによる1つのストリームのみおよび/または1ユーザの送信のみを可能にする。引き続き図11Bを参照すると、プリアンブル1151がHEW−STF1158およびHEW−LTF1160を含む実施形態において、AP14は、HEW−STF1158を開始するビーム形成および/またはマルチユーザ送信を適用する。換言すれば、一実施形態において、プリアンブル1151の複数のフィールドは、HEW−STF1158に先行し、オムニ指向性であり、マルチユーザモードでデータユニット1150の全ての意図された受信者により受信されることを意図するが、HEW−STFフィールド1158、ならびにHEW−STFフィールド1158に続く複数のプリアンブルフィールド、およびプリアンブル1151に続くデータ部分はビーム形成され、および/またはデータユニット1150の意図された異なる受信者により受信されることを意図した異なる複数の部分を含む。一実施形態において、HEW−SIGBフィールド1162は、MU−MIMOモードのデータユニット1150の意図された複数の受信者についてのユーザ特定情報を含む。HEW−SIGBフィールド1162は、実施形態に応じて、標準符号化スキームまたは距離延長符号化スキームを用いて生成される。同様に、HEW−STF1158は、実施形態に応じて、標準符号化スキームまたは距離延長符号化スキームを用いて生成される。一実施形態において、HEW−STF1158に用いられるトレーニングシーケンスは、IEEE802.11acプロトコル等、レガシ通信プロトコルにおいて規定されたシーケンスである。
他方、プリアンブル1151がHEW−STF1158およびHEW−LTF1160を省略する実施形態において、ビーム形成およびMUMIMOは、延長ガードインターバルモードで可能とされない。本実施形態において、1ユーザと1つのストリームのみによる送信は、拡張ガードインターバルモードで可能とされる。一実施形態において、受信デバイスは、L−LTFフィールド704に基づいて1つのストリームチャネル推定を取得し、L−LTFフィールド704に基づいて取得されたチャネル推定に基づいて、データユニット1150のデータ部分を復調する。
いくつかの実施形態において、レシーバデバイスは、HEW−STFフィールド1158を用いて、データ部分716を受信する自動利得制御(AGC)処理を再度開始する。一実施形態において、HEW−STFは、VHT−STFと同一の持続時間(すなわち4マイクロ秒)を有する。複数の他の実施形態において、HEW−STFは、VHT−STFよりも長い持続時間を有する。一実施形態において、HEW−STFは、周波数領域において4つのトーン毎に1つのゼロでないトーンが存在し、IEEE802.11acと同一のトーンの間隔を用いるように、VHT−STFと同一の時間領域の周期性を有する。1/Nのトーンの間隔を有する複数の他の実施形態において、HEW−STFは、4×Nトーン毎に1つのゼロでないトーンを有する。データユニットの全体としての帯域幅が20MHz(例えば、40MHz、80MHz等)よりも大きい実施形態において、HEW−STFは、IEEE802.11acと同一のより広い帯域幅VHT−STFを用いる(すなわち、40MHz、80MHz、160MHz等の全体としての帯域幅に対する20MHzのVHT−STFの複製)。
図14Aは、一実施形態による、距離延長モードデータユニット1400を図示するブロック図である。データユニット1400は、距離延長モードプリアンブル1401を含む。一般に、距離延長モードプリアンブル1401は、プリアンブル1151のL−SIG706および二次L−SIG1154が組み合わされてプリアンブル1401における1つのL−SIGフィールド1406となることを除き、図11Bの距離延長モードプリアンブル1151と類似する。図14Bは、一実施形態によるL−SIGフィールド1406を図示する図である。図14Bの実施形態において、L−SIGフィールド1406は、ダブルガードインターバル1410と、プリアンブル1151におけるL−SIGフィールド706の内容を含む第1のL−SIGフィールド1412と、プリアンブル1151における二次L−SIG2フィールド1154の内容を含む第2のL−SIGフィールド1414とを含む。様々な実施形態において、L−SIGフィールド1406は、図11BのL−SIGフィールド706、1154に関して上述されたように、固定値に設定されるか、または変数値に設定された長さサブフィールドを含む。様々な実施形態において、L−SIGフィールド1406の冗長(反復される)ビットは、図11BのL−SIGフィールド706、1154に関する上述の改善されたチャネル推定に用いられる。
一実施形態において、データユニット1400を受信するレガシクライアント局は、L−SIGフィールド1406がノーマルガードインターバルを含むものと想定する。図14Cに図示されるように、本実施形態において、レガシクライアント局において想定されるL−SIG情報ビットのFFTウィンドウは、実際のL−SIGフィールド1412と比較してシフトされる。一実施形態において、レガシクライアント局により予期されたようにFFTウィンドウ内のコンスタレーションポイントがBPSK変調に対応することを確実にして、従ってレガシクライアント局がL−SIGフィールド1412を適切にデコードすることを可能にするべく、L−SIGフィールド1412の変調は、標準のBPSK変調に対して位相変位される。例えば、20MHzのOFDMシンボルにおいて、ノーマルガードインターバルが0.8μsであり、ダブルガードインターバルが1.6μsである場合、L−SIGフィールド1412のOFDMトーンkの変調は、次式から見られ得る元のL−SIGの対応するOFDMトーンkに対してシフトされる。
Figure 2016536871
従って、一実施形態において、L−SIGフィールド1412は、標準のBPSKではなく反転Q−BPSKを用いて変調される。従って、一実施形態において、例えば値1のビットは−jに変調され、ビット値0はjに変調されて、標準の{1,−1}BPSK変調ではなく{j,−j}変調をもたらす。一実施形態において、L−SIGフィールド1412の反転Q−BPSK変調の結果として、レガシクライアント局は、L−SIGフィールド1412を適切にデコードし、一実施形態において、L−SIG1412フィールドに基づいてデータユニット1400の持続時間を判断し得る。他方、一実施形態においてHEWプロトコルに準拠して動作するクライアント局は、L−SIGフィールド1412の反復を検出するか、またはレガシクライアント局のFFTウィンドウ内のL−SIGフィールドの反転Q−BPSK変調を検出することにより、プリアンブル1401が距離延長モードプリアンブルであると自動検出し得る。あるいは、複数の他の実施形態において、HEWプロトコルに準拠して動作するクライアント局は、HEW−SIGAフィールド1152の変調またはフォーマットに基づくなど、上述の他の複数の検出方法を用いて、プリアンブル1401が距離延長モードプリアンブルであることを検出する。
図11A〜図11Bおよび図14Aを参照すると、いくつかの実施形態において、ロングガードインターバルは、標準モードプリアンブル(例えば、プリアンブル1101)および距離延長モードプリアンブル(例えば、プリアンブル1151またはプリアンブル1401)の双方の初期OFDMシンボルに用いられる。例えば、例えば、図11A〜図11Bを参照すると、一実施形態において、L−STFフィールド702、L−LTFフィールド704およびL−SIGフィールド706、1154、ならびにHEW−SIGAフィールド1152は、ロングガードインターバルを用いて各々生成される。同様に、図14Aを参照すると、一実施形態において、L−STFフィールド702、L−LTFフィールド704、L−SIGフィールド1406、およびHEW−SIGAフィールド1152は、ロングガードインターバルを用いて生成される。一実施形態において、受信デバイスは、様々な実施形態におけるHEW−SIGAフィールド1152の変調(例えば、Q−BPSK)に基づくか、またはHEW−SIGAフィールド1152に含まれる表示に基づいてプリアンブルが標準モードプリアンブルまたは距離延長モードプリアンブルに対応するかを判断し得る。更に、図11Bのプリアンブル1151と同様に、図14Aのプリアンブル1401は、実施形態および/もしくはシナリオに応じて第2のL−LTF2フィールド1156を含み、または省略する。
図15は、一実施形態による、HEW−SIGAフィールド1500ののフォーマットを図示するブロック図である。いくつかの実施形態において、データユニット1150またはデータユニット1400のHEW−SIGAフィールド1152は、HEW−SIGAフィールド1500としてフォーマットされる。いくつかの実施形態において、HEW−SIGAフィールド1108は、HEW−SIGAフィールド1500としてフォーマットされる。HEW−SIGAフィールド1500は、ダブルガードインターバル1502、HEW−SIGAフィールド1504の第1の反復、およびHEW−SIGAフィールド1506の第2の反復を含む。例示的な実施形態において、DGIは1.8μsであり、HEW−SIGAの各反復は3.2μsである。一実施形態において、HEW−SIGAフィールド1500における反復されるビットは、HEW−SIGAフィールド1500のデコードの信頼性を高めるべく用いられる。一実施形態において、HEW−SIGAフィールド1500のフォーマットは、HEW−SIGAフィールド1500のフォーマットを用いるプリアンブルのHEW−SIGAフィールドの自己相関と、図13Aに図示されるフォーマット等の標準モードで用いられる標準のHEW−SIGAフィールドフォーマットを用いるプリアンブルのHEW−SIGAフィールドの自己相関との間の比較に基づいて、距離延長モードプリアンブルを自動検出するべく用いられる。いくつかの実施形態において、HEW−SIGAフィールド1500は、データ部分716と比較して小さい冗長性を用いて変調される。HEW−SIGAフィールド1500の追加の時間領域の反復は、デコード性能における十分な改善を提供するからである。
図16は、一実施形態による、標準符号化スキームを用いて複数の標準モードデータユニットを生成する例示的なPHY処理ユニットを図示するブロック図である。一実施形態において、図1を参照すると、AP14およびクライアント局25−1は各々、PHY処理ユニット1600等のPHY処理ユニットを含む。様々な実施形態および/またはシナリオにおいて、PHY処理ユニット1600は、例えば、図9A、図9B,図10A、または図10Bのデータユニットのうち1つ等、距離延長データユニットを生成する。PHY処理ユニット1600は、一般に1または0の長いシーケンスの発生を低減させるべく、情報ビットストリームをスクランブルするスクランブラ1602を含む。FECエンコーダ1606は、スクランブル済み情報ビットをエンコードして、エンコード済みデータビットを生成する。一実施形態において、FECエンコーダ1606は、2値畳み込みコード(BCC)を含む。別の実施形態において、FECエンコーダ1606は、2値畳み込みエンコーダを含み、その次にパンクチャリングブロックが続く。なおも別の実施形態において、FECエンコーダ1606は、低密度パリティ検査(LDPC)エンコーダを含む。インターリーバ1610は、エンコード済みデータビットを受信し、これらビットをインターリーブ(すなわち、ビットの順番を変更)して、隣接するノイズの多い複数のビットの長いシーケンスが、レシーバのデコーダに入力されるのを防ぐ。コンスタレーションマッパ1614は、インターリーブされた複数のビットのシーケンスを、OFDMシンボルの異なるサブキャリアに対応するコンスタレーションポイントにマッピングする。より具体的には、各空間ストリームについて、コンスタレーションマッパ1614は、長さlog(M)の各ビットシーケンスを、M個のコンスタレーションポイントのうちの1つに変換する。
コンスタレーションマッパ1614の出力は各々、コンスタレーションポイントのブロックを時間領域の信号に変換する離散逆フーリエ変換(IDFT)ユニット1618により演算される。PHY処理ユニット1600が複数の空間ストリームを介して送信するための複数のデータユニットを生成するべく動作する実施形態または状況において、サイクリックシフトダイバーシチ(CSD)ユニット1622は、意図しないビーム形成を防止するべく、複数の空間ストリームのうち1つ以外の全てに周期シフトを挿入する。CSDユニット1622の出力は、ガードインターバル(GI)挿入に供給され、OFDMシンボルの循環拡張をOFDMシンボルの先頭に付加し、各シンボルのエッジをスムースにして、スペクトル減衰を増大させるウィンドウ化ユニット1626に供給される。GI挿入およびウィンドウ化ユニット1626の出力は、アナログおよび無線周波数(RF)ユニット1630に供給されて、これは信号をアナログ信号に変換し、この信号を送信のためのRF周波数へとアップコンバートする。
様々な実施形態において、距離延長モードは、標準モードの最も低いデータレート変調および符号化スキーム(MCS)に対応し、複数のビットの冗長性または反復をデータユニットの少なくともいくつかのフィールドまたは複数のシンボルの反復に導入して、データレートを更に低減する。例えば、様々な実施形態および/またはシナリオにおいて距離延長モードは、下記の1または複数の距離延長符号化スキームにより、距離延長モードデータユニットまたは複数のシンボルの反復のデータ部分および/または非レガシ信号フィールドに、冗長性を導入する。一例として、一実施形態によれば、複数の標準モードデータユニットは、標準符号化スキームにより生成される。様々な実施形態において、標準符号化スキームは、MCS0(二位相偏移変調(BPSK)変調および1/2の符号化レート)〜MCS9(直交振幅変調(QAM)および5/6の符号化レート)等、変調および符号化スキーム(MCS)のセットから選択されたMCSであり、高次のMCSは、より高いデータレートに対応する。そのような一実施形態における距離延長モードデータユニットは、MCS0により規定された変調および符号化等の距離延長符号化スキームを用いて生成され、追加されたビットの反復、ブロックのエンコードまたはシンボルの反復は、データレートを更に低減する。
図17Aは、一実施形態による、距離延長符号化スキームを用いて、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニット1700のブロック図である。いくつかの実施形態において、PHY処理ユニット1700は、距離延長モードデータユニットの信号および/またはデータフィールドを生成する。一実施形態において、図1を参照すると、AP14およびクライアント局25−1は各々、PHY処理ユニット1700等のPHY処理ユニットを含む。
PHY処理ユニット1700は、スクランブラ1702に結合されたブロックコーダ1704を、PHY処理ユニット1700が含むことを除き、図16のPHY処理ユニット1600に類似する。一実施形態において、ブロックコーダ1704は、ある時点のブロック毎の入力された(スクランブル済みの)情報ビットを読み取り、各ブロック(またはブロック内の各ビット)のいくつかのコピーを生成して、距離延長符号化スキームに従ってもたらされるビットをインターリーブし、FECエンコーダ1706(例えば2値畳み込みエンコーダ)により更にエンコードするインターリーブ済みビットを出力する。一般に、一実施形態によれば、各ブロックは、ブロックコーダ1704およびFECエンコーダ1706によりエンコードされた後、1つのOFDMシンボルのデータトーンを満たす情報ビットの数を含む。一例としては、一実施形態において、ブロックコーダ1704は、各ブロックの12の情報ビットのコピーを2つ(2x反復)を生成して、OFDMシンボルに含まれる24ビットを生成する。この24ビットが更にFECエンコーダ1706により1/2の符号化レートでエンコードされて48ビットを生成し、48ビットが(例えば、BPSK変調を用いて)OFDMシンボルの48個のデータトーンを変調する。別の例としては、別の実施形態において、ブロックコーダ1704は、各ブロックの6つの情報ビットのコピーを4つ(4x反復)生成して24ビットを生成し、この24ビットがFECエンコーダ1706により1/2の符号化レートでエンコードされ、OFDMシンボルの48のデータトーンを変調する48ビットを生成する。なおも別の例としては、別の実施形態において、ブロックコーダ1704は、各ブロックの13の情報ビットのコピーを2つ(2x反復)生成して26ビットを生成し、この26ビットがFECエンコーダ1706により1/2の符号化レートでエンコードされ、OFDMシンボルの52のデータトーンを変調する52ビットを生成する。複数の他の実施形態において、ブロックコーダ1704およびFECエンコーダ1706は、OFDMシンボルのデータトーンの変調のために104、208、または任意の好適な数のビットを生成するように構成されている。
いくつかの実施形態において、ブロックコーダ1704は、20MHzチャネルに対するIEEE802.11n規格で規定されるMCS0により定義されたデータ(または信号)フィールドを生成する場合、すなわち、1つのOFDMシンボル当たり52のデータトーンが存在する場合、4x反復するスキームを適用する。この場合、一実施形態によれば、ブロックコーダ1704は、各ブロックの6つの情報ビットのコピーを4つ生成して、24ビットを生成し、次に2つのパディングビット(すなわち、予め定められた値の2つのビット)を追加して、指定された数のビット(すなわち、52データトーンに対して26ビット)をBCCエンコーダに提供し、BCCエンコーダは、1/2の符号化レートを用いてこの26ビットをエンコードし、52個のデータトーンを変調するための52の符号化済みビットを生成する。
一実施形態において、ブロックコーダ1704は、nのビットの各ブロックが、m回連続して反復される「ブロックレベル」の反復スキームを使用する。一例として、mが4に等しい場合(4x反復)、ブロックコーダ1704は、一実施形態によれば、[C,C,C,C]というシーケンスを生成する。Cは、nのビットのブロックである。別の実施形態において、ブロックコーダ1704は、入力された各ビットが、m回連続して反復される「ビットレベル」の反復スキームを使用する。この場合、一実施形態において、mが4に等しい場合(4x反復)、ブロックコーダ1704は、シーケンス[b1 b1 b1 b1 b2 b2 b2 b2 b3 b3 b3 b3...]を生成する。b1は、複数ビットのブロックにおける第1番目のビットであり、b2は第2番目のビットであり、以下同様である。なおも別の実施形態において、ブロックコーダ1704は、入力されたビットのmの数のコピーを生成して、もたらされたビットストリームを、任意の好適なコードに従ってインターリーブする。あるいは、なおも別の実施形態において、ブロックコーダ1704は、任意の好適なコード、例えば、1/2、1/4等の符号化レートを有するハミングブロックコード、または1/2、1/4の符号化レートを有するその他のブロックコード(例えば、(1,2)又は(1,4)ブロックコード、(12,24)ブロックコード、または(6,24)ブロックコード、(13,26)ブロックコード等)を用いて、入力されたビットまたは入力されたビットのブロックをエンコードする。
一実施形態によれば、ブロックエンコードユニット1704によって実行される符号化と、FECエンコーダ1706によって実行される符号化の組み合わせに対応する実効符号化レートは、2つの符号化レートの積になる。例えば、ブロックコーダ1704が4x反復(または1/4の符号化レート)を使用し、FECエンコーダ1706が1/2の符号化レートを使用する実施形態において、もたらされる実効符号化レートは、1/8に等しくなる。一実施形態によれば、類似の標準モードデータユニットを生成するのに用いられる符号化レートと比較して低減された符号化レートの結果として、距離延長モードでのデータレートは、ブロックコーダ1704により適用される符号化レートの数字に対応する係数分(例えば、2の係数、4の係数等)だけ実質的に低減される。
いくつかの実施形態において、ブロックコーダ1704は、制御モードデータユニットの信号フィールドを生成するのに用いられる、制御モードデータユニットのデータ部分を生成するブロック符号化スキームと同一のブロック符号化スキームを使用する。例えば、一実施形態において、信号フィールドのOFDMシンボルおよびデータ部分のOFDMシンボルは各々、48のデータトーンを含み、本実施形態において、ブロックコーダ1704は、例えば、信号フィールドおよびデータ部分に対して、12ビットのブロックを2x反復するスキームを適用する。別の実施形態において、制御モードデータユニットのデータ部分および信号フィールドは、異なるブロック符号化スキームを用いて生成される。例えば、一実施形態において、長距離通信プロトコルは、データ部分の1つのOFDMシンボル当たりのデータトーン数と比較して、異なる1つのOFDMシンボル当たりのデータトーン数を信号フィールドに指定する。従って、本実施形態において、ブロックコーダ1704は、異なるブロックサイズを使用し、また、いくつかの実施形態において、信号フィールドに対する動作時に、データ部分を生成するのに用いられたブロックサイズおよび符号化スキームと比較して、異なるブロックサイズおよび符号化スキームを用いる。例えば、長距離通信プロトコルが、信号フィールドの1つのOFDMシンボル当たり52のデータトーンを指定し、データ部分の1つのOFDMトーン当たり48のデータトーンを指定する場合、一実施形態によれば、ブロックコーダ1704は、2x反復するスキームを信号フィールドの13ビットのブロックに適用し、2x反復するスキームをデータ部分の12ビットのブロックに適用する。
一実施形態によれば、FECエンコーダ1706は、ブロックエンコードされた情報ビットをエンコードする。一実施形態において、BCCエンコードは、生成されるフィールド全体に渡って(例えば、データフィールド全体、信号フィールド全体等)連続して実行される。従って、本実施形態において、生成されるフィールドに対応する情報ビットは、指定された大きさ(例えば、6ビット、12ビット、13ビット、またはその他の好適なビット数)の複数のブロックに分割され、各ブロックは、ブロックコーダ1704により処理され、次に、もたらされたデータストリームはFECエンコーダ1706に供給され、FECエンコーダ1706は、入力されたビットを連続してエンコードする。
様々な実施形態において、図16のインターリーバ1610と同様に、ダイバーシチ利得を提供し、データストリーム中の連続した複数のビットが送信チャネル内で破損する確率を低減するべく、インターリーバ1710は、複数のビットの順番を変更する。しかし、いくつかの実施形態において、ブロックコーダ1704は、十分なダイバーシチ利得を提供し、インターリーバ1710は省略される。いくつかの実施形態において、インターリーバ1710またはFECエンコーダ1706は、上記のように送信用のコンスタレーションマッパ1614にビットを提供する。
いくつかの実施形態において、距離延長モードデータユニットのデータ部分における情報ビットが、パディングされて(すなわち、知られた値のビット数が情報ビットに追加される)ので、例えば、データユニットは、整数のOFDMシンボルを占めるようになる。図1を参照すると、いくつかの実施形態において、パディングがMAC処理ユニット18、28および/またはPHY処理ユニット20、29に実装される。いくつかのそのような実施形態において、パディングビットの数は、短距離通信プロトコル(例えば、IEEE802.11a規格、IEEE802.11n規格、IEEE802.11ac規格等)で提供されているパディング式に準拠して決定される。一般に、これらのパディング式には、1つのOFDMシンボル当たりのデータビットの数(NDBPS)および/または1シンボル当たりの符号化されたデータビットの数(NCBPS)に部分的に基づいて、パディングビットの数を計算することが含まれる。一実施形態によれば、距離延長モードでは、パディングビットの数は、情報ビットがブロックコーダ1704によりブロックエンコードされ、FECエンコーダ1706によってBCCエンコードされる前の、1つのOFDMシンボルの情報ビットの数(例えば、6ビット、12ビット、13ビット等)に基づいて決定される。従って、距離延長モードデータユニットにおけるパディングビットの数は一般に、対応する標準モードデータ(又は対応する短距離データユニット)におけるパディングビットの数とは異なる。他方、一実施形態によれば、1シンボル当たりの符号化済みのビットの数は、標準モードデータユニット(または対応する短距離データユニット)の1シンボル当たりの符号化済みのビットの数と同一であり、例えば1つのOFDM当たりの符号化済みのビットは、24、48、52等である。
図17Bは、別の実施形態による、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニット1750のブロック図である。いくつかの実施形態において、PHY処理ユニット1750は、距離延長モードデータユニットの信号および/またはデータフィールドを生成する。一実施形態において、図1を参照すると、AP14およびクライアント局25−1は各々、PHY処理ユニット1750等のPHY処理ユニットを含む。
