JP2016225374A - LED light emitting device - Google Patents

LED light emitting device Download PDF

Info

Publication number
JP2016225374A
JP2016225374A JP2015107886A JP2015107886A JP2016225374A JP 2016225374 A JP2016225374 A JP 2016225374A JP 2015107886 A JP2015107886 A JP 2015107886A JP 2015107886 A JP2015107886 A JP 2015107886A JP 2016225374 A JP2016225374 A JP 2016225374A
Authority
JP
Japan
Prior art keywords
phosphor
resin layer
emitting device
led
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015107886A
Other languages
Japanese (ja)
Inventor
村上 昭二
Shoji Murakami
昭二 村上
正人 島
Masato Shima
正人 島
秀樹 正岡
Hideki Masaoka
秀樹 正岡
朋樹 安野
Tomoki Yasuno
朋樹 安野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Instrumentation Co Ltd
Original Assignee
Shikoku Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Instrumentation Co Ltd filed Critical Shikoku Instrumentation Co Ltd
Priority to JP2015107886A priority Critical patent/JP2016225374A/en
Publication of JP2016225374A publication Critical patent/JP2016225374A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an LED light emitting device with a high light quantity and high brightness, having a small temperature difference caused between an upper surface side and a lower surface side of a phosphor-containing light transmitting resin section and hardly causing interfacial peeling and wire disconnection due to the difference of thermal expansions or the like.SOLUTION: An LED light emitting device 1 includes: a substrate 2; a dam 4 formed on the substrate 2; a plurality of LED bare chips 3 arranged in the dam 4 and COG-mounted on the same plane; a light transmitting resin section 5 filled in the dam 4; and a wiring layer. The light transmitting resin section 5 includes: a first resin layer 51 in contact with the upper face of the substrate 2 and containing a phosphor; and a second resin layer 52 formed on the first resin layer 51 and containing no phosphor. The first resin layer 51 comprises a resin layer including a phosphor substantially uniformly dispersed in a resin.SELECTED DRAWING: Figure 1

Description

本発明は、COB(Chip On Board)構造のLED発光装置に関し、全光束が、例えば3〜15万ルーメン(lm)の大光量かつ高輝度のLED発光装置に関する。   The present invention relates to an LED light-emitting device having a COB (Chip On Board) structure, and relates to an LED light-emitting device having a high luminous intensity and a high luminance with a total luminous flux of, for example, 3 to 150,000 lumens (lm).

近年、発光部をLED(Light Emitting Diode:発光ダイオード)に代替した照明器具が多数提案されている。LEDの実装方法としては、COB実装と、パッケージ実装とが知られている。COB実装は、例えば、表面にリード電極のパターンが金属膜で形成された平板形状の基板に、半導体素子を搭載してリード電極に電気的に接続し、樹脂で封止することにより行われる。   In recent years, many lighting fixtures have been proposed in which the light emitting part is replaced with an LED (Light Emitting Diode). As an LED mounting method, COB mounting and package mounting are known. The COB mounting is performed, for example, by mounting a semiconductor element on a flat plate-like substrate having a lead electrode pattern formed of a metal film on the surface, electrically connecting to the lead electrode, and sealing with a resin.

COB構造のLED発光装置は、実装基板に搭載したLED素子と実装基板上の配線とをワイヤボンディングあるいはフリップチップ実装で電気的に接続し、LED素子実装領域を透光性樹脂で封止して製造される。樹脂封止の前に、基板上の実装領域の周囲に環状の枠体を設けて、この枠体の内側に透光性樹脂を充填して封止した製造手法も知られている(例えば特許文献1)。   The LED light emitting device having the COB structure is configured such that the LED element mounted on the mounting substrate and the wiring on the mounting substrate are electrically connected by wire bonding or flip chip mounting, and the LED element mounting region is sealed with a translucent resin. Manufactured. There is also known a manufacturing method in which an annular frame is provided around a mounting region on a substrate before resin sealing, and a transparent resin is filled inside the frame and sealed (for example, patents) Reference 1).

一般にLEDパッケージは、LED素子やボンディングワイヤを保護するために蛍光体が混入された封止樹脂が設けられている構造である。この封止樹脂としては、例えば無溶媒で室温でも液状で流動し、100〜150℃程度の温度で数時間の加熱で硬化する透明な液状熱硬化型のシリコーン樹脂が知られている。この封止樹脂には蛍光体が混入されており、例えば、青色LEDで白色を実現する場合は、黄色、黄色と赤色の二色、または緑と赤色の二色の蛍光体を用いて励起する。透光性樹脂中の蛍光体濃度が演色性に影響することが知られている。そして、混入された蛍光体の比重は、透光性のモールド部材に比べ大きいため、時間の経過と共にモールド部材の下方に沈降してしまうため、当初設計した演色性が得られないという問題が知られている。そこで、特許文献2では、本体がシリコーン樹脂からなるモールド部材に、蛍光物質の沈降を防止させるシリコーン微粒子として、モールド部材本体の比重に対して0.5〜1.1倍の比重を有すると共に、モールド部材本体の弾性率より弾性率が低く、かつモールド部材本体との屈折率差が±50%以内である、平均粒径が0.1〜100μmのシリコーンゴム球状微粒子にポリオルガノシルセスキオキサン樹脂を被覆してなるコア−シェル型のシリコーン微粒子を分散させたLED発光装置が提案されている。   In general, an LED package has a structure in which a sealing resin mixed with a phosphor is provided to protect an LED element and a bonding wire. As this sealing resin, for example, a transparent liquid thermosetting silicone resin is known which flows in a liquid state at room temperature without solvent and is cured by heating for several hours at a temperature of about 100 to 150 ° C. The sealing resin contains a phosphor. For example, when white is realized with a blue LED, excitation is performed using phosphors of yellow, yellow and red, or green and red. . It is known that the phosphor concentration in the translucent resin affects the color rendering properties. In addition, since the specific gravity of the mixed phosphor is larger than that of the translucent mold member, it sinks below the mold member with the passage of time, so that the originally designed color rendering property cannot be obtained. It has been. Therefore, in Patent Document 2, as the silicone fine particles for preventing sedimentation of the fluorescent substance on the mold member made of a silicone resin, the main body has a specific gravity of 0.5 to 1.1 times the specific gravity of the mold member main body, Polyorganosilsesquioxane is added to silicone rubber spherical fine particles having an average particle size of 0.1 to 100 μm, whose elastic modulus is lower than the elastic modulus of the mold member main body and whose refractive index difference with the mold member main body is within ± 50%. There has been proposed an LED light emitting device in which core-shell type silicone fine particles coated with a resin are dispersed.

ところで、昨今、LED発光装置の大光量化の要請がある。しかし、多数のLEDチップを基板にCOB実装するに際し、ガラスエポキシ樹脂のような熱伝導性が低い材料からなる基板を用いると、放熱性の悪くなる発光中心部の光量が特に低下するドーナツ化現象が生じるという課題がある。そこで、出願人等は、特許文献3において、少なくとも表面が金属である基板の表面に平均粒径が数nm〜数百nmであるSiO粒子及び白色無機顔料を含む液材を塗布し、焼成することにより、白色絶縁層と金属層の積層構造を形成することにより、ドーナツ化現象を解決することができる半導体装置を提案した。 By the way, recently, there is a demand for increasing the amount of light of the LED light emitting device. However, when COB mounting a large number of LED chips on a substrate, if a substrate made of a material with low thermal conductivity such as glass epoxy resin is used, the amount of light at the light emission center portion that deteriorates in heat dissipation particularly decreases. There is a problem that occurs. Therefore, the applicants in Patent Document 3 apply a liquid material containing SiO 2 particles having an average particle diameter of several nanometers to several hundred nanometers and a white inorganic pigment at least on the surface of a substrate whose surface is a metal, and firing. Thus, a semiconductor device that can solve the doughening phenomenon by forming a laminated structure of a white insulating layer and a metal layer has been proposed.

特開2009−164157号公報JP 2009-164157 A 特許第4591690号公報Japanese Patent No. 4591690 特許第5456209号公報Japanese Patent No. 5456209

LED発光装置においては、温度と寿命との間に相関関係があるため、効率よい放熱構造を採用することが重要である。ここで、発熱源としてはLED素子が一次的には重要となるが、透光性樹脂中の蛍光体も光と共に熱を発するため、蛍光体からの発熱を効率よく放熱することも重要である。
発明者は、熱を基板から逃がす構造のLED発光装置においては、蛍光体を含有する透光性樹脂部の上面側と底面側とで温度差が大きくなり、基板との熱膨張の違い等により界面剥離やワイヤ断線が生じるという課題があることを発見した。かかる温度差は、LED発光装置の寿命にも影響し、特に同一平面に多数個(例えば、100個以上)のLEDベアチップをCOB実装する際には著しいものになると推察される。
In an LED light emitting device, since there is a correlation between temperature and life, it is important to adopt an efficient heat dissipation structure. Here, the LED element is primarily important as a heat source. However, since the phosphor in the translucent resin also emits heat together with light, it is also important to efficiently dissipate the heat generated from the phosphor. .
In the LED light emitting device having a structure for releasing heat from the substrate, the inventor has a large temperature difference between the upper surface side and the bottom surface side of the translucent resin portion containing the phosphor, due to a difference in thermal expansion from the substrate, etc. It was discovered that there is a problem that interface peeling and wire breakage occur. Such a temperature difference also affects the lifetime of the LED light emitting device, and is presumed to be particularly significant when COB mounting a large number (for example, 100 or more) of LED bare chips on the same plane.

