JP2016503959A - Solar cell slice electrode structure - Google Patents

Solar cell slice electrode structure Download PDF

Info

Publication number
JP2016503959A
JP2016503959A JP2015546816A JP2015546816A JP2016503959A JP 2016503959 A JP2016503959 A JP 2016503959A JP 2015546816 A JP2015546816 A JP 2015546816A JP 2015546816 A JP2015546816 A JP 2015546816A JP 2016503959 A JP2016503959 A JP 2016503959A
Authority
JP
Japan
Prior art keywords
solar cell
electrode
cell slice
main gate
gate lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015546816A
Other languages
Japanese (ja)
Inventor
ジャック・ヴァーリンデン・ピエール
健 盛
健 盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Trina Solar Energy Co Ltd
Original Assignee
Changzhou Trina Solar Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Trina Solar Energy Co Ltd filed Critical Changzhou Trina Solar Energy Co Ltd
Publication of JP2016503959A publication Critical patent/JP2016503959A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池スライスの背面に分布される背面電極(4)と、太陽電池スライスの正面に分布される正面ゲート電極とを備え、前記正面ゲート電極は、互いに平行する主ゲート線(1)と、主ゲート線(1)に垂直する複数本の副ゲート線(3)とを備える太陽電池スライスの電極構造であって、主ゲート線(1)は4本あり、その中の2本は両側に配置され、他の2本は中間に配置され、しかも、中間の2本の主ゲート線(1)間の間隔(2)の幅は0.2mm〜2mmである太陽電池スライスの電極構造を提供する。複数の独立発電ユニットを有する太陽電池スライスの電極構造であって、各部の独立ユニットは並列して併用されてもよいし、独立発電ユニットとして用いられてもよい。A back electrode (4) distributed on the back surface of the solar cell slice; and a front gate electrode distributed on the front surface of the solar cell slice, the front gate electrode including a main gate line (1) parallel to each other, A solar cell slice electrode structure comprising a plurality of sub-gate lines (3) perpendicular to the gate line (1), wherein there are four main gate lines (1), two of which are arranged on both sides The other two are arranged in the middle, and the width of the interval (2) between the two main gate lines (1) in the middle is 0.2 mm to 2 mm. . It is an electrode structure of a solar cell slice having a plurality of independent power generation units, and the independent units of each part may be used in parallel or may be used as an independent power generation unit.

Description

本発明は、光電子技術分野に関し、特に太陽電池スライスの電極構造に関する。   The present invention relates to the field of optoelectronic technology, and more particularly to an electrode structure of a solar cell slice.

全世界のエネルギーが緊張するのに従い、太陽エネルギーは汚染もないし市場空間も大きいというメリットがあるため、広く注目されている。太陽光発電は、安全性もよいし、ノイズもないし、故障率も低いなどのメリットがある。太陽電池は太陽光発電技術において、太陽エネルギーを直接に電気エネルギーに変換するための主要部分である。   As energy all over the world becomes tense, solar energy has gained widespread attention because it has the advantage of not being polluted or having a large market space. Photovoltaic power generation has advantages such as safety, no noise, and low failure rate. Solar cells are the main part of solar power technology for converting solar energy directly into electrical energy.

通常の結晶シリコン太陽電池は、背面電極と、半導体材料からなるP型層、N型層と、PN接合と、反射低減フィルムと、正面ゲート電極などの部分で構成されている。太陽光が太陽電池の表面に照射する際に、反射低減フィルムやベルベット構造により、電池表面の光の反射損失を低減させることができる。太陽電池における半導体構造は、太陽エネルギーを吸収したあと、電子・正孔の対を励起し生成する。当該電子・正孔の対は半導体内部のPN接合による電界により離間され、電子はN領域に流入し、正孔はP領域に流入して、光生成電界を形成する。結晶シリコン太陽電池の正、負極と外部回路とを接続すると、外部回路には光生成電流が流れる。   A normal crystalline silicon solar cell is composed of a back electrode, a P-type layer made of a semiconductor material, an N-type layer, a PN junction, a reflection reducing film, a front gate electrode, and the like. When sunlight irradiates the surface of the solar cell, the reflection loss of light on the cell surface can be reduced by the reflection reducing film or the velvet structure. A semiconductor structure in a solar cell generates a pair of electrons and holes after absorbing solar energy. The electron-hole pairs are separated by an electric field generated by a PN junction inside the semiconductor, electrons flow into the N region, and holes flow into the P region to form a photogenerating electric field. When the positive and negative electrodes of the crystalline silicon solar cell are connected to an external circuit, a photogenerated current flows through the external circuit.

