JP2016222945A - Mixed powder for iron-based powder metallurgy and manufacturing method therefor, sintered body manufactured by using the same - Google Patents
Mixed powder for iron-based powder metallurgy and manufacturing method therefor, sintered body manufactured by using the same Download PDFInfo
- Publication number
- JP2016222945A JP2016222945A JP2015107557A JP2015107557A JP2016222945A JP 2016222945 A JP2016222945 A JP 2016222945A JP 2015107557 A JP2015107557 A JP 2015107557A JP 2015107557 A JP2015107557 A JP 2015107557A JP 2016222945 A JP2016222945 A JP 2016222945A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- iron
- sintered body
- type
- caso
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
- C22C33/0221—Using a mixture of prealloyed powders or a master alloy comprising S or a sulfur compound
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
- C22C33/0228—Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/35—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/25—Oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/35—Complex boride, carbide, carbonitride, nitride, oxide or oxynitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/45—Others, including non-metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
- B22F2304/058—Particle size above 300 nm up to 1 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、鉄基粉末冶金用混合粉及びそれを用いて作製した焼結体に関し、無水II型の硫酸カルシウムを特定の割合で含む鉄基粉末冶金用混合粉及びそれを用いて作製した焼結体に関する。 The present invention relates to a mixed powder for iron-based powder metallurgy and a sintered body produced using the same, and a mixed powder for iron-based powder metallurgy containing anhydrous II-type calcium sulfate in a specific ratio and a sintered product produced using the same. Concerning union.
粉末冶金は、様々な機械部品の工業的生産方法として広く用いられている。鉄基粉末冶金の手順は、まず、鉄基粉末と、銅(Cu)粉末、ニッケル(Ni)粉末等の合金用粉末と、黒鉛粉と、潤滑剤とを混合することにより混合粉末を準備する。次に、この混合粉末を金型に充填してプレス成形し、焼結することにより焼結体を作製する。そして、この焼結体に対してドリル加工や旋削加工等の切削加工を施すことによって所望の形状の機械部品に整える。 Powder metallurgy is widely used as an industrial production method for various machine parts. The procedure for iron-based powder metallurgy is to first prepare a mixed powder by mixing an iron-based powder, an alloy powder such as a copper (Cu) powder, a nickel (Ni) powder, a graphite powder, and a lubricant. . Next, the mixed powder is filled into a mold, press-molded, and sintered to produce a sintered body. Then, a machine part having a desired shape is prepared by performing cutting such as drilling or turning on the sintered body.
粉末冶金の理想は、焼結体に切削加工を施すことなく、焼結体をそのまま機械部品として使用できるように加工することである。しかし、上記焼結によって原料粉末の不均一な収縮が生じることもあるし、近年では機械部品に要求される寸法精度が高く、部品形状が複雑化していることもある。このため、焼結体に切削加工を施すことは必須になりつつある。このような技術的背景から、焼結体を円滑に加工できるようにするために、焼結体に被削性を付与する技術が検討されている。 The ideal of powder metallurgy is to process the sintered body so that it can be used as a machine part without cutting the sintered body. However, the sintering may cause uneven shrinkage of the raw material powder, and in recent years, the dimensional accuracy required for mechanical parts is high, and the part shape may be complicated. For this reason, it is becoming essential to cut the sintered body. From such a technical background, a technique for imparting machinability to a sintered body has been studied so that the sintered body can be processed smoothly.
上記被削性を付与する手段として、硫化マンガン(MnS)粉末を混合粉末に添加する手法がある。硫化マンガン粉末の添加は、ドリル穿孔等の比較的低速の切削加工には有効である。しかし、硫化マンガン粉末の添加は、近年の高速切削加工では必ずしも有効ではないこと、焼結体に汚れが発生すること、機械的強度が低下すること等の課題がある。 As means for imparting the machinability, there is a technique of adding manganese sulfide (MnS) powder to the mixed powder. The addition of manganese sulfide powder is effective for relatively low speed cutting such as drilling. However, the addition of manganese sulfide powder is not necessarily effective in recent high-speed cutting, and there are problems such as generation of dirt on the sintered body and reduction in mechanical strength.
このため、上記硫化マンガンを添加する以外の被削性を付与する方法を開示する文献として、例えば特許文献1には、鉄粉の所要量の炭素と銅を含有せしめた鉄系原料粉に対し、0.1〜1.0%の硫化カルシウム(CaS)と、0.1〜2%の炭素(C)と、0.5〜5.0%の銅(Cu)とを含有する焼結鋼が開示されている。 For this reason, as a document disclosing a method for imparting machinability other than adding the above-mentioned manganese sulfide, for example, Patent Document 1 discloses that iron-based raw material powder containing a necessary amount of iron powder and copper is contained. Sintered steel containing 0.1 to 1.0% calcium sulfide (CaS), 0.1 to 2% carbon (C), and 0.5 to 5.0% copper (Cu) Is disclosed.
特許文献1に開示される硫化カルシウムを含有させることにより、機械部品の強度が大幅に低下すること、混合粉末が経時変化して品質が安定しないこと等の課題がある。また、特許文献1に開示の焼結鋼を切削工具によって加工したところ、切屑が細かく分断されにくかった。このことから、特許文献1の開示では良好と評価されている切屑処理性も、現在の切屑処理性の要求を満たすほど優れているとは言い難い。 By including the calcium sulfide disclosed in Patent Document 1, there are problems such that the strength of mechanical parts is significantly reduced, and that the mixed powder changes with time and the quality is not stable. Moreover, when the sintered steel disclosed in Patent Document 1 was processed with a cutting tool, it was difficult for the chips to be finely divided. From this, it is difficult to say that the chip disposability evaluated as good in the disclosure of Patent Document 1 is excellent enough to satisfy the current chip disposability requirements.
本発明は、上記の課題に鑑みてなされたものであり、その目的とするところは、安定した品質及び性能の焼結体を作製し得る鉄基粉末冶金用混合粉を提供することである。 This invention is made | formed in view of said subject, The place made into the objective is providing the mixed powder for iron-base powder metallurgy which can produce the sintered compact of the stable quality and performance.
上記目的を達成するため、本発明者は、特許文献1に開示の焼結体が、なぜ時間の経過とともに品質及び性能が低下するのかを調べ、この原因が、硫化カルシウム及び半水石膏(以下、これら2成分を「CaS成分」と記す)を含むことによるものであることを突き止めた。すなわち、本発明者はCaS成分が大気中の水分を吸収することで硫酸カルシウム二水和物(CaSO4・2H2O)に変化したり、CaS成分が硬化反応により凝集して63μm以上の粗粒を形成したりすることを見出した。これによりCaS成分が混合粉又は焼結体中で不均一に分散して焼結体の被削性を低下させたり、CaS成分に吸着した水分が焼結中に膨張して焼結体の強度を低下させたりすることが明らかとなった。 In order to achieve the above object, the present inventor investigated why the quality and performance of the sintered body disclosed in Patent Document 1 deteriorated with the passage of time. These two components are described as “CaS component”). That is, the present inventor changed the calcium sulfate component to calcium sulfate dihydrate (CaSO 4 .2H 2 O) by absorbing moisture in the atmosphere, or the CaS component aggregated by a curing reaction to cause a coarse particle size of 63 μm or more. It was found that grains were formed. As a result, the CaS component is dispersed unevenly in the mixed powder or the sintered body to reduce the machinability of the sintered body, or the moisture adsorbed on the CaS component expands during the sintering and the strength of the sintered body It became clear that it lowered.
上記知見に基づいて、吸湿性が低い硫酸カルシウムの結晶構造についてさらに鋭意検討することにより以下に示す本発明を完成した。 Based on the above findings, the present invention shown below was completed by further diligently examining the crystal structure of calcium sulfate having low hygroscopicity.
すなわち、本発明の鉄基粉末冶金用混合粉は、無水II型の硫酸カルシウムを含む粉末を、焼結した後のCaSの重量比が0.01重量%以上0.1重量%以下となるように含むことを特徴とする。 That is, in the mixed powder for iron-based powder metallurgy according to the present invention, the weight ratio of CaS after sintering powder containing anhydrous type II calcium sulfate is 0.01 wt% or more and 0.1 wt% or less. It is characterized by including.
無水II型の硫酸カルシウムは、吸湿性が低く、大気中の水分を吸水しないので、無水II型の硫酸カルシウムを含む粉末(「II型CaSO4粉末」とも記す)は、大気中に一定期間保管しても質量が増えることがない。このため、焼結してCaSとなる成分として、硫化カルシウム及び半水石膏ではなく、無水II型の硫酸カルシウムを含む粉末を用いることにより、焼結体の各種性能を安定して高めることができる。 Since anhydrous type II calcium sulfate has low hygroscopicity and does not absorb moisture in the atmosphere, powder containing anhydrous type II calcium sulfate (also referred to as “type II CaSO 4 powder”) is stored in the atmosphere for a certain period of time. Even if mass does not increase. For this reason, by using powder containing anhydrous type II calcium sulfate instead of calcium sulfide and hemihydrate gypsum as a component to be sintered into CaS, various performances of the sintered body can be stably improved. .
上記II型CaSO4粉末は、体積平均粒子径が0.1μm以上60μm以下であることが好ましい。このような体積平均粒子径であることにより、焼結体の被削性を高めることができる。 The type II CaSO 4 powder preferably has a volume average particle size of 0.1 μm or more and 60 μm or less. By having such a volume average particle diameter, the machinability of the sintered body can be enhanced.
上記II型CaSO4粉末の体積平均粒子径をRμmとし、焼結後の焼結体に含まれるCaSの重量比をW重量%とすると、R1/3/Wは15以上400以下であることが好ましい。この数値範囲を満たすことにより、圧環強度、被削性及び切屑処理性のいずれもが良好な焼結体を得ることができる。 When the volume average particle diameter of the type II CaSO 4 powder is R μm and the weight ratio of CaS contained in the sintered body after sintering is W wt%, R 1/3 / W is 15 or more and 400 or less. Is preferred. By satisfying this numerical range, it is possible to obtain a sintered body having good crushing strength, machinability, and chip treatability.
本発明の鉄基粉末冶金用混合粉は、Ca-Al-Si系酸化物及びCa-Mg-Si系酸化物からなる群より選択される1種以上の3元系酸化物をさらに含むことが好ましい。このような3元系酸化物を含むことにより、長時間切削における被削性を向上させることができる。 The mixed powder for iron-based powder metallurgy according to the present invention may further include one or more ternary oxides selected from the group consisting of Ca—Al—Si oxides and Ca—Mg—Si oxides. preferable. By including such a ternary oxide, the machinability in long-time cutting can be improved.