PHY処理ユニット1750は、PHY処理ユニット1750において、FECエンコーダ1706がLDPCエンコーダ1756と交換されることを除き、図17AのPHY処理ユニット1700に類似する。従って、本実施形態において、ブロックコーダ1704の出力は、LDPCエンコーダ1756により更なるブロックエンコードに提供される。一実施形態において、LDPCエンコーダ1756は、1/2の符号化レートに対応するブロックコード、または別の好適な符号化レートに対応するブロックコードを使用する。図示される実施形態において、PHY処理ユニット1750はインターリーバ1710を省略しているが、これは、情報ストリームにおける隣接する複数のビットが一般に、LDPCコード自体によって拡散されており、更なるインターリーブが必要とされないからである。更に、一実施形態において、LDPCトーン再マッピングユニット1760により、更なる周波数ダイバーシチが提供される。一実施形態によれば、LDPCトーン再マッピングユニット1760は、トーン再マッピング関数に従って、符号化済み情報ビットまたは符号化済み情報ビットのブロックを再び並び替える。一般に、トーン再マッピング関数は、連続した符号化済み情報ビットまたは連続した情報ビットのブロックがOFDMシンボルにおける不連続なトーンにマッピングされて、連続した複数のOFDMトーンが送信中に悪影響を受けた場合に、レシーバにおいてデータの回復を容易にするように規定される。いくつかの実施形態において、LDPCトーン再マッピングユニット1760は省略される。図17Aを再び参照すると、様々な実施形態において、FECエンコーダ1706を適切に動作させるべく、通常、いくつかのテールビットがデータユニットの各フィールドに追加され、例えば、BCCエンコーダが各フィールドをエンコードした後で、ゼロ状態に戻ることを確実にする。一実施形態において、例えば、データ部分がFECエンコーダ1706に供給される前に(例えば、ビットがブロックコーダ1704により処理された後)、6個のテールビットが、データ部分の終わりに挿入される。
いくつかの実施形態において、距離延長モードデータユニットの信号フィールドは、標準モードデータユニットの信号フィールド形式と比較して異なる形式を有する。そのようないくつかの実施形態において、距離延長モードデータユニットの信号フィールドは、標準モードデータユニットの信号フィールド形式と比較して短い。例えば、一実施形態による距離延長モードでは、1つの変調および符号化スキームのみが用いられ、従って距離延長モード信号フィールドで通信される必要がある変調および符号化に関する情報はより少なくなる(または通信する情報がなくなる)。同様に、一実施形態において、距離延長モードデータユニットの最大長は、標準モードのデータユニットの最大長と比較して短く、この場合に距離延長モード信号フィールドの長さサブフィールドに必要とされるビット数は少なくなる。一例として、一実施形態において、距離延長モード信号フィールドは、IEEE802.11n規格に準拠してフォーマットされるが、特定のサブフィールド(例えば、低密度パリティ検査符号(LDPC)サブフィールド、時空間ブロック符号化(STBC)サブフィールド等)は省略されている。更に、または代替的に、いくつかの実施形態において、距離延長モード信号フィールドは、標準モード信号フィールドの巡回冗長検査(CRC)サブフィールドと比較して短いCRCサブフィールド(例えば、8ビット未満)を含む。一般に、いくつかの実施形態によれば、距離延長モードでは、特定の信号フィールドサブフィールドが省略もしくは変更され、および/または特定の新規の情報が追加される。
図18Aは、別の実施形態による、距離延長符号化スキームを用いて、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニット1800のブロック図である。いくつかの実施形態において、PHY処理ユニット1800は、距離延長モードデータユニットの信号および/またはデータフィールドを生成する。一実施形態において、図1を参照すると、AP14およびクライアント局25−1は各々、PHY処理ユニット1800等のPHY処理ユニットを含む。
PHY処理ユニット1800は、PHY処理ユニット1800において、ブロックコーダ1808がFECエンコーダ1806の後に配置されていることを除き、図17AのPHY処理ユニット1700に類似する。従って、本実施形態において、情報ビットは、まずスクランブラ1802によってスクランブルされ、FECエンコーダ1806によりエンコードされ、FECエンコード済みのビットは、次にブロックコーダ1808によりブロックエンコードされる。一実施形態において、PHY処理ユニット1700の例示的な実施形態のように、FECエンコーダ1806による処理は、生成されるフィールド全体(例えば、データ部分全体、信号フィールド全体等)に渡って連続して実行される。従って、本実施形態において、生成されるフィールドに対応する情報ビットは、まずFECエンコーダ1806によってエンコードされて、次にBCC符号化されたビットは、指定された大きさ(例えば、6ビット、12ビット、13ビット、またはその他の好適なビット数)を有する複数のブロックに分割される。次に、各ブロックがブロックコーダ1808により処理される。一例として、一実施形態において、FECエンコーダ1806は、1/2の符号化レートを用いて1つのOFDMシンボル当たり12の情報ビットをエンコードして、24のBCC符号化済みビットを生成し、このBCC符号化済みビットをブロックコーダ1808に提供する。一実施形態において、ブロックコーダ1808は、入力された各ブロックについて2つのコピーを生成して、距離延長符号化スキームに従って生成されたビットをインターリーブし、OFDMシンボル内に含まれる48ビットを生成する。そのような一実施形態において、この48ビットは、IDFT処理ユニット1818において64の大きさの高速フーリエ変換(FFT)を用いて生成された48データトーンに対応する。別の例として、別の実施形態において、FECエンコーダ1806は、1/2の符号化レートを用いて1つのOFDMシンボル当たり6つの情報ビットをエンコードして、12のBCC符号化済みビットを生成し、このBCC符号化済みビットをブロックコーダ1808に提供する。一実施形態において、ブロックコーダ1808は、入力された各ブロックについて2つのコピーを生成して、距離延長符号化スキームに従って生成されたビットをインターリーブし、OFDMシンボル内に含まれる24ビットを生成する。そのような一実施形態において、この24ビットは、IDFT処理ユニット1818において32の大きさの高速フーリエ変換(FFT)を用いて生成された24データトーンに対応する。
図17Aのブロックコーダ1704と同様に、距離延長モードデータユニットの信号フィールドを生成するべくブロックコーダ1808により用いられる距離延長符号化スキームは、実施形態に応じて、距離延長モードデータユニットのデータ部分を生成するべくブロックコーダ1808により用いられる距離延長符号化スキームと異なるか、または同一である。様々な実施形態において、ブロックコーダ1808は、図17Aのブロックコーダ1704に関して上述された「ブロックレベル」反復スキームまたは「ビットレベル」反復スキームを実装する。同様に、別の実施形態において、ブロックコーダ1808は、mの数の入力されたビットのコピーを生成して、好適なコードに従ってもたらされたビットストリームをインターリーブし、あるいは任意の好適なコード、例えば、1/2、1/4等の符号化レートを有するハミングブロックコード、または1/2、1/4の符号化レートを有するその他のブロックコード(例えば、(1,2)又は(1,4)ブロックコード、(12,24)ブロックコード、または(6,24)ブロックコード、(13,26)ブロックコード等)を用いて、入力されたビットまたは入力されたビットのブロックをエンコードする。一実施形態によれば、PHY処理ユニット1800によって生成されるデータユニットに対する有効符号化レートは、FECエンコーダ1806により用いられる符号化レートと、ブロックコーダ1808により用いられる反復の数(または符号化レート)の積になる。
一実施形態において、ブロックコーダ1808は、十分なダイバーシチ利得を提供し、符号化済みビットの更なるインターリーブが必要とされなくなるので、インターリーバ1810は省略される。インターリーバ1810を省略する1つの利点は、この場合において、いくつかのそのような状況で1シンボル当たりのビット数がたとえ整数でなくとも、52のデータトーンを有するOFDMシンボルが、4xまたは6x反復するスキームを用いて生成され得ることである。例えば、そのような一実施形態において、FECエンコーダ1806の出力は、13ビットのブロックに分割されて、各ブロックが4回反復され(または1/4のレートでブロックエンコードされ)、OFDMシンボルに含まれる52ビットが生成される。この場合、FECエンコーダ1806が1/2の符号化レートを使用する場合、1シンボル当たりのデータビットの数は、6.5に等しい。6xの反復を使用する例示的な実施形態において、FECエンコーダ1806は、1/2の符号化レートを用いて情報ビットをエンコードし、その出力は、4ビットのブロックに分割される。ブロックコーダ1808は、4ビットの各ブロックを6回反復して(または、1/6の符号化レートを用いて各ブロックをブロックエンコードして)、4パディングビットを追加し、OFDMシンボルに含まれるべき52ビットを生成する。
上述の図17AにおけるPHY処理ユニット1700の例のように、PHY処理ユニット1800によりパディングが用いられる場合には、パディングビット計算に用いられる1シンボル当たりのデータビットの数(NDBPS)は、1つのOFDMシンボルにおける非冗長データビットの実際の数(例えば、上記の例では、6ビット、12ビット、13ビット、またはその他の好適なビット数)である。パディングビットの計算で用いられる1シンボルあたりの符号化されたデータビットの数(NCBPS)は、1つのOFDMシンボルに含まれる実際のビットの数に等しい(例えば、24ビット、48ビット、52ビット、または1つのOFDMシンボルに含まれるその他の好適なビット数)。
また、図17AのPHY処理ユニット1700の例におけるように、様々な実施形態において、FECエンコーダ1806を適切に動作させるべく、通常、いくつかのテールビットがデータユニットの各フィールドに挿入され、例えば、BCCエンコーダが、各フィールドをエンコードした後で、ゼロ状態に戻ることを確実にする。一実施形態において、例えば、データ部分がFECエンコーダ1806に供給される前に(すなわち、ブロックコーダ1704による処理が実行された後)、6個のテールビットが、データ部分の終わりに挿入される。同様に、信号フィールドの場合、一実施形態によれば、信号フィールドがFECエンコーダ1806に供給される前に、テールビットは、信号フィールドの終わりに挿入される。ブロックコーダ1808が、4x反復されるスキーム(または1/4の符号化レートを使用する別のブロックコード)を用いる例示的な一実施形態において、FECエンコーダ1806は1/2の符号化レートを使用し、信号フィールドは24の情報ビット(テールビットを含む)を含み、この24信号フィールドビットは、BCCエンコードされて48のBCCエンコード済みビットが生成され、この48ビットは、12ビットの4つのブロックにそれぞれ分割されて、ブロックコーダ1808により更に符号化される。従って、本実施形態において、信号フィールドは、4つのOFDMシンボルに渡って送信されて、OFDMシンボルの各々は、信号フィールドの6つの情報ビットを含む。
更に、いくつかの実施形態において、PHY処理ユニット1800は、IEEE802.11n規格またはIEEE802.11ac規格で指定されるMCS0に従って、52のデータトーンを有する複数のOFDMシンボルを生成し、ブロックコーダ1808は、4x反復するスキームを使用する。そのようないくつかの実施形態において、更なるパディングが用いられて、1つのOFDMシンボルに含まれるエンコード済みのもたらされるデータストリームが、52ビットを含むのを確実にする。そのような一実施形態において、ビットがブロックコーダ1808によって処理された後に、符号化された情報ビットにパディングビットが追加される。
図18Aの実施形態において、PHY処理ユニット1800は、ピーク対平均電力比(PAPR)低減ユニット1809も含む。一実施形態において、PAPR低減ユニット1809は、反復されるブロックのいくつかまたは全てにおけるビットをフリップして、同一のビットシーケンスがOFDMシンボル内の異なる周波数位置に発生する確率を低減または除去して、それにより出力信号のピーク対平均電力比を低減する。一般的に、ビットフリップは、0のビット値を1のビット値に変更し、1のビット値を0のビット値に変更する。一実施形態によれば、PAPR低減ユニット1809は、XOR演算を用いてビットフリップを実装する。例えば、符号化されたビットのブロックの4xの反復を使用する実施形態において、1つのOFDMシンボルに含まれる符号化されたビットの1ブロックがCであり、C'である場合C XOR 1と表記される(すなわち、ブロックCがビットフリップされた)。いくつかの実施形態において、PAPR低減ユニット1809の出力におけるいくつかの可能なビットシーケンスは、[C C' C' C'],[C' C' C' C],[C C' C C'],[C C C C']等となる。一般に、フリップされたビットを有するブロックと、フリップされないビットを有するブロックとの任意の組み合わせが用いられ得る。いくつかの実施形態において、PAPRユニット1809は、省略される。
図18Bは、別の実施形態による、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニット1850のブロック図である。いくつかの実施形態において、PHY処理ユニット1850は、距離延長モードデータユニットの信号および/またはデータフィールドを生成する。一実施形態において、図1を参照すると、AP14およびクライアント局25−1は各々、PHY処理ユニット1850等のPHY処理ユニットを含む。
PHY処理ユニット1850は、PHY処理ユニット1850において、FECエンコーダ1806がLDPCエンコーダ1856と交換されていることを除き、図18AのPHY処理ユニット1800に類似する。従って、本実施形態において、情報ビットは、まずLDPCエンコーダ1856によってエンコードされ、LDPC符号化済みのビットは、次にブロックコーダ1808と交換されるか、またはこれによりブロックエンコードされる。一実施形態において、LDPCエンコーダ1856は、1/2の符号化レートに対応するブロックコード、または別の好適な符号化レートに対応するブロックコードを使用する。図示される実施形態において、PHY処理ユニット1850はインターリーバ1810を省略しているが、これは、情報ストリームにおける隣接する複数のビットが一般に、LDPCコード自体によって拡散されており、一実施形態によれば、更なるインターリーブが必要とされないからである。更に、一実施形態において、LDPCトーン再マッピングユニット1860により、更なる周波数ダイバーシチが提供される。一実施形態によれば、LDPCトーン再マッピングユニット1860は、トーン再マッピング関数に従って、符号化済み情報ビットまたは符号化済み情報ビットのブロックを再び並び替える。一般に、トーン再マッピング関数は、連続した符号化済み情報ビットまたは連続した情報ビットのブロックがOFDMシンボルにおける不連続なトーンにマッピングされて、連続した複数のOFDMトーンが送信中に悪影響を受けた場合に、レシーバにおいてデータの回復を容易にするように規定される。いくつかの実施形態において、LDPCトーン再マッピングユニット1860は省略される。
図19Aは、別の実施形態による、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニット1900のブロック図である。いくつかの実施形態において、PHY処理ユニット1900は、距離延長モードデータユニットの信号および/またはデータフィールドを生成する。一実施形態において、図1を参照すると、AP14およびクライアント局25−1は各々、PHY処理ユニット1900等のPHY処理ユニットを含む。
PHY処理ユニット1900は、PHY処理ユニット1900において、ブロックコーダ1916がコンスタレーションマッパ1914の後に配置されていることを除き、図18AのPHY処理ユニット1800に類似する。従って、本実施形態において、インターリーバ1910により処理された後、BCCエンコード済みの情報ビットはコンスタレーションシンボルにマッピングされて、次いでコンスタレーションシンボルは複製され、または別途、ブロックコーダ1916によりブロックエンコードされる。一実施形態によれば、FECエンコーダ1906による処理は、生成されるフィールド全体(例えば、データフィールド全体、信号フィールド全体等)に対して連続して実行される。本実施形態において、生成されるフィールドに対応する情報ビットはまず、FECエンコーダ1806によりエンコードされて、BCC符号化済みビットが、コンスタレーションマッパ1914によりコンスタレーションシンボルにマッピングされる。次に、コンスタレーションシンボルが、指定された大きさ(例えば、6シンボル、12シンボル、13シンボル、またはその他の好適なシンボル数)の複数のブロックに分割され、各ブロックは、次にブロックコーダ1916により処理される。例として、2xの反復を使用する実施形態では、コンスタレーションマッパ1914は、24のコンスタレーションシンボルを生成し、ブロックコーダ1916は、24のシンボルのコピーを2つ生成して、OFDMシンボルの48データトーン(例えば、IEEE802.11a規格に指定されるように)に対応する48シンボルを生成する。別の例として、4xの反復を使用する実施形態では、コンスタレーションマッパ1914は、12のコンスタレーションシンボルを生成し、ブロックコーダ1916は、12のコンスタレーションシンボルのコピーを4つ生成して、OFDMシンボルの48データトーン(例えば、IEEE802.11a規格に指定されるように)に対応する48シンボルを生成する。なおも別の例として、2xの反復を使用する実施形態では、コンスタレーションマッパ1914は、26のコンスタレーションシンボルを生成し、ブロックコーダ1916は、26のシンボルを反復し(すなわち26のシンボルのコピーを2つ生成する)、OFDMシンボルの52データトーン(例えば、IEEE802.11n規格またはIEEE802.11ac規格に指定されるように)に対応する52シンボルを生成する。一般に、様々な実施形態および/またはシナリオにおいて、ブロックコーダ1916は、入力されるコンスタレーションシンボルのブロックの任意の好適な数のコピーを生成し、生成されたシンボルを任意の好適な符号化スキームに従ってインターリーブする。図17Aのブロックコーダ1704および図18Aのブロックコーダ1808と同様に、距離延長モードデータユニットの1つの信号フィールド(または複数の信号フィールド)を生成するべくブロックコーダ1916により用いられる距離延長符号化スキームは、実施形態に応じて、距離延長モードデータユニットのデータ部分を生成するべくブロックコーダ1916により用いられる距離延長符号化スキームと異なるか、または同一である。一実施形態によれば、PHY処理ユニット1900によって生成されるデータユニットに対する有効符号化レートは、FECエンコーダ1906により用いられる符号化レートと、ブロックコーダ1916により用いられる反復の数(または符号化レート)の積になる。
一実施形態によれば、この場合、情報ビットがコンスタレーションシンボルにマッピングされた後に冗長性が導入されるので、PHY処理ユニット1900により生成される各OFDMシンボルは、標準モードデータユニットに含まれるOFDMデータトーンと比較して、少ない非冗長データトーンを含む。従って、インターリーバ1910は、標準モードで用いられるインターリーバ(例えば、図16のインターリーバ1610)と比較して、または対応する短距離データユニットを生成するときに用いられるインターリーバと比較して、1つのOFDMシンボル毎の少ない数のトーンに演算を行うように設計される。例えば、1つのOFDMシンボルあたり12個の非冗長データトーンを用いる実施形態では、インターリーバ1910は、列数(Ncol)が6、行数(Nrow)が1サブキャリア当たりのビット数(Nbpscs)×2を用いるように設計されている。1つのOFDMシンボル当たり12の非冗長データトーンを用いる別の例示的な実施形態では、インターリーバ1910は、Ncolが4、及び、NrowがNbpscs×3を用いるように設計される。複数の他の実施形態において、標準モードで用いられるインターリーバパラメータとは異なる、他のインターリーバパラメータが、インターリーバ1910に使用される。あるいは、一実施形態において、ブロックコーダ1916は、十分なダイバーシチ利得を提供し、符号化済みビットの更なるインターリーブが必要とされなくなるので、インターリーバ1910は省略される。この場合、図18AのPHY処理ユニット1800を使用する例示的な実施形態におけるように、いくつかのそのような状況で1シンボル当たりのビット数がたとえ整数でなくとも、52のデータトーンを有するOFDMシンボルが、4xまたは6x反復するスキームを用いて生成され得る。
上記の図17AにおけるPHY処理ユニット1700、または上述の図18AのPHY処理ユニット1800の例示的な実施形態におけるように、PHY処理ユニット1900により、パディングが用いられる場合には、パディングビット計算に用いられる1シンボル当たりのデータビットの数(NDBPS)は、1つのOFDMシンボルにおける非冗長データビットの実際の数(例えば、上記の例における6ビット、12ビット、13ビット、または、その他の好適なビット数)である。パディングビットの計算で使用される1シンボル当たりの符号化済みビットの数(NCBPS)は、1つのOFDMシンボルに含まれる非冗長ビットの数に等しく、この場合には、ブロックコーダ1916により処理されたコンスタレーションシンボルのブロックにおけるビットの数(例えば、12ビット、24ビット、26ビット等)に対応する。
いくつかの実施形態において、PHY処理ユニット1900は、IEEE802.11n規格またはIEEE802.11ac規格で指定されるMCS0に従って、52のデータトーンを有する複数のOFDMシンボルを生成し、ブロックコーダ1916は、4x反復するスキームを使用する。そのようないくつかの実施形態において、更なるパディングが用いられて、1つのOFDMシンボルに含まれるエンコード済みのもたらされるデータストリームが、52ビットを含むのを確実にする。そのような一実施形態において、ビットがブロックコーダ1808によって処理された後に、符号化された情報ビットにパディングビットが追加される。
図19Aの実施形態において、PHY処理ユニット1900は、ピーク対平均電力比(PAPR)低減ユニット1917を含む。一実施形態において、ピーク対平均電力比低減ユニット1917は、反復するコンスタレーションを用いて変調されたデータトーンのいくつかに位相変位を追加する。例えば、一実施形態において、追加される位相シフトは、180°である。180°の位相シフトは、位相変位が実装されるデータトーンを変調するビットの符号フリップに対応する。別の実施形態において、PAPR低減ユニット1917は、180°以外の位相変位(例えば、90°の位相変位またはその他の好適な位相変位)を追加する。一例として、4xの反復を使用する一実施形態では、OFDMシンボルに含められる12のコンスタレーションシンボルの1ブロックをCと表記し、単純なブロックの反復が実行される場合には、もたらされるシーケンスは[C C C C]である。いくつかの実施形態においては、PAPR低減ユニット1917は、反復されるブロックのいくつかに対して、符号フリップ(すなわち、−C)または90°の位相変位(すなわち、j*C)を導入する。いくつかのそのような実施形態において、もたらされるシーケンスは、例えば、[C−C−C−C],[−C−C−C−C],[C−C C−C],[C C C−C],[C j*C, j*C, j*C]、またはC,−C,j*Cおよびj*Cのその他の組み合わせである。一般に、様々な実施形態および/またはシナリオにおいて、任意の反復されたブロックに好適な位相変位を導入することができる。いくつかの実施形態において、PAPR低減ユニット1809は省略される。
いくつかの実施形態において、PHY処理ユニット1900は、IEEE802.11n規格またはIEEE802.11ac規格で指定されるMCS0に従って、52のデータトーンを有する複数のOFDMシンボルを生成し、ブロックコーダ1916は、4x反復するスキームを使用する。いくつかのそのような実施形態において、更なるパイロットトーンが挿入され、1つのOFDMシンボル内のもたらされるデータトーンおよびパイロットトーンの数が、短距離通信プロトコルで規定される56に等しくなることを確実にする。一例として、一実施形態において6個の情報ビットが、符号化レート1/2でBCCエンコードされて、もたらされる12ビットが、12のコンスタレーションシンボルにマッピングされる(BPSK)。12のコンスタレーションシンボルは、12のデータトーンを変調し、次にこれが4回反復されて、48個のデータトーンを生成する。IEEE802.11n規格に指定されるように、4つのパイロットトーンが追加され、更に4つのパイロットトーンが追加されて、56のデータトーンおよびパイロットトーンを生成する。