現在、結晶シリコン太陽電池はP型ウエハーを用いることが多い。リン拡散された後にPN接合を形成し、P型ウエハー上に背面電極および背面電界を作成し、拡散し形成されたN面上に正面ゲート電極を作成して、デバイス全体はPN接合の光起電力効果を利用して動作する。125mm×125mmの単結晶シリコンまたは多結晶シリコン電池の正面ゲート電極は、一般的に、2本の主ゲート線を採用するが、156mm×156mmの単結晶シリコンまたは多結晶シリコン電池の正面ゲート電極は、主ゲート線の数を3本に増加してもよい。そして、さらに、均一的且つ平行的に分布された一定数の副ゲート線を、主ゲート線の両辺に垂直的に設ける。光の照射で結晶シリコン太陽電池により生じる電流は、副ゲート線および主ゲート線を介して互いに導通され、主ゲート線は電池の負電極を構成して、電流は主ゲート線上に集まって、出力されている。しかし、このような電池の電流収集方式では、まだ下記の不具合がある。即ち、一括した発電しかできなく、一種類の給電方式しかない。よって、給電要求が不足する場合には、無駄をもたらすことがある。   Currently, a crystalline silicon solar cell often uses a P-type wafer. After the phosphorus diffusion, a PN junction is formed, a back electrode and a back surface electric field are formed on a P-type wafer, and a front gate electrode is formed on the diffused N surface. Operates using the power effect. The front gate electrode of a 125 mm × 125 mm single crystal silicon or polycrystalline silicon battery generally employs two main gate lines, but the front gate electrode of a 156 mm × 156 mm single crystal silicon or polycrystalline silicon battery is The number of main gate lines may be increased to three. Further, a certain number of sub-gate lines distributed uniformly and in parallel are provided perpendicular to both sides of the main gate line. The current generated by the crystalline silicon solar cell by light irradiation is conducted to each other through the sub-gate line and the main gate line, the main gate line constitutes the negative electrode of the battery, and the current gathers on the main gate line to output Has been. However, such a current collecting method for a battery still has the following problems. In other words, only batch power generation is possible, and there is only one type of power supply method. Therefore, when there is a shortage of power supply requests, waste may be caused.

本発明は従来技術の不具合を克服するためになされたものであり、複数の独立発電ユニットを有する太陽電池スライスの電極構造を提供することを目的とする。各部の独立ユニットは並列して併用されてもよいし、独立発電ユニットとして用いられてもよい。   The present invention has been made to overcome the disadvantages of the prior art, and an object thereof is to provide a solar cell slice electrode structure having a plurality of independent power generation units. The independent units in each part may be used in parallel or may be used as an independent power generation unit.

本発明の目的を実現するための技術手段は、太陽電池スライスの背面に分布される背面電極と、太陽電池スライスの正面に分布される正面ゲート電極とを備え、前記正面ゲート電極は、互いに平行する主ゲート線と、複数本の主ゲート線に垂直する副ゲート線とを備え、主ゲート線は4本あり、その中の2本は両側に配置され、他の2本は中間に配置され、しかも、中間の2本の主ゲート線間の間隔の幅は0.2mm〜2mmである、太陽電池スライスの電極構造である。   The technical means for realizing the object of the present invention includes a back electrode distributed on the back surface of the solar cell slice and a front gate electrode distributed on the front surface of the solar cell slice, and the front gate electrodes are parallel to each other. Main gate lines and sub-gate lines perpendicular to the plurality of main gate lines. There are four main gate lines, two of which are arranged on both sides and the other two are arranged in the middle. And it is the electrode structure of the solar cell slice whose width | variety of the space | interval between two middle main gate lines is 0.2 mm-2 mm.