3元系酸化物と焼結した後のCaSとの重量比が3:7〜9:1であることが好ましい。このような重量比で3元系酸化物と無水II型の硫酸カルシウムを含む粉末を用いることにより、長期間切削における被削性を向上させることができる。 The weight ratio of the ternary oxide to CaS after sintering is preferably 3: 7 to 9: 1. By using a powder containing a ternary oxide and anhydrous type II calcium sulfate in such a weight ratio, the machinability in long-term cutting can be improved.
II型CaSO4粉末は、潤滑剤又はバインダによって被覆されていてもよい。 Type II CaSO 4 powder may be coated with a lubricant or a binder.
本発明は、上記鉄基粉末冶金用混合粉を焼結することによって作製された焼結体である。上記鉄基粉末冶金用混合粉を用いて作製した焼結体は、安定して被削性等の諸特性に優れている。 The present invention is a sintered body produced by sintering the mixed powder for iron-based powder metallurgy. A sintered body produced using the above mixed powder for iron-based powder metallurgy is stably excellent in various properties such as machinability.
本発明の鉄基粉末冶金用混合粉の製造方法は、二水石膏又は半水石膏を含む粉末を350℃以上900℃以下で加熱することにより無水II型の硫酸カルシウムを含む粉末を作製するステップと、前記無水II型の硫酸カルシウムを含む粉末と、鉄基粉末とを混合するステップとを含む。このようにして作製された鉄基粉末冶金用混合粉は、水分を吸水しにくいため、安定した性能を示す。 The method for producing a mixed powder for iron-based powder metallurgy according to the present invention is a step of producing a powder containing anhydrous type II calcium sulfate by heating a powder containing dihydrate gypsum or hemihydrate gypsum at 350 ° C. or more and 900 ° C. or less. And mixing the powder containing the anhydrous type II calcium sulfate and the iron-based powder. The mixed powder for iron-based powder metallurgy thus produced exhibits stable performance because it is difficult to absorb moisture.
本発明によれば、安定した性能の焼結体を作製し得る鉄基粉末冶金用混合粉を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the mixed powder for iron base powder metallurgy which can produce the sintered compact of the stable performance can be provided.
以下、本発明の鉄基粉末冶金用混合粉及びその製造方法を具体的に説明する。 Hereinafter, the mixed powder for iron-based powder metallurgy according to the present invention and the production method thereof will be described in detail.
<鉄基粉末冶金用混合粉>
本発明の鉄基粉末冶金用混合粉は、鉄基粉末と、無水II型硫酸カルシウムを含む粉末(以下「II型CaSO4粉末」とも記す)とを混合してなる混合粉である。この混合粉に、3元系酸化物、2元系酸化物、合金用粉末、黒鉛粉末、潤滑剤、バインダ等の各種添加剤を適宜添加してもよい。これら以外に、鉄基粉末冶金用混合粉の製造過程で微量の不可避不純物が含まれてもよい。本発明の鉄基粉末冶金用混合粉は、金型等に充填して成形した上で焼結することにより焼結体を得ることができる。このようにして作製された焼結体は、切削加工を施すことにより各種機械部品に使用することができる。この焼結体の用途及び製造方法は後述する。
<Mixed powder for iron-based powder metallurgy>
The mixed powder for iron-based powder metallurgy of the present invention is a mixed powder obtained by mixing an iron-based powder and a powder containing anhydrous type II calcium sulfate (hereinafter also referred to as “type II CaSO 4 powder”). Various additives such as a ternary oxide, a binary oxide, an alloy powder, a graphite powder, a lubricant, and a binder may be appropriately added to the mixed powder. In addition to these, a trace amount of inevitable impurities may be included in the production process of the mixed powder for iron-based powder metallurgy. The mixed powder for iron-based powder metallurgy according to the present invention can be obtained by filling a metal mold or the like and molding it, followed by sintering. The sintered body produced in this way can be used for various machine parts by cutting. The use and manufacturing method of this sintered body will be described later.
<鉄基粉末>
鉄基粉末は、鉄基粉末冶金用混合粉を構成する主要構成成分であり、鉄基粉末冶金用混合粉全体に対し60重量%以上の重量比率で含まれることが好ましい。なお、ここでの鉄基粉末の重量%は、鉄基粉末冶金用混合粉のうちの潤滑剤以外の総重量に占める割合を意味する。以下に各成分の重量%を規定する場合、その規定はいずれも潤滑剤を除く鉄基粉末冶金用混合粉の総重量に占める重量割合を意味するものとする。
<Iron-based powder>
The iron-based powder is a main component constituting the mixed powder for iron-based powder metallurgy, and is preferably contained in a weight ratio of 60% by weight or more with respect to the entire mixed powder for iron-based powder metallurgy. In addition, the weight% of iron-base powder here means the ratio for the total weight other than a lubricant among the mixed powder for iron-base powder metallurgy. In the following, when the weight percent of each component is defined, the definition means the weight ratio in the total weight of the iron-based powder metallurgy mixed powder excluding the lubricant.
上記鉄基粉末としては、アトマイズ鉄粉、還元鉄粉等の純鉄粉、部分拡散合金化鋼粉、完全合金化鋼粉、又は完全合金化鋼粉に合金成分を部分拡散させたハイブリッド鋼粉等を用いることができる。鉄基粉末の体積平均粒子径は50μm以上であることが好ましく、より好ましくは70μm以上である。鉄基粉末が50μm以上であると、ハンドリング性に優れる。また、鉄基粉末の体積平均粒子径は200μm以下であるのが好ましく、100μm以下がより好ましい。200μm以下であると、精密形状を成形しやすく、かつ十分な強度を得られる。 As the iron-based powder, atomized iron powder, pure iron powder such as reduced iron powder, partially diffusion alloyed steel powder, fully alloyed steel powder, or hybrid steel powder in which alloy components are partially diffused Etc. can be used. The volume average particle diameter of the iron-based powder is preferably 50 μm or more, more preferably 70 μm or more. When the iron-based powder is 50 μm or more, the handling property is excellent. The volume average particle size of the iron-based powder is preferably 200 μm or less, and more preferably 100 μm or less. When it is 200 μm or less, it is easy to form a precise shape and sufficient strength can be obtained.
<II型CaSO4粉末>
本発明の鉄基粉末冶金用混合粉は、無水II型の硫酸カルシウムを含む粉末(II型CaSO4粉末)を含むことを特徴とする。本発明は、焼結後に硫化カルシウム(CaS)となる成分を添加しさえすれば焼結体の被削性を高め得ると考えられていた従来(例えば特許文献1)の技術常識を覆すものである。すなわち、焼結してCaSとなる原料としては、二水石膏(CaSO4・2H2O)、無水III型の硫酸カルシウム(III型CaSO4)、半水石膏(CaSO4・1/2H2O)等が挙げられるが、これらの各成分は時間の経過とともに水分を吸水し、焼結体の被削性を低下させる場合がある。これに対し、無水II型の硫酸カルシウムは、吸湿性が低く、大気中の水分を吸水しないので、鉄基粉末冶金用混合粉に含まれた状態で一定期間保管しても質量が増えることがない。しかも、無水II型の硫酸カルシウムは、焼結後にCaSに変化して焼結体の被削性を高めることができる。このため、II型CaSO4粉末を含む鉄基粉末冶金用混合粉は、他の焼結してCaSとなる成分に比して、焼結体の各種性能を安定して高めることができる。
<II type CaSO 4 powder>
The mixed powder for iron-based powder metallurgy according to the present invention includes a powder containing anhydrous type II calcium sulfate (type II CaSO 4 powder). The present invention overturns the conventional technical common sense (for example, Patent Document 1), which has been considered that the machinability of a sintered body can be improved only by adding a component that becomes calcium sulfide (CaS) after sintering. is there. That is, as raw materials to be sintered into CaS, dihydrate gypsum (CaSO 4 .2H 2 O), anhydrous type III calcium sulfate (III type CaSO 4 ), hemihydrate gypsum (CaSO 4 .1 / 2H 2 O) However, each of these components may absorb moisture with time and may reduce the machinability of the sintered body. On the other hand, anhydrous type II calcium sulfate has low hygroscopicity and does not absorb moisture in the atmosphere, so the mass may increase even if it is stored for a certain period in a state of being contained in the iron-based powder metallurgy mixed powder. Absent. In addition, anhydrous type II calcium sulfate can be changed to CaS after sintering to enhance the machinability of the sintered body. For this reason, the mixed powder for iron-based powder metallurgy containing II-type CaSO 4 powder can stably improve various performances of the sintered body as compared with other components that are sintered to become CaS.
II型CaSO4粉末は、無水II型の硫酸カルシウムを主成分として含むものであるが、二水石膏(CaSO4・2H2O)、無水III型の硫酸カルシウム(III型CaSO4)、半水石膏(CaSO4・1/2H2O)等を含んでいてもよい。ただし、II型CaSO4粉末は、無水II型の硫酸カルシウムの占める重量割合が多いほど好ましく、無水II型の硫酸カルシウムの重量割合が70重量%以上であることがより好ましく、さらに好ましくは80重量%以上、特に好ましくは無水II型の硫酸カルシウムのみからなることである。また、II型CaSO4粉末は、後述する潤滑剤又はバインダによって表面が被覆されていてもよい。 Type II CaSO 4 powder contains anhydrous type II calcium sulfate as a main component, but dihydrate gypsum (CaSO 4 .2H 2 O), anhydrous type III calcium sulfate (type III CaSO 4 ), hemihydrate gypsum ( CaSO 4 · 1 / 2H 2 O) or the like may be contained. However, it is preferable that the type II CaSO 4 powder has a higher weight ratio of anhydrous type II calcium sulfate, more preferably the weight percentage of anhydrous type II calcium sulfate is 70% by weight or more, and more preferably 80% by weight. % Or more, particularly preferably consisting of anhydrous type II calcium sulfate alone. Further, the surface of the type II CaSO 4 powder may be coated with a lubricant or a binder described later.