図19Bは、別の実施形態による、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニット1950のブロック図である。いくつかの実施形態において、PHY処理ユニット1950は、距離延長モードデータユニットの信号および/またはデータフィールドを生成する。一実施形態において、図1を参照すると、AP14およびクライアント局25−1は各々、PHY処理ユニット1950等のPHY処理ユニットを含む。
PHY処理ユニット1950は、PHY処理ユニット1950において、FECエンコーダ1906がLDPCエンコーダ1956と交換されていることを除き、図19AのPHY処理ユニット1900に類似する。従って、本実施形態において、LDPCエンコード済みの情報ビットは、コンスタレーションマッパ1914によりコンスタレーションシンボルにマッピングされて、次いでコンスタレーションシンボルは複製され、または別途、ブロックコーダ1916によりブロックエンコードされる。一実施形態において、LDPCエンコーダ1956は、1/2の符号化レートに対応するブロックコード、または別の好適な符号化レートに対応するブロックコードを使用する。図示される実施形態において、PHY処理ユニット1950はインターリーバ1910を省略しているが、これは、情報ストリームにおける隣接する複数のビットが一般に、LDPCコード自体によって拡散されており、一実施形態によれば、更なるインターリーブが必要とされないからである。更に、一実施形態において、LDPCトーン再マッピングユニット1960により、更なる周波数ダイバーシチが提供される。一実施形態によれば、LDPCトーン再マッピングユニット1960は、トーン再マッピング関数に従って、符号化済み情報ビットまたは符号化済み情報ビットのブロックを再び並び替える。一般に、トーン再マッピング関数は、連続した符号化済み情報ビットまたは連続した情報ビットのブロックがOFDMシンボルにおける不連続なトーンにマッピングされて、連続した複数のOFDMトーンが送信中に悪影響を受けた場合に、レシーバにおいてデータの回復を容易にするように規定される。いくつかの実施形態において、LDPCトーン再マッピングユニット1960は省略される。
図17A〜図19Bに関して上記された複数の実施形態において、距離延長モードは、周波数領域においてビットおよび/またはコンスタレーションシンボルを反復することにより冗長性を導入する。あるいは、いくつかの実施形態において、距離延長符号化スキームは、信号におけるOFDMシンボルの反復および/または時間領域で実行される距離延長モードデータユニットのデータフィールドを含む。例えば、図20Aは、一実施形態による、距離延長モードデータユニットのプリアンブルにおけるHT−SIG1フィールドおよびHT−SIG2フィールドの各OFDMシンボルが2x反復されていることを示す図である。同様に、図20Bは、一実施形態による、距離延長モードデータユニットのプリアンブルにおけるL−SIGフィールドの各OFDMシンボルが2x反復されることを示す図である。図20Cは、一実施形態による、制御モードデータユニットのデータ部分におけるOFDMシンボルの時間領域反復スキームを示す図である。図20Dは、別の実施形態による、データ部分におけるOFDMシンボルの反復スキームを示す図である。示されるように、図20Cの実施形態において、OFDMシンボルの反復が連続して出力されるが、図20Dの実施形態においては、OFDMシンボルの反復がインターリーブされる。一般に、様々な実施形態および/またはシナリオにおいて、OFDMシンボルの反復は、任意の好適なインターリーブスキームに従って、インターリーブされる。
図21は、一実施形態による、データユニットを生成する例示的な方法2100のフロー図である。図1を参照すると、方法2100は、一実施形態においてネットワークインターフェース16により実装される。例えば、そのような一実施形態において、PHY処理ユニット20は、方法2100を実装するように構成されている。また、別の実施形態において、MAC処理18は、方法2100の少なくとも一部を実装するように構成されている。図1を引き続き参照すると、なおも別の実施形態において、方法2100は、ネットワークインターフェース27(例えば、PHY処理ユニット29および/またはMAC処理ユニット28)により実装される。複数の他の実施形態において、方法2100は、他の好適な複数のネットワークインターフェースにより実装される。
ブロック2102において、データユニットに含まれるべき情報ビットが、ブロックコードに従ってエンコードされる。一実施形態において、情報ビットは、例えば、図17Bのブロックコーダ1704に関して上記されたブロックレベルまたはビットレベルの反復スキームを用いて、エンコードされる。ブロック2104において、例えば、図17AのFECエンコーダ1706または図17BのLDPCエンコーダ1756等のFECエンコーダを用いて、情報ビットがエンコードされる。ブロック2106において、情報ビットが、コンスタレーションシンボルにマッピングされる。ブロック2108において、複数のOFDMシンボルがコンスタレーションポイントを含めるように生成される。ブロック2110において、OFDMシンボルを含むべく、データユニットが生成される。
一実施形態において、図21に図示されるように、情報ビットはまず、ブロックエンコーダを用いてエンコードされ(ブロック2102)、次にブロックエンコード済みのビットが、例えば、図17Aに関して上記されたもの等のFECエンコーダを用いてエンコードされる(ブロック2104)。別の実施形態において、ブロック2102とブロック2104の順番が反対になる。本実施形態において、情報ビットはまず、FECエンコードされて、FECエンコード済みの情報ビットが、例えば、図18Aに関して上記されたもの等のブロック符号化スキームに従ってエンコードされる。なおも別の実施形態において、ブロック2102は、ブロック2106の後に位置する。本実施形態において、ブロック2104において、情報ビットがFECエンコードされ、ブロック2106において、FECエンコード済みのビットが、コンスタレーションシンボルにマッピングされ、次にブロック2102において、コンスタレーションシンボルが、例えば、図19Aに関して上記されたようなブロック符号化または反復スキームに従ってエンコードされる。
様々な実施形態において、距離延長符号化スキームは、小さくされた数のコンスタレーションシンボルを出力する小さくされたサイズの高速フーリエ変換(FFT)技術を用い、コンスタレーションシンボルは、帯域幅全体に渡って反復されて、距離および/またはSNR性能を改善する。例えば、一実施形態において、コンスタレーションマッパは、24のデータトーンを有する32のサブキャリア(例えば、32点FFTモード)に対応する複数のコンスタレーションシンボルに、複数のビットのシーケンスをマッピングする。32のサブキャリアは、20MHzの帯域幅全体における10MHzのサブバンドに対応する。本例において、コンスタレーションシンボルは、20MHzの帯域幅全体に渡って反復されて、コンスタレーションシンボルの冗長性を提供する。様々な実施形態において、小さくされたサイズのFFT技術は、図17A〜図19Bに関して上記されたビット形式および/またはシンボル複製技術と組み合わせて用いられる。
40MHz、80MHz、160MHz、320MHz、640MHz等の追加の帯域幅が利用可能ないくつかの実施形態において、32のサブキャリアが帯域幅全体の10MHzの各サブバンドに渡って反復される。例えば、別の実施形態において、32点FFTモードは、20MHzの帯域幅全体の5MHzのサブバンドに対応する。本実施形態において、複数のコンスタレーションは、20MHzの帯域幅全体(すなわち、5MHzの各サブバンド)に渡って4x反復される。従って、受信デバイスは、複数のコンスタレーションを組み合わせて、コンスタレーションのデコードの信頼性を改善する。いくつかの実施形態において、異なる5または10MHzのサブバンド信号の変調は、異なる角度で回転される。例えば一実施形態において、第1のサブバンドは0°回転し、第2のサブバンドは90°回転し、第3のサブバンドは180°回転し、第4のサブバンドは270°回転する。複数の他の実施形態において、異なる好適な回転が使用される。少なくともいくつかの実施形態において、20MHzのサブバンド信号の異なる複数の位相は、データユニットにおけるOFDMシンボルのピーク対平均電力比(PAPR)の低減をもたらす。
図22Aは、一実施形態による、10MHzのサブバンドを有する距離延長データユニットの2xの反復を伴った20MHzの帯域幅全体の図である。図22Aに示されるように、10MHzの各サブバンドは、回転r1およびr2により、各々回転される。図22Bは、一実施形態による、10MHzのサブバンドを有する距離延長データユニットの4xの反復を伴った40MHzの帯域幅全体の図である。図22Bに示されるように、10MHzの各サブバンドは、回転r1、r2、r3および4により、各々回転される。図22Cは、一実施形態による、10MHzのサブバンドに対応する32点FFTモードの例示的なトーンプラン2230の図である。トーンプラン2230は、図22Cに示されるように、24のデータトーンと、インデックス+7および−7における2つのパイロットトーンと、1つの直流トーン(direct current tone)、および5つのガードトーンを有する合計32のトーンを含む。小さくされたサイズのFFT技術が用いられる複数の実施形態において、対応するトーンプランは、存在する場合、HEW−LTFフィールドに用いられる。小さくされたサイズのFFT技術が用いられるが、HEW−LTFフィールドが存在しない複数の他の実施形態において、L−LTFフィールド704は、修正されたトーンプランの対応するインデックスに対して、パイロットトーンに追加の±1のサインを含めるように修正される。例えば、一実施形態において、トーン−29、−27、+27および+29は、L−LTFフィールド用のトーンプランに追加される。更なる一実施形態において、±1のサインは、20MHzの帯域幅のトーン−2、−1、1および2におけるL−LTFトーンプランから取り除かれる。40MHz、80MHz、160MHz等の帯域幅全体に、類似の変更が適用される。
図23は、一実施形態による、距離延長モードがデータユニットのプリアンブル2301に用いられる例示的なデータユニット2300の図である。いくつかの実施形態において、プリアンブル2301は、標準モードおよび距離延長モードの双方を示す。そのような一実施形態において、図9A、図9B、図10A、図10Bおよび図11A、図11Bに関して上記されたもの等、標準モードと距離延長モードを区別する別の方法が用いられる。
データユニット2300は一般に、データユニット2300のプリアンブル2301がデータユニット1101のプリアンブル1151と異なるようにフォーマットされていることを除き、図11Bのデータユニット1150と類似し、これと同一の符号を付された要素を含む。一実施形態において、プリアンブル2301は、HEW通信プロトコルに準拠して動作する受信デバイスが、プリアンブル2301が標準モードプリアンブルではなく、距離延長モードプリアンブルであると判断することができるようにフォーマットされる。一実施形態において、プリアンブル1151と比較すると、プリアンブル2301は、L−LTF704およびL−SIG706の代わりに、修正されたロングトレーニングフィールドM−LTF2304および修正された信号フィールドM−SIG2306を各々含む。一実施形態において、プリアンブル2301は、L−STF702、M−LTF2304としての修正済みロングトレーニングシーケンスの2つの反復が後に続くダブルガードインターバル、ノーマルガードインターバル、および修正済みの信号フィールドM−SIGを含む。いくつかの実施形態において、プリアンブル2301は、1または複数の第1のHEW信号フィールド(HEW−SIGA)1152を更に含む。一実施形態において、プリアンブル2301は、L−SIGフィールド2306に続く1または複数の二次L−SIG1154を更に含む。いくつかの実施形態において、複数の二次L−SIG1154の次には、第2のL−LTFフィールド(L−LTF2)1156が続く。複数の他の実施形態において、プリアンブル2301は、L−SIG1154および/またはL−LTF2 1156を省略する。また、いくつかの実施形態において、プリアンブル2301は、HEW−STF1158、1もしくは複数のHEW−LTFフィールド1160、および第2のHEW信号フィールド(HEW−SIGB)1162を含む。複数の他の実施形態において、プリアンブル2301は、HEW−STF1158、HEW−LTF1160、および/またはHEW−SIGB1162を省略している。一実施形態において、データユニット2300は、データ部分716(図23に図示せず)も含む。いくつかの実施形態において、複数のHEW信号フィールド(HEW−SIGA)1152は、データフィールド716と同一の距離延長符号化スキームを用いて変調される。
様々な実施形態において、M−LTF2304は、予め定められたシーケンス(例えば、偏波コード(polarization code))を掛けたL−LTF704に対応する。例えば、インデックスiを用いて、L−LTF704のi番目のコンスタレーションシンボルは、数式1に示されるように予め定められたシーケンスのi番目の値(例えば±1)を掛けられて、M−LTF2304を得る。
Figure 2016536871
式中、Cは、予め定められたシーケンスである。いくつかの実施形態において、M−SIG2306は、数式2に示されるように、予め定められたシーケンスを掛けたL−SIG706に対応する。
Figure 2016536871
いくつかの実施形態において、予め定められたシーケンスの長さ(すなわち、いくつかの値)は、IEEE802.11acプロトコルにおける20MHzの帯域当たりのいくつかのデータトーンおよびいくつかのパイロットトーンの合計、例えば52の値(すなわち、48のデータトーンおよび4のパイロットトーン)に等しい。
一実施形態において、予め定められたシーケンスおよび修正済みのロングトレーニングシーケンスは各々、データトーンの数およびパイロットトーンの数の合計よりも大きいか、またはこれに等しい長さを有する。10MHzのサブバンドに対応する32点FFTモードのトーンプラン2230に関して上記されたように、HEW−STFおよび/またはHEW−LTFフィールドが距離延長プリアンブル内に存在しない場合、レシーバは、次のフィールドの復調のためのL−LTFフィールドに依存する。一実施形態において、20MHzのL−LTFと10MHzの32点FFTモードとの間のトーンプランミスマッチは、不明のトーン(例えば、58のトーンの合計に対するトーンの−29、−27、+27および+29)に対するL−LTFに、+1または−1のサインを挿入することにより訂正される。
図24は、別の実施形態による、複数の距離延長モードデータユニットを生成する例示的なPHY処理ユニット2400のブロック図である。いくつかの実施形態において、PHY処理ユニット2400は、距離延長モードデータユニットの信号および/またはトレーニングフィールドを生成する。一実施形態において、図1を参照すると、AP14およびクライアント局25−1は各々、PHY処理ユニット2400等のPHY処理ユニットを含む。
PHY処理ユニット2400は、PHY処理ユニット2400において、トーン乗算器2404がコンスタレーションマッパ1614の後に配置されていることを除き、図17AのPHY処理ユニット1700に類似する。いくつかの実施形態において、トーン乗算器2404は、i)L−SIGフィールド(すなわちM−SIG2306)に対する修正済みコンスタレーションシンボル、およびii)距離延長モードデータユニットのL−LTFフィールド(すなわちM−LTF2304)に対する修正済みロングトレーニングシーケンスを生成する。
いくつかの実施形態において、PHY処理ユニット2400は、少なくとも、予め定められたシーケンスを第2の通信プロトコルの第2のロングトレーニングシーケンスを掛けることにより、距離延長モードプリアンブルに対する第1のロングトレーニングシーケンスを生成するように構成されている。一実施形態において、例えばトーン乗算器2404は、予め定められたシーケンスをL−LTF704を掛けて、M−LTF2304を得る。一実施形態において、トーン乗算器2404は、距離延長モード中にL−LTF704の代わりに、M−LTF2304をIDFT1618に提供する。
一実施形態において、トーン乗算器2404は、L−SIG706に含められるべきデータに対するコンスタレーションシンボルをコンスタレーションマッパ1614から受信し、パイロットトーンに対するコンスタレーションシンボルをパイロットトーン生成器2408から受信する。従って一実施形態において、トーン乗算器2404から出力されるM−SIG2306は、IDFT1618により時間領域信号に変換されるべきデータトーンおよびパイロットトーンに対する修正済みコンスタレーションシンボルを含む。
いくつかの実施形態において、レシーバデバイスは、例えばM−LTF2304に基づいたチャネル推定を用いて、M−SIG2306をデコードする。本例においては、L−LTF704およびL−SIG706の双方が予め定められたシーケンスを掛けられているので、レガシレシーバデバイスは、チャネル推定処理または自己相関処理の一部としての乗算を実質的に取り除く。一実施形態において、受信デバイスは、予め定められたシーケンスとの乗算を用いるか、または用いないL−LTFフィールドの自己相関に基づいて、予め定められたシーケンスとの乗算を用いて(例えば、これにより乗算され)、または予め定められシーケンンスと用いることなく、プリアンブルにおけるLTFフィールド(例えば、M−LTF2304またはL−LTF704)が生成されたか否かを検出することにより、プリアンブルが距離延長モードプリアンブル2400または標準モードプリアンブル1101に対応するかを判断する。一実施形態において、受信デバイスは、L−LTF704を用いてLTFの第1の自己相関を実行し、M−LTF2304を用いてLTFの第2の自己相関を実行し、自己相関の結果の比較を実行する。一実施形態において、M−LTF2304を用いる自己相関がL−LTF704を用いる自己相関の結果と比較して大きい結果を生成した場合、受信デバイスは、プリアンブルが距離延長モードプリアンブル2300に対応すると判断する。他方、一実施形態において、L−LTF704を用いるLTFの自己相関がM−LTF2304を用いる自己相関の結果と比較して大きい結果を生成した場合、受信デバイスは、プリアンブルが標準モードプリアンブル1101に対応すると判断する。いくつかの実施形態において、レシーバデバイスは、数式3に従って周波数領域において自己相関を実行する。
Figure 2016536871
式中、yは、最後に受信されて平均されたL−LTFのシーケンスであり、Lは、IEEE802.11a/n/ac、または修正済みロングトレーニングシーケンスのM−LTFに属する送信済みL−LTFシーケンスである。例えば、Lは距離延長モードのCi*L−LTFまたは標準モードのL−LTFのいずれかである。いくつかのシナリオにおいて、連続するトーンの相互相関は一般に、チャネル効果を除去し、周波数領域一致フィルリングは、可能性が最も高い送信済みシーケンスを発見する。いくつかの実施形態において、レシーバデバイスは、M−LTFからのチャネル推定を用いて、データユニットの追加のフィールド(すなわち、HEW−SIGおよび/またはデータフィールド)をデコードする。いくつかのシナリオにおいて、パイロットトーンに対応する予め定められたシーケンスの値は全て1であり、パイロットトーンに対する位相トラッキングを可能にする。
いくつかの実施形態において、トーンの間隔を減少させたOFDM変調は、同一のサイズのFFTを用いて、距離延長モードのデータレートを低減する。例えば、20MHz帯域幅のOFDMデータユニット用の標準モードは、64ポイントの高速フーリエ変換(FFT)を用いて64のOFDMトーンをもたらすが、距離延長モードは、2の係数分、減少させたトーンの間隔を用いて同一の帯域幅の128のOFDMトーンをもたらす。この場合、同じ64ポイントのFFT、2xに増大したシンボルの持続時間、および2xに増大したガードインターバルを用いつつ、距離延長モードOFDMシンボルにおけるトーンの間隔は、標準モードOFDMシンボルと比較して2分の1(1/2)だけ低減され、次にシンボルは、残余の帯域幅で反復される。別の例として、20MHz帯域幅のOFDMデータユニット用の標準モードは、64ポイントの高速フーリエ変換(FFT)を用いて64のOFDMトーンをもたらすが、距離延長モードは、20MHzのOFDMデータユニットに1/4に低減されたトーンの間隔を用いて同一の帯域幅の256のOFDMトーンをもたらす。この場合、4xに増大したシンボルの持続時間、および4xに増大したガードインターバルを用いつつ、距離延長モードOFDMシンボルにおけるトーンの間隔は、標準モードOFDMシンボルと比較して4分の1(1/4)だけ低減される。複数のそのような実施形態において、例えば、1.6μsのロングGI持続時間が用いられる。しかし、一実施形態において、距離延長モードOFDMシンボルにおける情報部分の持続時間は(例えば、3.2μs〜6.4μsから)増大し、GI部分のOFDMシンボルの全持続時間に対する持続時間のパーセンテージは、依然として同じである。従ってこの場合、少なくともいくつかの実施形態において、より長いGIシンボルに起因する効率性のロスが回避される。様々な実施形態において、本明細書において用いられる「ロングガードインターバル」という用語は、ガードインターバルの増大した持続時間およびガードインターバルの持続時間を効果的に増大させる小さくしたOFDMトーン間隔を含む。複数の他の実施形態において、6、8、または他の好適な値に係数に従って、トーンの間隔が低減され、ガードインターバルが増大し、シンボルの持続時間は増大する。いくつかの実施形態において、上記のように、トーンの間隔、ガードインターバル、およびシンボルの持続時間における改変形態は、ブロック符号化またはシンボル反復を組み合わせて用いられる。
いくつかの実施形態における距離延長モードのデータユニットの信号帯域幅の合計は、20MHzである。例えば、増大した信号帯域幅が距離を更に増大させ、あるいはSNR性能を改善する可能性は低い。いくつかの実施形態において、距離延長モードは、最大512点のFFTサイズを用いるように構成される。そのような一実施形態において、距離延長モードについて、トーンの間隔が4分の1だけ低減される場合、512点のFFTの合計帯域幅は40MHzであり、従って距離延長モードは、最大40MHzの信号帯域幅を用いる。
複数の他の実施形態において、距離延長モードは、利用可能な最大信号帯域幅(例えば、160MHz)に対してまで構成される。様々な実施形態において、例えば1/2のトーンの間隔は、10MHzの帯域に対する64点のFFT、20MHzの帯域に対する128点のFFT、40MHzの帯域に対する256点のFFT、80MHzの帯域に対する512点のFFT、および160MHzの帯域に対する1024点のFFTに対応する。いくつかの実施形態において、低減されたトーンの間隔は、より小さいFFTサイズと組み合わせて用いられる。様々な実施形態において、より短いガードインターバル、例えば、OFDMシンボルの持続時間の25%に等しい持続時間を有するノーマルガードインターバルと、OFDMシンボルの1/9に等しい持続時間を有するショートガードインターバルが低減されたトーンの間隔と共に用られる。
いくつかの実施形態において、距離延長モードは、より小さいトーンの間隔(すなわち、1/2、1/4等)を用いる。そのような一実施形態において、同一のFFTサイズは、より小さい帯域幅を表し、例えば、1/2のトーンの間隔は、10MHzの帯域に対する64点にFFTに対応する。一実施形態において、同一のFFTサイズ内におけるトーンプランは、距離延長モードおよび標準モードについて同一であり、例えば距離延長モードの64点のFFTは、IEEE802.11acにおける20MHzに対する64点のFFTと同一のトーンプランを用いる。図25Aは、一実施形態による、1/2のトーンの間隔を有する例示的な20MHzの全帯域幅の図である。この場合、各64FFTに対するレガシトーンプランの元のDCトーンのインデックスは、20MHzの合計帯域幅の中間ではなく、ここでは10MHzのサブバンドの中間であり、元のガードトーンのインデックスは、真のDCトーンに近似する。距離延長モードデータユニットに用いられる帯域が20MHzよりも小さいいくつかの実施形態において、非レガシトーンプランは、元のDCトーンのインデックスにおける追加のデータまたはパイロットトーンを含む。なぜならインデックスは、「真のDCトーン」とは重複せず、最も小さい信号帯域幅は、距離延長モードまたは標準モードで20MHzであるからである。いくつかの実施形態において、非レガシトーンプランは、同一の数のポピュレートされたトーンを保持するべく、レガシトーンプランの端に、ガードトーンに代えて追加のデータトーンを含む。