そこで、本発明は、上記課題が解消された多数個のLEDを備えるLED発光装置を提供することを目的とする。   Then, an object of this invention is to provide an LED light-emitting device provided with many LED in which the said subject was eliminated.

上記課題を解決するために、透光性樹脂の上面側の蛍光体濃度を低くする濃度勾配を設けることが考えられる。しかしながら、蛍光体を含んだ樹脂の充填後、オーブンで硬化させるまでの時間や雰囲気環境等の条件を緻密に制御しないと蛍光体の沈降量が変わり、色調や光量のバラツキが生じるという課題があった。また、水平度のバラツキによっても蛍光体の沈降量が変わるため水平微調整が可能な高価な加熱装置が必要であるという課題があった。そのため、蛍光体の分布に濃度勾配を設ける手法には、製造コストが高止まりするという課題があり、特にLED素子を多数個COB実装した発光装置において顕著であった。一般的に放熱性は集積度に対して指数関数的に悪化することが知られているが、遠くにある対象物を所定の照度で照らすために必要な高輝度の面光源を実現するためには、集積度を一定以下とすることはできない。   In order to solve the above problem, it is conceivable to provide a concentration gradient that lowers the phosphor concentration on the upper surface side of the translucent resin. However, there is a problem that after the resin containing the phosphor is filled, unless the conditions such as the time until curing in the oven and the atmosphere environment are precisely controlled, the amount of sedimentation of the phosphor changes, resulting in variations in color tone and light quantity. It was. Moreover, since the amount of sedimentation of the phosphor changes depending on the variation in the level, there is a problem that an expensive heating device capable of fine horizontal adjustment is required. For this reason, the method of providing a concentration gradient in the phosphor distribution has a problem that the manufacturing cost remains high, and is particularly remarkable in a light emitting device in which a large number of LED elements are COB-mounted. In general, heat dissipation is known to deteriorate exponentially with respect to the degree of integration, but in order to realize a high-luminance surface light source that is necessary for illuminating a distant object with a predetermined illuminance. However, the degree of integration cannot be kept below a certain level.

発明者は、蛍光体を含有する第一の樹脂層を基板上面と接して設け、第一の樹脂層の上に蛍光体を含有しない第二の樹脂層を設けることにより、基板との熱膨張等の違いによる界面剥離の課題を解決することを可能とした。すなわち、本発明は、以下の発明から構成される。   The inventor provides the first resin layer containing the phosphor in contact with the upper surface of the substrate, and the second resin layer not containing the phosphor is provided on the first resin layer, thereby thermally expanding the substrate. It was possible to solve the problem of interfacial delamination due to differences in the above. That is, this invention is comprised from the following invention.

第1の発明は、基板と、基板上に形成されたダムと、ダム内に配置され、同一平面にCOB実装された多数個のLEDベアチップと、ダム内に充填された透光性樹脂部と、配線層とを備えるLED発光装置であって、前記透光性樹脂部が、基板上面と接し、蛍光体を含有する樹脂層と、第一の樹脂層の上に形成され、蛍光体を含有しない第二の樹脂層とを備え、前記第一の樹脂層が、当該樹脂内で蛍光体が実質的に均一に分散されている樹脂層からなることを特徴とするLED発光装置。
第2の発明は、第1の発明において、前記LEDベアチップが、100個以上のLEDベアチップからなることを特徴とする。
第3の発明は、第2の発明において、前記LEDベアチップの実装面積密度が15mm/cm以上であることを特徴とする。
第4の発明は、第2または3の発明において、前記第一の樹脂層の厚みが100〜550μmであることを特徴とする。
第5の発明は、第2ないし4のいずれかの発明において、前記第一の樹脂層が、前記ダム内への充填後、10分以内に硬化工程を開始して形成されることを特徴とする。
第6の発明は、第2ないし4のいずれかの発明において、前記第一の樹脂層が、蛍光体と比重が実質的に同等の分散剤を含有し、硬化時に蛍光体の沈降を防止する樹脂からなることを特徴とする。
According to a first aspect of the present invention, there is provided a substrate, a dam formed on the substrate, a plurality of LED bare chips disposed in the dam and COB-mounted on the same plane, and a translucent resin portion filled in the dam. An LED light emitting device comprising a wiring layer, wherein the translucent resin portion is in contact with the upper surface of the substrate and is formed on the resin layer containing the phosphor and the first resin layer, and contains the phosphor An LED light-emitting device, wherein the first resin layer is made of a resin layer in which the phosphor is substantially uniformly dispersed in the resin.
According to a second invention, in the first invention, the LED bare chip is composed of 100 or more LED bare chips.
According to a third invention, in the second invention, the mounting area density of the LED bare chip is 15 mm 2 / cm 2 or more.
According to a fourth invention, in the second or third invention, the thickness of the first resin layer is 100 to 550 μm.
A fifth invention is characterized in that, in any one of the second to fourth inventions, the first resin layer is formed by starting a curing process within 10 minutes after filling into the dam. To do.
According to a sixth invention, in any one of the second to fourth inventions, the first resin layer contains a dispersant having substantially the same specific gravity as the phosphor, and prevents sedimentation of the phosphor during curing. It consists of resin.

第7の発明は、第1ないし6のいずれかの発明において、前記第一の樹脂層が、前記第二の樹脂層よりも肉薄であることを特徴とする。
第8の発明は、第1ないし7のいずれかの発明において、前記LEDベアチップの少なくとも一部が、前記配線層とワイヤでボンディングされており、前記第一の樹脂層が、前記ワイヤが前記第一の樹脂層に僅かに埋もれる厚みに構成されることを特徴とする。
第9の発明は、第1ないし8のいずれかの発明において、前記透光性樹脂部がメチル系シリコーンであることを特徴とする。
第10の発明は、第1ないし9のいずれかの発明において、前記LEDベアチップが、窒化ガリウム系のLEDベアチップであり、前記蛍光体が、黄色蛍光体と赤色蛍光体の組み合わせまたは緑色蛍光体と赤色蛍光体の組み合わせを含んで構成されたものであることを特徴とする。
第11の発明は、第10の発明において、前記黄色蛍光体が、YAG系蛍光体またはLSN系蛍光体であり、前記緑色蛍光体が、LuAG系蛍光体、スカンジウム酸化物蛍光体またはサイアロン系蛍光体であり、前記赤色蛍光体が、SCASN系蛍光体またはCASN系蛍光体であることを特徴とする。
According to a seventh invention, in any one of the first to sixth inventions, the first resin layer is thinner than the second resin layer.
According to an eighth invention, in any one of the first to seventh inventions, at least a part of the LED bare chip is bonded to the wiring layer with a wire, and the first resin layer is connected to the wire. It is configured to have a thickness slightly buried in one resin layer.
A ninth invention is characterized in that, in any one of the first to eighth inventions, the translucent resin portion is methyl silicone.
In a tenth aspect of the present invention based on any one of the first to ninth aspects, the LED bare chip is a gallium nitride based LED bare chip, and the phosphor is a combination of a yellow phosphor and a red phosphor or a green phosphor. It is characterized by comprising a combination of red phosphors.
In an eleventh aspect based on the tenth aspect, the yellow phosphor is a YAG phosphor or an LSN phosphor, and the green phosphor is a LuAG phosphor, a scandium oxide phosphor, or a sialon phosphor. And the red phosphor is a SCASN phosphor or a CASN phosphor.

本発明によれば、蛍光体を含有する透光性樹脂部の上面側と底面側とで生じる温度差を従来よりも小さくすることが可能となるので、熱膨張の違い等による界面剥離やワイヤ断線の課題を解決した大光量かつ高輝度のLED発光装置を提供することができる。   According to the present invention, the temperature difference generated between the upper surface side and the bottom surface side of the translucent resin portion containing the phosphor can be made smaller than that of the conventional one. It is possible to provide an LED light emitting device having a large light amount and high brightness that solves the problem of disconnection.

第一実施形態例に係るLED発光装置の側面断面図である。It is side surface sectional drawing of the LED light-emitting device which concerns on the example of 1st embodiment. サンプルA〜Gの評価方法を説明する側面断面図である。It is side surface sectional drawing explaining the evaluation method of samples AG. サンプルH〜Lの第一の樹脂層の厚さに対する(a)透光性樹脂部の表面温度、(b)色温度、(c)発光効率の評価結果である。It is the evaluation result of (a) surface temperature of the translucent resin part with respect to the thickness of the 1st resin layer of samples HL, (b) color temperature, and (c) luminous efficiency. 第一の樹脂層の樹脂充填後、硬化工程を開始するまでの時間を変更したサンプルM〜Pの写真(200倍)である。It is the photograph (200 times) of sample MP which changed the time until the hardening process is started after resin filling of the 1st resin layer. 第三実施形態例に係るLED発光装置の平面図である。It is a top view of the LED light-emitting device concerning the example of a 3rd embodiment.