II型CaSO4粉末は、焼結後のCaSの重量比が0.01重量%以上0.1重量%以下となるように鉄基粉末冶金用混合粉に含まれることが好ましい。II型CaSO4粉末は、より好ましくは焼結後のCaSの重量比が0.02重量%以上であり、さらに好ましくは焼結後のCaSの重量比が0.03重量%以上である。このような重量比でCaSを含む焼結体は被削性に特に優れる。一方、II型CaSO4粉末は、焼結後のCaSの重量比が0.09重量%以下、より好ましくは0.08重量%以下となるように含まれる。このような重量比でCaSを含むことにより、焼結体の強度を高めることができる。 The type II CaSO 4 powder is preferably contained in the iron-based powder metallurgy mixed powder so that the weight ratio of CaS after sintering is 0.01 wt% or more and 0.1 wt% or less. In the type II CaSO 4 powder, the weight ratio of CaS after sintering is more preferably 0.02% by weight or more, and the weight ratio of CaS after sintering is more preferably 0.03% by weight or more. A sintered body containing CaS at such a weight ratio is particularly excellent in machinability. On the other hand, type II CaSO 4 powder is contained so that the weight ratio of CaS after sintering is 0.09 wt% or less, more preferably 0.08 wt% or less. By including CaS at such a weight ratio, the strength of the sintered body can be increased.
ここで、「焼結後のCaSの重量比」とは、鉄基粉末冶金用混合粉を焼結することによって得られた焼結体に占めるCaSの重量比を意味する。この焼結後の焼結体に含まれるCaSの重量比は、焼結前に含有されるII型CaSO4粉末の重量比によって調整することができる。 Here, “weight ratio of CaS after sintering” means the weight ratio of CaS in the sintered body obtained by sintering the mixed powder for iron-based powder metallurgy. The weight ratio of CaS contained in the sintered body after sintering can be adjusted by the weight ratio of type II CaSO 4 powder contained before sintering.
焼結体に含まれるCaSの重量比は、焼結体をドリル等で加工することにより試料片を採取し、当該試料片に含まれるCaの重量を定量分析して得られたCaの重量を、CaSの重量に換算することによって算出することができる。かかる換算は、Caの原子量(40.078)で除してCaSの分子量(72.143)を積算することによって行う。Caは焼結時に反応して消失することが殆どないため、Caの重量は焼結前後で変化せず、CaとSは1:1で結合しているからである。 The weight ratio of CaS contained in the sintered body is the weight of Ca obtained by taking a sample piece by processing the sintered body with a drill or the like and quantitatively analyzing the weight of Ca contained in the sample piece. It can be calculated by converting to the weight of CaS. This conversion is performed by integrating the molecular weight of CaS (72.143) by dividing by the atomic weight of Ca (40.078). This is because Ca hardly reacts and disappears during sintering, so the weight of Ca does not change before and after sintering, and Ca and S are combined at 1: 1.
II型CaSO4粉末の体積平均粒子径は、0.1μm以上が好ましく、より好ましくは0.5μm以上であり、さらに好ましくは1μm以上である。またII型CaSO4粉末の体積平均粒子径は60μm以下が好ましく、より好ましくは30μm以下であり、さらに好ましくは20μm以下である。このような体積平均粒子径のII型CaSO4粉末は、例えば半水石膏を350℃以上900℃以下に加熱して1時間以上10時間以下保持したものを粉砕して分級することにより得ることができる。II型CaSO4粉末の体積平均粒子径が小さいほど、II型CaSO4粉末の添加量を少量にしても焼結体の被削性を向上し得る。上記体積平均粒子径は、レーザー回折式粒度分布測定装置(日機装製マイクロトラック「MODEL9320−X100」)を用いて得られた粒度分布における積算値50%の粒度D50の値である。 The volume average particle diameter of the type II CaSO 4 powder is preferably 0.1 μm or more, more preferably 0.5 μm or more, and further preferably 1 μm or more. The volume average particle size of the type II CaSO 4 powder is preferably 60 μm or less, more preferably 30 μm or less, and still more preferably 20 μm or less. Such a type II CaSO 4 powder having a volume average particle diameter can be obtained, for example, by heating and maintaining hemihydrate gypsum to 350 ° C. or more and 900 ° C. or less and pulverizing and classifying what is held for 1 hour or more and 10 hours or less. it can. As the volume average particle diameter of type II CaSO 4 powder is small, even if a small amount the amount of type II CaSO 4 powder can improve the machinability of the sintered body. The volume average particle size is a value of the particle size D 50 of 50% of the integrated value in the particle size distribution obtained using a laser diffraction particle size distribution measuring apparatus (Nikkiso Microtrack “MODEL 9320-X100”).
II型CaSO4粉末の体積平均粒子径をR(μm)とし、焼結後の焼結体に含まれるCaSの重量比をW(重量%)とすると、R1/3/Wの下限は15以上であることが好ましく、より好ましくは20以上であり、さらに好ましくは25以上である。またR1/3/Wの上限が400以下であることが好ましく、340以下であることがより好ましく、さらに好ましくは270以下である。かかる規定の技術的根拠は必ずしも明確ではないが、おそらく体積比の三乗根に比例する体積平均粒子径と重量比との関係が焼結体の諸特性と相関するであろうという本発明者の経験に基づいている。このような数値範囲を満たすことにより、圧環強度、被削性及び切屑処理性のいずれもが良好な焼結体を得ることができる。 When the volume average particle diameter of type II CaSO 4 powder is R (μm) and the weight ratio of CaS contained in the sintered body after sintering is W (wt%), the lower limit of R 1/3 / W is 15 It is preferable that it is above, More preferably, it is 20 or more, More preferably, it is 25 or more. The upper limit of R 1/3 / W is preferably 400 or less, more preferably 340 or less, and even more preferably 270 or less. The technical basis of such a definition is not necessarily clear, but the present inventor believes that the relationship between the volume average particle diameter and the weight ratio, which is proportional to the cube root of the volume ratio, probably correlates with various properties of the sintered body. Based on experience. By satisfying such a numerical range, a sintered body having good crushing strength, machinability and chip treatability can be obtained.
<3元系酸化物>
3元系酸化物は、焼結体を切削加工に長時間用いたときの被削性を向上させるために添加されてもよい。上記3元系酸化物は、II型CaSO4粉末の添加と相俟って焼結体の被削性を顕著に高め得る。ここで、3元系酸化物とは3種の元素の複合酸化物を意味し、具体的にはCa、Mg、Al、Si、Co、Ni、Ti、Mn、Fe及びZnからなる群より選択される3種の元素の複合酸化物を用いることが好ましく、より好ましくはCa-Al-Si系酸化物、Ca-Mg-Si系酸化物等である。Ca-Al-Si系酸化物としては、2CaO・Al2O3・SiO2等が挙げられる。Ca-Mg-Si系酸化物としては、2CaO・MgO・2SiO2等が挙げられる。中でも2CaO・Al2O3・SiO2を添加することが好ましい。上記2CaO・Al2O3・SiO2は、切削工具中または切削工具に施されたコーティングに含まれるTiO2と反応して、切削工具の表面に保護皮膜を形成し、切削工具の耐摩耗性を顕著に向上させることができる。
<Ternary oxide>
The ternary oxide may be added to improve machinability when the sintered body is used for cutting for a long time. The ternary oxide can remarkably enhance the machinability of the sintered body in combination with the addition of the type II CaSO 4 powder. Here, the ternary oxide means a composite oxide of three elements, specifically selected from the group consisting of Ca, Mg, Al, Si, Co, Ni, Ti, Mn, Fe and Zn. It is preferable to use a composite oxide of these three elements, more preferably a Ca—Al—Si oxide, a Ca—Mg—Si oxide, or the like. The Ca-Al-Si-based oxides, 2CaO · Al 2 O 3 · SiO 2 or the like. Examples of the Ca—Mg—Si oxide include 2CaO · MgO · 2SiO 2 . Among these it is preferable to add 2CaO · Al 2 O 3 · SiO 2. The 2CaO · Al 2 O 3 · SiO 2 reacts with TiO 2 contained in the coating applied in the cutting tool or cutting tool, forming a protective film on the surface of the cutting tool, wear resistance of the cutting tool Can be significantly improved.
3元系酸化物の形状は、特に制限されないが、球形又はそれが潰れた形状のもの、すなわち全体に丸みのある形状が好ましい。 The shape of the ternary oxide is not particularly limited, but a spherical shape or a shape in which it is crushed, that is, a shape having a round shape as a whole is preferable.
3元系酸化物の体積平均粒子径の下限は0.1μm以上が好ましく、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。体積平均粒子径が小さいほど少量の添加で焼結体の被削性を向上できる傾向がある。また、3元系酸化物の体積平均粒子径の上限は15μm以下が好ましく、より好ましくは10μm以下、さらに好ましくは9μm以下である。体積平均粒子径が大きすぎると、焼結体の被削性を向上しにくくなる。3元系酸化物の体積平均粒子径は、上記II型CaSO4粉末と同様の測定方法で測定された値である。 The lower limit of the volume average particle diameter of the ternary oxide is preferably 0.1 μm or more, more preferably 0.5 μm or more, and further preferably 1 μm or more. As the volume average particle size is smaller, there is a tendency that the machinability of the sintered body can be improved by adding a small amount. Further, the upper limit of the volume average particle diameter of the ternary oxide is preferably 15 μm or less, more preferably 10 μm or less, and still more preferably 9 μm or less. When the volume average particle diameter is too large, it becomes difficult to improve the machinability of the sintered body. The volume average particle diameter of the ternary oxide is a value measured by the same measurement method as that for the type II CaSO 4 powder.
3元系酸化物の含有量の下限は、0.01重量%以上含むことが好ましく、より好ましくは0.03重量%以上、さらに好ましくは0.05重量%以上含むことである。また、3元系酸化物の含有量の上限は、0.25重量%以下であることが好ましく、より好ましくは0.2重量%以下、さらに好ましくは0.15重量%以下である。このような重量割合で含むことにより、コストを抑制しつつ長期間の切削加工でも被削性に優れた焼結体を得ることができる。本発明のように、3元系酸化物をII型CaSO4粉末と組み合わせて用いることにより、3元系酸化物の添加量が少量でも長期間の切削加工における被削性を向上させることができる。 The lower limit of the content of the ternary oxide is preferably 0.01% by weight or more, more preferably 0.03% by weight or more, and still more preferably 0.05% by weight or more. Further, the upper limit of the content of the ternary oxide is preferably 0.25% by weight or less, more preferably 0.2% by weight or less, and further preferably 0.15% by weight or less. By including in such a weight ratio, a sintered body excellent in machinability can be obtained even during long-term cutting while suppressing cost. By using a ternary oxide in combination with II-type CaSO 4 powder as in the present invention, the machinability in long-term cutting can be improved even if the addition amount of the ternary oxide is small. .