また、前記背面電極は4本の平行線から構成され、その中の2本は両側に配置され、他の2本は中間に配置され、しかも、中間の2本の背面電極間の間隔の幅は0.2mm〜2mmである。   The back electrode is composed of four parallel lines, two of which are arranged on both sides, the other two are arranged in the middle, and the width of the space between the two back electrodes in the middle Is 0.2 mm to 2 mm.

さらに、前記主ゲート線の幅は0.5mm〜2mmである。   Further, the width of the main gate line is 0.5 mm to 2 mm.

上記技術手段を採用すると、主ゲート線は4本であり、その中の2本は両側に配置され、他の2本は中間に配置され、しかも、中間の2本の主ゲート線の間の間隔の幅は0.2mm〜2mmであるため、このように、2本の主ゲート線を1個のメインユニットとして、電池を左右二部に分けて、電池の正面の左右二部の電極を互いに関連させないことにより、電流の収集を独立に行うことができる。モジュールプロセスで左右二部を同時に並列に使用して、給電要求が不足である時の無駄を回避してもよい。   When the above technical means is adopted, there are four main gate lines, two of which are arranged on both sides, the other two are arranged in the middle, and between the two main gate lines in the middle. Since the interval width is 0.2 mm to 2 mm, the two main gate lines are used as one main unit, the battery is divided into two parts on the left and right sides, and the left and right electrodes on the front of the battery are separated from each other. By not relating to each other, current collection can be performed independently. In the module process, the left and right parts may be used in parallel at the same time to avoid waste when power supply requirements are insufficient.

以下、実施例とその添付図面を用いて、本発明の特徴、性能を更に説明する。
本発明の正面構成概略図である。 本発明の背面構成概略図である。
Hereinafter, the features and performance of the present invention will be further described with reference to the embodiments and the accompanying drawings.
1 is a schematic front view of the present invention. It is a back surface schematic diagram of the present invention.

本発明の内容の理解を容易にするために、以下、具体的な実施例に基づいて、添付図面を結合して、本発明を更に詳細に説明する。   In order to facilitate understanding of the content of the present invention, the present invention will be described in more detail below based on specific embodiments and in conjunction with the accompanying drawings.

図1に示すように、太陽電池スライスの電極構造は、太陽電池スライスの背面に分布される背面電極4と、太陽電池スライスの正面に分布される正面ゲート電極とを備え、正面ゲート電極は、互いに平行する主ゲート線1と、主ゲート線1に垂直する複数本の副ゲート線3とを備え、主ゲート線1は4本があり、その中の2本は両側に配置され、他の2本は中間に配置され、しかも、中間の2本の主ゲート線1の間の間隔2の幅は0.2mm〜2mmである。主ゲート線1の幅は0.5mm〜2mmである。   As shown in FIG. 1, the electrode structure of the solar cell slice includes a back electrode 4 distributed on the back surface of the solar cell slice and a front gate electrode distributed on the front surface of the solar cell slice. A main gate line 1 parallel to each other and a plurality of sub-gate lines 3 perpendicular to the main gate line 1 are provided. There are four main gate lines 1, two of which are arranged on both sides, The two are arranged in the middle, and the width of the interval 2 between the two main gate lines 1 in the middle is 0.2 mm to 2 mm. The width of the main gate line 1 is 0.5 mm to 2 mm.