複数の他の実施形態において、トーンの間隔が低減されると、標準モードと比較して、直流オフセットおよびキャリア周波数オフセット(CFO)からの影響が大きくなる。図25Bは、一実施形態による、1/2のトーンの間隔を有する例示的な20MHzの全帯域幅の図である。いくつかの実施形態において、追加のゼロトーンは、標準モードにある同一のFFTサイズのレガシトーンプランと比較して、距離延長モードの非レガシトーンプランの帯域における直流トーンに近いものとして規定されている。様々な実施形態において、追加のゼロトーンは、例えばFFTサイズが1/2だけ低減されたトーンの間隔を有する128よりも大きいか、またはこれに等しい場合、またはFFTサイズが1/4だけ低減されたトーンの間隔を有する256よりも大きいか、またはこれに等しい場合にのみ、予め定められたFFTおよび/またはトーンの間隔を超えると規定されている。いくつかの実施形態において、同一の絶対的なガードの間隔(例えば、絶対周波数の間隔)を、例えば標準モードのレガシトーンプランと比較される帯域の端に保持するべく、増大した数のガードトーンが距離延長モードの非レガシトーンプランに用いられる。この場合、非レガシトーンプランにおけるデータトーンおよびパイロットトーンの合計数は、レガシトーンプランよりも小さい。いくつかの例において、同一の絶対的ガード間隔は、フィルタ設計を容易にする。例えば、非レガシトーンプランのデータトーンの合計数が標準モードの同一のFFTサイズと異なるいくつかの実施形態において、FECインターリーバおよび/またはLDPCトーンマッパに対するPHYパラメータは、非レガシトーンプランのデータトーンの数に対して再度規定される。
図26Aは、一実施形態による、サイズ64のFFTおよび1/2のトーンの間隔を有する距離延長モードの非レガシトーンプラン2600の図である。標準モードのレガシトーンプランと比較すると、非レガシトーンプラン2600においては、追加のガードトーン(すなわち、ガードトーン−28、−27、+27、+28)が含まれる。いくつかの実施形態において、64点のFFTは、パイロットトーンまたはデータトーンを用いてDCトーンをポピュレートする。図26Bは、一実施形態による、サイズ128のFFTおよび1/2のトーンの間隔を有する距離延長モードの非レガシトーンプラン2601の図である。標準モードのレガシトーンプランと比較すると、非レガシトーンプラン2601においては、追加のガードトーン(すなわち、ガードトーン−58、−57、+57、+58)および追加のDCトーン(すなわち、DCトーン−2、−1、0、1、2)が含まれる。図26Cは、一実施形態による、サイズ256のFFTおよび1/2のトーンの間隔を有する距離延長モードの非レガシトーンプラン2602を図示する図である。標準モードのレガシトーンプランと比較すると、非レガシトーンプラン2602においては、追加のガードトーン(すなわち、ガードトーン−122、−121、+121、+122)および追加のDCトーン(すなわち、DCトーン−2、−1、0、1、2)が含まれる。複数の他の実施形態において、標準モードと比較すると、距離延長モードでは、追加のガードトーンおよび/またはDCトーンは、非レガシトーンプランに追加される。
図27は、一実施形態による、データユニットを生成する例示的な方法2700のフロー図である。図1を参照すると、方法2700は、一実施形態においてネットワークインターフェース16により実装される。例えば、そのような一実施形態において、PHY処理ユニット20は、方法2700を実装するように構成されている。また、別の実施形態において、MAC処理18は、方法2700の少なくとも一部を実装するように構成されている。図1を引き続き参照すると、なおも別の実施形態において、方法2700は、ネットワークインターフェース27(例えば、PHY処理ユニット29および/またはMAC処理ユニット28)により実装される。複数の他の実施形態において、方法2700は、他の好適な複数のネットワークインターフェースにより実装される。
ブロック2702において、データフィールドの第1のOFDMシンボルが生成される。様々な実施形態において、ブロック2702でOFDMシンボルを生成する段階は、距離延長モードに対応する距離延長符号化スキーム、または標準モードに対応する標準符号化スキームのうち1つに従ってデータ部分のOFDMシンボルを生成する段階を有する。一実施形態において、距離延長符号化スキームは、図10A、図10Bに関して上記された距離延長符号化スキーム(例えば、低減されたトーンの間隔)を含む。別の実施形態において、距離延長符号化スキームは、図17A〜図20Dに関して上記された距離延長符号化スキーム(例えば、ビット形式の反復またはシンボルの反復)を含む。なおも別の実施形態において、距離延長符号化スキームは、図22A〜図22Cに関して上記された距離延長符号化スキーム(例えば、データユニットの反復)を含む。なおも別の実施形態において、距離延長符号化スキームは、図10A,図10B、図17A〜図20D、および図22A〜図22Cに関して上記された距離延長符号化スキームの好適な組み合わせを含む。
一実施形態において、距離延長符号化スキームに従ってPHYデータユニットのデータ部分に対するOFDMシンボルを生成する段階は、前方誤り訂正(FEC)エンコーダ(例えば、FECエンコーダ1706、1806または1906)を用いて複数の情報ビットをエンコードして、複数のエンコード済みのビットを得る段階と、例えば、コンスタレーションマッパ1614または1914を用いて複数のエンコード済みのビットを複数のコンスタレーションシンボルにマッピングする段階と、例えば、IDFT1618または1818を用いて、複数のコンスタレーションシンボルを含むOFDMシンボルを生成する段階とを有する。一実施形態において、OFDMシンボルを生成する段階は、i)(例えば、ブロックコーダ1704を用いる)ブロック符号化スキームに従って複数の情報ビットをエンコードする段階、ii)(例えば、ブロックコーダ1808を用いる)ブロック符号化スキームに従って複数のエンコード済みのビットをエンコードする段階、またはiii)(例えば、ブロックコーダ1916を用いる)ブロック符号化スキームに従って複数のコンスタレーションシンボルをエンコードする段階のうち1つを実行する段階を更に有する。別の実施形態において、データフィールドに対するOFDMシンボルを生成する段階は、例えば、図22A〜図22Cに関して上記されたように、チャネル帯域幅の第1の帯域幅部分における複数のコンスタレーションシンボルと、チャネル帯域幅の第2の帯域幅部分における複数のコンスタレーションシンボルのコピーとを含むデータフィールドのOFDMシンボルを生成する段階を有する。更なる実施形態において、複数のコンスタレーションシンボルのコピーは、予め定められ位相変位を含むように生成される。
ブロック2704において、データユニットのプリアンブルが生成される。ブロック2704において生成されたプリアンブルは、ブロック2702において生成されたデータユニットの少なくともデータ部分が距離延長符号化スキームまたは標準符号化スキームを用いて生成されているか否かを示すように生成される。様々な実施形態および/またはシナリオにおいて、プリアンブル701(図9A、図10A)、751(図9B、図10B)、1101(図11A)、1151(図11B)または1401(図14A)のうち1つが、ブロック1604において生成される。複数の他の実施形態において、他の好適な複数のプリアンブルは、ブロック2704において生成される。
一実施形態において、プリアンブルは、i)PHYデータユニットの持続時間を示す第1の部分と、ii)データ部分の少なくともいくつかのOFDMシンボルが距離延長符号化スキームに従って生成されるか否かを示す第2の部分を有するように生成される。更なる実施形態において、プリアンブルの第1の部分は、プリアンブルの第1の部分が、プリアンブルの第1の部分に基づいてPHYデータユニットの持続時間を判断するべく、第1の通信プロトコル(例えば、HEW通信プロトコル)に準拠しないが、第2の通信プロトコル(例えば、レガシ通信プロトコル)に準拠するレシーバデバイスによりデコード可能になるようにフォーマットされる。
一実施形態において、ブロック2704において生成されたプリアンブルは、距離延長符号化スキームまたは標準符号化スキームを用いて、少なくともデータ部分が生成されているか否かを示すように設定されたCI表示を含む。一実施形態において、CI表示は1ビットを含む。一実施形態において、CI表示により示される符号化スキームを用いて、データ部分に加えてプリアンブルの部分が生成される。別の実施形態において、ブロック2704において生成されたプリアンブルは、受信デバイスが、プリアンブルが標準モードプリアンブルまたは距離延長モードプリアンブルに対応するかを(例えば、デコードすることなく)自動的に検出し得るようにフォーマットされる。一実施形態において、距離延長モードプリアンブルの検出により、受信デバイスに、距離延長符号化スキームを用いて、少なくともデータ部分が生成されることをシグナリングする。
一実施形態において、プリアンブルを生成する段階は、i)第1の通信プロトコルに準拠したショートトレーニングフィールドおよびii)ショートトレーニングフィールドの少なくとも1つのコピーに対する第2のOFDMシンボルを含むプリアンブルの第2の部分を生成する段階と、i)第1の通信プロトコルに準拠したロングトレーニングフィールドおよびii)ロングトレーニングフィールドの少なくとも1つのコピーに対する第3のOFDMシンボルを生成する段階とを有する。更なる実施形態において、データ部分のOFDMシンボル、第2のOFDMシンボルおよび第3のOFDMシンボルは、プリアンブルの第1の部分に対するトーンプランとは別個の同一のトーンプランを有する。
別の実施形態において、ブロック2704は、第2の通信プロトコル(例えば、レガシ通信プロトコル)に従ってPHYデータユニットの第1の信号フィールドを生成する段階と、データフィールドの少なくともいくつかのOFDMシンボルが距離延長モードに従って生成されることを示すべく、第1の信号フィールドのコピーとして第2の信号フィールドを生成する段階とを有する。更なる実施形態において、第1の信号フィールドおよび第2の信号フィールドは、PHYデータユニットの持続時間が予め定められた持続時間であることを示し、第2の信号フィールドは、第1の通信プロトコルに準拠するレシーバデバイスにより追加の(supplemental)追加のトレーニングフィールドとして使用可能である。別の実施形態において、第1の信号フィールドおよび第2の信号フィールドは、第1の信号フィールドおよび第2の信号フィールドのデコードの信頼性を高めるように、第1の通信プロトコルに準拠するレシーバデバイスにより組み合わせてデコード可能である。
一実施形態において、プリアンブルの第1の部分は、i)第2の通信プロトコルに準拠するレガシショートトレーニングフィールドと、ii)非レガシロングトレーニングフィールドと、iii)第2の通信プロトコルに準拠するレガシ信号フィールドとを含み、プリアンブルの第2の部分は、トレーニングフィールドを含まない。本実施形態において、第1の複数のコンスタレーションシンボルは、第2の通信プロトコルに準拠するレガシトーンプランを用いて、レガシショートトレーニングフィールドに対して生成され、第2の複数のコンスタレーションシンボルは、非レガシトーンプランを用いて、非レガシロングトレーニングフィールドに対して生成され、データフィールドに対するOFDMシンボルは、非レガシトーンプランを用いて生成される第3の複数のコンスタレーションシンボルを含む。
一実施形態において、複数のOFDMシンボルは、第2の通信プロトコルに準拠するノーマルガードインターバルを用いて、レガシプリアンブルとしてのプリアンブルの第1の部分に対して生成され、ロングガードインターバルを用いて、複数のOFDMシンボルは、プリアンブルの第2の部分に対して生成される。更なる実施形態において、非レガシ信号フィールドに対するOFDMシンボルおよびプリアンブルの第2の部分の非レガシショートトレーニングフィールドは、ノーマルガードインターバルを用いて生成され、プリアンブルの第2の部分のOFDMシンボルは、ロングガードインターバルを用いて、非レガシロングトレーニングフィールドに対して生成される。別の実施形態において、OFDMシンボルは、ノーマルガードインターバルを用いてプリアンブルの第1の部分のレガシ信号フィールドに対して生成され、OFDMシンボルは、ロングガードインターバルを用いてプリアンブルの第2の部分の非レガシ信号フィールドに対して生成される。一実施形態において、プリアンブルの第2の部分は、第1の通信プロトコルに準拠する複数のレシーバデバイスによりデコード可能であり、プリアンブルの第2の部分のロングガードインターバルは、第1の通信プロトコルに準拠する複数のレシーバデバイスに、PHYデータユニットが距離延長モードに準拠することをシグナリングする。なおも別の実施形態において、複数のOFDMシンボルは、ロングガードインターバルを用いて、i)非レガシ信号フィールドと、ii)非レガシ信号フィールドに対する第1のOFDMシンボルのコピーとに対するプリアンブルの第2の部分に対して生成される。一実施形態において、複数のOFDMシンボルは、i)ダブルガードインターバルと、ii)フィールドに対する第1のOFDMシンボルと、iii)第1のOFDMシンボルのコピーであるフィールドに対する第2のOFDMシンボルとを含むプリアンブルの第2の部分における複数のフィールドの各フィールドに対して生成される。
ブロック2706において、データユニットは、ブロック2704において生成されたプリアンブルと、ブロック2702において生成されたデータ部分とを含むように生成される。一実施形態において、PHYデータユニットは、第2の通信プロトコルに従って、信号フィールドの第1の部分および信号フィールドの第2部分が後に続くダブルガードインターバルを含み、第1の信号フィールドと第2の信号フィールドとの間にガードインターバルを含まないように生成される。
いくつかの実施形態において、データフィールドと比較される送信パワーブーストを用いてプリアンブルの少なくとも第1の部分が送信され、プリアンブルの第1の部分のデコード範囲を増大させる。
別の実施形態において、第1のトーンの間隔およびロングガードインターバルを用いて、データフィールドに対する複数のOFDMシンボルが生成され、i)第1のトーンの間隔とは異なる第2のトーンの間隔およびii)標準ガードインターバルを用いて、プリアンブルの第1の部分に対する複数のOFDMシンボルが生成される。更なる実施形態において、プリアンブルの第1の部分における第2のトーンの間隔は、i)第2の通信プロトコルに準拠するレガシトーンの間隔であると共に、ii)データフィールドの第1のトーンの間隔の整数倍であり、標準ガードインターバルは、第2の通信プロトコルに準拠するレガシガードインターバルである。別の実施形態において、i)レガシトーンの間隔およびレガシガードインターバルを用いる少なくとも第1のOFDMシンボルと、ii)第1のトーンの間隔およびロングガードインターバルを用いる少なくとも第2のOFDMシンボルとを含むプリアンブルの第2の部分に対する複数のOFDMシンボルが、生成される。なおも別の実施形態において、データフィールドに対する複数のOFDMシンボルは、第1のトーンの間隔を用いて、チャネル帯域幅の第1の帯域幅部分における複数のコンスタレーションシンボルと、チャネル帯域幅の第2の帯域幅部分における複数のコンスタレーションシンボルのコピーとを含むように生成され、第1の帯域幅部分および第2の帯域幅部分は、同一の帯域幅を有する。更なる実施形態において、データフィールドに対するOFDMシンボルを生成する段階は、予め定められ位相変位を含むように複数のコンスタレーションシンボルを生成する段階を有する。
一実施形態において、データフィールドに対するOFDMシンボルを生成する段階は、第1のトーンの間隔、ロングガードインターバルおよびロングシンボルの持続時間を用いてデータフィールドに対するOFDMシンボルを生成する段階を有する。更なる実施形態において、プリアンブルの第1の部分に対するOFDMシンボルを生成する段階は、第2のトーンの間隔、標準ガードインターバル、標準シンボルの持続時間を用いてプリアンブルの第1の部分に対するOFDMシンボルを生成する段階を有する。更なる実施形態において、プリアンブルの第1の部分における第2のトーンの間隔は、i)レガシトーンの間隔およびii)データフィールドの第1のトーンの間隔の整数nの倍であり、標準ガードインターバルは、レガシガードインターバルであり、ロングシンボルの持続時間は、標準シンボルの持続時間の整数nの倍である。
別の実施形態において、距離延長モードに従ってPHYデータユニットのデータフィールドに対する複数のOFDMシンボルを生成する段階は、第2の通信プロトコルに準拠しない非レガシトーンの間隔および非レガシトーンプランを用いて、データフィールドに対する複数のOFDMシンボルを生成する段階を有し、プリアンブルを生成する段階は、非レガシトーンの間隔とは異なる第2のトーンの間隔、および非レガシトーンプランとは異なるレガシトーンプランを用いて、プリアンブルの第1の部分に対する複数のOFDMシンボルを生成する段階を有する。更なる実施形態において、非レガシトーンプランは、直流トーンに近似するレガシトーンプランの対応するデータトーンの代わりに少なくとも1つのガードトーンを含む。一実施形態において、非レガシトーンプランは、非レガシトーンプランおよびレガシトーンプランが同一の数のデータトーンを有するように、レガシトーンプランの対応するガードトーンの代わりに少なくとも1つのデータトーンを含む。別の実施形態において、非レガシトーンプランは、レガシトーンプランよりも少ない複数のデータトーンを含み、非レガシトーンの間隔および非レガシトーンプランを用いて、データフィールドに対する複数のOFDMシンボルを生成する段階は、非レガシトーンプランのデータトーンの数に基づいて、誤り訂正コードを用いて複数のOFDMシンボルの複数の情報ビットをエンコードする段階を有する。一実施形態において、誤り訂正コードは、2値畳み込みコードである。別の実施形態において、誤り訂正コードは、低密度パリティ検査コードである。
図28は、一実施形態による、データユニットを生成する例示的な方法2800のフロー図である。図1を参照すると、方法2800は、一実施形態においてネットワークインターフェース16により実装される。例えば、そのような一実施形態において、PHY処理ユニット20は、方法2800を実装するように構成されている。また、別の実施形態において、MAC処理18は、方法2800の少なくとも一部を実装するように構成されている。図1を引き続き参照すると、なおも別の実施形態において、方法2800は、ネットワークインターフェース27(例えば、PHY処理ユニット29および/またはMAC処理ユニット28)により実装される。複数の他の実施形態において、方法2800は、他の好適な複数のネットワークインターフェースにより実装される。
ブロック2802において、第1の複数の直交周波数分割多重(OFDM)シンボルは、一実施形態ではPHYデータユニットに含まれるべきプリアンブルの第1のフィールドに対して生成される。いくつかの実施形態において、第1の複数のOFDMシンボルの各OFDMシンボルは、少なくとも、予め定められたシーケンスを第2の通信プロトコルの第2のロングトレーニングシーケンスを掛けることにより取得される第1の通信プロトコルの第1のロングトレーニングシーケンスに対応する。ブロック2804において、一実施形態では、プリアンブルの第2のフィールドに対する第1の複数の情報ビットがエンコードされ、第1の複数のエンコード済みビットが生成される。
ブロック2806において、一実施形態では、第1の複数のエンコード済みビットは、第1の複数のコンスタレーションシンボルにマッピングされる。ブロック2808において、一実施形態では、第1の複数のコンスタレーションシンボルを予め定められたシーケンスを掛ける段階を含む、第1の複数の修正済みコンスタレーションシンボルが生成される。ブロック2810において、一実施形態では、第1の複数の修正済みコンスタレーションシンボルを含む第2の複数の直交周波数分割多重(OFDM)シンボルが生成される。ブロック2812において、一実施形態では、第1のフィールドに対する第1の複数のOFDMシンボルと、第2のフィールドに対する第2の複数のOFDMシンボルとを含むプリアンブルが生成される。ブロック2814において、少なくともプリアンブルを含むべく、PHYデータユニットが生成される。
いくつかの実施形態において、第1の複数の情報ビットは、PHYデータユニットの持続時間を示す1または複数の情報ビットの第1のセットを含み、プリアンブルは、プリアンブルがプリアンブルに基づいてPHYデータユニットの持続時間を判断するべく、第2の通信プロトコルに準拠し、第1の通信プロトコルには準拠しないレシーバデバイスによりデコード可能になるようにフォーマットされる。一実施形態において、第1のロングトレーニングシーケンスのi番目の値は、第2のロングトレーニングシーケンスのに対応するi番目の値を掛けられた予め定められたシーケンスのi番目の値に対応し、iは、インデックスである。
一実施形態において、第1のロングトレーニングシーケンスの長さは、第2の通信プロトコルにより指定されたOFDMシンボルにおけるデータトーンの数およびパイロットトーンの数の和よりも大きいか、またはこれに等しい。いくつかの実施形態において、第1の複数の修正済みコンスタレーションシンボルを生成する段階は、予め定められたシーケンスを、第2の通信プロトコルに対する複数のパイロットトーンコンスタレーションシンボルを掛ける段階を有する。いくつかの実施形態において、複数のパイロットトーンコンスタレーションシンボルに対応する予め定められたシーケンスの複数の値は、1の値を有する。一実施形態において、予め定められたシーケンスの複数の値は、+1または−1の値を有する。
いくつかの実施形態において、第1の複数のOFDMシンボルを生成する段階は、第1の通信プロトコルに準拠するレシーバにより生成された第1のフィールドに対する自己相関出力が、i)第1の通信プロトコルの第1のモードまたはii)第1の通信プロトコルの第2のモードをシグナリングして、レシーバデバイスによる第1のモードまたは第2のモードの自動検出を可能にするように、第1の複数のOFDMシンボルを生成する段階を有する。一実施形態において、第1のフィールドは、第1のロングトレーニングシーケンスを含む。別の実施形態において、第1のフィールドは、第2のロングトレーニングシーケンスを含む。
一実施形態において、方法2800は、PHYデータユニットのデータフィールドに対する第2の複数の情報ビットをエンコードする段階と、第2の複数のエンコード済みビットを生成する段階と、第2の複数のエンコード済みビットを第2の複数のコンスタレーションシンボルにマッピングする段階と、予め定められたシーケンスを第2の複数のコンスタレーションシンボルを掛ける段階を含む、第2の複数の修正済みコンスタレーションシンボルを生成する段階と、第2の複数の修正済みコンスタレーションシンボルを含む第3の複数の直交周波数分割多重(OFDM)シンボルを生成する段階と、第3の複数のOFDMシンボルを含むデータフィールドを生成する段階とを更に備え、PHYデータユニットを生成する段階は、少なくともプリアンブルおよびデータフィールドを含むPHYデータユニットを生成する段階を有する。
上記の様々なブロック、オペレーションおよび技術の少なくともいくつかは、ハードウェア、複数のファームウェア命令を実行するプロセッサ、複数のソフトウェア命令を実行するプロセッサまたはそれらの任意の組み合わせを使用して実装され得る。ソフトウェア命令もしくはファームウェア命令を実行するプロセッサを使用して実装される場合、ソフトウェア命令もしくはファームウェア命令は、RAMもしくはROM、またはフラッシュメモリ、プロセッサ、ハードディスクドライブ、光学ディスクドライブ、テープドライブ等の磁気ディスク、光学ディスク、または他のストレージ媒体等の任意のコンピュータ可読メモリに格納され得る。同様に、ソフトウェア命令もしくはファームウェア命令は、例えば、コンピュータ可読ディスクもしくは他の可搬式コンピュータストレージメカニズム上、または通信媒体によることを含む、任意の知られているか、もしくは所望の提供方法により、ユーザもしくはシステムに提供され得る。通常、通信媒体は、複数のコンピュータ可読命令、データ構造体、プログラムモジュールまたは搬送波もしくは他の搬送メカニズム等の変調済みデータ信号における他のデータを実施する。「変調済みデータ信号」という用語は、信号中の情報をエンコードするように設定もしくは変更された複数の特性のうち1または複数を有する信号を意味する。限定ではなく例として、通信媒体としては、有線ネットワークもしくは直接の有線接続等の有線媒体、ならびに音響、無線周波、赤外線および他の無線媒体等の無線媒体が挙げられる。従って、ソフトウェア命令もしくはファームウェア命令は、電話回線、DSL回線、ケーブルテレビ回線、光ファイバ回線、無線通信チャネル、インターネット等(これらは、可搬式のストレージ媒体によりそのようなソフトウェアを提供するのと同一もしくは互換的なものとみなされる)通信チャネルを介してユーザもしくはシステムに提供され得る。ソフトウェア命令またはファームウェア命令は、プロセッサにより実行されると、プロセッサに様々な動作を実行させる機械可読命令を含み得る。
ハードウェアに実装される場合、ハードウェアは離散コンポーネント、集積回路、特定用途向け集積回路(ASIC)、等のうち1または複数を含んでもよい。
本発明は、本発明を限定するのではなく専ら例示することを意図した複数の具体的な例を参照して説明されてきたが、本発明の範囲を逸脱することなく、開示された複数の実施形態に対して様々な変更、追加および/または削除が行われてもよい。