3元系酸化物と焼結後のCaSとの重量比は1:9〜9:1の割合で含まれることが好ましく、より好ましくは3:7〜9:1、さらに好ましくは4:6〜7:3である。このような重量比で両成分を含むことにより、焼結体の被削性を顕著に向上させることができる。 The weight ratio of the ternary oxide to the sintered CaS is preferably included in a ratio of 1: 9 to 9: 1, more preferably 3: 7 to 9: 1, and still more preferably 4: 6 to 7: 3. By including both components in such a weight ratio, the machinability of the sintered body can be significantly improved.
<2元系酸化物>
2元系酸化物は、焼結体を切削加工に用いたときの切削初期の被削性を向上させるために添加されてもよい。ここで、2元系酸化物とは2種の元素の複合酸化物を意味し、具体的にはCa、Mg、Al、Si、Co、Ni、Ti、Mn、Fe及びZnからなる群より選択される2種の元素の複合酸化物を用いることが好ましく、より好ましくはCa-Al系酸化物、Ca-Si系酸化物等である。Ca-Al系酸化物としては、CaO・Al2O3、12CaO・7Al2O3等が挙げられる。Ca-Si系酸化物としては、2CaO・SiO2等が挙げられる。
<Binary oxide>
The binary oxide may be added to improve the machinability at the initial cutting when the sintered body is used for cutting. Here, the binary oxide means a composite oxide of two elements, specifically selected from the group consisting of Ca, Mg, Al, Si, Co, Ni, Ti, Mn, Fe and Zn. It is preferable to use a composite oxide of two kinds of elements, more preferably a Ca—Al oxide, a Ca—Si oxide, and the like. Examples of the Ca—Al-based oxide include CaO · Al 2 O 3 and 12CaO · 7Al 2 O 3 . Examples of the Ca—Si-based oxide include 2CaO · SiO 2 .
2元系酸化物の形状、体積平均粒子径及びその測定方法並びに重量割合は、上記3元系酸化物のそれらと同様であることが好ましい。 It is preferable that the shape, volume average particle diameter, measurement method, and weight ratio of the binary oxide are the same as those of the ternary oxide.
<2元系酸化物及び3元系酸化物>
本発明の鉄基粉末冶金用混合粉は、2元系酸化物及び3元系酸化物の両方を合計重量で0.02重量%以上0.3重量%以下含むことが好ましい。上記酸化物の合計重量は、0.05重量%以上であることが好ましく、より好ましくは0.1重量%以上である。コストの観点からは、2元系酸化物及び3元系酸化物の重量割合は少ないほど好ましい。また、上記酸化物の合計重量は0.25重量%以下であることが好ましく、より好ましくは0.2重量%以下である。酸化物の合計重量が0.25重量%以下であることにより、焼結体の圧環強度を十分に確保することができる。
<Binary oxide and ternary oxide>
The mixed powder for iron-based powder metallurgy of the present invention preferably contains 0.02 wt% or more and 0.3 wt% or less of both binary oxide and ternary oxide in terms of the total weight. The total weight of the oxides is preferably 0.05% by weight or more, and more preferably 0.1% by weight or more. From the viewpoint of cost, the smaller the weight ratio of the binary oxide and the ternary oxide, the better. The total weight of the oxides is preferably 0.25% by weight or less, more preferably 0.2% by weight or less. When the total weight of the oxides is 0.25% by weight or less, the crushing strength of the sintered body can be sufficiently ensured.
2元系酸化物と焼結後のCaSの重量比は1:9〜9:1の割合で含まれることが好ましく、より好ましくは3:6〜9:1、さらに好ましくは4:6〜7:3である。このような重量比で両成分を含むことにより、切削初期における被削性に優れた焼結体を作製し得る。 The weight ratio of the binary oxide and the sintered CaS is preferably included in a ratio of 1: 9 to 9: 1, more preferably 3: 6 to 9: 1, and still more preferably 4: 6 to 7. : 3. By including both components in such a weight ratio, a sintered body excellent in machinability at the initial stage of cutting can be produced.
<合金用粉末>
合金用粉末は、鉄基粉末同士の結合を促し、かつ焼結後の焼結体の強度を高めるために添加される。このような合金用粉末は、鉄基粉末冶金用混合粉全体に対して0.1重量%以上10重量%以下含まれることが好ましい。0.1重量%以上であることにより焼結体の強度を高めることができ、また10重量%以下であることにより焼結体の焼結時の寸法精度を確保することができる。
<Alloy powder>
The alloy powder is added to promote bonding between the iron-based powders and to increase the strength of the sintered body after sintering. Such an alloy powder is preferably contained in an amount of 0.1 wt% or more and 10 wt% or less with respect to the entire mixed powder for iron-based powder metallurgy. When the content is 0.1% by weight or more, the strength of the sintered body can be increased, and when the content is 10% by weight or less, dimensional accuracy during sintering of the sintered body can be ensured.
上記合金用粉末としては、銅(Cu)粉、ニッケル(Ni)粉、Mo粉、Cr粉、V粉、Si粉、Mn粉等の非鉄金属粉末、亜酸化銅粉末等が挙げられ、これらを1種単独で用いてもよいし、2種以上を併用してもよい。 Examples of the alloy powder include non-ferrous metal powders such as copper (Cu) powder, nickel (Ni) powder, Mo powder, Cr powder, V powder, Si powder, and Mn powder, and cuprous oxide powder. You may use individually by 1 type and may use 2 or more types together.
<潤滑剤>
潤滑剤は、金型内で鉄基粉末冶金用混合粉を圧縮して得た成形体を、金型から取り出しやすくするために添加される。つまり、鉄基粉末冶金用混合粉に潤滑剤を添加すると、金型から成形体を取り出すときの抜き圧を低減し、成形体の割れや金型の損傷を防止することができる。潤滑剤は、鉄基粉末冶金用混合粉に添加してもよいし、金型の表面に塗布してもよい。潤滑剤を鉄基粉末冶金用混合粉に添加する場合、潤滑剤は、鉄基粉末冶金用混合粉の重量に対し、0.01質量%以上1.5質量%以下含まれることが好ましく、0.1質量%以上1.2質量%以下含まれることがより好ましく、さらに好ましくは0.2質量%以上1.0質量%以下含まれることである。潤滑剤の含有量が0.01質量%以上であることにより、成形体の抜き圧を低減する効果を得やすい。潤滑剤の含有量が1.5質量%以下であることにより、高密度な焼結体を得やすく、強度の高い焼結体を得ることができる。
<Lubricant>
The lubricant is added in order to make it easy to take out the molded body obtained by compressing the mixed powder for iron-based powder metallurgy in the mold. That is, when a lubricant is added to the mixed powder for iron-based powder metallurgy, it is possible to reduce the drawing pressure when taking out the molded body from the mold, and to prevent cracking of the molded body and damage to the mold. The lubricant may be added to the iron-based powder metallurgy mixed powder, or may be applied to the surface of the mold. When the lubricant is added to the iron-based powder metallurgy mixed powder, the lubricant is preferably contained in an amount of 0.01% by mass to 1.5% by mass with respect to the weight of the iron-based powder metallurgy mixed powder. More preferably, it is contained in an amount of from 1% by mass to 1.2% by mass, and more preferably from 0.2% by mass to 1.0% by mass. When the content of the lubricant is 0.01% by mass or more, it is easy to obtain an effect of reducing the punching pressure of the molded body. When the content of the lubricant is 1.5% by mass or less, a high-density sintered body can be easily obtained and a high-strength sintered body can be obtained.
上記潤滑剤は、金属石鹸(ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸亜鉛等)、ステアリン酸モノアミド、脂肪酸アミド、アミドワックス、炭化水素系ワックス及び架橋(メタ)アクリル酸アルキルエステル樹脂からなる群より選択される1種以上を用いることができる。中でも、鉄基粉末表面に合金用粉末、黒鉛粉末等を付着させる性能が良好であり、かつ鉄基混合粉末の偏析を軽減しやすいという観点から、アミド系潤滑剤を用いることが好ましい。 The lubricant is selected from the group consisting of metal soap (lithium stearate, calcium stearate, zinc stearate, etc.), stearic acid monoamide, fatty acid amide, amide wax, hydrocarbon wax and cross-linked (meth) acrylic acid alkyl ester resin. One or more of them can be used. Among these, it is preferable to use an amide-based lubricant from the viewpoint that the performance of attaching the alloy powder, the graphite powder, and the like to the surface of the iron-based powder is good and the segregation of the iron-based mixed powder is easily reduced.
<バインダ>
バインダは、鉄基粉末表面に合金用粉末、黒鉛粉末等を付着させるために添加される。バインダは、ブテン系重合体、メタクリル酸系重合体等が用いられる。ブテン系重合体としては、ブテンのみからなる1−ブテン単独重合体、又はブテンとアルケンの共重合体を用いることが好ましい。上記アルケンは低級アルケンが好ましく、好ましくはエチレン又はプロピレンである。メタクリル酸系重合体は、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロへキシル、メタクリル酸エチルへキシル、メタクリル酸ラウリル、アクリル酸メチル及びアクリル酸エチルからなる群より選択される1種以上を用いることができる。
<Binder>
The binder is added to adhere the alloy powder, the graphite powder and the like to the iron-based powder surface. As the binder, a butene polymer, a methacrylic acid polymer, or the like is used. As the butene polymer, it is preferable to use a 1-butene homopolymer consisting of butene alone or a copolymer of butene and alkene. The alkene is preferably a lower alkene, preferably ethylene or propylene. The methacrylic acid polymer is selected from the group consisting of methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, ethyl hexyl methacrylate, lauryl methacrylate, methyl acrylate and ethyl acrylate 1 More than seeds can be used.
バインダの含有量は、鉄基粉末冶金用混合粉の重量に対し、0.01質量%以上0.5質量%以下含まれることが好ましく、0.05質量%以上0.4質量%以下含まれることがより好ましく、さらに好ましくは、0.1質量%以上0.3質量%以下含まれることである。 The binder content is preferably 0.01% by mass or more and 0.5% by mass or less, and more preferably 0.05% by mass or more and 0.4% by mass or less, based on the weight of the mixed powder for iron-based powder metallurgy. More preferably, it is more preferably 0.1% by mass or more and 0.3% by mass or less.
