JP2016223873A - 可視化流体の流速計測方法及び流速計測装置 - Google Patents

可視化流体の流速計測方法及び流速計測装置 Download PDF

Info

Publication number
JP2016223873A
JP2016223873A JP2015109499A JP2015109499A JP2016223873A JP 2016223873 A JP2016223873 A JP 2016223873A JP 2015109499 A JP2015109499 A JP 2015109499A JP 2015109499 A JP2015109499 A JP 2015109499A JP 2016223873 A JP2016223873 A JP 2016223873A
Authority
JP
Japan
Prior art keywords
optical path
laser
laser beam
flow velocity
inspection area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015109499A
Other languages
English (en)
Inventor
耕一 西野
Koichi Nishino
耕一 西野
鈴木 雅浩
Masahiro Suzuki
雅浩 鈴木
一夫 前野
Kazuo Maeno
一夫 前野
忠輝 石出
Tadateru Ishide
忠輝 石出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FLOWTECH RES Inc
FLOWTECH RESEARCH Inc
Original Assignee
FLOWTECH RES Inc
FLOWTECH RESEARCH Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FLOWTECH RES Inc, FLOWTECH RESEARCH Inc filed Critical FLOWTECH RES Inc
Priority to JP2015109499A priority Critical patent/JP2016223873A/ja
Publication of JP2016223873A publication Critical patent/JP2016223873A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

【課題】簡易な構成の光学系を用いて、1μs未満の時間間隔で複数のレーザ光を検査域に照射し、超音速流の流速をPIV計測法により計測する。【解決手段】流速計測装置は、検査域(M)の微小粒子群(P)に照射すべきレーザ光(α)を発光するレーザ光源(3)と、レーザ光を第1レーザ光(β)と第2レーザ光(γ)とに分岐又は分割するレーザ光岐・分割手段(13)と、第1レーザ光を検査域に照射するための第1光路(L2)と、第2レーザ光を検査域に照射するための第2光路(21,22)とを有する。第2光路は、第2レーザ光が出射部に伝送されるのを遅延させる遅延手段を有し、検査域に対する第2レーザ光の出射時期は、第1レーザ光の出射時期よりも遅延する。【選択図】図1