Claims (62)

  1. 通信チャネルを介した送信のための、第1の通信プロトコルに準拠した物理層(PHY)データユニットを生成する方法であって、
    前記第1の通信プロトコルの距離延長モードに対応する距離延長符号化スキームに従って、前記PHYデータユニットのデータフィールドに対する複数の直交周波数分割多重(OFDM)シンボルを生成する段階と、
    前記PHYデータユニットのプリアンブルを生成する段階と、
    前記プリアンブルおよび前記データフィールドを含む前記PHYデータユニットを生成する段階と備え、
    前記プリアンブルは、i)前記PHYデータユニットの持続時間を示す第1の部分、およびii)前記データフィールドの少なくともいくつかのOFDMシンボルが前記距離延長符号化スキームに従って生成されるか否かを示す第2の部分を含み、
    前記プリアンブルの前記第1の部分は、前記プリアンブルの前記第1の部分に基づいて前記PHYデータユニットの前記持続時間を判断するべく、第2の通信プロトコルに準拠し、前記第1の通信プロトコルには準拠しないレシーバデバイスにより、前記プリアンブルの前記第1の部分がデコード可能になるようにフォーマットされる、方法。
  2. 前記距離延長符号化スキームに従って、前記PHYデータユニットの前記データフィールドに対する前記複数のOFDMシンボルを生成する段階は、
    前方誤り訂正(FEC)エンコーダを用いて、前記PHYデータユニットの前記データフィールドに含まれるべき複数の情報ビットをエンコードして、複数のエンコード済みビットを得る段階と、
    前記複数のエンコード済みビットを複数のコンスタレーションシンボルにマッピングする段階と、
    前記複数のコンスタレーションシンボルを含む前記複数のOFDMシンボルを生成する段階とを有し、
    前記方法は、
    i)ブロック符号化スキームに従って前記複数の情報ビットをエンコードする段階と、
    ii)前記ブロック符号化スキームに従って前記複数のエンコード済みビットをエンコードする段階と、
    iii)前記ブロック符号化スキームに従って前記複数のコンスタレーションシンボルをエンコードする段階とのうち1つを実行する段階を更に備える、請求項1に記載の方法。
  3. 前記距離延長符号化スキームに従って、前記PHYデータユニットの前記データフィールドに対する前記複数のOFDMシンボルを生成する段階は、
    チャネル帯域幅の第1の帯域幅部分ににおける複数のコンスタレーションシンボルと、前記チャネル帯域幅の第2の帯域幅部分における前記複数のコンスタレーションシンボルのコピーとを含む前記複数のOFDMシンボルを前記データフィールドに対して生成する段階を有し、
    前記第1の帯域幅部分および前記第2の帯域幅部分は、同一の帯域幅を有する、請求項1または2に記載の方法。
  4. 前記複数のOFDMシンボルを生成する段階は、予め定められた位相変位を含む前記複数のコンスタレーションシンボルの前記コピーを生成する段階を有する、請求項3に記載の方法。
  5. 前記データフィールドに対する前記複数のOFDMシンボルは、第1の複数のOFDMシンボルを含み、
    前記プリアンブルを生成する段階は、前記プリアンブルの前記第2の部分を生成する段階を有し、
    前記プリアンブルの前記第2の部分を生成する段階は、
    i)前記第1の通信プロトコルに準拠するショートトレーニングフィールドと、ii)前記ショートトレーニングフィールドの少なくとも1つのコピーとに対する第2の複数のOFDMシンボルを生成する段階と、
    i)前記第1の通信プロトコルに準拠するロングトレーニングフィールドと、ii)前記ロングトレーニングフィールドの少なくとも1つのコピーとに対する第3の複数のOFDMシンボルを生成する段階とを含み、
    前記第1の複数のOFDMシンボル、前記第2の複数のOFDMシンボルおよび前記第3の複数のOFDMシンボルは、前記プリアンブルの前記第1の部分に対するトーンプランとは別個の同一のトーンプランを有する、請求項3または4に記載の方法。
  6. 前記データフィールドと比較して、送信パワーブーストを用いて、前記プリアンブルの少なくとも前記第1の部分を送信して、前記プリアンブルの前記第1の部分のデコード範囲を増大させる段階を更に備える、請求項1〜5のいずれか1項に記載の方法。
  7. 前記プリアンブルを生成する段階は、i)前記プリアンブルの前記第1の部分を生成する段階と、ii)前記プリアンブルの前記第2の部分を生成する段階とを有し、
    前記プリアンブルの前記第1の部分を生成する段階は、前記第2の通信プロトコルに準拠して、前記PHYデータユニットに対する第1の信号フィールドを生成する段階を有し、
    前記プリアンブルの前記第2の部分を生成する段階は、前記第1の信号フィールドのコピーとして第2の信号フィールドを生成して、前記データフィールドの少なくともいくつかのOFDMシンボルが前記距離延長モードに従って生成されることを示す段階を有する、請求項1〜6のいずれか1項に記載の方法。
  8. 前記第1の信号フィールドおよび前記第2の信号フィールドは、前記PHYデータユニットの前記持続時間が予め定められた持続時間であることを示し、
    前記第2の信号フィールドは、前記第1の通信プロトコルに準拠するレシーバデバイスにより追加のトレーニングフィールドとして使用可能である、請求項7に記載の方法。
  9. 前記プリアンブルおよび前記データフィールドを含む前記PHYデータユニットを生成する段階は、前記PHYデータユニットであって、信号フィールドの前記第1の部分および前記信号フィールドの前記第2の部分が後に続く前記第2の通信プロトコルに準拠するダブルガードインターバルを含み、前記第1の信号フィールドと前記第2の信号フィールドとの間にガードインターバルを含まない前記PHYデータユニットを生成する段階を有する、請求項7または8に記載の方法。
  10. 前記第1の信号フィールドおよび前記第2の信号フィールドは、前記第1の信号フィールドおよび前記第2の信号フィールドのデコードの信頼性を高めるように、前記第1の通信プロトコルに準拠するレシーバデバイスにより組み合わせてデコード可能である、請求項7〜9のいずれか1項に記載の方法。
  11. 前記プリアンブルの前記第1の部分は、i)前記第2の通信プロトコルに準拠するレガシショートトレーニングフィールドと、ii)非レガシロングトレーニングフィールドと、iii)前記第2の通信プロトコルに準拠するレガシ信号フィールドとを含み、
    前記プリアンブルの前記第2の部分は、トレーニングフィールドを含まず、
    前記方法は、
    前記第2の通信プロトコルに準拠するレガシトーンプランを用いて、前記レガシショートトレーニングフィールドに対する第1の複数のコンスタレーションシンボルを生成する段階と、
    非レガシトーンプランを用いて、前記非レガシロングトレーニングフィールドに対する第2の複数のコンスタレーションシンボルを生成する段階とを更に備え、
    前記データフィールドに対する前記複数のOFDMシンボルを生成する段階は、前記非レガシトーンプランを用いて第3の複数のコンスタレーションシンボルを生成する段階を有する、請求項1〜10のいずれか1項に記載の方法。
  12. 前記プリアンブルを生成する段階は、
    前記第2の通信プロトコルに準拠するノーマルガードインターバルを用いて、レガシプリアンブルとしての前記プリアンブルの前記第1の部分に対する複数のOFDMシンボルを生成する段階と、
    ロングガードインターバルを用いて、前記プリアンブルの前記第2の部分に対する複数のOFDMシンボルを生成する段階とを有する、請求項1〜11のいずれか1項に記載の方法。
  13. 前記プリアンブルの前記第2の部分に対する前記複数のOFDMシンボルを生成する段階は、
    前記ノーマルガードインターバルを用いて、非レガシ信号フィールドおよび非レガシショートトレーニングフィールドに対する複数のOFDMシンボルを生成する段階と、
    前記ロングガードインターバルを用いて、非レガシロングトレーニングフィールドに対する複数のOFDMシンボルを生成する段階とを有する、請求項12に記載の方法。
  14. 前記プリアンブルの前記第2の部分に対する複数のOFDMシンボルを生成する段階は、
    前記ノーマルガードインターバルを用いてレガシ信号フィールドに対する複数のOFDMシンボルを生成する段階と、
    前記ロングガードインターバルを用いて非レガシ信号フィールドに対する複数のOFDMシンボルを生成する段階とを有する、請求項12または13に記載の方法。
  15. 前記プリアンブルの前記第2の部分は、前記第1の通信プロトコルに準拠する複数のレシーバデバイスによりデコード可能であり、
    前記プリアンブルの前記第2の部分の前記ロングガードインターバルは、前記第1の通信プロトコルに準拠する前記複数のレシーバデバイスに、前記PHYデータユニットが前記距離延長モードに準拠することをシグナリングする、請求項12〜14のいずれか1項に記載の方法。
  16. 前記プリアンブルの前記第2の部分に対する複数のOFDMシンボルを生成する段階は、
    前記ロングガードインターバルを用いて、i)非レガシ信号フィールドと、ii)前記非レガシ信号フィールドに対する第1のOFDMシンボルのコピーとに対する複数のOFDMシンボルを生成する段階を有する、請求項12〜15のいずれか1項に記載の方法。
  17. 前記プリアンブルの前記第2の部分に対する複数のOFDMシンボルを生成する段階は、
    i)ダブルガードインターバルと、ii)前記フィールドに対する第1のOFDMシンボルと、iii)前記第1のOFDMシンボルのコピーである前記フィールドに対する第2のOFDMシンボルとを含む前記プリアンブルの前記第2の部分における複数のフィールドの各フィールドに対して、複数のOFDMシンボルを生成する段階を有する、請求項12〜16のいずれか1項に記載の方法。
  18. 前記距離延長モードに従って前記PHYデータユニットの前記データフィールドに対する前記複数のOFDMシンボルを生成する段階は、第1のトーンの間隔およびロングガードインターバルを用いて、前記データフィールドに対する前記複数のOFDMシンボルを生成する段階を有し、
    前記プリアンブルを生成する段階は、i)前記第1のトーンの間隔とは異なる第2のトーンの間隔、およびii)標準ガードインターバルを用いて、前記プリアンブルの前記第1の部分に対する複数のOFDMシンボルを生成する段階を有する、請求項1〜17のいずれか1項に記載の方法。
  19. 前記プリアンブルの前記第1の部分における前記第2のトーンの間隔は、i)前記第2の通信プロトコルに準拠するレガシトーンの間隔であると共に、ii)前記データフィールドの前記第1のトーンの間隔の整数倍であり、
    前記標準ガードインターバルは、前記第2の通信プロトコルに準拠するレガシガードインターバルである、請求項18に記載の方法。
  20. 前記プリアンブルを生成する段階は、i)前記レガシトーンの間隔および前記レガシガードインターバルを用いる少なくとも第1のOFDMシンボルと、ii)前記第1のトーンの間隔および前記ロングガードインターバルを用いる少なくとも第2のOFDMシンボルとを含む前記プリアンブルの前記第2の部分に対する複数のOFDMシンボルを生成する段階を有する、請求項19に記載の方法。
  21. 前記プリアンブルを生成する段階は、
    前記プリアンブルの前記第2の部分に対する前記複数のOFDMシンボルを生成する段階を有し、前記段階は、
    前記レガシトーンの間隔および前記レガシガードインターバルを用いて、非レガシ信号フィールドおよび非レガシショートトレーニングフィールドを生成する段階と、
    前記第1のトーンの間隔および前記ロングガードインターバルを用いて非レガシロングトレーニングフィールドを生成する段階とを含む、請求項19または20に記載の方法。
  22. 前記第1のトーンの間隔を用いて前記データフィールドに対する前記複数のOFDMシンボルを生成する段階は、
    チャネル帯域幅の第1の帯域幅部分における複数のコンスタレーションシンボルと、前記チャネル帯域幅の第2の帯域幅部分における前記複数のコンスタレーションシンボルのコピーとを含む前記複数のOFDMシンボルを前記データフィールドに対して生成する段階を有し、
    前記第1の帯域幅部分および前記第2の帯域幅部分は、同一の帯域幅を有する、請求項18に記載の方法。
  23. 前記データフィールドに対する前記複数のOFDMシンボルを生成する段階は、予め定められた位相変位を含む前記複数のコンスタレーションシンボルの前記コピーを生成する段階を有する、請求項22に記載の方法。
  24. 前記データフィールドに対する前記複数のOFDMシンボルを生成する段階は、前記第1のトーンの間隔、前記ロングガードインターバルおよびロングシンボルの持続時間を用いて、前記データフィールドに対する前記OFDMシンボルを生成する段階を有し、
    前記プリアンブルの前記第1の部分に対する前記複数のOFDMシンボルを生成する段階は、前記第2のトーンの間隔、前記標準ガードインターバルおよび標準シンボルの持続時間を用いて、前記プリアンブルの前記第1の部分に対する複数のOFDMシンボルを生成する段階を有する、請求項18に記載の方法。
  25. 前記プリアンブルの前記第1の部分における前記第2のトーンの間隔は、i)レガシトーンの間隔であると共に、ii)前記データフィールドの前記第1のトーンの間隔の整数nの倍であり、
    前記標準ガードインターバルは、レガシガードインターバルであり、
    前記ロングシンボルの持続時間は、前記標準シンボルの持続時間の整数nの倍である、請求項24に記載の方法。
  26. 前記距離延長モードに従って前記PHYデータユニットの前記データフィールドに対する前記複数のOFDMシンボルを生成する段階は、
    前記第2の通信プロトコルに準拠しない非レガシトーンの間隔および非レガシトーンプランを用いて、前記データフィールドに対する前記複数のOFDMシンボルを生成する段階を有し、
    前記プリアンブルを生成する段階は、前記非レガシトーンの間隔とは異なる第2のトーンの間隔、および前記非レガシトーンプランとは異なるレガシトーンプランを用いて、前記プリアンブルの前記第1の部分に対する複数のOFDMシンボルを生成する段階を有する、請求項1〜25のいずれか1項に記載の方法。
  27. 前記非レガシトーンプランは、直流トーンに近似する前記レガシトーンプランの対応するデータトーンの代わりに少なくとも1つのガードトーンを含む、請求項26に記載の方法。
  28. 前記非レガシトーンプランは、前記非レガシトーンプランおよび前記レガシトーンプランが同一の数のデータトーンを有するように、前記レガシトーンプランの対応するガードトーンの代わりに少なくとも1つのデータトーンを含む、請求項27に記載の方法。
  29. 前記非レガシトーンプランは、前記レガシトーンプランよりも少ない複数のデータトーンを含み、
    前記非レガシトーンの間隔および前記非レガシトーンプランを用いて、前記データフィールドに対する前記複数のOFDMシンボルを生成する段階は、前記非レガシトーンプランのデータトーンの数に基づいて、誤り訂正コードを用いて前記複数のOFDMシンボルの複数の情報ビットをエンコードする段階を有する、請求項27または28に記載の方法。
  30. 前記誤り訂正コードは、2値畳み込みコードである、請求項29に記載の方法。
  31. 前記誤り訂正コードは、低密度パリティ検査コードである、請求項29または30に記載の方法。
  32. 物理層(PHY)データユニットが準拠する第1の通信プロトコルの距離延長モードに対応する距離延長符号化スキームに従って、前記PHYデータユニットのデータフィールドに対する複数の直交周波数分割多重(OFDM)シンボルを生成し、
    前記PHYデータユニットのプリアンブルを生成し、
    前記プリアンブルおよび前記データフィールドを含む前記PHYデータユニットを生成する、1または複数の集積回路を有するネットワークインターフェースデバイスを備え、
    前記プリアンブルは、i)前記PHYデータユニットの持続時間を示す第1の部分、およびii)前記データフィールドの少なくともいくつかのOFDMシンボルが前記距離延長符号化スキームに従って生成されるか否かを示す第2の部分を含み、
    前記プリアンブルの前記第1の部分は、前記プリアンブルの前記第1の部分に基づいて前記PHYデータユニットの前記持続時間を判断するべく、第2の通信プロトコルに準拠し、前記第1の通信プロトコルには準拠しないレシーバデバイスにより前記プリアンブルの前記第1の部分がデコード可能になるようにフォーマットされる、装置。
  33. 前記1または複数の集積回路は、
    i)チャネル帯域幅の第1の帯域幅部分における複数のコンスタレーションシンボルと、ii)前記チャネル帯域幅の第2の帯域幅部分における前記複数のコンスタレーションシンボルのコピーとを含む前記複数のOFDMシンボルを前記データフィールドに対して生成し、
    前記第1の帯域幅部分および前記第2の帯域幅部分は、同一の帯域幅を有する、請求項32に記載の装置。
  34. 前記データフィールドに対する前記複数のOFDMシンボルは、第1の複数のOFDMシンボルを含み、
    前記1または複数の集積回路は、
    i)前記第1の通信プロトコルに準拠するショートトレーニングフィールドと、ii)前記ショートトレーニングフィールドの少なくとも1つのコピーとに対する第2の複数のOFDMシンボルを生成することと、
    i)前記第1の通信プロトコルに準拠するロングトレーニングフィールドと、ii)前記ロングトレーニングフィールドの少なくとも1つのコピーとに対する第3の複数のOFDMシンボルを生成することを含めて、前記プリアンブルの前記第2の部分を生成し、
    前記第1の複数のOFDMシンボル、前記第2の複数のOFDMシンボルおよび前記第3の複数のOFDMシンボルは、前記プリアンブルの前記第1の部分に対するトーンプランとは別個の同一のトーンプランを有する、請求項33に記載の装置。
  35. 前記1または複数の集積回路は、前記ネットワークインターフェースに、前記データフィールドと比較して、送信パワーブーストを用いて、前記プリアンブルの少なくとも前記第1の部分を送信させて、前記プリアンブルの前記第1の部分のデコード範囲を増大させる、請求項33または34に記載の装置。
  36. 前記1または複数の集積回路は、
    前記第2の通信プロトコルに従って前記プリアンブルの前記第1の部分における第1の信号フィールドを生成し、
    前記第1の信号フィールドのコピーとして、前記プリアンブルの前記第2の部分における第2の信号フィールドを生成して、前記データフィールドの少なくともいくつかのOFDMシンボルが前記距離延長モードに従って生成されることを示す、請求項33〜35のいずれか1項に記載の装置。
  37. 前記プリアンブルの前記第1の部分は、i)前記第2の通信プロトコルに準拠するレガシショートトレーニングフィールドと、ii)非レガシロングトレーニングフィールドと、iii)前記第2の通信プロトコルに準拠するレガシ信号フィールドとを含み、
    前記プリアンブルの前記第2の部分は、トレーニングフィールドを含まず、
    前記1または複数の集積回路は、
    前記第2の通信プロトコルに準拠するレガシトーンプランを用いて、前記レガシショートトレーニングフィールドに対する第1の複数のコンスタレーションシンボルを生成し、
    非レガシトーンプランを用いて、前記非レガシロングトレーニングフィールドに対する第2の複数のコンスタレーションシンボルを生成し、
    前記データフィールドに対する前記OFDMシンボルを生成することの一部として、前記非レガシトーンプランを用いて第3の複数のコンスタレーションシンボルを生成する、請求項33〜36のいずれか1項に記載の装置。
  38. 前記プリアンブルを生成することは、
    前記第2の通信プロトコルに準拠するノーマルガードインターバルを用いて、レガシプリアンブルとしての前記プリアンブルの前記第1の部分に対する複数のOFDMシンボルを生成することと、
    ロングガードインターバルを用いて、前記プリアンブルの前記第2の部分に対する複数のOFDMシンボルを生成することとを含む、請求項33〜37のいずれか1項に記載の装置。
  39. 前記1または複数の集積回路は、
    第1のトーンの間隔およびロングガードインターバルを用いて、前記データフィールドに対する前記複数のOFDMシンボルを生成し、
    i)前記第1のトーンの間隔とは異なる第2のトーンの間隔およびii)標準ガードインターバルを用いて、前記プリアンブルの前記第1の部分に対する複数のOFDMシンボルを生成する、請求項33〜38のいずれか1項に記載の装置。
  40. 前記1または複数の集積回路は、
    前記第2の通信プロトコルに準拠しない非レガシトーンの間隔および非レガシトーンプランを用いて、前記データフィールドに対する前記複数のOFDMシンボルを生成し、
    前記非レガシトーンの間隔とは異なる第2のトーンの間隔、および前記非レガシトーンプランとは異なるレガシトーンプランを用いて、前記プリアンブルの前記第1の部分に対する複数のOFDMシンボルを生成する、請求項33〜39のいずれか1項に記載の装置。
  41. 通信チャネルを介した送信のための、第1の通信プロトコルに準拠する物理層(PHY)データユニットを生成する方法であって、
    前記PHYデータユニットに含まれるべきプリアンブルの第1のフィールドに対する第1の複数の直交周波数分割多重(OFDM)シンボルを生成する段階と、
    前記プリアンブルの第2のフィールドに対する第1の複数の情報ビットをエンコードして、第1の複数のエンコード済みビットを生成する段階と、
    前記第1の複数のエンコード済みビットを第1の複数のコンスタレーションシンボルにマッピングする段階と、
    第1の複数のコンスタレーションシンボルを予め定められたシーケンスを掛ける段階を含む、第1の複数の修正済みコンスタレーションシンボルを生成する段階と、
    前記第1の複数の修正済みコンスタレーションシンボルを含む第2の複数の直交周波数分割多重(OFDM)シンボルを生成する段階と、
    前記第1のフィールドに対する前記第1の複数のOFDMシンボルと、前記第2のフィールドに対する前記第2の複数のOFDMシンボルとを含む前記プリアンブルを生成する段階と、
    少なくとも前記プリアンブルを含む前記PHYデータユニットを生成する段階とを備え、
    前記第1の複数のOFDMシンボルの各OFDMシンボルは、少なくとも、前記予め定められたシーケンスを第2の通信プロトコルの第2のロングトレーニングシーケンスを掛けることにより取得される前記第1の通信プロトコルの第1のロングトレーニングシーケンスに対応する、方法。
  42. 前記第1の複数の情報ビットは、前記PHYデータユニットの持続時間を示す1または複数の情報ビットの第1のセットを含み、
    前記プリアンブルは、前記プリアンブルに基づいて前記PHYデータユニットの前記持続時間を判断するべく、前記第2の通信プロトコルに準拠し、前記第1の通信プロトコルには準拠しないレシーバデバイスにより前記プリアンブルがデコード可能になるようにフォーマットされる、請求項41に記載の方法。
  43. 前記第1のロングトレーニングシーケンスのi番目の値は、前記第2のロングトレーニングシーケンスの対応するi番目の値を掛けられた前記予め定められたシーケンスのi番目の値に対応し、
    iは、インデックスである、請求項41または42に記載の方法。
  44. 前記第1のロングトレーニングシーケンスの長さは、前記第2の通信プロトコルにより指定されたOFDMシンボルにおけるデータトーンの数およびパイロットトーンの数の和よりも大きいか、またはこれに等しい、請求項43に記載の方法。
  45. 前記第1の複数の修正済みコンスタレーションシンボルを生成する段階は、前記予め定められたシーケンスを、前記第2の通信プロトコルに対する複数のパイロットトーンコンスタレーションシンボルを掛ける段階を有する、請求項41〜44のいずれか1項に記載の方法。
  46. 前記複数のパイロットトーンコンスタレーションシンボルに対応する前記予め定められたシーケンスの複数の値は、1の値を有する、請求項45に記載の方法。
  47. 前記予め定められたシーケンスの複数の値は、+1または−1の値を有する、請求項41〜46のいずれか1項に記載の方法。
  48. 前記第1の複数のOFDMシンボルを生成する段階は、前記第1の通信プロトコルに準拠するレシーバデバイスにより生成された前記第1のフィールドに対する自己相関出力が、i)前記第1の通信プロトコルの第1のモードまたはii)前記第1の通信プロトコルの第2のモードをシグナリングして、前記レシーバデバイスによる前記第1のモードまたは前記第2のモードの自動検出を可能にするように、前記第1の複数のOFDMシンボルを生成する段階を有する、請求項41〜47のいずれか1項に記載の方法。
  49. 前記第1のフィールドは、前記第1のロングトレーニングシーケンスを含む、請求項48に記載の方法。
  50. 前記第1のフィールドは、前記第2のロングトレーニングシーケンスを含む、請求項48または49に記載の方法。
  51. 前記PHYデータユニットのデータフィールドに対する第2の複数の情報ビットをエンコードして、第2の複数のエンコード済みビットを生成する段階と、
    前記第2の複数のエンコード済みビットを第2の複数のコンスタレーションシンボルにマッピングする段階と、
    前記予め定められたシーケンスを前記第2の複数のコンスタレーションシンボルを掛ける段階を含む、第2の複数の修正済みコンスタレーションシンボルを生成する段階と、
    前記第2の複数の修正済みコンスタレーションシンボルを含む第3の複数の直交周波数分割多重(OFDM)シンボルを生成する段階と、
    前記第3の複数のOFDMシンボルを含む前記データフィールドを生成する段階とを更に備え、
    前記PHYデータユニットを生成する段階は、少なくとも前記プリアンブルおよび前記データフィールドを含む前記PHYデータユニットを生成する段階を有する、請求項41〜50のいずれか1項に記載の方法。
  52. 通信チャネルを介した送信のために、第1の通信プロトコルに準拠する物理層(PHY)データユニットに含まれるべきプリアンブルの第1のフィールドに対する第1の複数の直交周波数分割多重(OFDM)シンボルを生成し、
    前記プリアンブルの第2のフィールドに対する第1の複数の情報ビットをエンコードして、第1の複数のエンコード済みビットを生成し、
    前記第1の複数のエンコード済みビットを第1の複数のコンスタレーションシンボルにマッピングし、
    第1の複数のコンスタレーションシンボルを予め定められたシーケンスを掛けることを含む、第1の複数の修正済みコンスタレーションシンボルを生成し、
    前記第1の複数の修正済みコンスタレーションシンボルを含む第2の複数の直交周波数分割多重(OFDM)シンボルを生成し、
    前記第1のフィールドに対する前記第1の複数のOFDMシンボルと、前記第2のフィールドに対する前記第2の複数のOFDMシンボルとを含む前記プリアンブルを生成し、
    少なくとも前記プリアンブルを含む前記PHYデータユニットを生成する、1または複数の集積回路を有するネットワークインターフェースデバイスを備え、
    前記第1の複数のOFDMシンボルの各OFDMシンボルは、少なくとも、前記予め定められたシーケンスを第2の通信プロトコルの第2のロングトレーニングシーケンスを掛けることにより取得される前記第1の通信プロトコルの第1のロングトレーニングシーケンスに対応する、装置。
  53. 前記第1の複数の情報ビットは、前記PHYデータユニットの持続時間を示す1または複数の情報ビットの第1のセットを含み、
    前記プリアンブルは、前記プリアンブルに基づいて前記PHYデータユニットの前記持続時間を判断するべく、前記第2の通信プロトコルに準拠し、前記第1の通信プロトコルには準拠しないレシーバデバイスにより前記プリアンブルがデコード可能になるようにフォーマットされる、請求項52に記載の装置。
  54. 前記第1のロングトレーニングシーケンスのi番目の値は、前記第2のロングトレーニングシーケンスの対応するi番目の値を掛けられた前記予め定められたシーケンスのi番目の値に対応し、
    iは、インデックスである、請求項52または53に記載の装置。
  55. 前記第1のロングトレーニングシーケンスの長さは、前記第2の通信プロトコルにより指定されたOFDMシンボルにおけるデータトーンの数およびパイロットトーンの数の和よりも大きいか、またはこれに等しい、請求項54に記載の装置。
  56. 前記1または複数の集積回路は、前記予め定められたシーケンスを、前記第2の通信プロトコルに対する複数のパイロットトーンコンスタレーションシンボルを掛けることに基づいて、前記第1の複数の修正済みコンスタレーションシンボルを生成する、請求項52〜55のいずれか1項に記載の装置。
  57. 前記複数のパイロットトーンコンスタレーションシンボルに対応する前記予め定められたシーケンスの複数の値は、1の値を有する、請求項56に記載の装置。
  58. 前記予め定められたシーケンスの複数の値は、+1または−1の値を有する、請求項52〜57のいずれか1項に記載の装置。
  59. 前記1または複数の集積回路デバイスは、前記第1の通信プロトコルに準拠するレシーバデバイスにより生成された前記第1のフィールドに対する自己相関出力が、i)前記第1の通信プロトコルの第1のモードまたはii)前記第1の通信プロトコルの第2のモードをシグナリングして、前記レシーバデバイスによる前記第1のモードまたは前記第2のモードの自動検出を可能にするように、前記第1の複数のOFDMシンボルを生成する、請求項52〜58のいずれか1項に記載の装置。
  60. 前記第1のフィールドは、前記第1のロングトレーニングシーケンスを含む、請求項59に記載の装置。
  61. 前記第1のフィールドは、前記第2のロングトレーニングシーケンスを含む、請求項59または60に記載の装置。
  62. 前記1または複数の集積回路デバイスは、
    前記PHYデータユニットのデータフィールドに対する第2の複数の情報ビットをエンコードして、第2の複数のエンコード済みビットを生成し、
    前記第2の複数のエンコード済みビットを第2の複数のコンスタレーションシンボルにマッピングし、
    前記予め定められたシーケンスを前記第2の複数のコンスタレーションシンボルを掛けることを含んで、第2の複数の修正済みコンスタレーションシンボルを生成し、
    前記第2の複数の修正済みコンスタレーションシンボルを含む第3の複数の直交周波数分割多重(OFDM)シンボルを生成し、
    前記第3の複数のOFDMシンボルを含む前記データフィールドを生成し、
    少なくとも前記プリアンブルおよび前記データフィールドを含む前記PHYデータユニットを生成する、請求項52〜61のいずれか1項に記載の装置。
JP2016524452A 2013-10-25 2014-10-24 WiFi用の距離延長モード Active JP6464493B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201361895591P 2013-10-25 2013-10-25
US61/895,591 2013-10-25
US201461925332P 2014-01-09 2014-01-09
US61/925,332 2014-01-09
US201461950727P 2014-03-10 2014-03-10
US61/950,727 2014-03-10
US201461987778P 2014-05-02 2014-05-02
US61/987,778 2014-05-02
PCT/US2014/062247 WO2015061729A1 (en) 2013-10-25 2014-10-24 Range extension mode for wifi

