JP2016213237A - Electrostatic chuck and manufacturing method of the same - Google Patents

Electrostatic chuck and manufacturing method of the same Download PDF

Info

Publication number
JP2016213237A
JP2016213237A JP2015092996A JP2015092996A JP2016213237A JP 2016213237 A JP2016213237 A JP 2016213237A JP 2015092996 A JP2015092996 A JP 2015092996A JP 2015092996 A JP2015092996 A JP 2015092996A JP 2016213237 A JP2016213237 A JP 2016213237A
Authority
JP
Japan
Prior art keywords
ceramic sintered
intermediate layer
sintered body
electrostatic chuck
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015092996A
Other languages
Japanese (ja)
Other versions
JP6496604B2 (en
Inventor
俊哉 梅木
Toshiya Umeki
俊哉 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2015092996A priority Critical patent/JP6496604B2/en
Publication of JP2016213237A publication Critical patent/JP2016213237A/en
Application granted granted Critical
Publication of JP6496604B2 publication Critical patent/JP6496604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic chuck capable of making it thin and improving flatness.SOLUTION: A base body 1 is constructed by bonding a pair of base bodies 11 and 12, made of a flat tabular ceramic sintered body and an intermediate layer 14 made of a glass material. A plurality of mutually independent electrodes 2 are embedded in the intermediate layer 14. The porosity of the intermediate layer 14 is within a range of 3 to 10%.SELECTED DRAWING: Figure 1

Description

本発明は、ウエハ等の基板を保持する静電チャックに関する。   The present invention relates to an electrostatic chuck for holding a substrate such as a wafer.

3次元高集積化回路を作製する等の目的で半導体ウエハが薄型化された場合、その撓みまたは反りのため、当該ウエハを直線状のスリットを開口として有するカセットに収納することが困難になる場合がある。そこで、薄型の静電チャックの残留設置力によりウエハを静電チャックの設置面に設置保持した状態で搬送することが考えられる。たとえば、第1のグリーンシートの一主面に金属ペーストを塗布して電極層を形成し、当該電極層を挟むように第1のグリーンシートに対して第2のグリーンシートを重ねた状態で圧着し、それを焼成して薄型の静電チャックを作製する方法が提案されている(特許文献1参照)。   When a semiconductor wafer is thinned for the purpose of manufacturing a three-dimensional highly integrated circuit or the like, it is difficult to store the wafer in a cassette having a linear slit as an opening due to its bending or warping. There is. Therefore, it can be considered that the wafer is transported in a state where the wafer is installed and held on the installation surface of the electrostatic chuck by the residual installation force of the thin electrostatic chuck. For example, a metal paste is applied to one main surface of the first green sheet to form an electrode layer, and the second green sheet is stacked on the first green sheet so as to sandwich the electrode layer. A method for producing a thin electrostatic chuck by firing it has been proposed (see Patent Document 1).

しかし、グリーンシートに含まれるバインダに由来して設置面に気孔が露出し、この気孔(開気孔)に潜伏するパーティクルによってウエハが汚染される可能性があった。そこで、ガラス系材料を用いてセラミック焼結体同士を接合することにより薄型の静電チャックを作製することが考えられる。   However, since the pores are exposed on the installation surface due to the binder contained in the green sheet, there is a possibility that the wafer is contaminated by particles hidden in the pores (open pores). Therefore, it is conceivable to produce a thin electrostatic chuck by bonding ceramic sintered bodies together using a glass-based material.

特開2003−77995号公報JP 2003-77995 A

しかし、セラミックス焼結体およびガラス中間層の間の熱膨張係数の差のために接合時に応力が発生し、この応力が残留することによって薄型の静電チャックの平面度が悪化する可能性がある。   However, due to the difference in coefficient of thermal expansion between the ceramic sintered body and the glass intermediate layer, stress is generated at the time of bonding, and the flatness of the thin electrostatic chuck may be deteriorated due to the residual stress. .

そこで、本発明は、薄型化および平面度向上を図りうる静電チャックを提供することを目的とする。   Therefore, an object of the present invention is to provide an electrostatic chuck that can be thinned and improved in flatness.

本発明の静電チャックは、平板状のセラミックス焼結体からなる、一対の基体がガラス系材料からなる中間層により接合されることにより構成されている基体と、前記中間層に埋設されている独立した複数の電極と、を備え、前記中間層における気孔率が3〜10[%]の範囲に含まれていることを特徴とする。   The electrostatic chuck according to the present invention is embedded in a base body composed of a flat ceramic sintered body formed by joining a pair of base bodies with an intermediate layer made of a glass-based material, and the intermediate layer. A plurality of independent electrodes, and the porosity of the intermediate layer is included in a range of 3 to 10 [%].

本発明の静電チャックによれば、ガラス粘度が高いガラス軟化点付近で加熱することにより軟化時に発生するガスをガラス材料中に留めることで、中間層に前記のように制御された気孔を内在させ、一対の基体のそれぞれ(セラミックス焼結体)と、中間層(ガラス系材料)との熱膨張係数の差に由来する残留応力の低減が図られる。このため、静電チャックの薄型化(たとえば1〜2[mm]以下)を図りながらも、静電チャック、ひいてはそのウエハ設置面の平面度の向上が図られる。   According to the electrostatic chuck of the present invention, the gas generated at the time of softening is retained in the glass material by heating in the vicinity of the glass softening point where the glass viscosity is high. The residual stress resulting from the difference in thermal expansion coefficient between each of the pair of substrates (ceramic sintered body) and the intermediate layer (glass-based material) can be reduced. For this reason, it is possible to improve the flatness of the electrostatic chuck and thus the wafer mounting surface while reducing the thickness of the electrostatic chuck (for example, 1 to 2 [mm] or less).