Description

本発明は、可視化流体の流速計測方法及び流速計測装置に関するものであり、より詳細には、微小粒子群により可視化してなる超音速又は極超音速の可視化流体の流動場を撮像装置によって撮影し、可視化流体の流速を計測する流速計測方法及び流速計測装置に関するものである。
流体を可視化するためのトレーサ粒子をマーカとして流体の流れに混入し、流動場の流体速度等を計測する可視化計測技術が知られている。可視化流体計測技術として知られる直接撮影法においては、二重露光撮影又は高速度カメラ撮影や、パルスレーザ及びデジタルCCDカメラを用いたフレームまたぎ撮影等の方法によって、トレーサ粒子を微小時間間隔(例えば、1ms間隔)で連続撮影することにより、粒子の移動距離が測定される。粒子の速度は、移動距離を時間間隔で除すことによって演算される。
可視化流体計測技術の一種として知られたPIV(Particle Image Velocimetry、粒子像流速計測)は、このような可視化流体の速度分布を調べる直接撮影法として普及した計測技法である。PIV計測法は、流体にレーザシート光を照射して、流体に含まれる寸法10μm程度の微小粒子を微小時間間隔(時刻t及び時刻t+Δt)の連続撮影により撮像し、粒子又は粒子群の速度を画像解析により求め、これにより、流速分布等を測定する流速計測方法である。このようなPIV計測法によれば、レーザシート光内における面内2成分の速度成分を計測することができる。
また、レーザシート光(2次元)内の速度3成分を得る計測技法として、ステレオPIV計測法が知られている。ステレオPIV計測法は、異なる角度方向から可視化流体を撮影する少なくとも2台のCCDカメラによって流体中の微小粒子を微小時間間隔で連続撮影し、複数のカメラ映像の視差に基づいて、粒子又は粒子群の三次元移動量を画像解析により求め、これにより、可視化流体の速度3成分(x軸、y軸及びz軸方向)を計測する流速計測方法である。
このようなPIV計測法又はステレオPIV計測法は、例えば、特開2011−247601号公報、特開2007−85784号公報(特許文献1及び2)等に記載されている。また、このようなPIV計測法において、光源から出射部に至る各機器を光ファイバによって相互接続し、機器間のレーザ光伝送用の光路を光ファイバによって形成することが、例えば、特開2008−14860号公報(特許文献3)に記載されている。
可視化流体の速度3成分を計測するための他の流速計測方法として、方形断面又は矩形断面を有する所定厚の帯状且つ立体的なレーザ光を可視化流体に照射し、異なる角度方向から可視化流体を撮影する少なくとも3台のCCDカメラによって流体中の微小粒子を撮像し、撮像により取得した粒子像の画像データに基づいて3次元空間内の粒子分布を再構築し、3次元空間における可視化流体の3次元速度ベクトル又は3速度成分を測定するトモグラフィックPIV計測法が提案されている(特願2014−38171号明細書・図面、特開2005−91364号公報、特開2013−217902号公報(特許文献4〜6)等)。トモグラフィックPIV計測法は、CT(Computed・Tomography)技術とPIV技術との融合により流体の3次元流速分布を効率的且つ高精度に測定することができる計測技法である。典型的には、4台のCCDカメラが撮影に使用され、各カメラは、連続2時刻(t及びt+Δt)の各々において流体中の微小粒子を同時に撮影する。ステレオPIV技術が2次元計測技術であるのに対し、トモグラフィックPIV技術は、3次元計測技術である点で優位性がある。
特開2011−247601号公報 特開2007−85784号公報 特開2008−14860号公報 特願2014−38171号明細書・図面(未公開) 特開2005−91364号公報 特開2013−217902号公報
一般に、PIV計測法において使用されるレーザシート光は、約1〜2mm程度の厚さ(幅)を有するにすぎず、このため、PIV計測法を用いて超音速流又は極超音速流の流速を測定した場合、レーザシート光の照射帯域に進入した微小粒子は、瞬時に帯域を通過し、照射帯域の域外に移動してしまう。このため、超音速流又は極超音速流の流速をPIV計測法によって計測することは、実務的に極めて困難であると考えられている。この点について、レーザシート光と微小粒子(トレーサ粒子)との位置関係を概念的に示す図4を参照して以下に説明する。
図4(A)及び図4(B)には、超音速未満の流速を有する流体Fa中に浮遊した微小粒子Pと、レーザシート光Lsとの位置関係が示されている。図4(C)及び図4(D) には、極超音速の流速を有する流体Fb中に浮遊した微小粒子Pと、レーザシート光Lsとの位置関係が示されている。レーザ装置の光源(図示せず)は、時刻Δtの時間間隔で発光し、従って、レーザシート光Lsは、時刻t及び時刻t+Δtにおいて流体の検査域(被計測域)に照射される。図4(A)及び図4(C)は、時刻tにおける位置関係を示しており、図4(B)及び図4(D)は、時刻t+Δtにおける位置関係を示す。一般には、レーザ装置の発光時間間隔は、数十μs程度に短縮することができる。
図4(A)及び図4(B)に示す如く、音速未満の流速の流体Fa(以下、低速流体Faという。)においては、レーザ装置の発光時間を適切に設定することにより、微小粒子Pが時間Δtの間に移動する距離Saをレーザシート光Lsの幅B(一般に1〜2mm程度の寸法)よりも小さい値に設定し得る。従って、CCDカメラ等の撮像装置Cは、時刻t及び時刻t+Δtの各時刻において微小粒子Pの反射光を受光し、各時刻の微小粒子画像を撮像することができる。微小粒子Pの速度(従って、流体Faの流速)は、距離Saを時間Δtで除すことよって求めることができる。