Publications (3)

Publication Number Publication Date
JP2016536871A true JP2016536871A (ja) 2016-11-24
JP2016536871A5 JP2016536871A5 (ja) 2017-11-30
JP6464493B2 JP6464493B2 (ja) 2019-02-06

Family

ID=51868353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016524452A Active JP6464493B2 (ja) 2013-10-25 2014-10-24 WiFi用の距離延長モード

Country Status (6)

Country Link
US (5) US9712358B2 (ja)
EP (2) EP3061219B1 (ja)
JP (1) JP6464493B2 (ja)
KR (4) KR20160077134A (ja)
CN (1) CN105830410B (ja)
WO (1) WO2015061729A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504564A (ja) * 2017-01-09 2020-02-06 マーベル ワールド トレード リミテッド 高密度無線ネットワークにおける送信モードの選択
WO2020175054A1 (ja) * 2019-02-28 2020-09-03 キヤノン株式会社 通信装置並びにその通信方法、情報処理装置並びにその制御方法、及び、プログラム

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102396186B (zh) * 2009-04-13 2014-12-10 马维尔国际贸易有限公司 用于wlan的物理层帧格式
KR102036296B1 (ko) 2011-02-04 2019-10-24 마벨 월드 트레이드 리미티드 Wlan용 제어 모드 phy
WO2015038647A2 (en) 2013-09-10 2015-03-19 Marvell World Trade Ltd. Extended guard interval for outdoor wlan
US10194006B2 (en) 2013-10-25 2019-01-29 Marvell World Trade Ltd. Physical layer frame format for WLAN
US10218822B2 (en) 2013-10-25 2019-02-26 Marvell World Trade Ltd. Physical layer frame format for WLAN
WO2015061729A1 (en) 2013-10-25 2015-04-30 Marvell World Trade Ltd. Range extension mode for wifi
US20150117428A1 (en) * 2013-10-28 2015-04-30 Electronics And Telecommunications Research Institute Multi-mode wireless transmission method and apparatus
EP3072247A4 (en) * 2013-11-19 2017-08-23 Intel IP Corporation Frame structure with reduced signal field and method for high-efficiency wi-fi (hew) communication
US9825678B2 (en) 2013-11-26 2017-11-21 Marvell World Trade Ltd. Uplink multi-user multiple input multiple output for wireless local area network
KR102432307B1 (ko) 2013-11-27 2022-08-12 마벨 아시아 피티이 엘티디. 무선 로컬 영역 네트워크에 대한 직교 주파수 분할 다중 액세스
WO2015081269A1 (en) 2013-11-27 2015-06-04 Marvell Semiconductor, Inc. Sounding and tone block allocation for orthogonal frequency division multiple access (ofdma) in wireless local area networks
US9166660B2 (en) 2013-11-27 2015-10-20 Marvell World Trade Ltd. Uplink multi-user multiple input multiple output beamforming
CN105474593B (zh) * 2013-12-27 2019-10-15 华为技术有限公司 传输信号的方法和装置
WO2015105875A1 (en) * 2014-01-07 2015-07-16 Marvell World Trade Ltd. Physical layer frame format for wlan
US20150223246A1 (en) * 2014-02-05 2015-08-06 Qualcomm Incorporated Systems and methods for improved communication efficiency in high efficiency wireless networks
US11855818B1 (en) 2014-04-30 2023-12-26 Marvell Asia Pte Ltd Adaptive orthogonal frequency division multiplexing (OFDM) numerology in a wireless communication network
JP6430535B2 (ja) 2014-05-02 2018-11-28 マーベル ワールド トレード リミテッド 方法、機器、および第1通信デバイス
US10164695B2 (en) 2014-05-09 2018-12-25 Marvell World Trade Ltd. Tone block and spatial stream allocation
US9596060B1 (en) 2014-05-09 2017-03-14 Marvell International Ltd. Tone block allocation for orthogonal frequency division multiple access data unit
KR20170013905A (ko) 2014-06-02 2017-02-07 마벨 월드 트레이드 리미티드 고효율 직교 주파수 분할 멀티플렉싱(ofdm) 물리 계층(phy)
WO2015191901A1 (en) 2014-06-11 2015-12-17 Marvell Semiconductor, Inc. Compressed ofdm symbols in a wireless communication system
EP3197114B1 (en) * 2014-08-06 2022-01-19 Huawei Technologies Co., Ltd. Method and apparatus for transmitting uplink information in multi-user multiple-input multiple-output system
US10454732B2 (en) * 2014-08-21 2019-10-22 Lg Electronics Inc. Method for transmitting preamble in wireless LAN system
US10154476B2 (en) * 2014-09-04 2018-12-11 Qualcomm Incorporated Tone plan for LTF compression
WO2016039535A1 (ko) * 2014-09-11 2016-03-17 엘지전자 주식회사 데이터 블록 전송 방법 및 전송기
US20160087825A1 (en) * 2014-09-19 2016-03-24 Qualcomm Incorporated Methods and apparatus for early detection of high efficiency wireless packets in wireless communication
JP6457634B2 (ja) * 2014-09-30 2019-01-23 華為技術有限公司Huawei Technologies Co.,Ltd. データ伝送方法および装置
US20160105535A1 (en) * 2014-10-08 2016-04-14 Intel Corporation Systems and methods for signal classification
US9877174B2 (en) 2014-10-15 2018-01-23 Intel IP Corporation Systems, methods, and devices for extending range of wireless networks
WO2016065169A1 (en) * 2014-10-24 2016-04-28 Interdigital Patent Holdings, Inc. Wlan designs for supporting an outdoor propagation channel
US9819446B2 (en) 2014-10-29 2017-11-14 FreeWave Technologies, Inc. Dynamic and flexible channel selection in a wireless communication system
US10149263B2 (en) * 2014-10-29 2018-12-04 FreeWave Technologies, Inc. Techniques for transmitting/receiving portions of received signal to identify preamble portion and to determine signal-distorting characteristics
US10033511B2 (en) 2014-10-29 2018-07-24 FreeWave Technologies, Inc. Synchronization of co-located radios in a dynamic time division duplex system for interference mitigation
US9787354B2 (en) 2014-10-29 2017-10-10 FreeWave Technologies, Inc. Pre-distortion of receive signal for interference mitigation in broadband transceivers
KR102550807B1 (ko) * 2014-12-05 2023-07-03 엘지전자 주식회사 무선 통신 시스템에서 ppdu 송수신을 위한 방법 및 이를 위한 장치
CN107079313B (zh) * 2014-12-15 2020-09-04 英特尔公司 与传统设备兼容的动态cca方案
US9847896B2 (en) 2015-01-21 2017-12-19 Intel IP Corporation Method, apparatus, and computer readable medium for signaling high efficiency packet formats using a legacy portion of the preamble in wireless local-area networks
FI3522407T3 (fi) 2015-02-13 2023-05-23 Panasonic Ip Man Co Ltd Langaton viestintälaite ja langaton viestintämenetelmä
EP3259863B1 (en) 2015-02-17 2019-07-10 Marvell World Trade Ltd. Block coding scheme for phy data unit transmission
JP2017530583A (ja) * 2015-02-23 2017-10-12 エルジー エレクトロニクス インコーポレイティド 無線通信システムの送受信装置及び方法
US10382598B1 (en) 2015-05-01 2019-08-13 Marvell International Ltd. Physical layer frame format for WLAN
US10181966B1 (en) 2015-05-01 2019-01-15 Marvell International Ltd. WiFi classification by pilot sequences
EP3675445B1 (en) 2015-05-05 2021-10-06 Huawei Technologies Co., Ltd. Method and apparatus for transmitting physical layer protocol data unit
US20160330055A1 (en) * 2015-05-07 2016-11-10 Samsung Electronics Co., Ltd. Apparatus for and method of an interleaver and a tone mapper
EP3304765B1 (en) * 2015-06-08 2021-04-28 Marvell Asia Pte, Ltd. Explicit beamforming in a high efficiency wireless local area network
US10038518B1 (en) 2015-06-11 2018-07-31 Marvell International Ltd. Signaling phy preamble formats
US10285149B2 (en) * 2015-06-15 2019-05-07 Qualcomm Incorporated Orthogonal training field sequences for phase tracking
US10122563B1 (en) * 2015-06-18 2018-11-06 Marvell International Ltd. Orthogonal frequency division multiplex data unit generation and decoding
WO2017026769A1 (ko) * 2015-08-12 2017-02-16 엘지전자 주식회사 무선랜 시스템에서 dcm 방식으로 신호를 전송하는 방법 및 이를 위한 장치
US9948546B2 (en) * 2015-08-28 2018-04-17 Apple Inc. Efficient auto detection for next generation WLAN
US10200228B2 (en) * 2015-12-17 2019-02-05 Mediatek Inc. Interleaver design for dual sub-carrier modulation in WLAN
CN112152767A (zh) * 2016-01-07 2020-12-29 华为技术有限公司 一种距离扩展模式的传输方法和装置
CN105722146B (zh) * 2016-03-25 2019-07-09 珠海市魅族科技有限公司 无线局域网的通信方法及通信装置、接入点和站点
WO2017204705A1 (en) 2016-05-25 2017-11-30 Telefonaktiebolaget Lm Ericsson (Publ) A transmitting node, a receiving node and methods therein for providing enhanced channel concatenated coding with systematic inner code and low complexity decoding
KR101883064B1 (ko) * 2016-09-21 2018-07-27 연세대학교 산학협력단 무선 통신 시스템에서 하향링크 프리앰블 생성 및 전송 방법
US10917278B2 (en) 2017-04-28 2021-02-09 Nokia Technologies Oy Frequency-domain transmitters and receivers which adapt to different subcarrier spacing configurations
EP3635926B1 (en) 2017-06-09 2024-03-27 Marvell World Trade Ltd. Packets with midambles having compressed ofdm symbols
US10715365B2 (en) 2017-09-22 2020-07-14 Nxp Usa, Inc. Determining number of midambles in a packet
TW201924294A (zh) * 2017-11-16 2019-06-16 財團法人資訊工業策進會 基於正交分頻多工的基頻處理裝置與基頻處理方法
WO2019139665A1 (en) 2018-01-12 2019-07-18 Marvel World Trade Ltd. Methods and apparatus for generation of physical layer protocol data units
EP3741090A4 (en) * 2018-01-16 2021-10-27 Sierra Wireless, Inc. METHODS AND APPARATUS FOR REFERENCE SIGNALS AND PHASE ROTATION IN COMMUNICATION WITH BIVALENT PHASE SHIFT MODULATION OF PI / 2 TO 2 SUB-CARRIERS
US20190288895A1 (en) * 2018-03-16 2019-09-19 Qualcomm Incorporated Wireless communication via a large bandwidth channel
US10499346B2 (en) 2018-04-03 2019-12-03 Cypress Semiconductor Corporation System and method extending range of a wireless network
WO2020050527A1 (ko) * 2018-09-07 2020-03-12 엘지전자 주식회사 802.11ax의 프리앰블 펑처링과 다양한 rf 능력을 고려하여 최적화된 위상 회전을 적용하는 방법 및 장치
US11374683B1 (en) 2018-12-04 2022-06-28 Marvell Asia Pte Ltd Physical layer preamble for wireless local area networks
US11665036B2 (en) 2019-04-09 2023-05-30 Marvell Asia Pte Ltd Generation and transmission of physical layer data units in a composite communication channel in a vehicular communication network
US11031961B2 (en) 2019-07-16 2021-06-08 Microsoft Technology Licensing, Llc Smart symbol changes for optimization of communications using error correction
US11044044B2 (en) * 2019-07-16 2021-06-22 Microsoft Technology Licensing, Llc Peak to average power ratio reduction of optical systems utilizing error correction
US11172455B2 (en) 2019-07-16 2021-11-09 Microsoft Technology Licensing, Llc Peak to average power output reduction of RF systems utilizing error correction
US11063696B2 (en) 2019-07-16 2021-07-13 Microsoft Technology Licensing, Llc Increasing average power levels to reduce peak-to-average power levels using error correction codes
US11075656B2 (en) 2019-07-16 2021-07-27 Microsoft Technology Licensing, Llc Bit error reduction of communication systems using error correction
US11086719B2 (en) 2019-07-16 2021-08-10 Microsoft Technology Licensing, Llc Use of error correction codes to prevent errors in neighboring storage
US10965511B2 (en) * 2019-08-26 2021-03-30 Landis+Gyr Innovations, Inc. Multi-PHY synchronized diversity receiver
JP2022546601A (ja) 2019-09-06 2022-11-04 マーベル アジア ピーティーイー、リミテッド 車両通信ネットワークにおけるパケットのためのミッドアンブルフォーマット
US11889532B2 (en) 2019-11-08 2024-01-30 Maxlinear, Inc. Multi-link range extension
US20220060941A1 (en) * 2020-08-24 2022-02-24 Jung Hoon SUH Low power indoor frame format
WO2022073245A1 (en) 2020-10-10 2022-04-14 Huawei Technologies Co., Ltd. Data transmission for low power indoor wireless network
WO2022094957A1 (zh) * 2020-11-06 2022-05-12 北京小米移动软件有限公司 信息发送方法、装置、电子设备和计算机可读存储介质
US20220345349A1 (en) * 2021-04-22 2022-10-27 Samsung Electronics Co., Ltd. Apparatus and method for extended range communication
US11606240B1 (en) 2021-09-30 2023-03-14 Silicon Laboratories Inc. Using preamble portion having irregular carrier spacing for frequency synchronization
WO2024084051A1 (en) * 2022-10-20 2024-04-25 Nordic Semiconductor Asa Packet duration estimation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260159A1 (en) * 2009-04-13 2010-10-14 Hongyuan Zhang Physical layer frame format for wlan
US20120201315A1 (en) * 2011-02-04 2012-08-09 Hongyuan Zhang Control Mode PHY for WLAN
WO2012173975A2 (en) * 2011-06-15 2012-12-20 Marvell World Trade Ltd. Low bandwidth phy for wlan
WO2013152111A1 (en) * 2012-04-03 2013-10-10 Marvell World Trade Ltd. Physical layer frame format for wlan
WO2015003119A1 (en) * 2013-07-05 2015-01-08 Qualcomm Incorporated High efficiency wlan preamble structure