前記中間層において前記複数の電極の間隙に存在する部分または前記複数の電極と前記基体の外縁との間に存在する部分における気孔率は、電極が中間層の下側に配置された状態で加熱接合されることにより気泡が電極面とは反対面に存在するように制御し、5[%]以下の範囲に含まれていることが好ましい。   In the intermediate layer, the porosity of the portion existing in the gap between the plurality of electrodes or the portion existing between the plurality of electrodes and the outer edge of the substrate is heated in a state where the electrode is disposed below the intermediate layer. It is preferable that the bubbles are controlled to be present on the surface opposite to the electrode surface by being bonded and included in a range of 5% or less.

当該構成の静電チャックによれば、複数の電極の間隙、または、電極および基体の外縁部分の間隙に存在する気孔の過多が回避されている。このため、複数の電極間、または、電極と基体の外縁部分との間の絶縁性が破壊される事態が確実に回避される。   According to the electrostatic chuck having such a configuration, excessive pores existing in the gap between the plurality of electrodes or in the gap between the electrode and the outer edge portion of the substrate are avoided. For this reason, the situation where the insulation between several electrodes or between an electrode and the outer edge part of a base | substrate is destroyed is reliably avoided.

本発明の静電チャックの製造方法は、平板状の一対のセラミック焼結体を作製する工程と、一方のセラミックス焼結体の接合面に、相互に独立している複数の電極を配置する工程と、ガラス系材料を含むシートまたは粉末成形体を挟むように前記一対のセラミックス焼結体が接合面を対向させて重ねられた状態で、当該重ね方向に5〜20[g/cm2]で加圧しながら前記ガラス系材料の軟化点+20〜軟化点+170[℃]の温度で加熱する工程と、を含んでいることを特徴とする。 The electrostatic chuck manufacturing method of the present invention includes a step of producing a pair of flat ceramic sintered bodies and a step of arranging a plurality of independent electrodes on the bonding surface of one ceramic sintered body. And in a state where the pair of ceramic sintered bodies are stacked with the bonding surfaces facing each other so as to sandwich a sheet or a powder molded body containing a glass-based material, the stacking direction is 5 to 20 [g / cm 2 ]. And heating at a temperature of the softening point + 20 to the softening point + 170 [° C.] of the glass-based material while applying pressure.

本発明の一実施形態としての静電チャックの上面図。The top view of the electrostatic chuck as one embodiment of the present invention. 図1のII−II線断面図。II-II sectional view taken on the line of FIG. 中間層の詳細に関する説明図。Explanatory drawing regarding the detail of an intermediate | middle layer.

(構成)
図1〜図3に示されている本発明の一実施形態としての静電チャックは、略円板形状の基体1と、基体1に埋設されている相互に独立した平板状の複数の電極2と、各電極2に対して電圧を印可するための複数の接続端子20と、を備えている。本実施形態では、基体1の中心を基準として配置されている8つの略扇形状の導電体のうち、周方向に数えて奇数番目に該当する相互に電気的に接続されている4つの導電体からなる一の導電体群と、周方向に数えて偶数番目に該当する相互に電気的に接続されている4つの導電体からなる他の導電体群とにより、一対の電極2が構成されている。
(Constitution)
The electrostatic chuck as one embodiment of the present invention shown in FIGS. 1 to 3 includes a substantially disc-shaped base 1 and a plurality of mutually independent flat-plate electrodes 2 embedded in the base 1. And a plurality of connection terminals 20 for applying a voltage to each electrode 2. In the present embodiment, among the eight substantially fan-shaped conductors arranged with the center of the substrate 1 as a reference, four conductors that are electrically connected to each other corresponding to the odd-numbered numbers counted in the circumferential direction. A pair of electrodes 2 is constituted by one conductor group consisting of the above and another conductor group consisting of four conductors that are electrically connected to each other evenly counted in the circumferential direction. Yes.

基体1は円板状のほか、三角形板状、矩形板状または楕円板状などのさまざまな形状であってもよい。   The substrate 1 may have various shapes such as a triangular plate shape, a rectangular plate shape, or an elliptical plate shape in addition to the disk shape.

基体1は、セラミックス焼結体からなる第1基体11および第2基体12が、ガラス系材料からなる中間層14により接合されることにより構成されている。セラミックス焼結体としては、Al23のほか、AlNなどが採用される。第1基体11および第2基体12は異なるセラミックスからなってもよいが、熱膨張係数の差による応力の低下を図るため、同一種類(かつ同一組成)のセラミックスからなることが好ましい。中間層14を構成するガラス系材料としては、石英、ソーダ石灰ガラス、硼珪酸ガラスなどが採用される。第1基体11および第2基体12の接合時の加熱による残留応力の低下を図る観点から、ソーダ石灰ガラス、硼珪酸ガラスのような低融点ガラスが用いられることが好ましい。 The base body 1 is configured by joining a first base body 11 and a second base body 12 made of a ceramic sintered body with an intermediate layer 14 made of a glass-based material. As the ceramic sintered body, AlN is used in addition to Al 2 O 3 . The first substrate 11 and the second substrate 12 may be made of different ceramics, but are preferably made of ceramics of the same type (and the same composition) in order to reduce stress due to a difference in thermal expansion coefficient. Quartz, soda-lime glass, borosilicate glass, or the like is employed as the glass-based material constituting the intermediate layer 14. From the viewpoint of reducing the residual stress due to heating at the time of joining the first substrate 11 and the second substrate 12, it is preferable to use a low-melting glass such as soda-lime glass or borosilicate glass.