他方、図4(C)及び図4(D) に示す如く、極超音速の流速の流体Fb(以下、高速流体Fbという。)においては、微小粒子Pは、幅Bを遥かに超える長い距離Sbだけ時間Δt(即ち、数十μs程度の時間)内に移動してしまう。このため、微小粒子Pは、時刻t+Δtにおいて照射されたレーザシート光LSを反射せず、従って、撮像装置Cは、時刻t+Δtにおける微小粒子Pの画像を撮像することができない。
これに対し、レーザ装置の発光時間間隔を100ns程度に短縮し、或いは、複数のレーザ装置を協調制御して、各レーザ装置の発光タイミングの時間差を100ns程度の微小時間間隔に設定することより、時刻t+Δtにおいて微小粒子Pがレーザシート光Tの幅Bの範囲内に位置するように計測条件を設定することも、理論的には、考察し得るかもしれない。
しかしながら、レーザ装置の励起時間(発振間隔)や、レーザ装置の性能上の個体差、或いは、制御系固有の時間ジッター等を考慮すると、1μs未満の微小時間間隔で複数のレーザシート光Lsを発光する装置系を簡易な構成で設計することは、現実には、極めて困難であり、このため、高速流体FbのPIV計測は、容易に実施し難い事情がある。
本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、簡易な構成の光学系を用いて、1μs未満の時間間隔で複数のレーザ光を検査域に照射し、超音速流の流速をPIV計測法により計測することできる流速計測方法及び流速計測装置を提供することにある。
本発明は、上記目的を達成すべく、微小粒子群により可視化された可視化流体を撮像する撮像装置によって、微小時間間隔を隔てた2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて前記可視化流体の流速を測定する可視化流体の流速計測方法において、
検査域の微小粒子群に照射すべきレーザ光を第1レーザ光と第2レーザ光とに分岐又は分割し、
第1光路を介して第1レーザ光を前記流体の検査域に照射するとともに、遅延手段を有する第2光路を介して第2レーザ光を前記検査域に照射し、1μs以下の時間間隔を隔てた2つのレーザ光を前記検査域に照射することを特徴とする流速計測方法を提供する。
本発明は又、微小粒子群により可視化された可視化流体を撮像する撮像装置によって、微小時間間隔を隔てた2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて前記可視化流体の流速を測定する可視化流体の流速計測装置において、
検査域の微小粒子群に照射すべきレーザ光を発光するレーザ光源と、
該レーザ光を第1レーザ光と第2レーザ光とに分岐又は分割するレーザ光岐・分割手段と、
第1レーザ光を前記流体の検査域に照射するための第1光路と、
第2レーザ光を前記検査域に照射するための第2光路とを有し、
該第2光路は、第1レーザ光に対して1μs以下の時間間隔を隔てて遅延した第2レーザ光を前記検査域に照射するために、前記第2レーザ光が前記検査域に出射する時間を遅延する遅延手段を有することを特徴とする流速計測装置を提供する。
本発明の上記構成によれば、レーザ光源が発光したレーザ光は、第1及び第2レーザ光に分岐又は分割され、2つのレーザ光は、遅延手段によって設定された遅延時間に相応した時間間隔で検査域に照射される。時間間隔を1μsに設定した場合、音速の高速流中を浮遊した微小粒子が2つのレーザ光の時間間隔において移動する距離は、0.34mmである。時間間隔を100nsに設定した場合、音速の5倍の極超音速流中の微小粒子は、2つのレーザ光の時間間隔において0.17mm移動する。PIV計測法において一般に使用されるレーザシート光の幅は、通常は、1〜2mm程度であるので、高速流中の微小粒子は、2つのレーザ光を反射し、従って、撮像装置は、微小時間間隔を隔てた2時刻の粒子像を撮像することができる。
また、本発明によれば、第1及び第2レーザ光は、異なるレーザ光源に由来するレーザ光ではなく、同一のレーザ光源が発光した単一のレーザ光に由来するので、第1及び第2レーザ光のパルス波形は、通常は、一致する。即ち、第1及び第2レーザ光は、共通の時間ジッタを有するので、第1及び第2レーザ光の時間差は、レーザ光源における時間ジッタの影響を受け難く、従って、第1及び第2レーザ光の時間差は、常に安定する。
本発明の好適な実施形態においては、レーザ光の時間間隔が500ns以下且つ30ns以上の範囲内の所定時間、好ましくは、300ns以下且つ50ns以上の範囲内の所定時間に設定され、極超音速の可視化流体の流速が測定される。
好ましくは、上記遅延手段は、前記時間間隔に相応する光路長を有する光ファイバからなる。例えば、光ファイバの光路長を30mに設定した場合、第2レーザ光は、30m/光速(300,000km/s)=100nsだけ第1レーザ光よりも遅延する。
更に好ましくは、レーザ光分岐・分割手段は、レーザ光源が発光したレーザ光の光路を第1及び第2レーザ光の各光路に分岐又は分割する光路分岐・分割手段と、第1及び第2レーザ光の各光路を再合成する光路合成手段とを有する。好適には、光路分岐・分割手段は、ビームスプリッタからなり、光路合成手段は、ビームコンバイナからなる。レーザ光源が発光したシングルパルス形態のレーザ光は、ビームコンバイナによって合成された共通の出力側光路を伝送されるので、検査域に照射されるレーザ光は、実質的にダブルパルス形態のレーザ光を構成する。
本発明の好ましい実施形態においては、上記第2光路の光路長を設定変更することにより、上記時間間隔が可変設定される。例えば、レーザ光分岐・分割手段は、複数の第2光路と、第2レーザ光の伝送経路を各第2光路に選択的にシフトする光路切換手段とを有する。各々の第2光路は、遅延時間が相違する遅延手段を夫々有する。例えば、複数の第2光路は、遅延時間を100nsに設定した第2光路と、遅延時間を200nsに設定した第2光路とから構成される。このような遅延時間の遅延手段を光ファイバによって構成する場合、第2光路は、例えば、光ファイバの光路長を30mに設定した第2光路と、光ファイバの光路長を60mに設定した第2光路とから構成される。