図2に示すように、前記背面電極4は4本の平行線からなり、その中の2本は両側に配置され、他の2本は中間に配置され、しかも中間の2本の背面電極4の間の間隔5の幅は0.2mm〜2mmである。   As shown in FIG. 2, the back electrode 4 is composed of four parallel lines, two of which are arranged on both sides, the other two are arranged in the middle, and two intermediate back electrodes 4 are arranged. The width of the interval 5 between is 0.2 mm to 2 mm.

太陽電池スライス6の電極は、スクリーン印刷、蒸着、スパッタリング、電気めっき、スプレーなどのいずれかの電極製作方法により製作されている。本実施例においては、スクリーン印刷の方式で背面電界7、背面電極4および正面ゲート電極を製作している。先ず、規格が156mm×156mmである、検査合格のP型単結晶シリコンシートを選んで、化学洗浄や表面テクスチャリングを通して単結晶シリコンシート上に金字塔形の構造を形成することにより、光の吸収を増加させ、電池の短絡電流と変換効率を向上させる。次いで、高温拡散またはイオン注入などのプロセスによって、P型単結晶シリコンシート上にN型の結晶シリコン層を作成し、PN接合の構成を形成する。そして、エッジの拡散層をプラズマエッチングによって除去し、拡散されたPSG(Phospho Silicate Glass)層を化学腐食によって除去し、窒化硅素の増透膜を堆積させる。前記窒化硅素の増透膜はシリコンシート表面の光放射率を減少するとともに、水素イオン結合によってシリコンシート表面と内部のパッシベーション効果を向上させ、キャリア再結合を低減することができる。最後に、スクリーン印刷によって背面電極4と正面ゲート電極を製作する。   The electrode of the solar cell slice 6 is manufactured by any electrode manufacturing method such as screen printing, vapor deposition, sputtering, electroplating, and spraying. In this embodiment, the back surface electric field 7, the back electrode 4, and the front gate electrode are manufactured by a screen printing method. First, select a P-type single crystal silicon sheet that has passed the inspection with a standard of 156 mm × 156 mm, and form a monumental structure on the single crystal silicon sheet through chemical cleaning and surface texturing to absorb light. Increase the battery short circuit current and conversion efficiency. Next, an N-type crystalline silicon layer is formed on the P-type single crystal silicon sheet by a process such as high-temperature diffusion or ion implantation to form a PN junction configuration. Then, the edge diffusion layer is removed by plasma etching, the diffused PSG (Phospho Silicate Glass) layer is removed by chemical corrosion, and a silicon nitride permeable film is deposited. The silicon nitride permeable film reduces the light emissivity on the surface of the silicon sheet, improves the passivation effect between the silicon sheet surface and the inside by hydrogen ion bonding, and reduces carrier recombination. Finally, the back electrode 4 and the front gate electrode are manufactured by screen printing.

本実施例において、先ず、スクリーン印刷によって背面電極4を印刷する。背面電極4は銀アルミペーストにより焼結されている。次いで、前記太陽電池スライス6の背面に太陽電池の背面電界7を印刷する。本実施例では、背面電極は4本がある。   In this embodiment, first, the back electrode 4 is printed by screen printing. The back electrode 4 is sintered with silver aluminum paste. Next, a back surface electric field 7 of the solar cell is printed on the back surface of the solar cell slice 6. In this embodiment, there are four back electrodes.

上記具体的な実施例は、本発明の目的、技術手段および有益効果をより詳細に説明した。よって、上記記載は本発明の具体的な実施例に過ぎなく、本発明を限定するものではない。
本発明の精神や範囲から逸脱することなく、色々な修正や、変更、改善などは全て本発明の保護範囲内に含むと理解すべきである。
The above specific embodiments have described the objects, technical means and beneficial effects of the present invention in more detail. Therefore, the above description is only a specific example of the present invention and does not limit the present invention.
It should be understood that various modifications, changes, improvements and the like are all included within the protection scope of the present invention without departing from the spirit or scope of the present invention.