本発明のLED照明モジュールは、多数個(例えば100〜2000個)の数Wクラス(例えば、0.5〜4W)のLEDベアチップ(LEDダイス)をCOB実装し、数百W以上(例えば、200〜1000W)の光源を構成するものである。このLED照明モジュールは、後述するように、ヒートスプレッダを介して実装基板の裏面からヒートシンクに放熱する構造を設け、リフクレタ(および/またはレンズ)を取り付けてLED照明装置を構成する。以下、例示に基づき本発明を説明する。   The LED illumination module of the present invention is COB-mounted with a large number (for example, 100 to 2000) of several W class (for example, 0.5 to 4 W) LED bare chips (LED dice), and several hundred W or more (for example, 200). ˜1000 W). As will be described later, this LED illumination module is provided with a structure for dissipating heat from the back surface of the mounting substrate to the heat sink via a heat spreader, and a lift reflector (and / or lens) is attached to constitute the LED illumination device. Hereinafter, the present invention will be described based on examples.

[第一実施形態例]
図1は、第一実施形態例に係るLED発光装置1の側面断面図である。このLED発光装置1は、実装基板2と、多数個のLEDベアチップ3と、ダム材4と、透光性樹脂部5とを備えている。
実装基板2は、ドーナツ化現象が生じない熱伝導性に優れる材料であり、例えば、銅板またはアルミ板により構成される。実装基板2は少なくとも表面が金属材料からなるものであれば足り、例えば表面が銅からなる水冷構造のヒートスプレッダ(上板、中板、下板の3種類の銅板からなる積層構造体)を用いてもよい。実装基板2のLED実装領域の表面には、反射層(図示せず)が形成されており、LEDベアチップ3からの発光を図示の上方向に反射する。この反射層は、例えば、銀めっき層、或いは、白色無機粉末(白色無機顔料)と二酸化珪素(SiO)を主要な成分とし、有機リン酸を含むジエチレングリコールモノブチルエーテルの溶剤でこれらを混ぜたインクを塗布、焼成して形成される無機系白色絶縁層である。
[First embodiment]
FIG. 1 is a side sectional view of an LED light emitting device 1 according to the first embodiment. The LED light emitting device 1 includes a mounting substrate 2, a large number of LED bare chips 3, a dam material 4, and a translucent resin portion 5.
The mounting substrate 2 is a material having excellent thermal conductivity that does not cause a doughening phenomenon, and is made of, for example, a copper plate or an aluminum plate. It is sufficient that the mounting substrate 2 has at least a surface made of a metal material. For example, a water-spread heat spreader having a surface made of copper (a laminated structure made of three types of copper plates, an upper plate, an intermediate plate, and a lower plate) is used. Also good. A reflective layer (not shown) is formed on the surface of the LED mounting area of the mounting substrate 2, and the light emitted from the LED bare chip 3 is reflected upward in the drawing. This reflective layer is, for example, a silver plating layer, or an ink containing white inorganic powder (white inorganic pigment) and silicon dioxide (SiO 2 ) as main components and mixed with a solvent of diethylene glycol monobutyl ether containing organic phosphoric acid. It is an inorganic white insulating layer formed by applying and baking.

LEDベアチップ3は、例えば窒化ガリウム系半導体を用いたLED素子であり、ピーク発光波長は450〜462.5nmである。LEDベアチップ3は実装基板2にCOB実装されており、図示の上方向(実装基板2と反対方向)に光を発する。LEDベアチップ3の底面は高熱伝導性接着材、半田接続等により実装基板2の上面に固着されている。実装基板2の上面に熱伝導性が基板本体よりも悪い反射層が形成されている場合には、基板本体が露出する凹状の載置部または基板本体と実質的に同等以上の熱伝導率を有する凸状の載置部を設け、この載置部とLEDベアチップ3の底面とを当接させるようにしてもよい。隣り合うLEDベアチップ3はワイヤ7でワイヤボンディング接続されており、端部に位置するLEDベアチップ3は実装基板2上の配線層ともワイヤボンディングされている。   The LED bare chip 3 is an LED element using, for example, a gallium nitride semiconductor, and has a peak emission wavelength of 450 to 462.5 nm. The LED bare chip 3 is COB-mounted on the mounting substrate 2 and emits light upward in the figure (the direction opposite to the mounting substrate 2). The bottom surface of the LED bare chip 3 is fixed to the top surface of the mounting substrate 2 by a high thermal conductive adhesive, solder connection or the like. When a reflective layer having a thermal conductivity worse than that of the substrate body is formed on the upper surface of the mounting substrate 2, the thermal conductivity substantially equal to or higher than that of the concave mounting portion where the substrate body is exposed or the substrate body is obtained. It is also possible to provide a convex mounting portion having the mounting portion and the bottom surface of the LED bare chip 3. Adjacent LED bare chips 3 are connected by wire bonding with wires 7, and the LED bare chips 3 located at the ends are also wire bonded to the wiring layer on the mounting substrate 2.

実装基板2のLED実装領域には、同一仕様のLEDベアチップ3が多数個配置される。10〜数十個のLEDベアチップ3を直列接続してなるLEDモジュールを数個〜数十個設け、各LEDモジュールを並列に接続する。各LEDモジュールで直列に接続されたLEDベアチップ3の配置間隔は実質的に等間隔であり、金ワイヤでワイヤボンディング接続されている。
LEDベアチップ3は実装基板2のLED実装領域内に高密度実装される。実装面積密度(チップ搭載面積占有率)は17.7mm/cm以上である。
実装基板2のLED実装領域は、少なくとも表面に光反射性が付与されたダム材4により囲まれている。ダム材4は、製造時において封止樹脂の流動を防ぐもので、樹脂や金属材料などで構成する。ダム材4の内側には、透光性樹脂を充填および硬化してなる透光性樹脂部5が設けられている。
A large number of LED bare chips 3 having the same specifications are arranged in the LED mounting area of the mounting substrate 2. Several to several tens of LED modules formed by serially connecting 10 to several tens of LED bare chips 3 are provided, and the LED modules are connected in parallel. The arrangement intervals of the LED bare chips 3 connected in series in each LED module are substantially equal, and are connected by wire bonding with gold wires.
The LED bare chip 3 is mounted in a high density within the LED mounting region of the mounting substrate 2. The mounting area density (chip mounting area occupation ratio) is 17.7 mm 2 / cm 2 or more.
The LED mounting area of the mounting substrate 2 is surrounded by a dam material 4 having light reflectivity at least on the surface. The dam material 4 prevents the sealing resin from flowing at the time of manufacture, and is made of a resin or a metal material. Inside the dam material 4, a translucent resin portion 5 is provided which is filled and cured with a translucent resin.

透光性樹脂部5は、蛍光体を含有する第一の樹脂層51と、蛍光体を含有しない第二の樹脂層52とから構成される。第一の樹脂層51と第二の樹脂層52とは、いずれも上面および底面がフラットに構成されている。第一の樹脂層51および第二の樹脂層52のベース材料は、例えば、エポキシ系樹脂、シリコーン系樹脂、アクリル系樹脂である。シリコーン樹脂の詳細な種類として、例えば、ベースポリマーの側鎖がメチル基のみからなるメチル系シリコーンや、側鎖の一部にフェニル基を有するフェニル系シリコーン等が挙げられる。さらに、熱伝導性を付与するため、例えば、SiO等の無機系のフィラーを樹脂中に混ぜたものも挙げられる。第一の樹脂層51には、所望の発光色を得るための蛍光体が含有されており、例えば、LEDチップが紫外LEDであり蛍光体が青・緑・赤の混合体である場合、LEDチップが青色LEDであり蛍光体が緑・赤の混合体である場合、LEDチップが青色LEDであり蛍光体が黄のみの場合、または、黄・赤の混合体である場合が開示される。 The translucent resin portion 5 includes a first resin layer 51 containing a phosphor and a second resin layer 52 not containing the phosphor. As for the 1st resin layer 51 and the 2nd resin layer 52, all have the upper surface and the bottom face comprised flat. The base material of the first resin layer 51 and the second resin layer 52 is, for example, an epoxy resin, a silicone resin, or an acrylic resin. As a detailed type of the silicone resin, for example, a methyl silicone in which the side chain of the base polymer is composed only of a methyl group, a phenyl silicone having a phenyl group in a part of the side chain, and the like can be given. Further, for imparting thermally conductive, for example, it may be mentioned those obtained by mixing inorganic filler such as SiO 2 in the resin. The first resin layer 51 contains a phosphor for obtaining a desired emission color. For example, when the LED chip is an ultraviolet LED and the phosphor is a mixture of blue, green, and red, the LED The case where the chip is a blue LED and the phosphor is a green / red mixture, the case where the LED chip is a blue LED and the phosphor is yellow only, or the case where it is a yellow / red mixture is disclosed.