ジョンソン−ラーベック力またはクーロン力によりウエハWを設置面111に設置保持する観点および基体1の全体的な機械的強度の確保の観点から、第1基体11が第2基体12よりも薄く形成されること(第2基体12が第1基体11よりも厚く形成されること)が好ましい。   The first substrate 11 is formed thinner than the second substrate 12 from the viewpoint of installing and holding the wafer W on the installation surface 111 by Johnson-Rahbek force or Coulomb force and securing the overall mechanical strength of the substrate 1. It is preferable (the second base 12 is formed thicker than the first base 11).

第1基体11の上端面111(一方の主面)がウエハWの設置面を構成する。複数の平板状の電極2が第1基体11の下端面112(他方の主面)に設けられている。接続端子20は、各電極第2基体12の下端面122まで連続している。   An upper end surface 111 (one main surface) of the first base 11 constitutes an installation surface of the wafer W. A plurality of flat electrodes 2 are provided on the lower end surface 112 (the other main surface) of the first substrate 11. The connection terminal 20 continues to the lower end surface 122 of each electrode second base 12.

中間層14の厚み方向について第1基体11の下端面112から各電極2の端面22に至るまでの第1中間層141における気孔率が5[%]以下の範囲に含まれている。第1中間層141が、複数の電極2の間隙および電極2と基体1の外縁との間隙に存在する中間層14の部分に該当する。中間層14の厚み方向について各電極2の端面22から第2基体12の上端面121(一方の主面)に至るまでの第2中間層142における気孔率が3〜10[%]の範囲に含まれている。すなわち、中間層14における気孔率が3〜10[%]の範囲に含まれている。   The porosity of the first intermediate layer 141 from the lower end surface 112 of the first base 11 to the end surface 22 of each electrode 2 in the thickness direction of the intermediate layer 14 is included in the range of 5 [%] or less. The first intermediate layer 141 corresponds to a portion of the intermediate layer 14 that exists in the gap between the plurality of electrodes 2 and in the gap between the electrode 2 and the outer edge of the substrate 1. The porosity of the second intermediate layer 142 from the end surface 22 of each electrode 2 to the upper end surface 121 (one main surface) of the second substrate 12 in the thickness direction of the intermediate layer 14 is in the range of 3 to 10%. include. That is, the porosity in the intermediate layer 14 is included in the range of 3 to 10 [%].

なお、中間層14が第1中間層141のみからなっていてもよい。すなわち、中間層14の厚さが各電極2の厚さと同一であってもよい。   The intermediate layer 14 may consist of only the first intermediate layer 141. That is, the thickness of the intermediate layer 14 may be the same as the thickness of each electrode 2.

(作製方法)
セラミックス粉末にバインダおよび水またはアルコール水溶液が添加されたうえで混錬されることでスラリーが作製される。当該スラリーが型に流し込まれ、乾燥されることで略円板状の一対のセラミックス成形体が作製される。セラミックス成型体は顆粒化したセラミックス粉末をプレス等の圧力により固めることで製作されても構わない。各セラミックス成形体は、脱脂によりバインダが除去された後、焼成されることにより、第1基体11および第2基体12のそれぞれを構成する第1セラミックス焼結体および第2セラミックス焼結体が作製される。セラミックス粉末として、平均粒径が1〜10[μm]の範囲に含まれ、かつ、純度が99.5[%]以上、より好ましくは99.9[%]以上のセラミックス粉末が用いられる。
(Production method)
A slurry is prepared by adding a binder and water or an aqueous alcohol solution to the ceramic powder and then kneading. The slurry is poured into a mold and dried to produce a pair of substantially disk-shaped ceramic molded bodies. The ceramic molded body may be manufactured by solidifying the granulated ceramic powder by pressure such as pressing. Each ceramic compact is fired after the binder is removed by degreasing, whereby the first ceramic sintered body and the second ceramic sintered body constituting each of the first base body 11 and the second base body 12 are produced. Is done. As the ceramic powder, a ceramic powder having an average particle diameter in the range of 1 to 10 [μm] and a purity of 99.5 [%] or more, more preferably 99.9 [%] or more is used.

第1セラミックス焼結体の接合面に、相互に独立している複数の電極が印刷により形成される。バルク金属(金属箔)が電極2として第1セラミックス焼結体の接合面に配置されてもよい。第2セラミックス焼結体の接合面にガラス系材料を含むシートまたは粉末成形体が貼付けられる。貼付けは、例えばセラミックス焼結体表面に塗布された糊材等により固定されることで行われる。   A plurality of independent electrodes are formed on the joint surface of the first ceramic sintered body by printing. Bulk metal (metal foil) may be disposed as the electrode 2 on the bonding surface of the first ceramic sintered body. A sheet or a powder compact containing a glass-based material is attached to the joint surface of the second ceramic sintered body. The pasting is performed by, for example, fixing with a paste material applied to the surface of the ceramic sintered body.