本発明の流速計測方法及び流速計測装置によれば、簡易な構成の光学系を用いて、1μs未満の時間間隔で複数のレーザ光を検査域に照射し、超音速流の流速をPIV計測法により計測することできる。
また、本発明によれば、同一のレーザ光源が発光した単一のレーザ光に由来する第1及び第2レーザ光が検査域に照射されるので、第1及び第2レーザ光の時間差は、安定する。
図1は、本発明の好適な実施形態に係る流速計測システムの構成を概略的に示すシステム構成図である。 図2は、図1に示すビームスプリッタ及びビームコンバイナを第2位置にシフトした状態を示す図1と同様のシステム構成図である。 図3(A)及び図3(B)は、図1及び図2に示す流速計測システムにおける微小粒子とレーザシート光との位置関係を示す概念図であり、図3(C)及び図3(D)は、図1及び図2に示す流速計測システムにおけるレーザ光の波形を概念的に示す波形図である。 図4(A)及び図4(B)は、超音速未満の流速を有する流体中に浮遊した微小粒子と、レーザシート光との位置関係を示す概念図であり、図4(C)及び図4(D)は、極超音速の流速を有する流体中に浮遊した微小粒子と、レーザシート光との位置関係を示す概念図である。
以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。
図1は、本発明の好適な実施形態に係る流速計測システムの構成を概略的に示すシステム構成図である。
本発明に係る流速計測システムは、極超音速流の流速を計測するための計測装置系であり、微小粒子(トレーサ粒子)Pを注入した可視化流体(気体)Fの可視化流路1と、撮像装置2を構成するCCDカメラ5、6と、レーザ電源装置7及びレーザヘッド8を含むレーザ光源3と、検査域Mに対するレーザ光の出射部9をレーザ光源3に光学的に接続する光学系10とを有する。流速計測システム1は更に、CCDカメラ5、6及びレーザ光源3の制御系を構成する記憶装置、演算処理装置、画像表示(ディスプレイ)装置及び各種入・出力装置等を含む画像処理装置(図示せず)を有する。CCDカメラ5、6及びレーザ光源3は、制御信号線(図示せず)を介して画像処理装置に接続され、画像処理装置の制御下に作動する。なお、極超音速流は、音速の5倍以上の速度を有する流体の流れとして一般に認識されている。所望により、本実施形態の流体計測システムによって超音速流の流速を計測することも可能である。
レーザ電源装置7は、外部電源に接続されるとともに、給電線E(二点鎖線で示す)を介してレーザヘッド8に電気的に接続される。光学系10は、照明用光ファイバからなる光路L1、L2、L3を有する。レーザヘッド8は、光路L1の基端部に光学的に接続され、光路L1の先端部は、ビームスプリッタ11に光学的に接続される。ビームスプリッタ11は、光路L2の基端部に光学的に接続され、光路L2の先端部は、ビームコンバイナ12に光学的に接続される。
レーザヘッド7が出射したレーザ光αは、光路L1を介して光路分岐用のビームスプリッタ11に入射する。ビームスプリッタ11は、入射したレーザ光αの一部を第1及び第2レーザ光β、γに分岐する光路分岐・分割手段を構成する。ビームスプリッタ11は、レーザ光αの光軸に対して所定の角度をなす方向(本例では、直角方向)に第2レーザ光γを反射する。本例では、ビームスプリッタ11として、50/50ビームスプリッタが用いられる。従って、レーザ光αの直進成分(透過成分)である第1レーザ光βは、レーザ光αの半分(50%)の光量を有し、レーザ光αの反射成分(非透過成分)である第2レーザ光γも又、レーザ光αの半分(50%)の光量を有する。
第1レーザ光βは、光路L2を介して光路再合成用のビームコンバイナ12に入射する。第2レーザ光γは、所定長の光ファイバからなる第1迂回光路21に入射し、第1迂回光路21を介してビームコンバイナ12に入射する。第1迂回光路21の反対側には、第1迂回光路21と異なる光路長を有する第2迂回光路22が配置される。第1及び第2迂回光路21、22は、前述の遅延手段を構成する。
ビームスプリッタ11及びビームコンバイナ12は、これらの光学機器を一体的に回転させる回転機構(図示せず)を備えた分岐・再合成ユニット13(全体を仮想線で概略的に示す)に組み込まれる。なお、図1において、ビームスプリッタ11及びビームコンバイナ12は、第1迂回光路21に光学的に接続した第1位置に位置している。
図2は、分岐・再合成ユニット13を回転させ、ビームスプリッタ11及びビームコンバイナ12を第2位置にシフトした状態を示す図1と同様のシステム構成図である。
分岐・再合成ユニット13は、図2に示す第2位置において、ビームスプリッタ11及びビームコンバイナ12を第2迂回光路22に光学的に接続する。レーザ光αは、第1迂回光路21に分岐せず、レーザ光αの半分(50%)の光量を有する第2レーザ光γは、第2迂回光路22を介してビームコンバイナ12に伝送される。
分岐・再合成ユニット13は、選択的に使用し得る第1及び第2迂回光路21、22を備えるが、第1迂回光路21をビームスプリッタ11及びビームコンバイナ12に光学的に接続した状態を示す図1を参照して、本例の流速計測システムの構成を更に説明する。
図1に示す如く、光路L3の基端部が、ビームコンバイナ12に光学的に接続される。ビームコンバイナ12は、第1レーザ光βを直進させて光路L3に入射せしめるとともに、第2レーザ光γを直角に偏向して光路L3に入射せしめる。従って、ビームスプリッタ11において第1迂回光路11に分岐・分割したレーザ光αの伝送経路は、ビームコンバイナ13において再合成される。光路L3の先端部は、レーザシート光Lsを射出する出射部9に光学的に接続される。出射部9は、シリンドリカルレンズ等の光学レンズユニット(図示せず)を内蔵しており、第1及び第2レーザ光β、γを扇状の薄いレーザシート光Lsに拡開して流路1の検査域Mに照射する。