本発明の蛍光体には、窒化物系、酸窒化物系、酸化物系、硫化物系の蛍光体が含まれる。具体的には、イットリウム、アルミニウムの複合酸化物からなるガーネット構造の結晶に他の元素を混合した黄色蛍光体であるYAG系蛍光体(化学式YAl12:Ce)、化学式LuAl12:Ceで表される緑色蛍光体であるLuAG系蛍光体、化学式(Sr,Ca)AlSiN:Euで表される赤色蛍光体であるSCASN系蛍光体、化学式CaAlSiN:Euで表される赤色蛍光体であるCASN系蛍光体、化学式LaSi11:Ceで表される黄色蛍光体であるLSN系蛍光体、化学式CaSc:Ceで表わされる緑色蛍光体であるスカンジウム酸化物蛍光体、化学式SiAlON:Euで表される緑色蛍光体であるサイアロン系蛍光体も含まれる。別の観点からは、例えば、LEDチップが窒化ガリウム系化合物半導体であり、Y、Lu、Sc、La、Gd及びSmからなる群から選択された少なくとも1つの元素と、Al、Ga及びInからなる群から選択された少なくとも1つの元素とを含み、セリウムで付括されたガーネット系蛍光体を含有する第一の樹脂層と、第一の樹脂層の上に形成され、蛍光体を含有しない第二の樹脂層とを備えるLED発光装置も本発明には含まれる。ここで、窒化ガリウム系化合物半導体(一般式IniGajAlkN、ただし、0≦i,0≦j,0≦k,i+j+k=1)としては、InGaNや各種不純物がドープされたGaNを始め、種々のものが含まれる。 The phosphor of the present invention includes nitride-based, oxynitride-based, oxide-based, and sulfide-based phosphors. Specifically, a YAG phosphor (chemical formula Y 3 Al 5 O 12 : Ce), which is a yellow phosphor in which other elements are mixed with a garnet structure crystal composed of a complex oxide of yttrium and aluminum, a chemical formula Lu 3 Al 5 O 12 : a green phosphor represented by Ce, a LuAG phosphor, a chemical formula (Sr, Ca) AlSiN 3 : a red phosphor represented by Eu, a SCASN phosphor represented by a chemical formula, and a chemical formula CaAlSiN 3 : Eu A CASN phosphor that is a red phosphor, an LSN phosphor that is a yellow phosphor represented by the chemical formula La 3 Si 6 N 11 : Ce, and a green phosphor that is represented by the chemical formula CaSc 2 O 4 : Ce. Also included are scandium oxide phosphors and sialon phosphors that are green phosphors represented by the chemical formula SiAlON: Eu. From another viewpoint, for example, the LED chip is a gallium nitride-based compound semiconductor, and includes at least one element selected from the group consisting of Y, Lu, Sc, La, Gd, and Sm, and Al, Ga, and In. A first resin layer containing at least one element selected from the group and containing a garnet phosphor linked with cerium; and a first resin layer formed on the first resin layer and containing no phosphor. An LED light-emitting device including two resin layers is also included in the present invention. Here, as the gallium nitride compound semiconductor (general formula In i Ga j Al k N, where 0 ≦ i, 0 ≦ j, 0 ≦ k, i + j + k = 1), InGaN or GaN doped with various impurities is used. First, various things are included.

好ましい態様の第一の樹脂層51は、蛍光体の沈降を防止する樹脂(例えば、蛍光体と比重が実質的に同等の分散剤を含有する樹脂)からなり、当該樹脂内で蛍光体が実質的に均一に分散された状態が長時間(例えば、4時間以上)にわたり維持される。このような樹脂からなる第一の樹脂層51では、樹脂充填後の放置時間や加熱硬化時間等の微細な制御を行うことなくチップ上の蛍光体量を安定化することができ、また、樹脂硬化の際に多少の傾きがあっても樹脂の粘性により蛍光体の分布に問題のある偏りは生じない。   The first resin layer 51 of a preferred embodiment is made of a resin that prevents sedimentation of the phosphor (for example, a resin containing a dispersant having a specific gravity substantially equal to that of the phosphor), and the phosphor is substantially contained within the resin. A uniformly dispersed state is maintained for a long time (for example, 4 hours or more). In the first resin layer 51 made of such a resin, the amount of phosphor on the chip can be stabilized without fine control of the standing time after resin filling and the heat curing time, etc. Even if there is a slight inclination during the curing, there is no problem in the phosphor distribution due to the viscosity of the resin.

第一の樹脂層51の厚みは、放熱性を向上させるためにできるだけ薄く構成することが好ましい。他方で、第一の樹脂層51の厚みが薄すぎると蛍光体量が少なくなり、所望の色調や光量を得られなくなる。第一の樹脂層51の厚みの目安として、例えば、第一の樹脂層51を前記ワイヤが第一の樹脂層に僅かに埋もれる厚みであって、第一の樹脂層51の上面がワイヤの高さと実質的に同じ高さとなる厚みに構成することが開示される。放熱性と波長の安定的な変換のバランスをとる蛍光体量の観点から、好ましくは第一の樹脂層51の厚みを550μm以下とすること、より好ましくは100μm〜520μm、さらに好ましくは100〜350μmまたは130〜350μmとすることが開示される。   The thickness of the first resin layer 51 is preferably as thin as possible in order to improve heat dissipation. On the other hand, if the thickness of the first resin layer 51 is too thin, the amount of the phosphor is reduced, and a desired color tone and light amount cannot be obtained. As an indication of the thickness of the first resin layer 51, for example, the first resin layer 51 is thick enough that the wire is buried in the first resin layer, and the upper surface of the first resin layer 51 has a high wire height. And a thickness that is substantially the same height. From the viewpoint of the amount of phosphor that balances heat dissipation and stable wavelength conversion, the thickness of the first resin layer 51 is preferably 550 μm or less, more preferably 100 μm to 520 μm, and even more preferably 100 to 350 μm. Or it is disclosed that it is set to 130-350 micrometers.

第二の樹脂層52は、第二の樹脂層52の上面がダム4の上面と実質的に同じ高さになるように(すなわち、フラットに)形成される(図1参照)。好ましい態様の第二の樹脂層52は、第一の樹脂層51のベース材料と同じベース材料により構成する。第一の樹脂層51および第二の樹脂層52の屈曲率の違いによる界面反射や熱膨張率の違いによる界面剥離の問題が生じ難いからである。蛍光体を含有しない第二の樹脂層52では蛍光体からの発熱は生じないため、実装基板2への放熱作用は弱いが、気中への放熱により表面温度は相対的に低く保たれる。第二の樹脂層52の厚みは、例えば第一の樹脂層51の厚みの0.5〜10倍であり、好ましくは1.1〜3倍である。   The second resin layer 52 is formed such that the upper surface of the second resin layer 52 is substantially the same height as the upper surface of the dam 4 (that is, flat) (see FIG. 1). The second resin layer 52 in a preferred embodiment is made of the same base material as the base material of the first resin layer 51. This is because the problem of interfacial delamination due to the difference in interfacial reflection and thermal expansion coefficient between the first resin layer 51 and the second resin layer 52 hardly occurs. In the second resin layer 52 that does not contain the phosphor, heat is not generated from the phosphor, so that the heat radiation action to the mounting substrate 2 is weak, but the surface temperature is kept relatively low by the heat radiation to the air. The thickness of the second resin layer 52 is, for example, 0.5 to 10 times the thickness of the first resin layer 51, and preferably 1.1 to 3 times.

異なる構造の透過性樹脂層を有するLED発光装置A〜Gにおける表面温度と基板温度の測定結果を実験した。サンプルA〜Eは比較例であり、サンプルF〜Gは本発明の実施例である。実験結果を表1に示す。
[表1]
The measurement results of the surface temperature and the substrate temperature in the LED light emitting devices A to G having the transmissive resin layers having different structures were tested. Samples A to E are comparative examples, and samples F to G are examples of the present invention. The experimental results are shown in Table 1.
[Table 1]

サンプルAは単層700μm厚の透光性樹脂部5を有し、LEDベアチップ側の濃度が濃く、表面側の濃度が薄くなるように濃度勾配を設けている。
サンプルBは単層700μm厚の透光性樹脂部5を有し、蛍光体が実質的に均等に分散するように分散剤を導入している。
サンプルCは単層400μm厚の透光性樹脂部5を有し、蛍光体が実質的に均等に分散するように分散剤を導入している。
サンプルDは単層300μm厚の透光性樹脂部5を有し、蛍光体が実質的に均等に分散するように分散剤を導入している。
Sample A has a transparent resin portion 5 having a single layer thickness of 700 μm, and a concentration gradient is provided so that the concentration on the LED bare chip side is high and the concentration on the surface side is low.
Sample B has translucent resin portion 5 having a single layer thickness of 700 μm, and a dispersant is introduced so that the phosphor is dispersed substantially uniformly.
Sample C has translucent resin portion 5 having a single layer thickness of 400 μm, and a dispersing agent is introduced so that the phosphor is dispersed substantially uniformly.
Sample D has translucent resin portion 5 having a single layer thickness of 300 μm, and a dispersing agent is introduced so that the phosphor is dispersed substantially uniformly.