必要に応じてシートに含まれているバインダが脱脂により除去された後、第1セラミックス焼結体および第2セラミックス焼結体が接合面を対向させて重ねられる。そして、第1セラミック焼結体および第2セラミックス焼結体が、これらの重ね方向に5〜20[g/cm2]で加圧されながらガラス系材料の軟化点+20[℃]〜軟化点+170[℃]の温度で加熱される。接合のための加熱時間は、2〜5[hr]の範囲に含まれるように調節されることが好ましい。軟化したガラス系粉末が冷却されることによって第1セラミックス焼結体(第1基体11)および第2セラミックス焼結体(第2基体12)を接合する中間層14が構成される。 After the binder contained in the sheet is removed by degreasing as necessary, the first ceramic sintered body and the second ceramic sintered body are overlapped with the joining surfaces facing each other. And while the 1st ceramic sintered compact and the 2nd ceramic sintered compact are pressurized at 5-20 [g / cm < 2 >] in these lamination directions, the softening point of glass-type material +20 [degreeC]-softening point +170 Heated at a temperature of [° C]. The heating time for bonding is preferably adjusted so as to be included in the range of 2 to 5 [hr]. The intermediate layer 14 for joining the first ceramic sintered body (first base 11) and the second ceramic sintered body (second base 12) is formed by cooling the softened glass-based powder.

加圧・加熱工程に際して、第1セラミックス焼結体が第2セラミックス焼結体の下側に配置されてもよい。加圧・加熱工程において、第1セラミックス焼結体よりも第2セラミックス焼結体が高温になるように加熱されてもよい。たとえば、第1セラミックス焼結体に当接させる押圧部材の温度が、第2セラミックス焼結体に当接させる押圧部材の温度よりも高くなるように制御されることにより、温度差が実現される。   In the pressurizing / heating step, the first ceramic sintered body may be disposed below the second ceramic sintered body. In the pressurizing / heating step, the second ceramic sintered body may be heated to a higher temperature than the first ceramic sintered body. For example, the temperature difference is realized by controlling the temperature of the pressing member in contact with the first ceramic sintered body to be higher than the temperature of the pressing member in contact with the second ceramic sintered body. .

ガラス層(中間層14)により接合された第1セラミックス焼結体および第2セラミックス焼結体が機械加工されることにより、厚さおよび表面粗さが調節される。設置面111の表面粗さRaは0.01〜1.0[μm]の範囲に含まれるように調節される。第2セラミックス焼結体(第2基体12)の他方の主面から中間層14を経て電極2まで連通する穴が穿設され、この穴に接続端子20が設けられる。これにより、本発明の一実施形態としての静電チャックが作製される。   The thickness and the surface roughness are adjusted by machining the first ceramic sintered body and the second ceramic sintered body joined by the glass layer (intermediate layer 14). The surface roughness Ra of the installation surface 111 is adjusted to be included in the range of 0.01 to 1.0 [μm]. A hole communicating from the other main surface of the second ceramic sintered body (second base 12) to the electrode 2 through the intermediate layer 14 is formed, and the connection terminal 20 is provided in this hole. Thereby, the electrostatic chuck as one embodiment of the present invention is produced.

(実施例)
(実施例1)
平均粒径5[μm]、純度99.5%以上のアルミナ粉末を原料粉末として、φ300[mm]、厚さ1[mm]の略円板状の第1セラミックス焼結体および第2セラミックス焼結体が作製された。第1セラミックス焼結体の他方の主面にAgペーストが印刷され、図1に示されているような配置パターンを有する、厚さ10[μm]の一対の電極2が形成された。一対の電極2の最小間隔および電極2と基体1の外縁までの最小間隔がともに3[mm]に設計された。日本琺瑯釉薬(株)製PCS−F(組成:SiO2−Al2O3−B2O3−RO(Rはアルカリ成分)−CaO、ガラス軟化点:680[℃])を含む厚さ100[μm]のシートまたは粉末成形体がガラス系材料として用いられた。
(Example)
Example 1
Using alumina powder having an average particle size of 5 [μm] and a purity of 99.5% or more as a raw material powder, a substantially disc-shaped first ceramic sintered body having a diameter of 300 [mm] and a thickness of 1 [mm] and second ceramic sintered body A ligation was made. Ag paste was printed on the other main surface of the first ceramic sintered body, and a pair of electrodes 2 having a thickness of 10 [μm] having an arrangement pattern as shown in FIG. 1 was formed. Both the minimum distance between the pair of electrodes 2 and the minimum distance between the electrode 2 and the outer edge of the substrate 1 were designed to be 3 [mm]. A sheet or powder having a thickness of 100 [μm] containing PCS-F (composition: SiO 2 —Al 2 O 3 —B 2 O 3 —RO (where R is an alkali component) —CaO, glass softening point: 680 [° C.]) manufactured by Nippon Glaze Co., Ltd. The molded body was used as a glass-based material.

ガラス系材料を含むシートを挟むように重ねられた第1セラミックス焼結体および第2セラミックス焼結体が、第1セラミックス焼結体が接合炉内の下側になるように設置されて、その重なり方向について5[g/cm2]で加圧された状態で、3[hr]にわたって700[℃](ガラス軟化点+20[℃])で加熱された。これにより、厚さ0.07[mm]の中間層14が形成された。その後、第1基体11の厚さが0.30[mm]になり、第2基体12の厚さが0.63[mm]になるように第1基体11および第2基体12が加工されることにより、厚さ1.00[mm]の基体1を有する実施例1の静電チャックが作製された。 The first ceramic sintered body and the second ceramic sintered body, which are stacked so as to sandwich the sheet containing the glass-based material, are installed so that the first ceramic sintered body is on the lower side in the joining furnace, While being pressurized at 5 [g / cm 2 ] in the overlapping direction, the film was heated at 700 [° C.] (glass softening point + 20 [° C.]) for 3 [hr]. Thereby, the intermediate layer 14 having a thickness of 0.07 [mm] was formed. Thereafter, the first base 11 and the second base 12 are processed so that the thickness of the first base 11 becomes 0.30 [mm] and the thickness of the second base 12 becomes 0.63 [mm]. As a result, the electrostatic chuck of Example 1 having the substrate 1 having a thickness of 1.00 [mm] was produced.