<鉄基粉末冶金用混合粉の製造方法>
本発明の鉄基粉末冶金用混合粉の作製においては、まず鉄基粉末冶金用混合粉に含まれるII型CaSO4粉末を作製する。II型CaSO4粉末は、体積平均粒子径が0.1μm以上60μm以下の半水石膏又は二水石膏を300℃以上900℃以下で加熱することによって得ることが好ましい。半水石膏又は二水石膏の体積平均粒子径は、加熱時の凝集を考慮してII型CaSO4粉末の体積平均粒子径と同等のもの又は僅かに小さいものを用いることが好ましい。加熱温度の下限は、350℃以上であることが好ましく、より好ましくは400℃以上である。また加熱温度の上限は800℃以下であることが好ましく、より好ましくは700℃以下、さらに好ましくは500℃以下である。加熱温度が900℃以下であることにより、鉄基粉末に混合する粉末として一般的な100μm以下の粒子径のII型CaSO4粉末を得ることができる。特に加熱温度が700℃以下であることにより、半水石膏又は二水石膏の凝集が生じにくく、半水石膏又は二水石膏の体積平均粒子径を維持したままII型CaSO4粉末を得ることができる。加熱温度が高い場合、強固な凝集が生じるため粉砕工程を行うことが好ましい。加熱温度が300℃以上であることにより、半水石膏又は二水石膏の水分を脱水し、II型CaSO4粉末とすることができる。加熱温度が低い場合、無水II型CaSO4ではなく無水III型CaSO4が形成されることがあるため好ましくない。
<Method for producing mixed powder for iron-based powder metallurgy>
In the preparation of the mixed powder for iron-based powder metallurgy according to the present invention, first, a type II CaSO 4 powder contained in the mixed powder for iron-based powder metallurgy is prepared. The type II CaSO 4 powder is preferably obtained by heating hemihydrate gypsum or dihydrate gypsum having a volume average particle size of 0.1 μm or more and 60 μm or less at 300 ° C. or more and 900 ° C. or less. The volume average particle diameter of hemihydrate gypsum or dihydrate gypsum is preferably the same or slightly smaller than the volume average particle diameter of type II CaSO 4 powder in consideration of aggregation during heating. The lower limit of the heating temperature is preferably 350 ° C. or higher, more preferably 400 ° C. or higher. Moreover, it is preferable that the upper limit of heating temperature is 800 degrees C or less, More preferably, it is 700 degrees C or less, More preferably, it is 500 degrees C or less. When the heating temperature is 900 ° C. or less, a type II CaSO 4 powder having a particle diameter of 100 μm or less, which is a typical powder to be mixed with the iron-based powder, can be obtained. In particular, when the heating temperature is 700 ° C. or less, it is difficult for agglomeration of hemihydrate gypsum or dihydrate gypsum, and it is possible to obtain type II CaSO 4 powder while maintaining the volume average particle diameter of hemihydrate gypsum or dihydrate gypsum. it can. When the heating temperature is high, strong agglomeration occurs, so that the pulverization step is preferably performed. When the heating temperature is 300 ° C. or higher, the water content of the hemihydrate gypsum or dihydrate gypsum can be dehydrated to obtain a type II CaSO 4 powder. If the heating temperature is low, anhydrous III-type CaSO 4 may be formed instead of anhydrous II-type CaSO 4 , which is not preferable.
加熱時間は、半水石膏又は二水石膏をII型の硫酸カルシウムに脱水し得る時間を確保することが好ましく、1時間以上8時間以下であることが好ましい。加熱温度が高いほど加熱時間を短くすることができる。加熱時間が短い場合は、半水石膏の一部がII型の硫酸カルシウムに変化せずに半水石膏のまま残存するか、又は無水III型の硫酸カルシウムに変化することがある。このため加熱時間は2時間以上であることが好ましく、より好ましくは3時間以上である。 The heating time is preferably secured for a time during which hemihydrate gypsum or dihydrate gypsum can be dehydrated into type II calcium sulfate, and preferably 1 hour or more and 8 hours or less. The higher the heating temperature, the shorter the heating time. When the heating time is short, part of the hemihydrate gypsum may remain as hemihydrate gypsum without changing to type II calcium sulfate, or may change to anhydrous type III calcium sulfate. For this reason, it is preferable that heating time is 2 hours or more, More preferably, it is 3 hours or more.
本発明の鉄基粉末冶金用混合粉は、例えば機械撹拌式混合機を用いて、鉄基粉末と、上記で作製したII型CaSO4粉末とを混合することにより作製することができる。これらの粉末に加えて、3元系酸化物、合金用粉末、黒鉛粉末、潤滑剤、2元系酸化物、バインダ等の各種添加剤を適宜添加してもよい。上記機械撹拌式混合器としては、例えば、ハイスピードミキサー、ナウターミキサー、V型混合機、ダブルコーンブレンダー等が挙げられる。上記各粉末の混合順序は特に限定されない。混合温度は、特に限定されないが、混合工程で鉄基粉末の酸化を抑制する観点から150℃以下が好ましい。 The mixed powder for iron-based powder metallurgy according to the present invention can be produced by mixing the iron-based powder and the type II CaSO 4 powder produced above using, for example, a mechanical stirring mixer. In addition to these powders, various additives such as ternary oxides, alloy powders, graphite powders, lubricants, binary oxides, and binders may be added as appropriate. Examples of the mechanical stirring mixer include a high speed mixer, a nauter mixer, a V-type mixer, and a double cone blender. The order of mixing the powders is not particularly limited. The mixing temperature is not particularly limited, but is preferably 150 ° C. or lower from the viewpoint of suppressing oxidation of the iron-based powder in the mixing step.
<焼結体の製造方法>
上記で作製した鉄基粉末冶金用混合粉を金型に充填した後、300MPa以上1200MPa以下の圧力をかけることによって圧粉成形体を製造する。このときの成形温度は、25℃以上150℃以下であることが好ましい。
<Method for producing sintered body>
After the mixed powder for iron-based powder metallurgy prepared above is filled in a mold, a compacted body is manufactured by applying a pressure of 300 MPa to 1200 MPa. The molding temperature at this time is preferably 25 ° C. or higher and 150 ° C. or lower.
上記で作製した圧粉成形体を、通常の焼結方法によって焼結することにより焼結体を得ることができる。焼結条件は、非酸化性雰囲気又は還元性雰囲気であればよいが、窒素雰囲気、窒素及び水素の混合雰囲気、炭化水素等の雰囲気下、1000℃以上1300℃以下の温度で5分以上60分以下の焼結を行なうことが好ましい。 A sintered compact can be obtained by sintering the compacting body produced above by a normal sintering method. The sintering condition may be a non-oxidizing atmosphere or a reducing atmosphere, but under a nitrogen atmosphere, a mixed atmosphere of nitrogen and hydrogen, an atmosphere of hydrocarbon, etc., at a temperature of 1000 ° C. to 1300 ° C. for 5 minutes to 60 minutes. It is preferable to perform the following sintering.
<焼結体>
上記のようにして作製した焼結体は、必要に応じて切削工具等の種々の工具で加工することによって、自動車、農機具、電動工具、家電製品等の機械部品として使用することができる。上記焼結体を加工する切削工具としては、たとえばドリル、エンドミル、フライス加工用切削工具、旋削加工用切削工具、リーマ、タップ等を挙げることができる。
<Sintered body>
The sintered body produced as described above can be used as machine parts such as automobiles, agricultural equipment, electric tools, and home appliances by processing with various tools such as cutting tools as necessary. Examples of the cutting tool for processing the sintered body include a drill, an end mill, a milling cutting tool, a turning cutting tool, a reamer, and a tap.
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.
(実施例1)
まず、市販の半水石膏の粉末を篩により分級して−63/+45μm(体積平均粒子径54μm)とした。分級した半水石膏を、大気加熱炉において350℃で5時間加熱することにより無水II型の硫酸カルシウム粉末(II型CaSO4粉末)を得た。このII型CaSO4粉末を篩により分級して−63/+45μm(体積平均粒子径54μm)とした。得られたII型CaSO4粉末の収率は100%であった。この収率は、加熱後のII型CaSO4粉末の重量に対し、その重量から分級により除かれたII型CaSO4粉末の重量を引いた重量の百分率を算出することにより得た値である。
Example 1
First, commercially available hemihydrate gypsum powder was classified with a sieve to obtain −63 / + 45 μm (volume average particle diameter of 54 μm). The classified hemihydrate gypsum was heated at 350 ° C. for 5 hours in an atmospheric heating furnace to obtain anhydrous type II calcium sulfate powder (type II CaSO 4 powder). This type II CaSO 4 powder was classified with a sieve to obtain −63 / + 45 μm (volume average particle diameter 54 μm). The yield of the obtained type II CaSO 4 powder was 100%. This yield is a value obtained by calculating the percentage of the weight of the type II CaSO 4 powder after heating minus the weight of the type II CaSO 4 powder removed by classification from the weight.
次に、純鉄粉(製品名:アトメル300M(株式会社神戸製鋼所製))に対して、2重量%の銅粉末(製品名:CuATW−250(福田金属箔粉工業株式会社製))と、0.8重量%の黒鉛粉(製品名CPB(日本黒鉛工業株式会社製))と、0.75重量%のアミド系潤滑剤(アクラワックスC(LONZA社製))と、上記で作製したII型CaSO4粉末と、を混合することにより鉄基粉末冶金用混合粉を作製した。黒鉛粉は、焼結後の炭素量が0.75重量%となるような分量を添加した。II型CaSO4粉末は、焼結後のCaSの重量が0.5重量%となるような分量を添加した。 Next, with respect to pure iron powder (product name: Atmel 300M (manufactured by Kobe Steel, Ltd.)), 2% by weight of copper powder (product name: CuATW-250 (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.)) and 0.8 wt% graphite powder (product name CPB (manufactured by Nippon Graphite Industry Co., Ltd.)) and 0.75 wt% amide-based lubricant (Accra Wax C (manufactured by LONZA)) A mixed powder for iron-based powder metallurgy was prepared by mixing II type CaSO 4 powder. The graphite powder was added in an amount such that the amount of carbon after sintering was 0.75% by weight. The type II CaSO 4 powder was added in an amount such that the weight of CaS after sintering was 0.5% by weight.