流路1は、流路壁W(一点鎖線で示す)によって画成される。流路壁Wは、レーザシート光Lsを透過するとともに、CCDカメラ5、6の所望の撮像域を確保すべく、少なくとも部分的に透明樹脂又は透明ガラスによって形成される。流路1の上流端は、流体の供給源(図示せず)に接続される。微小粒子Pを流体Fに注入するトレーサ粒子混入装置(図示せず)が流路1に接続され、微小粒子Pを混入して可視化した可視化流体Fが流路1の検査域Mに供給され、矢印で示す方向に検査域Mを流通する。流路1の下流端は、流体Fの排出路(図示せず)に接続され、流体Fは、排出路を介して系外に排出される。
出射部9の光軸は、流路1の中心軸線X−Xに対して直交する方向に配向されており、中心軸線X−Xは、レーザーシート光Lsが構成する平面又はシート面に直交する。本例において、レーザシート光Lsの幅Bは、約1mmに設定される。流路1内を移動する微小粒子Pの粒子群は、検査域Mにおいてレーザシート光Lsを反射する、CCDカメラ5、6の光軸は、微小粒子Pがレーザシート光Lsを反射する検査域Mの撮像対象領域に向けられており、微小粒子Pの粒子群は、粒子画像としてCCDカメラ5、6の撮像素子に結像する。画像データは、前述の画像処理装置に入力され、解析される。
図4(A)及び図4(B)を参照して前述したとおり、画像処理装置が微小粒子Pの移動量を検出して微小粒子Pの速度を測定するためには、少なくとも、微小時間間隔Δtを隔てた連続2時刻(時刻t、t+Δt)の微小粒子画像をCCDカメラ5、6によって撮像し、画像処理技術を適用して微小粒子Pの移動距離Saを計測する必要がある。図4(A)及び図4(B)は、低速流体Fa中に浮遊した微小粒子Pの撮像に関するものであるが、低速流体Faの計測時と同等の時間間隔Δtを極超音速の流体Fにおいて採用した場合、図4(C)及び図4(D)に示す如く、時刻tの画像データを取得し得るにすぎない。
しかしながら、本実施形態に係る流速計測システムにおいては、第1レーザ光βが、真っ直ぐな光路L2を直進して出射部9から出射し、第2レーザ光γが、迂回光路21、22を介して出射部9から出射する。光路L2と、迂回光路21、22との光路長の差に相応した極めて微小の時間差Δtが、第1及び第2レーザ光β、γの間に発生するので、時間差Δtを隔てた2つのレーザシート光Lsが、検査域Mに照射される。従って、CCDカメラ5、6は、極めて微小な時間間隔Δtを隔てた2時刻(時刻t、t+Δt)の粒子画像をを撮像することができる。
本例において、時間差Δtは、第1迂回光路21を構成する光ファイバの光路長によって決定される。例えば、第1迂回光路21の光路長を30mに設定した場合、レーザ光γが第1迂回光路21を通過する時間は、30m/光速(300,000km/s)=100nsである。
従って、光路長を光伝送時間として規定すると、例えば、第1迂回光路21を光伝送間σ1の光路長の光路として特定し、第2迂回光路22を光伝送時間σ2の光路長の光路として特定することができる。光伝送時間σ1、σ2の時間差は、第1レーザ光βと第2レーザ光γの出射時刻の差、即ち、2つのレーザシート光Lsの時間差Δtと一致する。なお、光ファイバの場合、コア及びクラッドの境界部における光の反射作用を利用して光を伝送するので、実際の光ファイバの全長は、光路長よりも短く、例えば、光路長を30mに設定した場合、概ね21m程度(概ね光路長の70%程度)に設計し得る。
例えば、第1迂回光路21の光路長を光伝送時間σ1=100nsに設定し、流体Fの流れを流速=1700m/sの極超音速流に設定した場合、流体F中の微小粒子Pは、時間Δtの間に0.17mmの距離を移動するにすぎない。従って、微小粒子Pに対して第1及び第2レーザ光β、γのレーザシート光Lsを照射し、微小粒子Pの画像をCCDカメラ5、6によって取得することができる。
図3は、本実施形態の流速計測システムにおける微小粒子Pとレーザシート光Lsとの位置関係を示す概念図であり、図3(A)には、流体F中に浮遊した微小粒子Pと、第1レーザ光βによって形成されるレーザシート光Lsとの位置関係が示されており、図3(B)には、流体F中に浮遊した微小粒子Pと、第2レーザ光γによって形成されるレーザシート光Lsとの位置関係が示されている。
図3(A)に示す如く、第1レーザ光βによって形成されるレーザシート光Lsが、時刻tにおいて微小粒子Pに照射され、微小粒子Pの反射光が、撮像装置2の撮像素子に粒子画像として結像する。微小粒子Pは、時間Δtに距離Sc=0.17mmだけ移動する。第2レーザ光γによって形成されるレーザシート光Lsが、時刻t+Δtにおいて微小粒子Pに照射され、微小粒子Pの反射光は、撮像素子2の撮像素子に粒子画像として結像する。撮像素子2の画像データは、画像処理装置に入力され、画像処理装置は、画像データを解析してSc/Δtを演算し、微小粒子Pの速度(従って、流体Fの流速)を求める。
図1に示す第1位置の分岐・再合成ユニット13を矢印(破線)で示す如く回転させ、図2に示す如く、分岐・再合成ユニット13を第2位置にシフトした状態では、光学系10を直進して出射部9から出射する第1レーザ光βと、第2迂回光路22を介して出射部9から出射する第2レーザ光γとが、時間差Δtを隔てた2つのレーザシート光Lsを検査域Mに形成する。第2迂回光路22の光路長を光伝送時間σ2=200ns(光路長=60m)に設定した場合、流体Fの流速=1700m/sの極超音速流中の微小粒子Pは、時間Δtの間に0.34mmの距離を移動する。従って、微小粒子Pに対して第1及び第2レーザ光β、γのレーザシート光Lsを照射し、連続2時刻(時刻t、t+Δt)における微小粒子Pの画像を撮像装置2によって撮像することができる。