(実施例2)
第1セラミックス焼結体および第2セラミックス焼結体が、その重なり方向について20[g/cm2]で加圧された状態で、3[hr]にわたって700[℃]で加熱されたほかは、実施例1と同様の条件にしたがって実施例2の静電チャックが作製された。
(Example 2)
The first ceramic sintered body and the second ceramic sintered body were heated at 700 [° C.] over 3 [hr] in a state where the first ceramic sintered body and the second ceramic sintered body were pressed at 20 [g / cm 2 ] in the overlapping direction, The electrostatic chuck of Example 2 was manufactured according to the same conditions as in Example 1.

(実施例3)
第1セラミックス焼結体および第2セラミックス焼結体が、その重なり方向について5[g/cm2]で加圧された状態で、3[hr]にわたって800[℃](ガラス軟化点+120[℃])で加熱されたほかは、実施例1と同様の条件にしたがって実施例3の静電チャックが作製された。
Example 3
In a state where the first ceramic sintered body and the second ceramic sintered body are pressed at 5 [g / cm 2 ] in the overlapping direction, 800 [° C.] (glass softening point + 120 [° C.] over 3 [hr]. The electrostatic chuck of Example 3 was fabricated according to the same conditions as in Example 1 except that the sample was heated in step 2).

(実施例4)
第1セラミックス焼結体および第2セラミックス焼結体が、その重なり方向について10[g/cm2]で加圧された状態で、3[hr]にわたって800[℃]で加熱されたほかは、実施例1と同様の条件にしたがって実施例4の静電チャックが作製された。
Example 4
The first ceramic sintered body and the second ceramic sintered body were heated at 800 [° C.] over 3 [hr] in a state of being pressurized at 10 [g / cm 2 ] in the overlapping direction, An electrostatic chuck of Example 4 was produced according to the same conditions as in Example 1.

(実施例5)
第1セラミックス焼結体および第2セラミックス焼結体が、その重なり方向について5[g/cm2]で加圧された状態で、3[hr]にわたって850[℃](ガラス軟化点+170[℃])で加熱され、第1基体11の厚さが0.20[mm]になり、第2基体12の厚さが0.63[mm]になるように第1基体11および第2基体12が加工されることにより、厚さ0.90[mm]の基体1に加工されるほかは、実施例1と同様の条件にしたがって実施例5の静電チャックが作製された。
(Example 5)
In a state where the first ceramic sintered body and the second ceramic sintered body are pressed at 5 [g / cm 2 ] in the overlapping direction, 850 [° C.] (glass softening point + 170 [° C.] over 3 [hr] ] And the first substrate 11 and the second substrate 12 so that the thickness of the first substrate 11 becomes 0.20 [mm] and the thickness of the second substrate 12 becomes 0.63 [mm]. In other words, the electrostatic chuck of Example 5 was manufactured according to the same conditions as in Example 1 except that the substrate 1 was processed to a thickness of 0.90 [mm].

(実施例6)
第1セラミックス焼結体および第2セラミックス焼結体が、その重なり方向について20[g/cm2]で加圧された状態で、3[hr]にわたって850[℃]で加熱されたほかは、実施例5と同様の条件にしたがって実施例6の静電チャックが作製された。
(Example 6)
The first ceramic sintered body and the second ceramic sintered body were heated at 850 [° C.] over 3 [hr] in a state of being pressurized at 20 [g / cm 2 ] in the overlapping direction, An electrostatic chuck of Example 6 was produced according to the same conditions as in Example 5.

(実施例7)
ガラス系材料が日本琺瑯釉薬(株)製4692(組成:SiO2−B2O3−R2O−RO(Rはアルカリ成分)、ガラス軟化点:630[℃])となり、第1セラミックス焼結体および第2セラミックス焼結体が、その重なり方向について5[g/cm2]で加圧された状態で、3[hr]にわたって650[℃](ガラス軟化点+20[℃])で加熱されたほかは、実施例1と同様の条件にしたがって実施例7の静電チャックが作製された。
(Example 7)
The glass-based material is 4692 (composition: SiO2-B2O3-R2O-RO (R is an alkali component), glass softening point: 630 [° C.]) manufactured by Nippon Shakuyaku Co., Ltd., and the first ceramic sintered body and the second ceramics Except that the sintered body was heated at 650 [° C.] (glass softening point + 20 [° C.]) over 3 [hr] in a state of being pressurized at 5 [g / cm 2 ] in the overlapping direction. An electrostatic chuck of Example 7 was produced according to the same conditions as in Example 1.

(実施例8)
第1セラミックス焼結体および第2セラミックス焼結体が、その重なり方向について20[g/cm2]で加圧された状態で、3[hr]にわたって750[℃](ガラス軟化点+120[℃])で加熱されたほかは、実施例7と同様の条件にしたがって実施例8の静電チャックが作製された。
(Example 8)
The first ceramic sintered body and the second ceramic sintered body are pressed at 20 [g / cm 2 ] in the overlapping direction at 750 [° C.] (glass softening point + 120 [° C.] over 3 [hr]. ] The electrostatic chuck of Example 8 was produced according to the same conditions as Example 7 except that it was heated.