Family Cites Families (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751964A (en) 1995-09-12 1998-05-12 International Business Machines Corporation System and method for automatic determination of thresholds in network management
US5878057A (en) 1995-10-06 1999-03-02 Tektronix, Inc. Highly parallel cyclic redundancy code generator
US6215762B1 (en) 1997-07-22 2001-04-10 Ericsson Inc. Communication system and method with orthogonal block encoding
US6192498B1 (en) 1997-10-01 2001-02-20 Globepan, Inc. System and method for generating error checking data in a communications system
TW374965B (en) 1998-03-17 1999-11-21 Winbond Electronics Corp Method of processing of transmission of confidential data and the network system
US6427219B1 (en) 1998-06-24 2002-07-30 Conexant Systems, Inc. Method and apparatus for detecting and correcting errors using cyclic redundancy check
US6226771B1 (en) 1998-12-14 2001-05-01 Cisco Technology, Inc. Method and apparatus for generating error detection data for encapsulated frames
US6578083B2 (en) 1999-02-05 2003-06-10 Pluris, Inc. Method for monitoring data flow at a node on a network facilitating data transfer on at least one link having at least one class of service
EP1049302B1 (en) 1999-04-23 2006-06-28 Sony Deutschland GmbH Synchronization preamble in an OFDM system
US6397368B1 (en) 1999-12-06 2002-05-28 Intellon Corporation Forward error correction with channel adaptation
US6704364B1 (en) 1999-12-29 2004-03-09 Advanced Micro Devices, Inc. Method and apparatus for generating a plurality of CRC digits for data packets having different prescribed network protocols using one CRC generator
US7254116B2 (en) 2000-04-07 2007-08-07 Broadcom Corporation Method and apparatus for transceiver noise reduction in a frame-based communications network
JP3799951B2 (ja) 2000-04-13 2006-07-19 ソニー株式会社 Ofdm送信装置及び方法
JP2002141809A (ja) 2000-10-31 2002-05-17 Ando Electric Co Ltd Crc符号演算回路、及びcrc符号演算方法
JP2002164791A (ja) 2000-11-27 2002-06-07 Ando Electric Co Ltd Crc符号演算回路、及びcrc符号演算方法
US7046746B1 (en) 2001-03-19 2006-05-16 Cisco Systems Wireless Networking (Australia) Pty Limited Adaptive Viterbi decoder for a wireless data network receiver
US7042848B2 (en) 2001-05-04 2006-05-09 Slt Logic Llc System and method for hierarchical policing of flows and subflows of a data stream
US6754195B2 (en) 2001-07-06 2004-06-22 Intersil Americas Inc. Wireless communication system configured to communicate using a mixed waveform configuration
US20030031151A1 (en) 2001-08-10 2003-02-13 Mukesh Sharma System and method for secure roaming in wireless local area networks
US7032045B2 (en) 2001-09-18 2006-04-18 Invensys Systems, Inc. Multi-protocol bus device
CA2468919C (en) 2001-12-05 2010-03-09 Lg Electronics Inc. Error detection code generating method and error detection code generator
JP3707546B2 (ja) 2002-01-29 2005-10-19 日本電気株式会社 通信システム、通信端末、サーバ、及びデータ転送制御プログラム
US7574508B1 (en) 2002-08-07 2009-08-11 Foundry Networks, Inc. Canonical name (CNAME) handling for global server load balancing
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US7336667B2 (en) 2002-11-21 2008-02-26 International Business Machines Corporation Apparatus, method and program product to generate and use CRC in communications network
US7080348B2 (en) 2003-06-27 2006-07-18 Agilent Technologies, Inc. Creating polynomial division logical devices
US8509051B2 (en) 2003-09-02 2013-08-13 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US7418042B2 (en) 2003-09-17 2008-08-26 Atheros Communications, Inc. Repetition coding for a wireless system
US7203885B2 (en) 2003-09-30 2007-04-10 Rockwell Automation Technologies, Inc. Safety protocol for industrial controller
JP4212548B2 (ja) 2003-12-26 2009-01-21 株式会社東芝 無線送信装置、無線受信装置、無線送信方法及び無線受信方法
GB2410161B (en) 2004-01-16 2008-09-03 Btg Int Ltd Method and system for calculating and verifying the integrity of data in data transmission system
US20050169261A1 (en) 2004-02-03 2005-08-04 Texas Instruments Incorporated Method of signaling the length of OFDM WLAN packets
US7586881B2 (en) 2004-02-13 2009-09-08 Broadcom Corporation MIMO wireless communication greenfield preamble formats
US7400643B2 (en) 2004-02-13 2008-07-15 Broadcom Corporation Transmission of wide bandwidth signals in a network having legacy devices
US20050237304A1 (en) 2004-03-16 2005-10-27 Krishnasamy Anandakumar Wireless transceiver system for computer input devices
US7606263B1 (en) 2004-03-30 2009-10-20 Extreme Networks, Inc. Packet parser
JP4047836B2 (ja) 2004-04-02 2008-02-13 株式会社東芝 通信装置、通信システム、通信方法、および通信制御プログラム
CN1247026C (zh) 2004-04-30 2006-03-22 清华大学 面向移动终端的多媒体广播系统及其实现方法
DK1751890T3 (en) 2004-05-27 2017-06-12 Qualcomm Inc MODIFIED INTRODUCTION STRUCTURE FOR IEEE 802.11A EXTENSIONS TO ENABLE CO-EXISTENCE AND INTEROPERABILITY BETWEEN 802.11A DEVICES AND HIGHER DATARATES, MIMO OR OTHER EXTENDED DEVICES
US7257758B1 (en) 2004-06-08 2007-08-14 Sun Microsystems, Inc. Stumping mechanism
US8619907B2 (en) 2004-06-10 2013-12-31 Agere Systems, LLC Method and apparatus for preamble training in a multiple antenna communication system
US20060023802A1 (en) 2004-07-28 2006-02-02 Texas Instruments Incorporated Concatenated coding of the multi-band orthogonal frequency division modulation system
US7607073B1 (en) 2004-08-04 2009-10-20 Marvell International Ltd. Methods, algorithms, software, circuits, receivers and systems for iteratively decoding a tailbiting convolutional code
KR100719339B1 (ko) 2004-08-13 2007-05-17 삼성전자주식회사 다중 입력 다중 출력 무선 통신 시스템에서 채널 추정을통한 프레임 송수신 방법
US8737189B2 (en) 2005-02-16 2014-05-27 Broadcom Corporation Method and system for compromise greenfield preambles for 802.11n
WO2006048061A1 (en) 2004-11-03 2006-05-11 Matsushita Electric Industrial Co., Ltd. Method and transmitter structure removing phase ambiguity by repetition rearrangement
EP1655918A3 (en) 2004-11-03 2012-11-21 Broadcom Corporation A low-rate long-range mode for OFDM wireless LAN
US20060176966A1 (en) 2005-02-07 2006-08-10 Stewart Kenneth A Variable cyclic prefix in mixed-mode wireless communication systems
JP4193810B2 (ja) 2005-05-09 2008-12-10 ソニー株式会社 無線通信方法、無線通信システム、無線基地局及び無線通信端末
US7558537B2 (en) 2005-06-07 2009-07-07 Broadcom Corporation Modified preamble for programmable transmitter
US7813374B2 (en) 2005-06-29 2010-10-12 Broadcom Corporation Multiple protocol wireless communication baseband transceiver
JP2007028602A (ja) 2005-07-15 2007-02-01 Sanyo Electric Co Ltd 無線装置
US7742390B2 (en) 2005-08-23 2010-06-22 Agere Systems Inc. Method and apparatus for improved long preamble formats in a multiple antenna communication system
US7711061B2 (en) 2005-08-24 2010-05-04 Broadcom Corporation Preamble formats supporting high-throughput MIMO WLAN and auto-detection
US8910027B2 (en) 2005-11-16 2014-12-09 Qualcomm Incorporated Golay-code generation
US8064414B2 (en) * 2005-12-13 2011-11-22 Qualcomm, Incorporated Range extension techniques for a wireless local area network
US8073065B2 (en) 2005-12-27 2011-12-06 Panasonic Corporation Radio transmitting apparatus and multicarrier signal generating method
US20070153760A1 (en) 2005-12-29 2007-07-05 Nir Shapira Method, apparatus and system of spatial division multiple access communication in a wireless local area network
US20070153830A1 (en) 2006-01-05 2007-07-05 Xhafa Ariton E Methods and apparatus to provide fairness for wireless local area networks that use extended physical layer protection mechanisms
US20070183523A1 (en) 2006-02-09 2007-08-09 Interdigital Technology Corporation Method and apparatus for improving packet error rate performance using beamforming techniques
US7904519B2 (en) 2006-02-21 2011-03-08 Alcatel-Lucent Usa Inc. Method for switching between embedded communications and external communications
US8542589B2 (en) 2006-06-05 2013-09-24 Qualcomm Incorporated Method and apparatus for providing beamforming feedback in wireless communication systems
US7860128B2 (en) 2006-06-28 2010-12-28 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed video having a preamble design
EP1895703A1 (en) 2006-07-05 2008-03-05 Koninklijke Philips Electronics N.V. Bandwidth asymmetric communication system based on OFDM and TDMA
WO2008040378A1 (en) 2006-10-06 2008-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Signal quality indicator
WO2008046163A1 (en) 2006-10-20 2008-04-24 University Of South Australia Method of reducing papr in ofdm signals
US8332732B2 (en) 2006-11-30 2012-12-11 Qualcomm Incorporated Common air interface supporting single carrier and OFDM
US7453285B2 (en) 2006-12-22 2008-11-18 Chaologix, Inc. Dynamically configurable logic gate using a non-linear element
KR100825002B1 (ko) 2007-01-10 2008-04-24 주식회사 하이닉스반도체 효과적으로 직렬로 입출력되는 데이터의 오류를 검사할 수있는 반도체 메모리 장치 및 그 구동방법
US8136124B2 (en) 2007-01-18 2012-03-13 Oracle America, Inc. Method and apparatus for synthesizing hardware counters from performance sampling
US8010865B2 (en) 2007-01-30 2011-08-30 Via Telecom, Inc. System and method for encoding and decoding in wireless communication systems
CN101282194A (zh) 2007-04-06 2008-10-08 华为技术有限公司 实现块重复传输的发送、接收方法和发射机、接收机
US7974225B2 (en) 2007-05-30 2011-07-05 Intel Corporation Providing extended range modes as part of the 802.11n standard
US8798202B2 (en) * 2007-06-15 2014-08-05 Motorola Mobility Llc Method and apparatus using sounding PPDUs to provide range extension to IEEE 802.11n signals
EP2171879B1 (en) 2007-07-18 2019-06-19 Marvell World Trade Ltd. Access point with simultaneous downlink transmission of independent data for multiple client stations
US7889707B2 (en) 2007-10-02 2011-02-15 Samsung Electronics Co., Ltd. Method and system for unequal error protection with block codes for wireless transmission
CA2702444A1 (en) 2007-10-17 2009-04-23 Zte U.S.A., Inc. Ofdm/ofdma frame structure for communication systems
US20090103485A1 (en) 2007-10-17 2009-04-23 Samsung Electronics Co., Ltd. System and method for wireless data communication having multiple checksums per frame
US8369301B2 (en) 2007-10-17 2013-02-05 Zte (Usa) Inc. OFDM/OFDMA frame structure for communication systems
US9001815B2 (en) 2007-10-31 2015-04-07 Qualcomm, Incorporated Method and apparatus for signaling transmission characteristics in a wireless communication network
US8234551B2 (en) 2007-11-02 2012-07-31 Broadcom Corporation Single CRC polynomial for both turbo code block CRC and transport block CRC
KR101387534B1 (ko) 2008-01-03 2014-04-21 엘지전자 주식회사 반복 채널 코딩을 위한 심볼 매핑 방법
US7961593B2 (en) 2008-01-28 2011-06-14 Wi-Lan, Inc. Downlink acquisition
JP5356415B2 (ja) 2008-02-01 2013-12-04 マーベル ワールド トレード リミテッド 多重入出力システムにおけるアンテナ選択のためのチャネルサウンディング及び推定方法
WO2009099308A2 (en) 2008-02-05 2009-08-13 Lg Electronics Inc. Method for transmitting control information in wireless communication system
EP2255455B1 (en) 2008-03-11 2017-07-05 Avago Technologies General IP (Singapore) Pte. Ltd. Method and system for dual mode operation in wireless networks
US8225187B1 (en) 2008-03-31 2012-07-17 Xilinx, Inc. Method and apparatus for implementing a cyclic redundancy check circuit
EP2107707B1 (en) 2008-03-31 2017-08-23 Google Technology Holdings LLC Spatial mapping of an OFDM signal to reduce attenuation from an individual transmit antenna in a mimo transmitter
JP4659850B2 (ja) 2008-04-10 2011-03-30 富士通株式会社 ネットワーク監視プログラム、ネットワーク監視方法およびネットワーク監視装置
CN103812816B (zh) 2008-05-15 2017-04-26 马维尔国际贸易有限公司 有效的物理层前导格式
US8718021B2 (en) 2008-07-07 2014-05-06 Apple Inc. Uplink control signal design for wireless system
US8982889B2 (en) 2008-07-18 2015-03-17 Marvell World Trade Ltd. Preamble designs for sub-1GHz frequency bands
US8233115B2 (en) 2008-07-25 2012-07-31 Honeywell International Inc. Flat panel display assembly with improved luminance uniformity and method for constructing the same
US8953696B2 (en) 2008-08-05 2015-02-10 Intel Corporation Signal decoding systems
US8155138B2 (en) 2008-08-19 2012-04-10 Qualcomm Incorporated Training sequences for very high throughput wireless communication
US20100046656A1 (en) 2008-08-20 2010-02-25 Qualcomm Incorporated Preamble extensions
US8867565B2 (en) 2008-08-21 2014-10-21 Qualcomm Incorporated MIMO and SDMA signaling for wireless very high throughput systems
JP5462267B2 (ja) * 2008-09-29 2014-04-02 マーベル ワールド トレード リミテッド 物理層データユニットフォーマット
JP2010093704A (ja) 2008-10-10 2010-04-22 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピューター・プログラム
JP4631956B2 (ja) 2008-10-14 2011-02-16 ソニー株式会社 無線通信装置及び無線通信方法
US8310981B2 (en) 2008-10-22 2012-11-13 Qualcomm Incorporated Common and dedicated modulation and coding scheme for a multicarrier system
TW201031151A (en) 2009-02-12 2010-08-16 Ralink Technology Corp Method for switching between a long guard interval and a short guard interval and module using the same
US8223072B2 (en) 2009-04-29 2012-07-17 Aruba Networks, Inc. Multi-pattern wireless frame transmission
KR101637357B1 (ko) 2009-04-30 2016-07-07 엘지전자 주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 장치
CN101562502B (zh) 2009-06-04 2012-06-20 清华大学 一种物理层子信道分配方法、发射系统及接收系统
US20100310002A1 (en) 2009-06-05 2010-12-09 Broadcom Corporation Adaptive and selective frame formats within multiple user, multiple access, and/or mimo wireless communications