サンプルEは450μm厚の第一の樹脂層51と250μm厚の第二の樹脂層52とを有し、第一の樹脂層51は蛍光体を含有しない透明の樹脂層により構成し、蛍光体を含有する第二の樹脂層52においてサンプルAと同様の濃度勾配を設けている。
サンプルFは200μm厚の第一の樹脂層51と500μm厚の第二の樹脂層52とを有し、蛍光体を含有する第一の樹脂層51はサンプルBと同様の分散剤を導入し、第二の樹脂層52は蛍光体を含有しない透明の樹脂層により構成している。
サンプルGは300μm厚の第一の樹脂層51と400μm厚の第二の樹脂層52とを有し、蛍光体を含有する第一の樹脂層51はサンプルBと同様の分散剤を導入し、第二の樹脂層52は蛍光体を含有しない透明の樹脂層により構成している。
Sample E has a first resin layer 51 having a thickness of 450 μm and a second resin layer 52 having a thickness of 250 μm, and the first resin layer 51 is constituted by a transparent resin layer not containing a phosphor. The same concentration gradient as that of the sample A is provided in the second resin layer 52 to be contained.
Sample F has a first resin layer 51 having a thickness of 200 μm and a second resin layer 52 having a thickness of 500 μm, and the first resin layer 51 containing a phosphor is introduced with the same dispersant as in Sample B, The second resin layer 52 is composed of a transparent resin layer that does not contain a phosphor.
Sample G has a first resin layer 51 having a thickness of 300 μm and a second resin layer 52 having a thickness of 400 μm, and the first resin layer 51 containing a phosphor is introduced with the same dispersant as in Sample B, The second resin layer 52 is composed of a transparent resin layer that does not contain a phosphor.

サンプルA〜Gにおいては、透光性樹脂部5(第一および第二の樹脂層)のベース材料にはいずれもシリコーン樹脂を用い、蛍光体はいずれも黄と赤の二色を用いた。
実装基板2のLED実装領域(70mm×70mm)には、1666個の同一仕様のLEDベアチップ3が配置され、総発光出力は600Wである。1666個のLEDベアチップ3は、17直列×98並列の配線パターンで金ワイヤによりワイヤボンディング接続されている。LEDベアチップ3の最大定格電流は240mAであり、順電流が120mAの場合の順電圧は3V、発光出力は360mWである。LEDベアチップ3は、実質的に等間隔に配置され、縦方向のピッチは4.04mm、横方向のピッチは0.69mm、実装密度は0.339個/mmである。チップサイズは1.02mm×0.51mm=0.52mmであるため、実装面積密度は17.7mm/cmである。
In Samples A to G, the base material of the translucent resin part 5 (first and second resin layers) is a silicone resin, and the phosphors are yellow and red.
In the LED mounting area (70 mm × 70 mm) of the mounting substrate 2, 1666 LED bare chips 3 having the same specification are arranged, and the total light emission output is 600 W. The 1666 LED bare chips 3 are wire-bonded and connected with gold wires in a 17 series × 98 parallel wiring pattern. The maximum rated current of the LED bare chip 3 is 240 mA. When the forward current is 120 mA, the forward voltage is 3 V and the light emission output is 360 mW. The LED bare chips 3 are arranged at substantially equal intervals, the vertical pitch is 4.04 mm, the horizontal pitch is 0.69 mm, and the mounting density is 0.339 / mm 2 . Since the chip size is 1.02 mm × 0.51 mm = 0.52 mm 2 , the mounting area density is 17.7 mm 2 / cm 2 .

実装基板2は銅製の薄型ヒートパイプからなり、図2に示すように、裏面にはヒートシンク8が固着されている。自然空冷型のヒートシンク8には中央部分に開口が設けられており、当該開口にはK型熱電対11が設けられており、実装基板2の温度を測定することが可能となっている。透光性樹脂部5の表面側には、サーモカメラ12が設置されており、透光性樹脂部5の表面温度を測定することが可能となっている。
なお、図2では、透光性樹脂部5がサンプルGの態様で図示されているが、他のサンプルにおいても同じ条件で評価を行っている。
The mounting board 2 is made of a thin copper heat pipe, and as shown in FIG. 2, a heat sink 8 is fixed to the back surface. The natural air-cooled heat sink 8 is provided with an opening in the center, and a K-type thermocouple 11 is provided in the opening, so that the temperature of the mounting substrate 2 can be measured. A thermo camera 12 is installed on the surface side of the translucent resin portion 5, and the surface temperature of the translucent resin portion 5 can be measured.
In addition, in FIG. 2, although the translucent resin part 5 is illustrated by the aspect of the sample G, evaluation is performed on the same conditions also in another sample.

サンプルA〜Gの評価結果について説明する。
透光性樹脂部5の表面温度と実装基板2の温度との差(以下、「温度差D」という。)は、サンプルAでは36.7度、サンプルBでは58度、サンプルCでは43.7度、サンプルDでは34.4度となった。
サンプルA〜Dの評価結果から、蛍光体の分布に濃度勾配を設けた方が温度差Dが小さくなることが確認できた。また、温度差Dは、透光性樹脂部5の厚みが厚くなるほど顕著になることが確認できた。
The evaluation results of samples A to G will be described.
The difference between the surface temperature of the translucent resin portion 5 and the temperature of the mounting substrate 2 (hereinafter referred to as “temperature difference D”) is 36.7 degrees for sample A, 58 degrees for sample B, and 43 degrees for sample C. It was 74.4 degrees and 34.4 degrees for sample D.
From the evaluation results of Samples A to D, it was confirmed that the temperature difference D was smaller when a concentration gradient was provided in the phosphor distribution. Moreover, it has confirmed that the temperature difference D became so remarkable that the thickness of the translucent resin part 5 became thick.

温度差Dは、サンプルEでは69.3度、サンプルFでは25.2度、サンプルGでは31度となった。透光性樹脂部5を二層構造とし、LEDベアチップ3側の層にのみ蛍光体を含有させることにより、温度差Dを小さくできることが確認できた。また、蛍光体を含有する第一の樹脂層51の厚みが蛍光体を含有しない第二の樹脂層52よりも薄くなるほど温度差は小さくなることが確認できた。   The temperature difference D was 69.3 degrees for sample E, 25.2 degrees for sample F, and 31 degrees for sample G. It was confirmed that the temperature difference D can be reduced by making the translucent resin portion 5 have a two-layer structure and containing the phosphor only in the layer on the LED bare chip 3 side. Moreover, it has confirmed that a temperature difference became so small that the thickness of the 1st resin layer 51 containing fluorescent substance became thinner than the 2nd resin layer 52 which does not contain fluorescent substance.

以上の実験結果より、透光性樹脂部5を蛍光体を含有する第一の樹脂層51と、蛍光体を含有しない第二の樹脂層52とから構成することにより、単層の透光性樹脂5に蛍光体を沈降させて濃度勾配を設けた場合と同様の温度差Dを実現できることが確認できた。   From the above experimental results, the translucent resin portion 5 is composed of the first resin layer 51 containing the phosphor and the second resin layer 52 not containing the phosphor, thereby providing a single layer of translucency. It was confirmed that the same temperature difference D as when the concentration gradient was provided by precipitating the phosphor on the resin 5 could be realized.

[第二実施形態例]
図1に開示される基本構成を有するLED発光装置を用い、第一の樹脂層51の厚みと蛍光体濃度の異なるサンプルH〜Lを作製し、表面温度、色温度、発光効率を測定する実験を行った。ただし、第二実施形態例では、第二の樹脂層52を設けることなく、第一の樹脂層51の表面温度を測定した。これは蛍光体を含有しない第二の樹脂層52の表面温度の方が、第一の樹脂層51の表面温度よりも低くなるという経験則を踏まえ、よりシビアな条件を検証するためである。サンプルH、Lは比較例であり、サンプルI、J、Kは本発明の実施例である。実験条件を表2に示す。
[表2]
[Second Embodiment]
An experiment in which samples H to L having different thicknesses and phosphor concentrations of the first resin layer 51 are prepared and the surface temperature, color temperature, and luminous efficiency are measured using the LED light emitting device having the basic configuration disclosed in FIG. Went. However, in the second embodiment, the surface temperature of the first resin layer 51 was measured without providing the second resin layer 52. This is for verifying more severe conditions based on an empirical rule that the surface temperature of the second resin layer 52 not containing the phosphor is lower than the surface temperature of the first resin layer 51. Samples H and L are comparative examples, and samples I, J, and K are examples of the present invention. Table 2 shows the experimental conditions.
[Table 2]