以上説明したとおり、流速計測システムは、微小粒子群により可視化された可視化流体Fを撮像する撮像装置2によって、微小時間間隔Δtを隔てた連続2時刻(時刻t、t+Δt)の粒子像を撮像するとともに、撮像により得られた粒子像の画像データを画像処理装置によって解析することにより、流体Fの流速を測定するように構成される。流速計測システムは、ビームスプリッタ11及びビームコンバイナ12を備える。ビームスプリッタ11は、レーザ光αを第1及び第2レーザ光β、γに分割するとともに、光路L1を第1レーザ光βの光路L2と、第2レーザ光γの光路(迂回光路21、22)とに分岐する。ビームコンバイナ12は、光路L及び迂回光路21、22を単一の出射側光路(光路L3)に再合成する。第1及び第2レーザ光β、γは、いずれも、レーザシート光Lsとして出射部9から検査域Mに照射される。迂回光路21、22は、第2レーザ光γの出射時期を遅延させる遅延手段を構成し、第1及び第2レーザ光β、γの照射時期の時間差Δtを確保する。従って、極めて微小な時間差Δtを隔てた2つのレーザシート光Lsが検査域Mに形成されるので、撮像装置2は、微小時間間隔Δtを隔てた連続2時刻(時刻t、t+Δt)の微小粒子画像を確実に撮像することができる。
また、ビームスプリッタ11及びビームコンバイナ12を備えた分岐・再合成ユニット13は、ビームスプリッタ11及びビームコンバイナ12を第1位置(図1)及び第2位置(図2)に選択的にシフトする光路切換手段を有するので、流速計測システムは、遅延時間(時間差Δt)が異なる2つの迂回光路21、22を遅延手段として選択的に使用することができる。このような構成によれば、例えば、流体Fの流速、レーザシート光Lsの幅B、撮像装置2の制御等に相応して時間差Δtを適宜設定変更することが可能となる。
更に、上記構成の光学系10は、パルス発光レーザ光のパルス発光波形をシングルパルスからダブルパルスに変換する波形変換手段として把握することも可能である。図3(C)は、光路L1におけるレーザ光αの波形を概念的に示す波形図であり、図3(D)は、光路L3におけるレーザ光β、γの合成波形を概念的に示す波形図である。
レーザ光αは、レーザヘッド8の出力端におけるパルス発光レーザ光であり、レーザ光αの波形は、図3(C)に示す如く、シングルパルス形態の波形を有する。これに対し、ビームコンバイナ12の出力端におけるレーザ光の波形は、レーザ光β、γの波形を合成したダブルパルス形態の波形を有する。レーザ光β、γが生成する各波形は、時間Δtに相当する位相差を有する。
一般に、レーザ光源のパルス発光レーザには、時間ジッタが発生するので、複数のレーサ光源を用いた場合、各レーザ光源の固有の時間ジッタを考慮する必要が生じるが、レーザ光β、γは、同一のレーザ光源3のパルス発光レーザ光に由来するので、共通の時間ジッタを有するにすぎない。従って、レーザ光β、γの時間差Δtは、レーザ光源3の時間ジッタの影響を実質的に受けない時間である。即ち、本実施形態の流体計測システムによれば、レーザ光源固有の時間ジッタ等の影響を受けない安定した時間差Δtを実現することができる。従って、上記構成の流体計測システムによれば、必然的に個体差を有する複数のレーザ光源を用いた場合と比べて、高品質のダブルパルス波形をレーザ光β、γによって生成し得るので、実務的に極めて有利である。
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。
例えば、上記実施形態は、2つの迂回光路を備えた構成の流速計測システムに関するものであるが、流体計測システムは、単一の迂回光路のみを備えた構成のものに設計しても良く、或いは、3系統以上の迂回光路を設け、各迂回光路に対応した3つ以上の切換位置に分岐・再合成ユニット13を切換え可能な構成に設計しても良い。
また、上記実施形態では、光ファイバによって迂回光路を形成し、ビームスプリッタ及びビームコンバイナによって光路を分岐し且つ再合成しているが、保護層、シース等を有する汎用の光ケーブル等によって迂回光路を形成し、或いは、他の形式の光路分岐手段又は光路再合成手段によって光路を分岐又は再合成しても良い。
更に、上記実施形態においては、微小粒子撮影のために2台のCCDカメラを使用しているが、単一CCDカメラを使用し、或いは、3台以上のCCDカメラを使用することも可能である。
また、上記流速計測システムは、PIV計測法に従って流速計測を実施する構成のものであるが、トモグラフィックPIV計測法に従って流速計測を実施する流速計測システムに本発明を適用することも可能である。
本発明は、微小粒子群により可視化してなる超音速又は極超音速の可視化流体の流動場を撮像装置によって撮影し、可視化流体の流速を計測する流速計測方法及び流速計測装置に適用される。殊に、本発明は、1μs未満の時間間隔で複数のレーザ光を検査域に照射し、超音速流又は極超音速流の流速をPIV計測法により計測する流速計測方法及び流速計測装置に好ましく適用し得る。本発明によれば、簡易な構成の光学系を用いて、1μs未満の時間間隔で複数のレーザ光を検査域に照射することができ、しかも、第1及び第2レーザ光の時間差を安定させることができるので、本発明の実用的効果は、顕著である。
1 可視化流路
2 撮像装置
3 レーザ光源
5、6 CCDカメラ
7 レーザ電源装置
8 レーザヘッド
9 出射部
10 光学系
11 ビームスプリッタ
12 ビームコンバイナ
13 分岐・再合成ユニット
21 第1迂回光路
22 第2迂回光路
α レーザ光
β 第1レーザ光
γ 第2レーザ光
F 可視化流体
P 微小粒子
L1:L2:L3 光路
Ls レーザシート光
M 検査域
B レーザシート光の幅
W 流路壁