(評価方法)
各実施例の静電チャックを作製する際、基体の接合時に用いられたガラス系材料、圧力および温度、ならびに、静電チャックを構成する基体1、第1基体11および第2基体12のそれぞれの厚さが表1にまとめて示されている。各実施例の静電チャックの中間層14、第1中間層141および第2中間層142のそれぞれにおける気孔率、設置面111の反り量(平面度)、ならびに、基体1の絶縁耐力の測定結果が表1にまとめて示されている。
(Evaluation method)
When manufacturing the electrostatic chuck of each example, the glass-based material, pressure and temperature used at the time of bonding the substrates, and each of the substrate 1, the first substrate 11 and the second substrate 12 constituting the electrostatic chuck. The thickness is summarized in Table 1. Measurement results of the porosity, the warpage amount (flatness) of the installation surface 111, and the dielectric strength of the substrate 1 in each of the intermediate layer 14, the first intermediate layer 141, and the second intermediate layer 142 of the electrostatic chuck of each example. Are summarized in Table 1.

設置面111に対して垂直な基体1の複数(たとえば5つ)の断面のそれぞれを観察し、当該断面において設置面111に対して平行な方向について第1中間層141および第2中間層142のそれぞれの延在長に対する、気孔の長さの比率を算出し平均化することで第1中間層141および第2中間層142のそれぞれにおける気孔率として測定された。第1中間層141における気孔率および第2中間層142における気孔率の平均値が中間層14における気孔率として測定された。設置面111の反り量は、三次元測定器により測定された。基体1の絶縁耐力は、電極間に高電圧を印加することによって測定された。   Each of a plurality of (for example, five) cross sections of the base body 1 perpendicular to the installation surface 111 is observed, and the first intermediate layer 141 and the second intermediate layer 142 are observed in a direction parallel to the installation surface 111 in the cross section. By calculating and averaging the ratio of the pore length to the respective extension lengths, the porosity in each of the first intermediate layer 141 and the second intermediate layer 142 was measured. The average value of the porosity in the first intermediate layer 141 and the porosity in the second intermediate layer 142 were measured as the porosity in the intermediate layer 14. The amount of warpage of the installation surface 111 was measured by a three-dimensional measuring device. The dielectric strength of the substrate 1 was measured by applying a high voltage between the electrodes.

表1から次のことがわかる。実施例1〜8の静電チャックによれば、接合温度がガラス軟化点+20〜ガラス軟化点+170[℃]の範囲に含まれ、かつ、接合圧力が5〜20[g/cm2]の範囲に含まれることにより、中間層14における気孔率が3〜10[%]の範囲に含まれている。このため、基体1またはその設置面111の反り量が0.33[mm]以下である。 Table 1 shows the following. According to the electrostatic chucks of Examples 1 to 8, the bonding temperature is included in the range of the glass softening point + 20 to the glass softening point + 170 [° C.], and the bonding pressure is in the range of 5 to 20 [g / cm 2 ]. As a result, the porosity of the intermediate layer 14 is included in the range of 3 to 10 [%]. For this reason, the curvature amount of the base | substrate 1 or its installation surface 111 is 0.33 [mm] or less.

実施例1および3〜8の静電チャックによれば、接合温度がガラス軟化点+20〜ガラス軟化点+170[℃]の範囲に含まれ、かつ、接合圧力が5〜20[g/cm2]の範囲に含まれることにより、第1中間層141における気孔率が5[%]以下の範囲に含まれている。このため、基体1の絶縁耐力が8[kV]以上である。特に、実施例3〜6、および8の静電チャックによれば、接合温度がガラス軟化点+120〜ガラス軟化点+170[℃]の範囲に含まれ、かつ、接合圧力が5〜20[g/cm2]の範囲に含まれることにより、第1中間層141における気孔率が4.5[%]以下の範囲に含まれている。このため、基体1の絶縁耐力が10[kV]以上とさらに高くなっている。 According to the electrostatic chucks of Examples 1 and 3 to 8, the bonding temperature is included in the range of the glass softening point + 20 to the glass softening point + 170 [° C.], and the bonding pressure is 5 to 20 [g / cm 2 ]. Thus, the porosity of the first intermediate layer 141 is included in the range of 5% or less. For this reason, the dielectric strength of the base 1 is 8 [kV] or more. In particular, according to the electrostatic chucks of Examples 3 to 6 and 8, the bonding temperature is included in the range of the glass softening point +120 to the glass softening point +170 [° C.], and the bonding pressure is 5 to 20 [g / By being included in the range of cm 2 ], the porosity of the first intermediate layer 141 is included in the range of 4.5 [%] or less. For this reason, the dielectric strength of the base 1 is further increased to 10 [kV] or more.

(比較例)
(比較例1)
第1セラミックス焼結体および第2セラミックス焼結体が、その重なり方向について20[g/cm2]で加圧された状態で、3[hr]にわたって680[℃]で加熱されたほかは、実施例1と同様の条件にしたがって比較例1の静電チャックが作製された。
(Comparative example)
(Comparative Example 1)
The first ceramic sintered body and the second ceramic sintered body were heated at 680 [° C.] over 3 [hr] in a state of being pressurized at 20 [g / cm 2 ] in the overlapping direction, The electrostatic chuck of Comparative Example 1 was manufactured according to the same conditions as in Example 1.