第一の樹脂層51の蛍光体濃度は、第一の樹脂層51が含有する蛍光体濃度は、LEDチップ上の蛍光体量によって波長変換能力に差が出ないようにするため、第一の樹脂層51の厚さに応じて蛍光体量が一定になるよう調整した。すなわち、第一の樹脂層51の蛍光体濃度は、第一の樹脂層51の厚さと比例関係になるようにした。また、第一の樹脂層51は、樹脂充填後速やかに(例えば10分以内、好ましくは8分以内、より好ましくは6分以内に)硬化工程を開始することにより、蛍光体が実質的に均等に分散するようにした。図4は、第一の樹脂層51の樹脂充填後、硬化工程を開始するまでの時間を変更したサンプルM〜Pの写真(200倍)であり、「HP」はホットプレートを意味し、「OV]はオーブンを意味する。図4から、5分以内に硬化工程を開始すれば、分散剤を用いなくとも確実に蛍光体を均等に分散できることが確認された。   The phosphor concentration of the first resin layer 51 is the same as that of the phosphor concentration contained in the first resin layer 51 so that the wavelength conversion ability does not vary depending on the amount of phosphor on the LED chip. The phosphor amount was adjusted to be constant according to the thickness of the resin layer 51. That is, the phosphor concentration of the first resin layer 51 is proportional to the thickness of the first resin layer 51. In addition, the first resin layer 51 has the phosphor substantially equalized by starting the curing step immediately after filling the resin (for example, within 10 minutes, preferably within 8 minutes, more preferably within 6 minutes). To be dispersed. FIG. 4 is a photograph (200 times) of samples M to P in which the time until the curing process is started after the resin filling of the first resin layer 51 is changed, “HP” means a hot plate, OV] means an oven, and it was confirmed from Fig. 4 that if the curing process was started within 5 minutes, the phosphor could be dispersed evenly without using a dispersant.

サンプルHは、第一の樹脂層51の厚さは50μm、蛍光体濃度は142%とした。
サンプルIは、第一の樹脂層51の厚さは150μm、蛍光体濃度は47.3%とした
サンプルJは、第一の樹脂層51の厚さは335μm、蛍光体濃度は21.2%とした。
サンプルKは、第一の樹脂層51の厚さは500μm、蛍光体濃度は14.2%とした。
サンプルLは、第一の樹脂層51の厚さは700μm、蛍光体濃度は10.1%とした。
In sample H, the thickness of the first resin layer 51 was 50 μm, and the phosphor concentration was 142%.
In sample I, the first resin layer 51 has a thickness of 150 μm and the phosphor concentration is 47.3%. In sample J, the first resin layer 51 has a thickness of 335 μm and the phosphor concentration is 21.2%. It was.
In sample K, the thickness of the first resin layer 51 was 500 μm, and the phosphor concentration was 14.2%.
In sample L, the thickness of the first resin layer 51 was 700 μm, and the phosphor concentration was 10.1%.

第一の樹脂層51のベース材料は、分散剤なしのメチルシリコーンを用いた。ベース材料の粘度は4800mPa・sである。
第一の樹脂層51が含有する蛍光体は、第一および第二の2種類の蛍光体を配合して構成した。第一の蛍光体は、化学式はLuAl12:Ceで表され、ピーク波長は534nmである緑のLuAG蛍光体である。第二の蛍光体は、化学式は(SrCa)AlSiN:Euで表され、ピーク波長は620nmである赤のSCASN蛍光体である。第一の蛍光体と第二の蛍光体の配合比は、色調が変わらないようにするため、各サンプルとも同一とした。
As the base material of the first resin layer 51, methyl silicone without a dispersant was used. The viscosity of the base material is 4800 mPa · s.
The phosphor contained in the first resin layer 51 was composed by blending the first and second phosphors. The first phosphor is a green LuAG phosphor having a chemical formula represented by Lu 3 Al 5 O 12 : Ce and a peak wavelength of 534 nm. The second phosphor is a red SCASN phosphor having a chemical formula represented by (SrCa) AlSiN 3 : Eu and a peak wavelength of 620 nm. The mixing ratio of the first phosphor and the second phosphor was the same for each sample so that the color tone would not change.

実装基板2のLED実装領域(25mm×25mm)には、325個の同一仕様のLEDベアチップ3が配置されている。LEDベアチップ3は、サファイア基板上にGaN系青色LED素子であり、ピーク発光波長は455nm、最大定格電流は240mA、順電流が120mAの場合の順電圧は3V、発光出力は360mWである。325個のLEDベアチップ3は、13直列×25並列の配線パターンで金ワイヤによりワイヤボンディング接続されており、総発光出力は117Wである。LEDベアチップ3、実質的に等間隔に配置され、縦方向のピッチは1.70mm、横方向のピッチは0.92mmである。チップサイズは1.02mm×0.51mm=0.52mmであるため、実装面積密度は27.0mm/cmである。 In the LED mounting area (25 mm × 25 mm) of the mounting substrate 2, 325 LED bare chips 3 having the same specifications are arranged. The LED bare chip 3 is a GaN-based blue LED element on a sapphire substrate, the peak emission wavelength is 455 nm, the maximum rated current is 240 mA, the forward current is 120 mA, the forward voltage is 3 V, and the light emission output is 360 mW. The 325 LED bare chips 3 are wire-bonded and connected with gold wires in a 13 series × 25 parallel wiring pattern, and the total light output is 117 W. The LED bare chips 3 are arranged at substantially equal intervals, the vertical pitch is 1.70 mm, and the horizontal pitch is 0.92 mm. Since the chip size is 1.02 mm × 0.51 mm = 0.52 mm 2 , the mounting area density is 27.0 mm 2 / cm 2 .

第二実施形態例に係るLED発光装置は、第一実施形態例よりも発光出力が小さく、発熱量が小さいため、発光が実装基板の温度変化に影響されやすい。温度変化の影響を排除するため、実装基板2の底面には、ホットウォーターが循環するジャケットが固着され、基板温度が一定(85℃)に保たれるようにしている。   Since the LED light emitting device according to the second embodiment has a light emission output smaller than that of the first embodiment and generates a small amount of heat, the light emission is easily affected by the temperature change of the mounting substrate. In order to eliminate the influence of temperature change, a jacket through which hot water circulates is fixed to the bottom surface of the mounting substrate 2 so that the substrate temperature is kept constant (85 ° C.).

サンプルH〜Lの評価結果について図3を用いて説明する。図3は、第一の樹脂層51の厚さに対する(a)透光性樹脂部5の表面温度、(b)色温度、および(c)発光効率をプロットしたグラフである。各グラフ中のH〜Lの記号は、対応するサンプル名である。
図3(a)を見ると分かるように、透光性樹脂部5の表面温度は、第一の樹脂層51の厚さが薄いほど低いことが確認できた。他方で、第一の樹脂層51の厚さが厚いほど、透光性樹脂部5の表面温度は高く、第一の樹脂層51の厚さが700μm(サンプルL)の場合、LEDベアチップ3の仕様最高温度140℃を超えた。第一の樹脂層51の厚さは、500μm(サンプルK)以下とすれば、透光性樹脂部5の表面温度は確実に仕様最高温度140℃を超えることはないことが確認できた。
Evaluation results of samples H to L will be described with reference to FIG. FIG. 3 is a graph plotting (a) the surface temperature of the translucent resin portion 5, (b) the color temperature, and (c) the luminous efficiency against the thickness of the first resin layer 51. Symbols H to L in each graph are corresponding sample names.
As can be seen from FIG. 3A, it was confirmed that the surface temperature of the translucent resin portion 5 was lower as the thickness of the first resin layer 51 was thinner. On the other hand, the thicker the first resin layer 51 is, the higher the surface temperature of the translucent resin portion 5 is. When the thickness of the first resin layer 51 is 700 μm (sample L), the LED bare chip 3 The maximum specification temperature exceeded 140 ° C. If the thickness of the 1st resin layer 51 shall be 500 micrometers (sample K) or less, it has confirmed that the surface temperature of the translucent resin part 5 did not exceed specification maximum temperature 140 degreeC reliably.

図3(b)を見ると分かるように、色温度は、第一の樹脂層51の厚さが150μm(サンプルI)から50μm(サンプルH)に薄くした場合、急激に高くなることが確認できた。また、第一の樹脂層51の厚さが150μm(サンプルI)以上では、色温度が変化しないことが確認できた。第一の樹脂層51の厚さは、150μm(サンプルB)以上とすれば、確実に蛍光体の変換量を確保できることが確認できた。   As can be seen from FIG. 3B, it can be confirmed that the color temperature increases rapidly when the thickness of the first resin layer 51 is reduced from 150 μm (sample I) to 50 μm (sample H). It was. Further, it was confirmed that the color temperature did not change when the thickness of the first resin layer 51 was 150 μm (sample I) or more. It was confirmed that the conversion amount of the phosphor can be surely ensured if the thickness of the first resin layer 51 is 150 μm (sample B) or more.

図3(c)を見ると分かるように、発光効率は、第一の樹脂層51の厚さが50μm(サンプルH)の場合が最も悪く、第一の樹脂層51の厚さが150μm(サンプルB)以上の場合、第一の樹脂層51の厚さとの相関は確認できなかった。   As can be seen from FIG. 3C, the luminous efficiency is the worst when the thickness of the first resin layer 51 is 50 μm (sample H), and the thickness of the first resin layer 51 is 150 μm (sample). B) In the above case, the correlation with the thickness of the first resin layer 51 could not be confirmed.