Claims (12)

  1. 微小粒子群により可視化された可視化流体を撮像する撮像装置によって、微小時間間隔を隔てた2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて前記可視化流体の流速を測定する可視化流体の流速計測方法において、
    検査域の微小粒子群に照射すべきレーザ光を第1レーザ光と第2レーザ光とに分岐又は分割し、
    第1光路を介して第1レーザ光を前記流体の検査域に照射するとともに、遅延手段を有する第2光路を介して第2レーザ光を前記検査域に照射し、1μs以下の時間間隔を隔てた2つのレーザ光を前記検査域に照射することを特徴とする流速計測方法。
  2. 光ファイバによって前記遅延手段を形成し、該光ファイバの光路長又は全長を前記時間間隔に相応して設定することを特徴とする請求項1に記載の流速計測方法。
  3. 第1及び第2レーザ光の各光路を合成した共通の出射側光路によって第1及び第2レーザ光を前記検査域に出射することを特徴とする請求項1又は2に記載の流速計測方法。
  4. レーザ光源が発光したレーザ光をビームスプリッタによって第1レーザ光と第2レーザ光とに分割し、第1及び第2レーザ光をビームコンバイナによって前記出射側光路に伝送することを特徴とする請求項3に記載の流速計測方法。
  5. 前記第2光路の光路長を設定変更することにより、前記時間間隔を可変設定することを特徴とする請求項1乃至4のいずれか1項に記載の流速計測方法。
  6. 前記時間間隔を500ns以下且つ30ns以上に設定し、極超音速の可視化流体の流速を測定することを特徴とする請求項1乃至5のいずれか1項に記載の流速計測方法。
  7. 微小粒子群により可視化された可視化流体を撮像する撮像装置によって、微小時間間隔を隔てた2時刻の粒子像を撮像し、撮像により得られた粒子像の画像データに基づいて前記可視化流体の流速を測定する可視化流体の流速計測装置において、
    検査域の微小粒子群に照射すべきレーザ光を発光するレーザ光源と、
    該レーザ光を第1レーザ光と第2レーザ光とに分岐又は分割するレーザ光岐・分割手段と、
    第1レーザ光を前記流体の検査域に照射するための第1光路と、
    第2レーザ光を前記検査域に照射するための第2光路とを有し、
    該第2光路は、第1レーザ光に対して1μs以下の時間間隔を隔てて遅延した第2レーザ光を前記検査域に照射するために、前記第2レーザ光が前記検査域に出射する時間を遅延する遅延手段を有することを特徴とする流速計測装置。
  8. 前記遅延手段は、前記時間間隔に相応する光路長を有する光ファイバによって形成され、該光ファイバの光路は、第2レーザ光が出射部に伝送されるのを遅延させることを特徴とする請求項7に記載の流速計測装置。
  9. 前記レーザ光分岐・分割手段は、前記レーザ光源が発光したレーザ光の光路を第1及び第2レーザ光の各光路に分岐又は分割する光路分岐・分割手段と、第1及び第2レーザ光の各光路を再合成する光路合成手段とを有することを特徴とする請求項7又は8に記載の流速計測装置。
  10. 前記光路分岐・分割手段は、ビームスプリッタにより形成され、前記光路合成手段は、ビームコンバイナにより形成されることを特徴とする請求項9に記載の流速計測装置。
  11. 前記レーザ光分岐・分割手段は、前記遅延手段を夫々有する複数の第2光路と、第2光路のいずれかに第2レーザ光の伝送経路をシフトする光路切換手段とを有することを特徴とする請求項7乃至9のいずれか1項に記載の流速計測装置。
  12. 各第2光路の遅延手段は、異なる遅延時間に設定されることを特徴とする請求項11に記載の流速計測装置。
JP2015109499A 2015-05-29 2015-05-29 可視化流体の流速計測方法及び流速計測装置 Pending JP2016223873A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015109499A JP2016223873A (ja) 2015-05-29 2015-05-29 可視化流体の流速計測方法及び流速計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015109499A JP2016223873A (ja) 2015-05-29 2015-05-29 可視化流体の流速計測方法及び流速計測装置