(比較例2)
第1セラミックス焼結体および第2セラミックス焼結体が、その重なり方向につい100[g/cm2]で加圧された状態で、3[hr]にわたって850[℃]で加熱されたほかは、実施例1と同様の条件にしたがって比較例2の静電チャックが作製された。
(Comparative Example 2)
The first ceramic sintered body and the second ceramic sintered body were heated at 850 [° C.] over 3 [hr] in a state where the first ceramic sintered body and the second ceramic sintered body were pressed at 100 [g / cm 2 ] in the overlapping direction, An electrostatic chuck of Comparative Example 2 was produced according to the same conditions as in Example 1.

(比較例3)
第1セラミックス焼結体および第2セラミックス焼結体が、その重なり方向について20[g/cm2]で加圧された状態で、3[hr]にわたって900[℃]で加熱されたほかは、実施例1と同様の条件にしたがって比較例3の静電チャックが作製された。
(Comparative Example 3)
The first ceramic sintered body and the second ceramic sintered body were heated at 900 [° C.] over 3 [hr] in a state of being pressed at 20 [g / cm 2 ] in the overlapping direction, An electrostatic chuck of Comparative Example 3 was produced according to the same conditions as in Example 1.

比較例1の静電チャックによれば、接合温度がガラス軟化点であることにより、中間層14における気孔率が10[%]を超えている。このため、基材加工中にガラス接合層から基材が剥離している。   According to the electrostatic chuck of Comparative Example 1, the porosity of the intermediate layer 14 exceeds 10 [%] because the bonding temperature is the glass softening point. For this reason, the base material has peeled from the glass bonding layer during the base material processing.

比較例2の静電チャックによれば、接合温度がガラス軟化点+170[℃]の範囲に含まれているが、接合圧力が20[g/cm2]を超えていることで中間層14における気孔率が3[%]を下回っている。このため、基材加工後の反り量が1.0[mm]と大きくなっている。 According to the electrostatic chuck of Comparative Example 2, the bonding temperature is included in the range of the glass softening point +170 [° C.], but the bonding pressure exceeds 20 [g / cm 2 ], so that the intermediate layer 14 The porosity is below 3%. For this reason, the amount of warpage after the substrate processing is as large as 1.0 [mm].

比較例3の静電チャックによれば、接合温度がガラス軟化点+170[℃]の範囲を超えていることで中間層14における気孔率が3[%]を下回っている。このため、基材加工後の反り量が1.2[mm]と大きくなっている。   According to the electrostatic chuck of Comparative Example 3, the porosity in the intermediate layer 14 is lower than 3 [%] because the bonding temperature exceeds the range of the glass softening point +170 [° C.]. For this reason, the amount of warpage after base material processing is as large as 1.2 [mm].

1‥基体、2‥電極、11‥第1基体、12‥第2基体、14‥中間層、111‥設置面、141‥第1中間層、142‥第2中間層。 DESCRIPTION OF SYMBOLS 1 ... Base | substrate, 2 ... Electrode, 11 ... 1st base | substrate, 12 ... 2nd base | substrate, 14 ... Intermediate | middle layer, 111 ... Installation surface, 141 ... 1st intermediate | middle layer, 142 ... 2nd intermediate | middle layer.

Claims (3)

平板状のセラミックス焼結体からなる一対の基体がガラス系材料からなる中間層により接合されることにより構成されている基体と、前記中間層に埋設されている独立した複数の電極と、を備え、
前記中間層における気孔率が3〜10[%]の範囲に含まれていることを特徴とする静電チャック。
A substrate configured by joining a pair of substrates made of a plate-like ceramic sintered body with an intermediate layer made of a glass material, and a plurality of independent electrodes embedded in the intermediate layer ,
The electrostatic chuck characterized in that the porosity of the intermediate layer is in the range of 3 to 10 [%].
請求項1記載の静電チャックにおいて、
前記中間層において前記複数の電極の間隙に存在する部分または前記複数の電極と前記基体の外縁との間に存在する部分における気孔率が5[%]以下の範囲に含まれていることを特徴とする静電チャック。
The electrostatic chuck according to claim 1,
In the intermediate layer, a porosity of a portion existing in a gap between the plurality of electrodes or a portion existing between the plurality of electrodes and an outer edge of the base is included in a range of 5% or less. Electrostatic chuck.
平板状の一対のセラミック焼結体を作製する工程と、
一方のセラミックス焼結体の接合面に、相互に独立している複数の電極を配置する工程と、
ガラス系材料を含むシートまたは粉末成形体を挟むように前記一対のセラミックス焼結体が接合面を対向させて重ねられ、更には複数の電極が中間層の下側に設置された状態で、当該重ね方向に5〜20[g/cm2]で加圧しながら前記ガラス系材料の軟化点+20[℃]〜当該軟化点+170[℃]の温度で加熱する工程と、を含んでいることを特徴とする静電チャックの製造方法。
Producing a pair of flat ceramic sintered bodies;
A step of arranging a plurality of independent electrodes on the joint surface of one ceramic sintered body;
In a state where the pair of ceramic sintered bodies are stacked with the joining surfaces facing each other so as to sandwich a sheet or powder molded body containing a glass-based material, and a plurality of electrodes are installed below the intermediate layer, And heating at a temperature of the softening point of the glass-based material +20 [° C.] to the softening point +170 [° C.] while pressing at 5 to 20 [g / cm 2 ] in the stacking direction. A method for manufacturing an electrostatic chuck.
JP2015092996A 2015-04-30 2015-04-30 Electrostatic chuck and manufacturing method thereof Active JP6496604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015092996A JP6496604B2 (en) 2015-04-30 2015-04-30 Electrostatic chuck and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015092996A JP6496604B2 (en) 2015-04-30 2015-04-30 Electrostatic chuck and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016213237A true JP2016213237A (en) 2016-12-15
JP6496604B2 JP6496604B2 (en) 2019-04-03