以上の実験結果より、第一の樹脂層51の厚みが薄いほど、透光性樹脂部5の表面温度は低くなるが、150μm以下で急激に色温度が高くなり、発光効率も悪化することが確認できた。また、表面温度、色温度、発光効率の観点から、第一の樹脂層51の厚さが150〜500μmの範囲では確実に所望の発光が得られることが確認できた。なお、蛍光体を含有しない第二の樹脂層52を設けた場合も、表面温度は第二の樹脂層52を設けない場合よりも低くなるので、同様の結果が得られると考えられる。   From the above experimental results, the thinner the thickness of the first resin layer 51, the lower the surface temperature of the translucent resin portion 5, but the color temperature increases rapidly at 150 μm or less, and the luminous efficiency also deteriorates. It could be confirmed. In addition, from the viewpoint of the surface temperature, the color temperature, and the light emission efficiency, it was confirmed that desired light emission could be reliably obtained when the thickness of the first resin layer 51 was in the range of 150 to 500 μm. In addition, when the 2nd resin layer 52 which does not contain fluorescent substance is provided, since surface temperature becomes lower than the case where the 2nd resin layer 52 is not provided, it is thought that the same result is obtained.

[第三実施形態例]
図5は、図1のLED発光装置を応用したLED発光装置10の平面図である。実装基板2は銅製の薄型ヒートパイプからなる。1,666個のLEDベアチップ3は全て同一の仕様であり、17直列×98並列の配線パターンで接続されている。直列に接続された37個のLEDベアチップ3の配置間隔は実質的に等間隔であり、金ワイヤ7でワイヤボンディング接続されている。LEDベアチップ3の最大定格電流は240mAであり、順電流が120mAの場合の順電圧は3.0V、発光出力は360mWである。各LEDベアチップ3は、LED実装領域の外側に設けられた外部電極端子18a〜18hと電気的に接続されている。
[Third embodiment]
FIG. 5 is a plan view of an LED light emitting device 10 to which the LED light emitting device of FIG. 1 is applied. The mounting substrate 2 is made of a thin copper heat pipe. The 1,666 LED bare chips 3 all have the same specifications, and are connected by a wiring pattern of 17 series × 98 parallel. The arrangement intervals of the 37 LED bare chips 3 connected in series are substantially equal, and are connected by wire bonding with gold wires 7. The maximum rated current of the LED bare chip 3 is 240 mA. When the forward current is 120 mA, the forward voltage is 3.0 V and the light emission output is 360 mW. Each LED bare chip 3 is electrically connected to external electrode terminals 18a to 18h provided outside the LED mounting region.

外部電極端子18a〜18dと外部電極端子18e〜18hとは分離線21を挟んで線対称に配置されており、外部電極端子18a,18c,18e,18gと外部電極端子18b,18d,18f,18hとは横断方向中心線23を挟んで線対称に配置されている。保護ダイオード装置19は、ペアとなる外部電極端子18を電気的に接続する逆流防止装置であり、ペアとなる外部電極端子間に逆電圧がかかったときに、LEDチップ群に逆電圧が印加され破壊されることを防止する。   The external electrode terminals 18a to 18d and the external electrode terminals 18e to 18h are arranged symmetrically with respect to the separation line 21, and the external electrode terminals 18a, 18c, 18e, and 18g and the external electrode terminals 18b, 18d, 18f, and 18h are arranged. Are arranged symmetrically with respect to the center line 23 in the transverse direction. The protection diode device 19 is a backflow prevention device that electrically connects the pair of external electrode terminals 18. When a reverse voltage is applied between the pair of external electrode terminals, the reverse voltage is applied to the LED chip group. Prevent it from being destroyed.

第三実施形態例においても、第一実施形態例と同様、透光性樹脂部5は、蛍光体を含有する第一の樹脂層51と、蛍光体を含有しない第二の樹脂層52とから構成されている。透光性樹脂部5(第一および第二の樹脂層)のベース材料にはいずれもシリコーン樹脂を用い、蛍光体はいずれも黄と赤の二色を用いた。第一の樹脂層51は、蛍光体と比重が実質的に同等の分散剤を含有している。その他の構成は、第一実施形態例と同様である。第三実施形態例においても、単層の透光性樹脂5に蛍光体を沈降させて濃度勾配を設けた場合と同様の温度差Dを実現できることが確認できた。   Also in the third embodiment, similarly to the first embodiment, the translucent resin portion 5 includes the first resin layer 51 containing a phosphor and the second resin layer 52 not containing the phosphor. It is configured. The base material of the translucent resin part 5 (first and second resin layers) is a silicone resin, and the phosphors are yellow and red. The first resin layer 51 contains a dispersant having substantially the same specific gravity as the phosphor. Other configurations are the same as those of the first embodiment. Also in the third embodiment, it was confirmed that the same temperature difference D as that in the case where the concentration gradient was provided by precipitating the phosphor in the single-layer translucent resin 5 was confirmed.

また、蛍光体の構成を緑のLuAG系蛍光体と赤のSCASN系蛍光体の混合組成とした場合にも、第一の樹脂層51の厚さに対する、透光性樹脂部5の表面温度、色温度、発光効率は第一実施形態例と同様の傾向であり、第一の樹脂層51の厚さが150〜500μmの範囲では確実に所望の発光が得られることが確認できた。   Further, even when the phosphor composition is a mixed composition of a green LuAG phosphor and a red SCASN phosphor, the surface temperature of the translucent resin portion 5 with respect to the thickness of the first resin layer 51, The color temperature and the light emission efficiency are the same as those in the first embodiment, and it was confirmed that desired light emission was surely obtained when the thickness of the first resin layer 51 was in the range of 150 to 500 μm.

以上、本発明の好ましい実施形態例について説明したが、本発明の技術的範囲は上記実施形態の記載に限定されるものではない。上記実施形態例には様々な変更・改良を加えることが可能であり、そのような変更または改良を加えた形態のものも本発明の技術的範囲に含まれる。   The preferred embodiments of the present invention have been described above, but the technical scope of the present invention is not limited to the description of the above embodiments. Various modifications and improvements can be added to the above-described embodiment, and forms with such modifications or improvements are also included in the technical scope of the present invention.

1 発光装置
2 実装基板
3 LEDベアチップ
4 ダム材
5 透光性樹脂部
51 第一の樹脂層
52 第二の樹脂層
7 ワイヤ
8 ヒートシンク
10 発光装置
11 熱電対
12 サーモカメラ
18 外部電極端子
19 保護ダイオード装置
21 分離線
23 横断方向中心線
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 Mounting board 3 LED bare chip 4 Dam material 5 Translucent resin part 51 1st resin layer 52 2nd resin layer 7 Wire 8 Heat sink 10 Light-emitting device 11 Thermocouple 12 Thermo camera 18 External electrode terminal 19 Protection diode Device 21 Separation line 23 Transverse center line

Claims (11)