1 主ゲート線
2 主ゲート線の間の間隔
3 副ゲート線
4 背面電極
5 背面電極間の間隔
6 電池スライス
7 背面電界。
DESCRIPTION OF SYMBOLS 1 Main gate line 2 Space | interval between main gate lines 3 Sub gate line 4 Back electrode 5 Space | interval between back electrodes 6 Battery slice 7 Back surface electric field.

Claims (3)

太陽電池スライスの背面に分布される背面電極(4)と、太陽電池スライスの正面に分布される正面ゲート電極とを備え、前記正面ゲート電極は、互いに平行する主ゲート線(1)と、主ゲート線(1)に垂直する複数本の副ゲート線(3)とを備える太陽電池スライスの電極構造であって、
主ゲート線(1)は4本あり、その中の2本は両側に配置され、他の2本は中間に配置され、しかも、中間の2本の主ゲート線(1)間の間隔(2)の幅は0.2mm〜2mmであることを特徴とする太陽電池スライスの電極構造。
A back electrode (4) distributed on the back surface of the solar cell slice; and a front gate electrode distributed on the front surface of the solar cell slice, the front gate electrode including a main gate line (1) parallel to each other, An electrode structure of a solar cell slice comprising a plurality of sub-gate lines (3) perpendicular to the gate line (1),
There are four main gate lines (1), two of which are arranged on both sides, the other two are arranged in the middle, and the distance between the two main gate lines (1) in the middle (2 ) Has a width of 0.2 mm to 2 mm.
前記背面電極(4)は4本の平行線から構成され、その中の2本は両側に配置され、他の2本は中間に配置され、しかも、中間の2本の背面電極(4)間の間隔(5)の幅は0.2mm〜2mmであることを特徴とする請求項1に記載の太陽電池スライスの電極構造。   The back electrode (4) is composed of four parallel lines, two of which are arranged on both sides, the other two are arranged in the middle, and between the two back electrodes (4) in the middle The electrode structure of the solar cell slice according to claim 1, wherein the width of the interval (5) is 0.2 mm to 2 mm. 前記主ゲート線(1)の幅は0.5mm〜2mmであることを特徴とする請求項2に記載の太陽電池スライスの電極構造。   The electrode structure of the solar cell slice according to claim 2, wherein the width of the main gate line (1) is 0.5 mm to 2 mm.
JP2015546816A 2012-12-10 2013-09-25 Solar cell slice electrode structure Pending JP2016503959A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210525026.9A CN102969368B (en) 2012-12-10 2012-12-10 Electrode structure of solar cell piece
CN201210525026.9 2012-12-10
PCT/CN2013/084165 WO2014090009A1 (en) 2012-12-10 2013-09-25 Electrode structure of solar cell plate

Publications (1)

Publication Number Publication Date
JP2016503959A true JP2016503959A (en) 2016-02-08

Family

ID=47799386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015546816A Pending JP2016503959A (en) 2012-12-10 2013-09-25 Solar cell slice electrode structure

Country Status (3)

Country Link
JP (1) JP2016503959A (en)
CN (1) CN102969368B (en)
WO (1) WO2014090009A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088294B2 (en) 2016-06-30 2021-08-10 Byd Company Limited Photovoltaic cell assembly, photovoltaic cell array, and solar cell assembly