Family

ID=57549805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092996A Active JP6496604B2 (en) 2015-04-30 2015-04-30 Electrostatic chuck and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6496604B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067129A1 (en) * 2018-09-28 2020-04-02 京セラ株式会社 Wafer member, wafer system, and wafer member production method
JP2020053579A (en) * 2018-09-27 2020-04-02 京セラ株式会社 Electrostatic chuck
WO2021153145A1 (en) * 2020-01-31 2021-08-05 住友大阪セメント株式会社 Ceramic joined body, electrostatic chuck device, and method for producing ceramic joined body
WO2024058183A1 (en) * 2022-09-14 2024-03-21 京セラ株式会社 Attractive-adhesion substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286248A (en) * 1986-06-05 1987-12-12 Toto Ltd Electrostatic chuck plate and manufacture thereof
JP2001007189A (en) * 1999-06-24 2001-01-12 Shin Etsu Chem Co Ltd Electrostatic chuck and its manufacture
JP2001308075A (en) * 2000-04-26 2001-11-02 Toshiba Ceramics Co Ltd Wafer support
JP2001316174A (en) * 2000-02-21 2001-11-13 Ngk Insulators Ltd Composite material and its manufacturing method
JP2003077994A (en) * 2001-08-30 2003-03-14 Kyocera Corp Electrostatic chuck and its manufacturing method
JP2003197727A (en) * 2001-12-21 2003-07-11 Kyocera Corp Wafer mounting stage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286248A (en) * 1986-06-05 1987-12-12 Toto Ltd Electrostatic chuck plate and manufacture thereof
JP2001007189A (en) * 1999-06-24 2001-01-12 Shin Etsu Chem Co Ltd Electrostatic chuck and its manufacture
JP2001316174A (en) * 2000-02-21 2001-11-13 Ngk Insulators Ltd Composite material and its manufacturing method
JP2001308075A (en) * 2000-04-26 2001-11-02 Toshiba Ceramics Co Ltd Wafer support
JP2003077994A (en) * 2001-08-30 2003-03-14 Kyocera Corp Electrostatic chuck and its manufacturing method
JP2003197727A (en) * 2001-12-21 2003-07-11 Kyocera Corp Wafer mounting stage

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053579A (en) * 2018-09-27 2020-04-02 京セラ株式会社 Electrostatic chuck
JP7189715B2 (en) 2018-09-27 2022-12-14 京セラ株式会社 electrostatic chuck
WO2020067129A1 (en) * 2018-09-28 2020-04-02 京セラ株式会社 Wafer member, wafer system, and wafer member production method
JPWO2020067129A1 (en) * 2018-09-28 2021-09-02 京セラ株式会社 Wafer members, wafer systems, and methods for manufacturing wafer members
JP7145226B2 (en) 2018-09-28 2022-09-30 京セラ株式会社 WAFER MEMBER, WAFER SYSTEM, AND WAFER MEMBER MANUFACTURING METHOD
WO2021153145A1 (en) * 2020-01-31 2021-08-05 住友大阪セメント株式会社 Ceramic joined body, electrostatic chuck device, and method for producing ceramic joined body
JP2021125489A (en) * 2020-01-31 2021-08-30 住友大阪セメント株式会社 Ceramic joint and electrostatic chuck device
WO2024058183A1 (en) * 2022-09-14 2024-03-21 京セラ株式会社 Attractive-adhesion substrate

Also Published As

Publication number Publication date
JP6496604B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6496604B2 (en) Electrostatic chuck and manufacturing method thereof
KR20070066890A (en) Electrostatic chuck
KR20060049532A (en) Manufacturing method for sintered body with buried metallic member
WO2002042241A1 (en) Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
US20170332491A1 (en) Low-warpage ceramic carrier plate and method for production
KR20010090740A (en) Ceramic heater
JP5740637B2 (en) Ceramic bonded body and manufacturing method thereof
US10381253B2 (en) Electrostatic chuck
JP4757839B2 (en) Glassy electrostatic chuck and manufacturing method thereof
KR101475860B1 (en) Ceramic electrostatic chuck for applications of co-fired by direct bonding and method for manufacturing the same
JP2004022706A (en) Method for manufacturing ceramic multilayered substrate
TW202216638A (en) Composite sintered body, semiconductor manufacturing apparatus member and method of producing composite sintered body
JP6672244B2 (en) Manufacturing method of ceramic joined body
JP2006319344A (en) Wafer holder for semiconductor production system and semiconductor production system mounting same
JP2004079861A (en) Electrostatic chuck
JP3991887B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP4044245B2 (en) Silicon nitride ceramic heater
JP4111013B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP7316181B2 (en) electrostatic chuck
JP2020040865A (en) Manufacturing method of ceramic member
JP2011247502A (en) Setter for baking and method of baking ceramic green sheet by using the same
JP2002176096A (en) Manufacturing method of ceramics member for semiconductor treating equipment
JP4069875B2 (en) Wafer holding member
JP7265941B2 (en) zygote
KR102039802B1 (en) Ceramic body for electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6496604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250