上記鉄基粉末冶金用混合粉を用いて2種の焼結体を作製した。1つは、作製直後の鉄基粉末冶金用混合粉を用いて作製した焼結体(以下「直後焼結体」と記す)であり、もう1つは、鉄基粉末冶金用混合粉を作製から10日間、大気中に保管したものを用いて作製した焼結体(以下「10日後焼結体」と記す)である。 Two types of sintered bodies were prepared using the iron-based powder metallurgy mixed powder. One is a sintered body (hereinafter referred to as “immediately sintered body”) prepared using a mixed powder for iron-based powder metallurgy immediately after production, and the other is a mixed powder for iron-based powder metallurgy. 1 to 10 days from the date of storage in the air (hereinafter referred to as “sintered body after 10 days”).
直後焼結体の製造手順は、まず作製直後の鉄基粉末冶金用混合粉を金型に充填し、外径64mm、内径24mm、厚み20mmのリング形状で、成形密度が7.00g/cm3となるように試験片を成形した。次に、このリング形状の試験片を10体積%のH2-N2雰囲気下で1130℃で30分間焼結することにより焼結体を作製した。一方、10日後焼結体の作製手順は、鉄基粉末冶金用混合粉を作製してから10日間大気下に放置したものを金型に充填したことが異なる他は直後焼結体と同様にして焼結体を作製した。 Immediately after the production process of the sintered body, the mixed powder for iron-based powder metallurgy immediately after production was filled in a mold, and the ring shape was an outer diameter of 64 mm, an inner diameter of 24 mm, and a thickness of 20 mm, and the molding density was 7.00 g / cm 3 A test piece was molded so that Next, this ring-shaped test piece was sintered at 1130 ° C. for 30 minutes in a 10 volume% H 2 —N 2 atmosphere to produce a sintered body. On the other hand, the procedure for preparing the sintered body after 10 days was the same as that of the immediately after sintered body, except that the mold was filled with iron-based powder metallurgy mixed powder and left in the atmosphere for 10 days. Thus, a sintered body was produced.
(実施例2〜8)
半水石膏の粉末の加熱温度を、表1の「熱処理温度」の欄に示すように代えたことが異なる他は実施例1と同様にして焼結体を作製した。
(Examples 2 to 8)
A sintered body was produced in the same manner as in Example 1 except that the heating temperature of the hemihydrate gypsum powder was changed as shown in the column of “Heat treatment temperature” in Table 1.
(比較例1〜3)
無水II型の硫酸カルシウムを、表1の「CaS成分」の欄に示す材料に変更したことが異なる他は実施例1と同様にして焼結体を作製した。比較例1は、無水II型の硫酸カルシウムを添加しなかったことが異なる他は実施例1と同様にして焼結体を作製した。
(Comparative Examples 1-3)
A sintered body was produced in the same manner as in Example 1, except that anhydrous type II calcium sulfate was changed to the material shown in the column “CaS component” in Table 1. Comparative Example 1 produced a sintered body in the same manner as in Example 1 except that anhydrous type II calcium sulfate was not added.
<評価>
表1において、成形体密度、焼結体密度、圧環強度及び工具摩耗量の評価結果を「直後焼結体/10日後焼結体」として記した。かかる表記は、スラッシュを挟んで左側の値が直後焼結体の評価結果であり、スラッシュを挟んで右側の値が10日後焼結体の評価結果である。
<Evaluation>
In Table 1, the evaluation results of the green body density, the sintered body density, the crushing strength, and the tool wear amount are shown as “immediately sintered body / 10 days after sintered body”. In this notation, the value on the left side with the slash sandwiched is the evaluation result of the sintered body immediately after, and the value on the right side with the slash sandwiched is the evaluation result of the sintered body after 10 days.
各実施例及び各比較例の直後焼結体及び10日後焼結体の成形体密度及び焼結体密度は、日本粉末冶金工業会規格(JPMA M 01)に準じて測定した値を採用した。また圧環強度は各実施例及び各比較例の各焼結体をJIS Z 2507―2000に準じて測定した値を採用した。圧環強度が高いほど、焼結体が破壊されにくく、強度が高いことを示している。 The values measured according to Japan Powder Metallurgy Industry Association Standard (JPMA M 01) were adopted for the compact density and sintered density of the sintered bodies immediately after each Example and each Comparative Example and after 10 days. For the crushing strength, a value obtained by measuring each sintered body of each example and each comparative example according to JIS Z 2507-2000 was adopted. It shows that the higher the crushing strength, the harder the sintered body is broken and the higher the strength.
各実施例及び各比較例で作製した焼結体を用いて、サーメットチップ(ISO型番:SNGN120408 ノンブレーカ)を使用して、周速160m/min、切込み0.5mm/pass、送り0.1mm/rev、乾式の条件で1150m旋削したときの、切削工具の工具摩耗量(μm)を工具顕微鏡により測定した。その結果を表1の「工具摩耗量」の欄に示している。なお、工具摩耗量の値が小さいほど焼結体の被削性が優れることを示している。 Using the sintered body produced in each example and each comparative example, using a cermet chip (ISO model number: SNGN120408 non-breaker), peripheral speed 160 m / min, cutting 0.5 mm / pass, feed 0.1 mm / The tool wear amount (μm) of the cutting tool when turning 1150 m under rev and dry conditions was measured with a tool microscope. The result is shown in the column of “Tool wear” in Table 1. In addition, it has shown that the machinability of a sintered compact is excellent, so that the value of tool wear amount is small.
表1に示す各実施例及び各比較例の結果から、各実施例のようにCaS成分としてII型CaSO4粉末を含むことにより、直後焼結体及び10日後焼結体の各種特性(焼結体密度、圧環強度及び工具摩耗量)がほぼ同等になることがわかった。一方、比較例2及び3は、CaS成分としてCaS単体又は半水石膏を含むものであるため、10日後焼結体の各種特性が直後焼結体のそれに比して著しく劣化していた。 From the results of each Example and each Comparative Example shown in Table 1, by including II-type CaSO 4 powder as a CaS component as in each Example, various characteristics (sintered) It was found that the body density, the crushing strength, and the amount of tool wear were almost equal. On the other hand, since Comparative Examples 2 and 3 contain CaS alone or hemihydrate gypsum as the CaS component, the various properties of the sintered body after 10 days were significantly deteriorated compared to those of the immediately sintered body.
比較例2及び3において10日後焼結体の品質及び性能が劣化した原因は、鉄基粉末冶金用混合粉を10日間放置している間に、鉄基粉末冶金用混合粉中のCaS又は半水石膏が水分を吸水したことによるものと考えられる。つまり、比較例2及び3では、10日の大気下の保管中に鉄基粉末冶金用混合粉中のCaS単体又は半水石膏が水分を吸水したことにより、焼結体の密度が低下したり、圧環強度が低下したりしたものと考えられる。なお、比較例1は、CaS成分を含まないものであるため、直後焼結体も10日後焼結体も工具摩耗量が著しく高く、焼結体の被削性が顕著に低い。 The reason why the quality and performance of the sintered body deteriorated after 10 days in Comparative Examples 2 and 3 was that CaS in the iron-based powder metallurgy mixed powder or half-sintered while the iron-based powder metallurgy mixed powder was left for 10 days. This is probably because the water gypsum absorbed water. In other words, in Comparative Examples 2 and 3, the density of the sintered body decreases due to the CaS simple substance or hemihydrate gypsum in the mixed powder for iron-based powder metallurgy absorbing water during storage in the atmosphere for 10 days. It is considered that the crushing strength has decreased. Since Comparative Example 1 does not contain a CaS component, both the immediately sintered body and the sintered body after 10 days have significantly high tool wear, and the machinability of the sintered body is significantly low.
また実施例8の10日後焼結体は、実施例1〜7のそれに比して、直後焼結体よりも各種性能が劣化している。この原因は、実施例8の半水石膏に対する加熱温度が実施例1〜7に比して低かったことにより、半水石膏の一部がII型の硫酸カルシウムに変化せず、III型の硫酸カルシウムに変化したか又は半水石膏のままで残り、これらの成分が吸湿性を示したことによるものと考えられる。ただし、実施例8で得られた焼結体の各種性能の安定性は、比較例1〜3のそれに比して格段に優れている。このため、実施例8のように、半水石膏の全部をII型の硫酸カルシウムにされていなくても、焼結体の安定性を高める効果を得ることができることが明らかとなった。 Further, the sintered body after 10 days of Example 8 has various performances deteriorated as compared with those of Examples 1 to 7 as compared with the immediately after sintered body. This is because the heating temperature for the hemihydrate gypsum of Example 8 was lower than that of Examples 1-7, so that part of the hemihydrate gypsum did not change to type II calcium sulfate, and type III sulfuric acid. This may be due to the change to calcium or remaining as hemihydrate gypsum and the hygroscopic nature of these components. However, the stability of various performances of the sintered body obtained in Example 8 is remarkably superior to that of Comparative Examples 1 to 3. For this reason, as in Example 8, it was revealed that the effect of improving the stability of the sintered body can be obtained even if the entire hemihydrate gypsum is not made of type II calcium sulfate.
表1の実施例1〜7の「収率」に着目すると、半水石膏の加熱温度が高いほど収率が低下する傾向にある。この原因は、加熱温度を高くするほどII型の硫酸カルシウムが凝集して大型の粒状物となり、当該大型の粒状物が分級によって除かれたことによるものと考えられる。よって、II型の硫酸カルシウムからなる粉末を効率よく得るためには、半水石膏の加熱温度を350℃以上600℃以下にすることが好ましいことが明らかとなった。 When attention is paid to the “yield” of Examples 1 to 7 in Table 1, the yield tends to decrease as the heating temperature of the hemihydrate gypsum increases. The cause of this is considered to be that the higher the heating temperature, the more the II-type calcium sulfate agglomerates into large particles, and the large particles were removed by classification. Therefore, in order to efficiently obtain a powder composed of II-type calcium sulfate, it has become clear that the heating temperature of the hemihydrate gypsum is preferably 350 ° C. or higher and 600 ° C. or lower.