基板と、基板上に形成されたダムと、ダム内に配置され、同一平面にCOB実装された多数個のLEDベアチップと、ダム内に充填された透光性樹脂部と、配線層とを備えるLED発光装置であって、
前記透光性樹脂部が、基板上面と接し、蛍光体を含有する樹脂層と、第一の樹脂層の上に形成され、蛍光体を含有しない第二の樹脂層とを備え、
前記第一の樹脂層が、当該樹脂内で蛍光体が実質的に均一に分散されている樹脂層からなることを特徴とするLED発光装置。
A substrate, a dam formed on the substrate, a large number of LED bare chips disposed in the dam and COB mounted on the same plane, a translucent resin portion filled in the dam, and a wiring layer An LED light emitting device,
The translucent resin portion is in contact with the upper surface of the substrate, and includes a resin layer containing a phosphor and a second resin layer formed on the first resin layer and not containing a phosphor,
The LED light-emitting device, wherein the first resin layer is made of a resin layer in which phosphors are substantially uniformly dispersed in the resin.
前記LEDベアチップが、100個以上のLEDベアチップからなることを特徴とする請求項1に記載のLED発光装置。   The LED light emitting device according to claim 1, wherein the LED bare chip includes 100 or more LED bare chips. 前記LEDベアチップの実装面積密度が15mm/cm以上であることを特徴とする請求項2に記載のLED発光装置。 The LED light-emitting device according to claim 2, wherein a mounting area density of the LED bare chip is 15 mm 2 / cm 2 or more. 前記第一の樹脂層の厚みが100〜550μmであることを特徴とする請求項2または3に記載のLED発光装置。   The LED light-emitting device according to claim 2, wherein the first resin layer has a thickness of 100 to 550 μm. 前記第一の樹脂層が、前記ダム内への充填後、10分以内に硬化工程を開始して形成されることを特徴とする請求項2ないし4のいずれかに記載のLED発光装置。   5. The LED light-emitting device according to claim 2, wherein the first resin layer is formed by starting a curing process within 10 minutes after filling into the dam. 前記第一の樹脂層が、蛍光体と比重が実質的に同等の分散剤を含有し、硬化時に蛍光体の沈降を防止する樹脂からなることを特徴とする請求項2ないし4のいずれかに記載のLED発光装置。   5. The first resin layer according to claim 2, wherein the first resin layer contains a dispersant having substantially the same specific gravity as the phosphor, and is made of a resin that prevents the phosphor from settling during curing. LED light-emitting device of description. 前記第一の樹脂層が、前記第二の樹脂層よりも肉薄であることを特徴とする請求項1ないし6のいずれかに記載のLED発光装置。   The LED light-emitting device according to claim 1, wherein the first resin layer is thinner than the second resin layer. 前記LEDベアチップの少なくとも一部が、前記配線層とワイヤでボンディングされており、
前記第一の樹脂層が、前記ワイヤが前記第一の樹脂層に僅かに埋もれる厚みに構成されることを特徴とする請求項1ないし7のいずれかに記載のLED発光装置。
At least a part of the LED bare chip is bonded to the wiring layer with a wire,
The LED light-emitting device according to claim 1, wherein the first resin layer is configured to have a thickness such that the wire is slightly buried in the first resin layer.
前記透光性樹脂部がメチル系シリコーンであることを特徴とする請求項1ないし8のいずれかに記載のLED発光装置。   The LED light-emitting device according to claim 1, wherein the translucent resin portion is methyl silicone. 前記LEDベアチップが、窒化ガリウム系のLEDベアチップであり、
前記蛍光体が、黄色蛍光体と赤色蛍光体の組み合わせまたは緑色蛍光体と赤色蛍光体の組み合わせを含んで構成されたものであることを特徴とする請求項1ないし9のいずれかに記載のLED発光装置。
The LED bare chip is a gallium nitride based LED bare chip,
The LED according to claim 1, wherein the phosphor is configured to include a combination of a yellow phosphor and a red phosphor or a combination of a green phosphor and a red phosphor. Light emitting device.
前記黄色蛍光体が、YAG系蛍光体またはLSN系蛍光体であり、
前記緑色蛍光体が、LuAG系蛍光体、スカンジウム酸化物蛍光体またはサイアロン系蛍光体であり、
前記赤色蛍光体が、SCASN系蛍光体またはCASN系蛍光体であることを特徴とする請求項10に記載のLED発光装置。
The yellow phosphor is a YAG phosphor or LSN phosphor,
The green phosphor is a LuAG phosphor, a scandium oxide phosphor or a sialon phosphor,
The LED light-emitting device according to claim 10, wherein the red phosphor is a SCASN phosphor or a CASN phosphor.
JP2015107886A 2015-05-27 2015-05-27 LED light emitting device Pending JP2016225374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015107886A JP2016225374A (en) 2015-05-27 2015-05-27 LED light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015107886A JP2016225374A (en) 2015-05-27 2015-05-27 LED light emitting device

Publications (1)

Publication Number Publication Date
JP2016225374A true JP2016225374A (en) 2016-12-28

Family

ID=57745997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107886A Pending JP2016225374A (en) 2015-05-27 2015-05-27 LED light emitting device

Country Status (1)

Country Link
JP (1) JP2016225374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136256A1 (en) * 2022-01-12 2023-07-20 大日本印刷株式会社 Surface light-emitting device and display device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223750A (en) * 1999-02-02 2000-08-11 Nichia Chem Ind Ltd Light emitting diode and its forming method
JP2006048934A (en) * 2004-07-30 2006-02-16 Stanley Electric Co Ltd Led lamp for lighting fixture light source
JP2006339581A (en) * 2005-06-06 2006-12-14 Shin Etsu Chem Co Ltd Fluorescent substance-containing led
JP4010299B2 (en) * 2001-06-20 2007-11-21 日亜化学工業株式会社 Semiconductor light emitting device and method for forming the same
JP2009094351A (en) * 2007-10-10 2009-04-30 Nichia Corp Light emitting device, and manufacturing method thereof
JP2009260194A (en) * 2008-04-21 2009-11-05 Sharp Corp Light emitting device, and manufacturing method of same
US20110199788A1 (en) * 2010-01-18 2011-08-18 Park Joo Hyang Lighting unit and display device having the same
JP2011192703A (en) * 2010-03-12 2011-09-29 Toshiba Lighting & Technology Corp Light emitting device, and illumination apparatus
JP2012129361A (en) * 2010-12-15 2012-07-05 Nitto Denko Corp Optical semiconductor device
JP2012142430A (en) * 2010-12-28 2012-07-26 Nichia Chem Ind Ltd Light-emitting device manufacturing method and light-emitting device
JP2013021042A (en) * 2011-07-08 2013-01-31 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013163721A (en) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk Phosphor and light-emitting device
WO2014080562A1 (en) * 2012-11-20 2014-05-30 パナソニック株式会社 Phosphor, light emitting device, imaging device, liquid crystal display device, lighting device and vehicle
JP2014150292A (en) * 2014-05-29 2014-08-21 Mitsubishi Electric Corp Light-emitting device
JP2014215562A (en) * 2013-04-26 2014-11-17 日亜化学工業株式会社 Backlight light source unit and manufacturing method of the same, and liquid crystal display device
JP2014229759A (en) * 2013-05-23 2014-12-08 日亜化学工業株式会社 Light emitting device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223750A (en) * 1999-02-02 2000-08-11 Nichia Chem Ind Ltd Light emitting diode and its forming method
JP4010299B2 (en) * 2001-06-20 2007-11-21 日亜化学工業株式会社 Semiconductor light emitting device and method for forming the same
JP2006048934A (en) * 2004-07-30 2006-02-16 Stanley Electric Co Ltd Led lamp for lighting fixture light source
JP2006339581A (en) * 2005-06-06 2006-12-14 Shin Etsu Chem Co Ltd Fluorescent substance-containing led
JP2009094351A (en) * 2007-10-10 2009-04-30 Nichia Corp Light emitting device, and manufacturing method thereof
JP2009260194A (en) * 2008-04-21 2009-11-05 Sharp Corp Light emitting device, and manufacturing method of same
US20110199788A1 (en) * 2010-01-18 2011-08-18 Park Joo Hyang Lighting unit and display device having the same
JP2011192703A (en) * 2010-03-12 2011-09-29 Toshiba Lighting & Technology Corp Light emitting device, and illumination apparatus
JP2012129361A (en) * 2010-12-15 2012-07-05 Nitto Denko Corp Optical semiconductor device
JP2012142430A (en) * 2010-12-28 2012-07-26 Nichia Chem Ind Ltd Light-emitting device manufacturing method and light-emitting device
JP2013021042A (en) * 2011-07-08 2013-01-31 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013163721A (en) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk Phosphor and light-emitting device
WO2014080562A1 (en) * 2012-11-20 2014-05-30 パナソニック株式会社 Phosphor, light emitting device, imaging device, liquid crystal display device, lighting device and vehicle
JP2014215562A (en) * 2013-04-26 2014-11-17 日亜化学工業株式会社 Backlight light source unit and manufacturing method of the same, and liquid crystal display device
JP2014229759A (en) * 2013-05-23 2014-12-08 日亜化学工業株式会社 Light emitting device
JP2014150292A (en) * 2014-05-29 2014-08-21 Mitsubishi Electric Corp Light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136256A1 (en) * 2022-01-12 2023-07-20 大日本印刷株式会社 Surface light-emitting device and display device
JP7367897B1 (en) 2022-01-12 2023-10-24 大日本印刷株式会社 Surface emitting device and display device

Similar Documents

Publication Publication Date Title
JP6519311B2 (en) Light emitting device
JP6515716B2 (en) Light emitting device and method of manufacturing the same
US8866185B2 (en) White light LED with multiple encapsulation layers
JP3655267B2 (en) Semiconductor light emitting device
JP4417906B2 (en) Light emitting device and manufacturing method thereof
WO2017164214A1 (en) Light source apparatus and light-emitting apparatus
EP3561885B1 (en) Light emitting device
WO2011021402A1 (en) Light-emitting device
US7663307B2 (en) Light-emitting device
JP4857735B2 (en) Light emitting device
JP6769248B2 (en) Light emitting device
US20070295969A1 (en) LED device having a top surface heat dissipator
TWI720969B (en) Light emitting device
JP2007227791A (en) Luminescent device manufacturing method and light emitting device manufactured thereby
KR20100127278A (en) White light-emitting device, backlight, liquid crystal display device and illuminating device
JP2018019023A (en) Light-emitting device and method for manufacturing the same
JP2012089539A (en) Light-emitting device, and method of manufacturing the same
JP4874510B2 (en) Light emitting device and manufacturing method thereof
JP5750538B1 (en) LED light emitting device
JP2008078225A (en) Light-emitting device
US10454007B2 (en) Light-emitting device and method for manufacturing same
JP7137050B2 (en) Light-emitting device and manufacturing method thereof
JP2016225374A (en) LED light emitting device
JP2011159770A (en) White-light emitting semiconductor device
JP5795971B2 (en) Phosphor and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190827