Publications (1)

Publication Number Publication Date
JP2016223873A true JP2016223873A (ja) 2016-12-28

Family

ID=57747871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015109499A Pending JP2016223873A (ja) 2015-05-29 2015-05-29 可視化流体の流速計測方法及び流速計測装置

Country Status (1)

Country Link
JP (1) JP2016223873A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106895951A (zh) * 2017-02-22 2017-06-27 中国科学技术大学 高超声速内转式进气道及隔离段流场层析显示方法、系统
CN110018495A (zh) * 2019-04-30 2019-07-16 湖南力研光电科技有限公司 一种条纹管成像激光雷达激光发射随机误差测量及补偿系统
CN115128299A (zh) * 2022-08-31 2022-09-30 之江实验室 一种测量非透明流场的光声粒子图像测速系统和方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106895951A (zh) * 2017-02-22 2017-06-27 中国科学技术大学 高超声速内转式进气道及隔离段流场层析显示方法、系统
CN110018495A (zh) * 2019-04-30 2019-07-16 湖南力研光电科技有限公司 一种条纹管成像激光雷达激光发射随机误差测量及补偿系统
CN110018495B (zh) * 2019-04-30 2021-03-26 湖南力研光电科技有限公司 一种条纹管成像激光雷达激光发射随机误差测量及补偿系统
CN115128299A (zh) * 2022-08-31 2022-09-30 之江实验室 一种测量非透明流场的光声粒子图像测速系统和方法
CN115128299B (zh) * 2022-08-31 2022-12-27 之江实验室 一种测量非透明流场的光声粒子图像测速系统和方法

Similar Documents

Publication Publication Date Title
JP5469483B2 (ja) 流体解析装置および流体解析方法
US7245383B2 (en) Optical image measuring apparatus for obtaining a signal intensity and spatial phase distribution of interference light
JP5646604B2 (ja) 物体を3次元的に測定するための方法および測定装置
CN107810403B (zh) 多光束和会聚光照射交叉光束成像
JP6484071B2 (ja) 物体検出装置
JP6101176B2 (ja) 光学特性測定装置及び光学特性測定方法
JP2016223873A (ja) 可視化流体の流速計測方法及び流速計測装置
KR102661250B1 (ko) 극자외선 광원에서 타겟 궤적 계측 방법
Murphy et al. PIV space-time resolution of flow behind blast waves
TW201534953A (zh) 距離測定裝置
JP2021527207A (ja) 共焦点カメラにおいて動的投影パターンを生成するための装置、方法、およびシステム
CN106604511A (zh) 一种测量高密度等离子体运动速度的方法和光学系统
JP2011117789A (ja) オプティカル・コヒーレンス・トモグラフィー装置及び断層像の撮影方法
DE102011009675B4 (de) Verfahren zur Bestimmung von Geschwindigkeiten in Strömungen und Phasen-Frequenz-Gechwindigkeits-Feldsensor
JP2014185956A (ja) 距離測定装置
JPWO2008156022A1 (ja) 物体を測定する方法及び装置
JP2022508829A (ja) 高速計測
JP4474509B2 (ja) 粒子画像流速装置のためのレーザシート形成装置、粒子計測装置、レーザシート形成方法および粒子計測方法
JP6658025B2 (ja) 半導体レーザ光源装置
CN110850114A (zh) 基于粒子图像测速的加速度测量装置
DK171337B1 (da) Apparat til måling af lysspredende, bevægede objekters hastighed, især et laser-doppler-anemometer
KR101432544B1 (ko) 펄스 레이저를 이용한 유동 가시화 장치 및 방법
CN211179887U (zh) 基于粒子图像测速的加速度测量装置
JP2010101879A (ja) 粒子可視化装置
CN104034636B (zh) 基于数字微镜平面结构光照明的粒子场测量装置及测量方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170829