表1に示す結果から、CaS成分としてII型CaSO4粉末を含むことにより、直後焼結体及び10日後焼結体の各種特性(焼結体密度、圧環強度及び工具摩耗量)がほぼ同等になり、焼結体の品質及び性能が安定していることが明らかとなり、本発明の効果が示された。 From the results shown in Table 1, by including type II CaSO 4 powder as the CaS component, various properties (sintered body density, pressure ring strength and tool wear amount) of the sintered body immediately after and the sintered body after 10 days are almost equal. It became clear that the quality and performance of the sintered body were stable, and the effect of the present invention was shown.
(実施例9〜29)
II型CaSO4粉末の体積平均粒子径及び焼結後のCaSの重量比を、表2の「体積平均粒子径」及び「CaS重量比」の欄に示すように代えたことが異なる他は実施例1と同様にして焼結体を作製し、実施例1と同様の方法によって各項目を評価した。その結果を表2に示す。各実施例で用いたII型CaSO4粉末の体積平均粒子径の調整は、加熱処理したII型CaSO4粉末に対して種々の粉砕及び分級をすることにより行った。
(Examples 9 to 29)
Implementation was performed except that the volume average particle diameter of type II CaSO 4 powder and the weight ratio of CaS after sintering were changed as shown in the columns of “volume average particle diameter” and “CaS weight ratio” in Table 2. A sintered body was produced in the same manner as in Example 1, and each item was evaluated by the same method as in Example 1. The results are shown in Table 2. Adjustment of the volume average particle diameter of the type II CaSO 4 powder used in each example was performed by variously crushing and classifying the heat-treated type II CaSO 4 powder.
なお、実施例9〜29においても上記実施例1と同様、直後焼結体及び10日後焼結体の2種を作製してそれぞれの特性を評価したが、全ての評価項目において両測定値が同一又は無視できる程度の微差であったため、表2においては1つの測定値のみを記した。したがって、実施例9〜29の鉄基粉末冶金用混合粉を用いて作製した焼結体は、品質及び性能が安定していることが明らかとなり、本発明の効果が示された。 In Examples 9 to 29, as in Example 1 above, two types of sintered body immediately after and sintered body after 10 days were prepared and the respective characteristics were evaluated. Since it was the same or negligible difference, only one measured value is shown in Table 2. Therefore, it became clear that the sintered compact produced using the mixed powder for iron-base powder metallurgy of Examples 9-29 was stable in quality and performance, and the effects of the present invention were shown.
表2の「切屑処理性」は、サーメットチップを用いた旋削により生じた切り屑の外観を以下の評価基準に基づいて評価した結果である。 “Chip treatability” in Table 2 is a result of evaluating the appearance of chips generated by turning using a cermet tip based on the following evaluation criteria.
(切屑処理性の評価基準)
◎:スプリング状の巻数(カール数)が1巻以下である(例えば図1)。
○:カール数が1〜3巻き以内である。
×:カール数が3巻きを超えている(例えば図2)。
(Evaluation criteria for chip disposal)
A: The number of spring-like turns (the number of curls) is 1 or less (for example, FIG. 1).
○: The curl number is within 1 to 3 turns.
X: The curl number exceeds 3 windings (for example, FIG. 2).
図1に示すように切り屑が細かく分断されていると、切削加工機の切り屑ホッパーの清掃頻度を抑えることができる。一方、図2に示すように切り屑がコイル状に長く延びていると、切り屑ホッパー内で切り屑が複雑に絡み合って清掃の手間が煩雑となったり、切り屑ホッパーの清掃頻度が多くなったりして生産効率が低下するため、工具摩耗量が低減したとしても長時間の自動運転ができず省力化・効率化につながりにくい。 When the chips are finely divided as shown in FIG. 1, the frequency of cleaning the chip hopper of the cutting machine can be suppressed. On the other hand, as shown in FIG. 2, if the chips extend long in a coil shape, the chips are complicatedly entangled in the chip hopper, and the trouble of cleaning becomes complicated, or the frequency of cleaning the chip hopper increases. Therefore, even if the amount of tool wear is reduced, long-term automatic operation is not possible, and it is difficult to save labor and improve efficiency.
表2に示す結果から、R1/3/Wが20以上340以下であることにより、圧環強度、工具摩耗量及び切屑処理性のいずれもが優れた焼結体を作製することができることが明らかとなった。一方、R1/3/Wが20未満であると切屑処理性が低下する傾向、R1/3/Wが340を超えると圧環強度が高くなる傾向、及び工具摩耗量が著しく増える傾向が確認された。 From the results shown in Table 2, it is clear that when R 1/3 / W is 20 or more and 340 or less, it is possible to produce a sintered body having excellent crushing strength, tool wear amount, and chip treatability. It became. On the other hand, if R 1/3 / W is less than 20, the chip disposability tends to decrease, if R 1/3 / W exceeds 340, the crushing strength tends to increase, and the tool wear tends to increase significantly. It was done.
(実施例30〜34及び参考例1〜2)
実施例30〜34では、表3に示すようにII型CaSO4粉末の一部を、2CaO・Al2O3・SiO2又は2CaO・MgO・2SiO2に代えたことが異なる他は実施例26と同様にして焼結体を作製した。参考例1及び2では、II型CaSO4粉末の全部を、2CaO・Al2O3・SiO2又は2CaO・MgO・2SiO2にそれぞれ代えたことが異なる他は実施例26と同様にして焼結体を作製した。なお、2CaO・Al2O3・SiO2及び2CaO・MgO・2SiO2は、体積平均粒子径が2μmのものを用いた。なおまたII型CaSO4粉末は体積平均粒子径が18.4μmのものを用いた。
(Examples 30-34 and Reference Examples 1-2)
Embodiment Example 30-34, a portion of the Type II CaSO 4 powder as shown in Table 3, 2CaO · Al 2 O 3 · SiO 2 or 2CaO · MgO · 2SiO other are different that instead of 2 Example 26 A sintered body was produced in the same manner as described above. Reference Examples 1 and 2 were sintered in the same manner as in Example 26 except that all of the type II CaSO 4 powder was replaced with 2CaO · Al 2 O 3 · SiO 2 or 2CaO · MgO · 2SiO 2 , respectively. The body was made. 2CaO · Al 2 O 3 · SiO 2 and 2CaO · MgO · 2SiO 2 having a volume average particle diameter of 2 μm were used. The type II CaSO 4 powder used had a volume average particle diameter of 18.4 μm.
このようにして作製した各実施例及び各比較例の焼結体に対し、実施例26と同様の方法によって各項目を評価した。その結果を表3に示す。なお、実施例30〜34においても直後焼結体及び10日後焼結体の2種を作製してそれぞれの特性を評価したが、全ての評価項目において両測定値が同一又は無視できる程度の微差であったため、表3においては1つの測定値のみを記している。したがって、実施例30〜34の鉄基粉末冶金用混合粉を用いて作製した焼結体は、品質及び性能が安定していることが明らかとなり、本発明の効果が示された。 Each item was evaluated by the same method as in Example 26 for the sintered bodies of Examples and Comparative Examples thus produced. The results are shown in Table 3. In Examples 30 to 34, two types of sintered body immediately after and sintered body after 10 days were prepared and their characteristics were evaluated. However, both measured values were the same or negligible in all evaluation items. Because of the difference, only one measurement value is shown in Table 3. Therefore, it became clear that the quality and performance of the sintered compact produced using the mixed powder for iron-based powder metallurgy of Examples 30 to 34 were stable, and the effect of the present invention was shown.
表3に示す結果から、II型CaSO4粉末の一部を3元系酸化物に置換することにより、工具摩耗量をさらに低減でき、特に実施例32〜34の結果に示されるように、3元系酸化物と焼結後のCaSとの重量比が3:7〜9:1であるときに工具摩耗量を顕著に低減できることが明らかとなった。 From the results shown in Table 3, the amount of tool wear can be further reduced by substituting a part of the type II CaSO 4 powder with a ternary oxide, and in particular, as shown in the results of Examples 32-34, 3 It was found that the amount of tool wear can be significantly reduced when the weight ratio of the base oxide to the sintered CaS is from 3: 7 to 9: 1.
このように工具摩耗量を低減させることができる理由は、II型CaSO4粉末と3元系酸化物の併用によって両者の相互作用が生じたことによるものと考えられる。 The reason why the amount of tool wear can be reduced in this way is considered to be due to the interaction between the two types of CaSO 4 powder and the ternary oxide.
このように考える理由は、II型CaSO4粉末と3元系酸化物を併用した場合と、3元系酸化物単体の場合とで、工具すくい面の摩耗形態及び摩耗部分の成分が異なっていたからである。図3〜図8はそれぞれ、実施例26、30、32〜34及び参考例1で作製した焼結体をサーメットチップで旋削した後の工具すくい面の摩耗部分を光学顕微鏡によって観察した画像である。図4〜7に示されるように、II型CaSO4粉末と3元系酸化物を併用した場合(実施例30、32〜34)、鉄の凝着が低減し、溝状の摩耗は見られなかった。これに対し、II型CaSO4粉末を添加せず3元系酸化物のみを添加した場合(参考例1)、図8に示されるように、溝状の摩耗が形成され、鉄の凝着が観察された。また実施例30、32〜34の摩耗部分には、摩耗面全体に3元系酸化物成分が検出されたのに対し、参考例1の摩耗部分には、半月状の摩耗部分の一部にのみ3元系酸化物が検出された。なお、3元系酸化物を添加せず、II型CaSO4粉末のみを添加した場合(実施例26)では、工具すくい面の半月状の摩耗部分の面積が、実施例30、32〜34に比して小さく(工具の少ない面積で受けている)、鉄(Fe)の部分的な凝着が大きかった。かかる鉄の凝着物が工具に付着及び脱落を繰り返すことにより切削工具の摩耗が進みやすくなったり、被削材の表面が滑らかでなくなったりする場合がある。 The reason for thinking in this way is that when the type II CaSO 4 powder and the ternary oxide are used in combination, the wear form of the tool rake face and the component of the worn part differ between the case of the ternary oxide alone. is there. 3 to 8 are images obtained by observing, with an optical microscope, a worn portion of the tool rake face after turning the sintered bodies produced in Examples 26, 30, 32 to 34 and Reference Example 1 with a cermet tip. . As shown in FIGS. 4 to 7, when the II type CaSO 4 powder and the ternary oxide are used in combination (Examples 30, 32 to 34), iron adhesion is reduced and groove-like wear is observed. There wasn't. On the other hand, when only the ternary oxide is added without adding the type II CaSO 4 powder (Reference Example 1), as shown in FIG. 8, groove-like wear is formed, and iron adhesion occurs. Observed. In addition, the ternary oxide component was detected on the entire wear surface in the wear portions of Examples 30 and 32 to 34, whereas the wear portion of Reference Example 1 was a part of the half-moon-shaped wear portion. Only ternary oxides were detected. Incidentally, without addition of ternary oxides, in the case of adding only the type II CaSO 4 powder (Example 26), the area of the semicircular worn portion of the tool rake face, in Example 30,32~34 It was smaller than that (received with a small area of the tool), and the partial adhesion of iron (Fe) was large. Such iron adherents repeatedly adhere to and fall off from the tool, so that the wear of the cutting tool is likely to proceed or the surface of the work material may not be smooth.