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969368B (en) * 2012-12-10 2015-06-10 常州天合光能有限公司 Electrode structure of solar cell piece
CN103606570B (en) * 2013-11-21 2017-01-04 英利集团有限公司 Solaode
CN103606575B (en) * 2013-11-21 2016-03-23 英利集团有限公司 Solar cell
CN110137289B (en) * 2018-02-08 2024-05-10 国家电投集团新能源科技有限公司 Metal gate line electrode of silicon heterojunction solar cell and silicon heterojunction solar cell
CN109585590A (en) * 2019-01-21 2019-04-05 南通苏民新能源科技有限公司 A kind of solar battery sheet, component and production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299666A (en) * 2001-03-29 2002-10-11 Kanegafuchi Chem Ind Co Ltd See-through-type thin-film solar cell module
JP2008135655A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Solar battery module, manufacturing method therefor, and solar battery cell
JP2010027778A (en) * 2008-07-17 2010-02-04 Shin-Etsu Chemical Co Ltd Solar cell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298019A (en) * 1998-04-07 1999-10-29 Sharp Corp Solar battery and manufacture of the solar battery
JP3805299B2 (en) * 2002-11-26 2006-08-02 京セラ株式会社 Solar cell element and manufacturing method thereof
CN202275839U (en) * 2011-09-06 2012-06-13 扬州天华光电科技有限公司 Solar cell
CN102615954A (en) * 2012-04-16 2012-08-01 中利腾晖光伏科技有限公司 Solar battery positive electrode screen
CN102664199B (en) * 2012-05-16 2015-04-08 中利腾晖光伏科技有限公司 Solar cell applicable to solar simulator tester, and manufacturing method thereof
CN102969368B (en) * 2012-12-10 2015-06-10 常州天合光能有限公司 Electrode structure of solar cell piece
CN202957262U (en) * 2012-12-10 2013-05-29 常州天合光能有限公司 Electrode structure of solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299666A (en) * 2001-03-29 2002-10-11 Kanegafuchi Chem Ind Co Ltd See-through-type thin-film solar cell module
JP2008135655A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Solar battery module, manufacturing method therefor, and solar battery cell
JP2010027778A (en) * 2008-07-17 2010-02-04 Shin-Etsu Chemical Co Ltd Solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088294B2 (en) 2016-06-30 2021-08-10 Byd Company Limited Photovoltaic cell assembly, photovoltaic cell array, and solar cell assembly

Also Published As

Publication number Publication date
CN102969368A (en) 2013-03-13
WO2014090009A1 (en) 2014-06-19
CN102969368B (en) 2015-06-10

Similar Documents

Publication Publication Date Title
AU2015101917A4 (en) High-efficiency N-type bifacial solar cell
JP2015537389A (en) Vertical electrode structure of solar cell slice
JP7023975B2 (en) P-type PERC double-sided solar cell and its module, system and manufacturing method
JP6741867B2 (en) P-type PERC double-sided light receiving solar cell, its module, system and manufacturing method
JP7023976B2 (en) Manufacturing method of P-type PERC double-sided solar cell
JP2016503959A (en) Solar cell slice electrode structure
JP7023974B2 (en) P-type PERC double-sided solar cell and its module, system and manufacturing method
CN106876497B (en) Preparation method of P-type PERC double-sided solar cell
US20150129022A1 (en) Back contact solar cell
KR20110123312A (en) Metal wrap through type solar cell
CN102157574A (en) Front-face gate electrode of solar cell
KR20120064495A (en) Solar cell and manufacturing method of the same
CN105552145B (en) A kind of crystal silicon solar batteries
CN103943693B (en) Manufacturing method of back contact-type solar cell structure based on P-type silicon substrate
US8445311B2 (en) Method of fabricating a differential doped solar cell
CN202049959U (en) Right side gate electrode of solar cell
CN106449847A (en) Solar battery with vertical PN heterojunction and manufacturing method thereof
WO2020158023A1 (en) Solar battery cell, method for manufacturing same, and solar battery module
CN202957263U (en) Upper and lower electrode structure of solar cell
CN202957262U (en) Electrode structure of solar cell
JP2020509606A (en) P-type PERC double-sided solar cell effective for absorbing sunlight and method of manufacturing the same
CN105280733A (en) N type crystal silicon solar cell and preparation method thereof
KR20120056652A (en) Bifacial photovoltaic solar cell and manufacturing method of the same
TW201434162A (en) Concentrated photovoltaic solar cell with high performance current collecting structure and concentrated photovoltaic solar cell module applying with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170710

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180910