US9379858B2 (en) 2009-06-05 2016-06-28 Broadcom Corporation Transmission coordination within multiple user, multiple access, and/or MIMO wireless communications
US9197298B2 (en) 2009-06-05 2015-11-24 Broadcom Corporation Group identification and definition within multiple user, multiple access, and/or MIMO wireless communications
US8526351B2 (en) 2009-06-05 2013-09-03 Broadcom Corporation Channel characterization and training within multiple user, multiple access, and/or MIMO wireless communications
US8543884B2 (en) 2009-06-16 2013-09-24 Qualcomm Incorporated Communications channel parallel interleaver and de-interleaver
US8111704B2 (en) 2009-06-26 2012-02-07 Intel Corporation Multiple compression techniques for packetized information
US8397126B2 (en) 2009-07-06 2013-03-12 Intel Corporation Systems and methods for channel coding of wireless communication
US8462863B1 (en) 2009-07-23 2013-06-11 Marvell International Ltd. Midamble for WLAN PHY frames
EP3588822B1 (en) 2009-07-29 2023-11-15 Marvell Asia Pte, Ltd. Methods and apparatus for wlan transmission
US8599804B2 (en) 2009-08-07 2013-12-03 Broadcom Corporation Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications
US9401784B2 (en) * 2009-10-21 2016-07-26 Qualcomm Incorporated Time and frequency acquisition and tracking for OFDMA wireless systems
WO2011050324A1 (en) 2009-10-23 2011-04-28 Marvell World Trade Ltd. Training sequence indication for wlan
US9480018B2 (en) * 2009-11-03 2016-10-25 Marvell World Trade Ltd. Phy data unit format for MIMO
US8681757B2 (en) 2009-11-09 2014-03-25 Lg Electronics Inc. Method and apparatus for transmitting PLCP frame in wireless local area network system
US9288096B2 (en) 2009-12-07 2016-03-15 Qualcomm Incorporated Enabling phase tracking for a communication device
WO2011071300A2 (en) 2009-12-10 2011-06-16 Lg Electronics Inc. Method and apparatus of transmitting training signal in wireless local area network system
US8238316B2 (en) 2009-12-22 2012-08-07 Intel Corporation 802.11 very high throughput preamble signaling field with legacy compatibility
KR101703865B1 (ko) 2010-01-27 2017-02-07 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
US7920599B1 (en) 2010-02-03 2011-04-05 Anna University Methods and systems for synchronizing wireless transmission of data packets
US20110194655A1 (en) 2010-02-10 2011-08-11 Qualcomm Incorporated Methods and apparatus to perform residual frequency offset estimation and correction in ieee 802.11 waveforms
US9204337B2 (en) 2010-03-09 2015-12-01 Broadcom Corporation Bandwidth mechanisms and successive channel reservation access within multiple user, multiple access, and/or MIMO wireless communications
US8472386B2 (en) * 2010-03-12 2013-06-25 Electronics And Telecommunications Research Institute Packet transmission/reception method and apparatus in wireless communication system
US9397785B1 (en) 2010-04-12 2016-07-19 Marvell International Ltd. Error detection in a signal field of a WLAN frame header
US9025428B2 (en) 2010-04-14 2015-05-05 Qualcomm Incorporated Allocating and receiving tones for a frame
US8627171B2 (en) 2010-05-03 2014-01-07 Samsung Electronics Co., Ltd. Techniques for cyclic redundancy check encoding in communication system
US8867574B2 (en) 2010-06-02 2014-10-21 Qualcomm Incorporated Format of VHT-SIG-B and service fields in IEEE 802.11AC
US8982686B2 (en) 2010-06-07 2015-03-17 Qualcomm Incorporated Communication devices for generating and using a matrix-mapped sequence
US8718169B2 (en) 2010-06-15 2014-05-06 Qualcomm Incorporated Using a field format on a communication device
KR101783928B1 (ko) * 2010-07-01 2017-10-10 마벨 월드 트레이드 리미티드 Wlan 프레임 헤더 내 신호 필드의 변조
CN103053123B (zh) 2010-08-10 2016-06-01 马维尔国际贸易有限公司 通信系统中的信道描述反馈
US8719684B2 (en) 2010-08-31 2014-05-06 Qualcomm Incorporated Guard interval signaling for data symbol number determination
US8553576B2 (en) 2010-09-21 2013-10-08 Intel Corporation Methods of co-existence for wideband transmissions
EP2619918B1 (en) 2010-09-24 2018-04-04 Intel Corporation Method, device and media of multi-user multi-input-multi-output wireless communication
US8897818B2 (en) * 2010-11-11 2014-11-25 Blackberry Limited System and method for reducing energy consumption of mobile devices using early paging indicator
US8532077B2 (en) 2010-12-14 2013-09-10 Intel Corporation Frame format techniques for non-resolvable long training fields in wireless networks
US8934466B2 (en) 2010-12-16 2015-01-13 Qualcomm Incorporated Method and apparatus for supporting modulation-coding scheme set in very high throughput wireless systems
US9300511B2 (en) 2011-01-05 2016-03-29 Qualcomm Incorporated Method and apparatus for improving throughput of 5 MHZ WLAN transmissions
EP2668736B1 (en) * 2011-01-28 2018-04-25 Marvell World Trade Ltd. Physical layer frame format for long range wlan
US9178745B2 (en) 2011-02-04 2015-11-03 Marvell World Trade Ltd. Control mode PHY for WLAN
KR101967413B1 (ko) * 2011-02-08 2019-04-10 마벨 월드 트레이드 리미티드 사용되지 않는 tv 주파수에서의 wlan 채널 할당
US8625690B2 (en) 2011-03-04 2014-01-07 Qualcomm Incorporated Systems and methods for wireless communication in sub gigahertz bands
US9191923B2 (en) * 2011-04-15 2015-11-17 Qualcomm Incorporated Systems and methods for range extension of wireless communication in sub gigahertz bands
US20150023449A1 (en) 2013-01-11 2015-01-22 Broadcom Corporation Distributed signal fields (SIGs) for use in wireless communications
US9923742B2 (en) 2011-04-24 2018-03-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Preamble design within wireless communications
EP2702734A4 (en) 2011-04-28 2015-03-11 Intel Corp METHODS AND ARRANGEMENTS FOR COMMUNICATIONS IN LOW-POWER WIRELESS NETWORKS
US8934413B2 (en) 2011-05-13 2015-01-13 Qualcomm Incorporated Systems and methods for wireless communication of packets having a plurality of formats
CN103609057B (zh) 2011-05-18 2016-12-21 马维尔国际贸易有限公司 具有绿地前导码的短保护间隔
US8830815B2 (en) 2011-05-19 2014-09-09 Qualcomm Incorporated Preamble design for television white space transmissions
KR102005055B1 (ko) 2011-05-26 2019-07-29 마벨 월드 트레이드 리미티드 장거리 wlan을 위한 사운딩 패킷 포맷
KR101898901B1 (ko) * 2011-06-08 2018-09-14 마벨 월드 트레이드 리미티드 저데이터율 wlan을 위한 효율적인 송신
GB2506302B (en) * 2011-06-15 2018-09-19 Lg Electronics Inc Method for transmitting and receiving data unit based on uplink multiple user multiple input multiple output transmission and apparatus for the same
EP2724488B1 (en) 2011-06-24 2023-01-25 InterDigital Patent Holdings, Inc. Method and apparatus for receiving a preamble in a wireless communication system
WO2013022468A1 (en) * 2011-08-05 2013-02-14 Intel Corporation Wireless communication device and method for multi-mcs ofdm transmissions at different transmission power levels
US8718210B2 (en) * 2011-09-20 2014-05-06 Qualcomm Incorporated Channel impulse response estimation for wireless receiver
CN103931229B (zh) 2011-11-08 2018-04-17 瑞典爱立信有限公司 用于提供tfi的方法和设备
US8954055B2 (en) * 2011-11-10 2015-02-10 Qualcomm Incorporated Initial acquisition and neighbor search algorithms for wireless networks
JP6083683B2 (ja) 2011-11-16 2017-02-22 マーベル ワールド トレード リミテッド 通信チャネルでの送信のための物理層周波数重複モードのデータユニットを生成する方法および装置
CN103947170B (zh) * 2011-11-21 2018-01-19 英特尔公司 用于低功率和低数据率操作的无线设备和方法
US9363122B2 (en) 2011-11-28 2016-06-07 Lg Electronics Inc. Method and apparatus for transmitting training field
US8923432B2 (en) * 2011-12-02 2014-12-30 Qualcomm Incorporated Systems and methods for communication over a plurality of frequencies and streams
WO2013085270A1 (ko) 2011-12-05 2013-06-13 엘지전자 주식회사 채널 파라메터 정보 전송 방법 및 장치
US9130825B2 (en) 2011-12-27 2015-09-08 Tektronix, Inc. Confidence intervals for key performance indicators in communication networks
JP6189330B2 (ja) * 2012-01-13 2017-08-30 マーベル ワールド トレード リミテッド 方法および装置
CN104094571B (zh) 2012-02-07 2018-03-30 马维尔国际贸易有限公司 用于远距离wlan的导频序列设计
US9001930B2 (en) 2012-02-21 2015-04-07 Futurewei Technologies, Inc. Dual-stream signal (SIG) field encoding with higher order modulation
US9131351B2 (en) * 2012-05-03 2015-09-08 Qualcomm Incorporated Apparatus and methods of MBMS support in new carrier type in LTE
US8700124B2 (en) 2012-09-04 2014-04-15 ARkival Technology Corp. System and method for determining size and size distribution of magnetic nanoparticles using VSM magnetization data
US9596065B2 (en) * 2012-10-24 2017-03-14 Qualcomm Incorporated Enhanced SRS transmission for MIMO operation in LTE-A
US9008167B2 (en) 2012-12-29 2015-04-14 Intel Corporation Methods and arrangements for phase tracking for multi-mode operation in wireless networks
US20140211775A1 (en) 2013-01-28 2014-07-31 Qualcomm Incorporated Larger delay spread support for wifi bands
US9414432B2 (en) * 2013-04-03 2016-08-09 Marvell World Trade Ltd. Physical layer frame format for WLAN
US10439773B2 (en) 2013-04-15 2019-10-08 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
US9197473B2 (en) 2013-06-06 2015-11-24 Broadcom Corporation Preamble with modified signal field (SIG) for use in wireless communications
KR20160039219A (ko) 2013-07-29 2016-04-08 마벨 월드 트레이드 리미티드 Phy 헤더 필드 생성 방법 및 장치
WO2015038647A2 (en) 2013-09-10 2015-03-19 Marvell World Trade Ltd. Extended guard interval for outdoor wlan
US20150080186A1 (en) 2013-09-19 2015-03-19 Global IP, Inc. Decorative and safety assembly for dressing a trampoline
WO2015061729A1 (en) 2013-10-25 2015-04-30 Marvell World Trade Ltd. Range extension mode for wifi
US10194006B2 (en) 2013-10-25 2019-01-29 Marvell World Trade Ltd. Physical layer frame format for WLAN
US10218822B2 (en) 2013-10-25 2019-02-26 Marvell World Trade Ltd. Physical layer frame format for WLAN
US9271241B2 (en) 2013-11-19 2016-02-23 Intel IP Corporation Access point and methods for distinguishing HEW physical layer packets with backwards compatibility
US10312936B2 (en) 2014-01-17 2019-06-04 Texas Instruments Incorporated Using CRC residual value to distinguish a recipient of a data packet in a communication system
US9258829B1 (en) 2014-09-30 2016-02-09 Texas Instruments Incorporated System and method for collision rate reduction in MIMO narrowband power line communications
US20160105535A1 (en) 2014-10-08 2016-04-14 Intel Corporation Systems and methods for signal classification
US10165470B2 (en) 2014-11-05 2018-12-25 Intel IP Corporation High-efficiency (HE) station and method for configuring HE packets with long and short preamble formats

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260159A1 (en) * 2009-04-13 2010-10-14 Hongyuan Zhang Physical layer frame format for wlan
US20120201315A1 (en) * 2011-02-04 2012-08-09 Hongyuan Zhang Control Mode PHY for WLAN
WO2012106635A1 (en) * 2011-02-04 2012-08-09 Marvell World Trade Ltd. Control mode phy for wlan
WO2012173975A2 (en) * 2011-06-15 2012-12-20 Marvell World Trade Ltd. Low bandwidth phy for wlan
WO2013152111A1 (en) * 2012-04-03 2013-10-10 Marvell World Trade Ltd. Physical layer frame format for wlan
WO2015003119A1 (en) * 2013-07-05 2015-01-08 Qualcomm Incorporated High efficiency wlan preamble structure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HEEJUNG YU: "Green-Field 11ac packet for TGah", IEEE 802.11-11/1489R0, JPN6018048494, 6 November 2011 (2011-11-06), ISSN: 0003935131 *
HONGYUAN ZHANG: "11ah preamble for 2MHz and beyond", IEEE 802.11-11/1483R2, JPN6018048493, 16 January 2012 (2012-01-16), ISSN: 0003935132 *
JIAYIN ZHANG: "HE-SIG A transmission for range extension", IEEE 802.11-15/0826R0, JPN6018048495, 12 July 2015 (2015-07-12), ISSN: 0003935133 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020504564A (ja) * 2017-01-09 2020-02-06 マーベル ワールド トレード リミテッド 高密度無線ネットワークにおける送信モードの選択
US11457399B2 (en) 2017-01-09 2022-09-27 Marvell Asia Pte Ltd Selection of transmission modes in dense wireless networks
JP7248301B2 (ja) 2017-01-09 2023-03-29 マーベル アジア ピーティーイー、リミテッド 高密度無線ネットワークにおける送信モードの選択
WO2020175054A1 (ja) * 2019-02-28 2020-09-03 キヤノン株式会社 通信装置並びにその通信方法、情報処理装置並びにその制御方法、及び、プログラム
JP2020141308A (ja) * 2019-02-28 2020-09-03 キヤノン株式会社 通信装置並びにその通信方法、情報処理装置並びにその制御方法、及び、プログラム

Also Published As

Publication number Publication date
KR20220047398A (ko) 2022-04-15
EP3061219A1 (en) 2016-08-31
JP6464493B2 (ja) 2019-02-06
EP3700155A1 (en) 2020-08-26
US10389562B2 (en) 2019-08-20
WO2015061729A1 (en) 2015-04-30
US20190372814A1 (en) 2019-12-05
EP3061219B1 (en) 2020-04-08
US9712358B2 (en) 2017-07-18
KR20210075220A (ko) 2021-06-22
US20170310515A1 (en) 2017-10-26
CN105830410B (zh) 2020-07-03
US9667460B2 (en) 2017-05-30
US20150117227A1 (en) 2015-04-30
US10153930B2 (en) 2018-12-11
KR20210082268A (ko) 2021-07-02
US20160087827A1 (en) 2016-03-24
KR102283468B1 (ko) 2021-07-30
KR102526618B1 (ko) 2023-04-27
KR20160077134A (ko) 2016-07-01
KR102384850B1 (ko) 2022-04-08
CN105830410A (zh) 2016-08-03
US11146434B2 (en) 2021-10-12
US20170310514A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6464493B2 (ja) WiFi用の距離延長モード
US11165892B2 (en) Physical layer frame format for WLAN
US10958492B2 (en) Compressed preamble for a wireless communication system
US10218822B2 (en) Physical layer frame format for WLAN
KR102583779B1 (ko) 옥외 wlan용 확장 보호 구간
JP6464494B2 (ja) Wlanのための物理層フレームフォーマット

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181219

R150 Certificate of patent or registration of utility model

Ref document number: 6464493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250