以上の結果から、実施例30〜34のように、II型CaSO4粉末と3元系酸化物とを併用することにより、焼結体の被削性がさらに優れることが明らかとなった。
From the above results, it was clarified that the machinability of the sintered body was further improved by using the II type CaSO 4 powder and the ternary oxide as in Examples 30 to 34.
Claims (8)
焼結後の焼結体に含まれるCaSの重量比をW重量%とすると、
R1/3/Wは15以上400以下である、請求項1〜4のいずれか一項に記載の鉄基粉末冶金用混合粉。 The volume average particle size of the powder containing anhydrous type II calcium sulfate is Rμm,
When the weight ratio of CaS contained in the sintered body after sintering is W wt%,
The mixed powder for iron-based powder metallurgy according to any one of claims 1 to 4, wherein R 1/3 / W is 15 or more and 400 or less.
前記無水II型の硫酸カルシウムを含む粉末と、鉄基粉末とを混合するステップとを含む、鉄基粉末冶金用混合粉の製造方法。
Producing a powder containing anhydrous type II calcium sulfate by heating a powder containing dihydrate gypsum or hemihydrate gypsum at 350 ° C. or more and 900 ° C. or less;
A method for producing a mixed powder for iron-based powder metallurgy, comprising the step of mixing the powder containing anhydrous type II calcium sulfate and an iron-based powder.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015107557A JP6480266B2 (en) | 2015-05-27 | 2015-05-27 | Mixed powder for iron-based powder metallurgy, method for producing the same, and sintered body |
CN201680029965.0A CN107614159A (en) | 2015-05-27 | 2016-04-27 | Ferrous based powder metallurgical mixed powder and its manufacture method and the sintered body using its making |
KR1020177036350A KR102113996B1 (en) | 2015-05-27 | 2016-04-27 | Iron powder mixed powder for metallurgy and manufacturing method thereof, and sintered body produced using the same |
PCT/JP2016/063168 WO2016190037A1 (en) | 2015-05-27 | 2016-04-27 | Mixed powder for iron-based powder metallurgy, method for producing same, and sintered body produced using same |
US15/572,725 US20180104739A1 (en) | 2015-05-27 | 2016-04-27 | Mixed powder for iron-based powder metallurgy, method for producing same, and sintered body produced using same |
EP16799745.1A EP3305439B1 (en) | 2015-05-27 | 2016-04-27 | Mixed powder for iron-based powder metallurgy, method for producing same, and sintered body produced using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015107557A JP6480266B2 (en) | 2015-05-27 | 2015-05-27 | Mixed powder for iron-based powder metallurgy, method for producing the same, and sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016222945A true JP2016222945A (en) | 2016-12-28 |
JP6480266B2 JP6480266B2 (en) | 2019-03-06 |
Family
ID=57393994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015107557A Active JP6480266B2 (en) | 2015-05-27 | 2015-05-27 | Mixed powder for iron-based powder metallurgy, method for producing the same, and sintered body |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180104739A1 (en) |
EP (1) | EP3305439B1 (en) |
JP (1) | JP6480266B2 (en) |
KR (1) | KR102113996B1 (en) |
CN (1) | CN107614159A (en) |
WO (1) | WO2016190037A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6480264B2 (en) * | 2015-05-27 | 2019-03-06 | 株式会社神戸製鋼所 | Mixed powder and sintered body for iron-based powder metallurgy |
JP6634365B2 (en) * | 2016-12-02 | 2020-01-22 | 株式会社神戸製鋼所 | Method for producing mixed powder for iron-based powder metallurgy and sintered body |
JP6853440B2 (en) * | 2019-03-11 | 2021-03-31 | 三菱マテリアル株式会社 | Method for producing metallic copper and copper oxide-containing powder, metallic copper and copper oxide-containing powder, and method for producing sputtering target material and sputtering target material. |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49109207A (en) * | 1973-02-22 | 1974-10-17 | ||
JPS5312912A (en) * | 1976-07-21 | 1978-02-06 | Nippon Toki Kk | Glass sintered ceramics using gypsum |
JPH01255604A (en) * | 1988-04-05 | 1989-10-12 | Kawasaki Steel Corp | Ferrous mixed powder for powder metallurgy having excellent machinability and mechanical property after sintering |
JPH09279204A (en) * | 1996-04-17 | 1997-10-28 | Kobe Steel Ltd | Ferrous powdery mixture for powder metallurgy and production of sintered body using the same |
JP2006225200A (en) * | 2005-02-17 | 2006-08-31 | Sumitomo Osaka Cement Co Ltd | Method for producing anhydrous gypsum and production facilities of anhydrous gypsum |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5120761A (en) * | 1974-08-14 | 1976-02-19 | Nippon Steel Corp | |
JPS5840283B2 (en) * | 1975-07-29 | 1983-09-05 | 昭和電線電纜株式会社 | Thailand connection cable |
JPS60145353A (en) * | 1983-12-30 | 1985-07-31 | Dowa Teppun Kogyo Kk | Manufacture of iron-base sintered body having superior machinability |
JP3469347B2 (en) * | 1995-03-24 | 2003-11-25 | トヨタ自動車株式会社 | Sintered material excellent in machinability and method for producing the same |
CA2372780C (en) * | 2001-05-17 | 2007-02-13 | Kawasaki Steel Corporation | Iron-based mixed powder for powder metallurgy and iron-based sintered compact |
US7556791B2 (en) * | 2006-12-20 | 2009-07-07 | United States Gypsum Company | Gypsum anhydrite fillers and process for making same |
CN101328943A (en) * | 2008-07-18 | 2008-12-24 | 璧山县三泰粉末冶金有限公司 | Motorcycle clutch iron base friction sheet, preparation process and pairing sheet thereof |
JP2010236061A (en) * | 2009-03-31 | 2010-10-21 | Jfe Steel Corp | Iron based mixed powder for sintered member excellent in machinability |
JP5874700B2 (en) * | 2012-09-27 | 2016-03-02 | Jfeスチール株式会社 | Iron-based mixed powder for powder metallurgy |
WO2015008406A1 (en) * | 2013-07-18 | 2015-01-22 | Jfeスチール株式会社 | Mixed powder for powder metallurgy, method for producing same, and method for producing sintered compact of iron-based powder formulation |
CN104550923A (en) * | 2014-12-25 | 2015-04-29 | 铜陵市经纬流体科技有限公司 | Iron-base powder metallurgy material for high temperature environment valve and preparation method of iron-base powder metallurgy material |
JP6480265B2 (en) * | 2015-05-27 | 2019-03-06 | 株式会社神戸製鋼所 | Mixed powder for iron-based powder metallurgy, method for producing the same, sintered body and method for producing the same |
JP6480264B2 (en) * | 2015-05-27 | 2019-03-06 | 株式会社神戸製鋼所 | Mixed powder and sintered body for iron-based powder metallurgy |
-
2015
- 2015-05-27 JP JP2015107557A patent/JP6480266B2/en active Active
-
2016
- 2016-04-27 WO PCT/JP2016/063168 patent/WO2016190037A1/en active Application Filing
- 2016-04-27 US US15/572,725 patent/US20180104739A1/en not_active Abandoned
- 2016-04-27 EP EP16799745.1A patent/EP3305439B1/en active Active
- 2016-04-27 KR KR1020177036350A patent/KR102113996B1/en active IP Right Grant
- 2016-04-27 CN CN201680029965.0A patent/CN107614159A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49109207A (en) * | 1973-02-22 | 1974-10-17 | ||
JPS5312912A (en) * | 1976-07-21 | 1978-02-06 | Nippon Toki Kk | Glass sintered ceramics using gypsum |
JPH01255604A (en) * | 1988-04-05 | 1989-10-12 | Kawasaki Steel Corp | Ferrous mixed powder for powder metallurgy having excellent machinability and mechanical property after sintering |
JPH09279204A (en) * | 1996-04-17 | 1997-10-28 | Kobe Steel Ltd | Ferrous powdery mixture for powder metallurgy and production of sintered body using the same |
JP2006225200A (en) * | 2005-02-17 | 2006-08-31 | Sumitomo Osaka Cement Co Ltd | Method for producing anhydrous gypsum and production facilities of anhydrous gypsum |
Also Published As
Publication number | Publication date |
---|---|
EP3305439A1 (en) | 2018-04-11 |
EP3305439A4 (en) | 2018-05-30 |
EP3305439B1 (en) | 2021-05-26 |
KR102113996B1 (en) | 2020-05-22 |
US20180104739A1 (en) | 2018-04-19 |
CN107614159A (en) | 2018-01-19 |
JP6480266B2 (en) | 2019-03-06 |
KR20180008730A (en) | 2018-01-24 |
WO2016190037A1 (en) | 2016-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5604981B2 (en) | Iron-based mixed powder for powder metallurgy | |
JP6480264B2 (en) | Mixed powder and sintered body for iron-based powder metallurgy | |
JP2012144801A (en) | Mixed powder for powder metallurgy and method for producing the same, and sintered body made of iron-based powder excellent in cuttability and method for producing the same | |
JP5504963B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JP5504971B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JP6480266B2 (en) | Mixed powder for iron-based powder metallurgy, method for producing the same, and sintered body | |
JP6480265B2 (en) | Mixed powder for iron-based powder metallurgy, method for producing the same, sintered body and method for producing the same | |
US11241736B2 (en) | Powder mixture for iron-based powder metallurgy, and method for manufacturing sintered compact using same | |
JP5504863B2 (en) | Mixed powder for powder metallurgy and sintered metal powder with excellent machinability | |
JP6877375B2 (en) | Mixed powder for powder metallurgy | |
JP2007211329A (en) | Iron-based powdery mixture for powder metallurgy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6480266 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |