JP2016211923A - Charging amount estimation method and charging amount estimation device - Google Patents

Charging amount estimation method and charging amount estimation device Download PDF

Info

Publication number
JP2016211923A
JP2016211923A JP2015094387A JP2015094387A JP2016211923A JP 2016211923 A JP2016211923 A JP 2016211923A JP 2015094387 A JP2015094387 A JP 2015094387A JP 2015094387 A JP2015094387 A JP 2015094387A JP 2016211923 A JP2016211923 A JP 2016211923A
Authority
JP
Japan
Prior art keywords
battery
resistance value
resistance
charge amount
ocv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015094387A
Other languages
Japanese (ja)
Other versions
JP6541412B2 (en
Inventor
望 寺西
Nozomi Teranishi
望 寺西
欣之介 板橋
Kinnosuke Itabashi
欣之介 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2015094387A priority Critical patent/JP6541412B2/en
Publication of JP2016211923A publication Critical patent/JP2016211923A/en
Application granted granted Critical
Publication of JP6541412B2 publication Critical patent/JP6541412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a charging amount estimation method capable of improving the calculation accuracy of the battery charging amount regardless of the range of the battery charging amount.SOLUTION: In the charging amount estimation method, an open-circuit voltage and a resistance value of an internal resistance of a battery 7 that is charged or discharged are successively estimated. The resistance value of the internal resistance includes a first resistance value and a second resistance value. The charging amount estimation method includes: a step of individually estimating the resistance value of the internal resistance during the charging of the battery 7 and the resistance value of the internal resistance during the discharging of the battery 7; and a step of calculating the charge rate of the battery, on the basis of one of the first and second resistance values of the resistance value of the internal resistance during the charging or discharging.SELECTED DRAWING: Figure 8

Description

本発明は、充放電を行う電池のパラメータを逐次推定する充電量推定方法及び充電量推定装置に関する。   The present invention relates to a charge amount estimation method and a charge amount estimation apparatus that sequentially estimate parameters of a battery that performs charging and discharging.

従来、充放電を行う電池の充電量又は充電率を算出するために、電池に流れる電流を積算することによって充電量を算出する、いわゆる電流積算法が用いられる。しかしながら、電流積算法は電池の充電効率の影響を受けるので、算出した充電量に含まれる誤差が大きくなる傾向がある。   Conventionally, in order to calculate a charge amount or a charge rate of a battery to be charged / discharged, a so-called current integration method is used in which a charge amount is calculated by integrating currents flowing through the battery. However, since the current integration method is affected by the charging efficiency of the battery, the error included in the calculated charge amount tends to increase.

そこで、充放電を行う電池の充電量を算出するために、2種類の周波数の交流電流を印加してそれぞれの周波数に対応する内部抵抗を算出し、算出した内部抵抗から充電量を算出することが行われている(特許文献1)。   Therefore, in order to calculate the charge amount of the battery to be charged / discharged, calculate the internal resistance corresponding to each frequency by applying alternating current of two types of frequencies, and calculate the charge amount from the calculated internal resistance (Patent Document 1).

また、充放電開始後所定時間経過後の電流と電圧とから、充電時及び放電時それぞれの内部抵抗値を算出し、算出した内部抵抗から電池の充電状態(充電量)を算出することが行われている(特許文献2)。   In addition, the internal resistance value at the time of charging and discharging is calculated from the current and voltage after the elapse of a predetermined time after the start of charging / discharging, and the state of charge (charge amount) of the battery is calculated from the calculated internal resistance. (Patent Document 2).

特開昭61-170678号公報JP-A-61-170678 特開2013-142649号公報JP 2013-142649

しかしながら、特許文献1に記載の技術においては、充電時と放電時とにおける内部抵抗値を同じであるものとして取り扱っているので、充電量がある特定の範囲である場合、充電量の算出精度が低下する場合がある。また、特許文献2に記載の技術においては、充放電開始後所定時間経過後の電流と電圧とから内部抵抗値を算出している。つまり、内部抵抗値をある周波数帯域で算出しているので、充電量がある特定の範囲である場合、充電量の算出精度が低下することがある。   However, in the technology described in Patent Document 1, since the internal resistance value at the time of charging and at the time of discharging is handled as the same, when the charge amount is within a certain range, the calculation accuracy of the charge amount is May decrease. In the technique described in Patent Document 2, the internal resistance value is calculated from the current and voltage after a predetermined time has elapsed after the start of charge / discharge. That is, since the internal resistance value is calculated in a certain frequency band, the calculation accuracy of the charge amount may be reduced when the charge amount is within a certain range.

かかる事情に鑑みてなされた本発明の目的は、充電量の範囲にかかわらず充電量の算出精度を高めることができる充電量推定方法及び充電量推定装置を提供することにある。   An object of the present invention made in view of such circumstances is to provide a charge amount estimation method and a charge amount estimation apparatus that can improve the calculation accuracy of the charge amount regardless of the range of the charge amount.

上記課題を解決するために、本発明の第1の観点に係る充電量推定方法は、
充放電を行う電池の内部抵抗の抵抗値であって第1抵抗値及び第2抵抗値を含む内部抵抗の抵抗値及び開放電圧を逐次推定する充電量推定方法において、
前記電池の充電時の内部抵抗の抵抗値と前記電池の放電時の内部抵抗の抵抗値とを個別に推定するステップと、
前記充電時又は放電時の内部抵抗の抵抗値のうち前記第1又は前記第2抵抗値のいずれか一方に基づいて前記電池の充電率を算出するステップとを含む。
In order to solve the above problem, the charge amount estimation method according to the first aspect of the present invention is:
In the charge amount estimation method for sequentially estimating the resistance value of the internal resistance including the first resistance value and the second resistance value and the open circuit voltage, which is the resistance value of the internal resistance of the battery that performs charging and discharging,
Individually estimating the resistance value of the internal resistance during charging of the battery and the resistance value of the internal resistance during discharging of the battery;
Calculating a charging rate of the battery based on one of the first resistance value and the second resistance value among the resistance values of the internal resistance at the time of charging or discharging.

また、本発明の第2の観点に係る充電量推定方法は、
前記充電時の内部抵抗の抵抗値に基づいて前記充電量を推定する。
Further, the charge amount estimation method according to the second aspect of the present invention,
The charge amount is estimated based on the resistance value of the internal resistance at the time of charging.

また、本発明の第3の観点に係る充電量推定方法は、
前記第1抵抗値は、前記第2抵抗値よりも、前記電池の電解液と電極との反応速度が速い成分を反映することを特徴とする。
Further, the charge amount estimation method according to the third aspect of the present invention,
The first resistance value reflects a component having a faster reaction rate between the electrolytic solution of the battery and the electrode than the second resistance value.

また、本発明の第4の観点に係る充電量推定方法は、
前記電池の内部抵抗は、前記電池の充電時に有効となる抵抗R0c、抵抗R1c、及び抵抗R2cを含み、
前記電池の充電時の前記第1及び第2抵抗値はそれぞれ、前記抵抗R0c及び抵抗R2cの抵抗値であることを特徴とする。
Further, the charge amount estimation method according to the fourth aspect of the present invention,
The internal resistance of the battery includes a resistor R0c, a resistor R1c, and a resistor R2c that are effective when charging the battery,
The first and second resistance values when the battery is charged are respectively the resistance values of the resistor R0c and the resistor R2c.

また、本発明の第5の観点に係る充電量推定方法は、
所定の閾値と前記電池の開放電圧の推定値とに基づいて、前記第1抵抗値及び前記第2抵抗値のいずれか一方を選択するステップをさらに含み、
前記電池の充電率を算出するステップは、前記選択するステップで選択した前記第1又は第2抵抗値のいずれか一方に基づいて前記電池の充電率を算出することを特徴とする。
Further, the charge amount estimation method according to the fifth aspect of the present invention,
Further comprising selecting one of the first resistance value and the second resistance value based on a predetermined threshold and an estimated value of the open circuit voltage of the battery;
The step of calculating the charging rate of the battery calculates the charging rate of the battery based on one of the first and second resistance values selected in the selecting step.

また、本発明の第6の観点に係る充電量推定方法は、
前記選択するステップにおいて、前記電池の開放電圧の推定値が前記所定の閾値より低い場合、前記第1抵抗値を選択することを特徴とする。
Further, the charge amount estimation method according to the sixth aspect of the present invention is:
In the selecting step, when the estimated value of the open circuit voltage of the battery is lower than the predetermined threshold, the first resistance value is selected.

また、本発明の第7の観点に係る充電量推定方法は、
前記電池の健全度を推定するステップをさらに含み、
前記内部抵抗の抵抗値は、前記電池の健全度に基づいて補正されることを特徴とする。
Further, the charge amount estimation method according to the seventh aspect of the present invention,
Further comprising estimating the health of the battery;
The resistance value of the internal resistance is corrected based on the soundness level of the battery.

また、本発明の第8の観点に係る充電量推定方法は、
前記電池の温度を測定するステップをさらに含み、
前記内部抵抗の抵抗値は、前記電池の温度に基づいて補正されることを特徴とする。
Further, the charge amount estimation method according to the eighth aspect of the present invention is:
Further comprising measuring the temperature of the battery;
The resistance value of the internal resistance is corrected based on the temperature of the battery.

上記課題を解決するために、本発明の第9の観点に係る充電量推定装置は、
充放電を行う電池の内部抵抗の抵抗値であって第1抵抗値及び第2抵抗値を含む内部抵抗の抵抗値及び開放電圧を逐次推定する充電量推定装置において、
前記電池の充電時の内部抵抗の抵抗値を推定する充電時パラメータ推定部と、
前記電池の放電時の内部抵抗の抵抗値を推定する放電時パラメータ推定部と、
前記充電時又は放電時の内部抵抗の抵抗値のうち前記第1又は前記第2抵抗値のいずれか一方に基づいて前記電池の充電率を算出する充電率推定部とを備える。
In order to solve the above problem, a charge amount estimation device according to a ninth aspect of the present invention is:
In the charge amount estimation device that sequentially estimates the resistance value of the internal resistance including the first resistance value and the second resistance value and the open circuit voltage, which is the resistance value of the internal resistance of the battery that performs charging and discharging,
A charging parameter estimator for estimating a resistance value of the internal resistance during charging of the battery;
A discharge parameter estimation unit for estimating a resistance value of the internal resistance during discharge of the battery;
A charge rate estimating unit that calculates a charge rate of the battery based on one of the first and second resistance values among the resistance values of the internal resistance during the charging or discharging.

本発明の第1の観点に係る充電量推定方法によれば、充電量の範囲にかかわらず充電量の算出精度を高めることができる。   According to the charge amount estimation method according to the first aspect of the present invention, the charge amount calculation accuracy can be increased regardless of the charge amount range.

本発明の第2の観点に係る充電量推定方法によれば、より正確な充電量を算出できる。   According to the charge amount estimation method according to the second aspect of the present invention, a more accurate charge amount can be calculated.

本発明の第3の観点に係る充電量推定方法によれば、電池内部の反応過程に即した形で充電量を算出できる。   According to the charge amount estimation method according to the third aspect of the present invention, the charge amount can be calculated in a form in accordance with the reaction process inside the battery.

本発明の第4の観点に係る充電量推定方法によれば、電池内部の反応過程により一層即した形で充電量を算出できる。   According to the charge amount estimation method according to the fourth aspect of the present invention, the charge amount can be calculated in a form more in line with the reaction process inside the battery.

本発明の第5の観点に係る充電量推定方法によれば、より正確な充電量を算出できる。   According to the charge amount estimation method according to the fifth aspect of the present invention, a more accurate charge amount can be calculated.

本発明の第6の観点に係る充電量推定方法によれば、より正確な充電量を算出できる。   According to the charge amount estimation method according to the sixth aspect of the present invention, a more accurate charge amount can be calculated.

本発明の第7の観点に係る充電量推定方法によれば、より容易に充電量を算出できる。   According to the charge amount estimation method according to the seventh aspect of the present invention, the charge amount can be calculated more easily.

本発明の第8の観点に係る充電量推定方法によれば、より容易に充電量を算出できる。   According to the charge amount estimation method according to the eighth aspect of the present invention, the charge amount can be calculated more easily.

本発明の第9の観点に係る充電量推定装置によれば、充電量の範囲にかかわらず充電量の算出精度を高めることができる。   According to the charge amount estimation device of the ninth aspect of the present invention, the charge amount calculation accuracy can be increased regardless of the range of the charge amount.

一実施形態に係る充電量推定装置の構成及び接続を示す図である。It is a figure which shows the structure and connection of the charge amount estimation apparatus which concern on one Embodiment. 電池の等価回路を示す図である。It is a figure which shows the equivalent circuit of a battery. 充電量演算部の構成を示す図である。It is a figure which shows the structure of a charge amount calculating part. 電池パラメータ推定方法を表す図である。It is a figure showing the battery parameter estimation method. 電池パラメータの抵抗値の補正係数を示す図である。It is a figure which shows the correction coefficient of the resistance value of a battery parameter. 開放電圧と電池パラメータの抵抗値との関係を示す図である。It is a figure which shows the relationship between an open circuit voltage and the resistance value of a battery parameter. 充電率と開放電圧との関係を示す図である。It is a figure which shows the relationship between a charging rate and an open circuit voltage. 一実施形態に係る充電量推定方法のフローチャートである。It is a flowchart of the charge amount estimation method according to an embodiment.

以下、本発明に係る充電量推定方法及び充電量推定装置の一実施形態について、図面を参照しながら詳細に説明する。   Hereinafter, an embodiment of a charge amount estimation method and a charge amount estimation apparatus according to the present invention will be described in detail with reference to the drawings.

(実施形態)
一実施形態に係る充電量推定方法は充電量推定装置によって実行される。充電量推定装置は、充放電を行う電池に接続され、電池の内部抵抗の抵抗値及び開放電圧(OCV)を含むパラメータと充電量とを推定する。
(Embodiment)
The charge amount estimation method according to an embodiment is executed by a charge amount estimation device. The charge amount estimation device is connected to a battery that performs charge and discharge, and estimates parameters including the resistance value of the internal resistance of the battery and the open circuit voltage (OCV) and the charge amount.

[充電量推定装置]
図1は、一実施形態に係る充電量推定装置1の構成及び電池7との接続回路を示す図である。一実施形態に係る充電量推定装置1は、温度測定部10、電圧測定部11、電流測定部12、充電量演算部13を含む。充電量演算部13は、温度測定部10、電圧測定部11、及び電流測定部12とそれぞれ接続される。
[Charging amount estimation device]
FIG. 1 is a diagram illustrating a configuration of a charge amount estimation device 1 according to an embodiment and a connection circuit with a battery 7. A charge amount estimation apparatus 1 according to an embodiment includes a temperature measurement unit 10, a voltage measurement unit 11, a current measurement unit 12, and a charge amount calculation unit 13. The charge amount calculation unit 13 is connected to the temperature measurement unit 10, the voltage measurement unit 11, and the current measurement unit 12, respectively.

電池7には充電量推定装置1の各部が接続されている。温度測定部10は電池7の温度測定箇所に接続される。電圧測定部11は、電池7に並列に接続される。電流測定部12は、電池7に直列に接続される。さらに電池7は、負荷8及び充電器9とそれぞれ並列に接続されている。負荷8は、例えば各種制御装置や、車載機器を駆動するモータ等であり、電池7が放電する電力を消費する。充電器9は、電池7を充電する方向に電流を流し、電池7を充電する。   Each part of the charge amount estimation device 1 is connected to the battery 7. The temperature measurement unit 10 is connected to the temperature measurement location of the battery 7. The voltage measuring unit 11 is connected to the battery 7 in parallel. The current measuring unit 12 is connected to the battery 7 in series. Further, the battery 7 is connected to the load 8 and the charger 9 in parallel. The load 8 is, for example, various control devices, a motor that drives an in-vehicle device, and the like, and consumes electric power that the battery 7 discharges. The charger 9 charges the battery 7 by passing a current in the direction of charging the battery 7.

一実施形態に係る充電量推定方法において充電量を推定する対象となる電池7は、充放電の電池パラメータの差が比較的大きい鉛蓄電池であるが、これに限られない。電池7は、充電可能なその他の二次電池であってもよい。   The battery 7 that is a target for estimating the charge amount in the charge amount estimation method according to the embodiment is a lead storage battery having a relatively large difference in battery parameters between charge and discharge, but is not limited thereto. The battery 7 may be another rechargeable secondary battery.

図2(a)は、充電方向と放電方向とで電池パラメータが異なる電池の等価回路を示す。図2(a)は、ダイオードを挿入して充電方向及び放電方向の電流パスを制限することによって電流の方向に応じて電池パラメータが異なることを表している。図2(b)は、図2(a)の回路において放電方向に電流を流したときに実際に電流が流れる回路要素、すなわち放電時に有効な回路要素のみを示す等価回路である。図2(c)は、図2(a)の回路において充電方向に電流を流したときに実際に電流が流れる回路要素、すなわち充電時に有効な回路要素だけを示す等価回路である。   FIG. 2 (a) shows an equivalent circuit of a battery having different battery parameters in the charging direction and the discharging direction. FIG. 2 (a) shows that the battery parameters differ depending on the direction of the current by inserting a diode and limiting the current path in the charging direction and the discharging direction. FIG. 2 (b) is an equivalent circuit showing only circuit elements through which current actually flows when current flows in the discharge direction in the circuit of FIG. 2 (a), that is, circuit elements that are effective during discharge. FIG. 2 (c) is an equivalent circuit showing only circuit elements through which current actually flows when current flows in the charging direction in the circuit of FIG. 2 (a), that is, circuit elements that are effective during charging.

図2の等価回路における回路素子について説明する。Rは寄生抵抗(以下、単に抵抗ともいう)を表し、Cは寄生容量を表している。また、R又はCに続く添え字は抵抗又は寄生容量の次数を表している。つまり、R0は0次の抵抗であることを表し、R1は1次の抵抗であることを表している。なお、次数とは、電気信号(電流、電圧など)を級数で近似した際の次数に対応するものである。さらに次数に続く添え字は放電時に有効な成分か充電時に有効な成分かを表している。つまり、R0dは0次の抵抗であって放電時に有効となる抵抗であることを表し、R0cは0次の抵抗であって充電時に有効となる抵抗であることを表している。これらの回路素子の値は、図2の等価回路における電池パラメータである。つまり、電池パラメータは、抵抗R0c〜R2c及びR0d〜R2d、寄生容量C1c〜C2c及びC1d〜C2dを含む。また、抵抗及び寄生容量をまとめて電池7の内部抵抗という。また、充電時、放電時に有効な成分となる電池パラメータをそれぞれ充電時パラメータ、放電時パラメータという。つまり、充電時パラメータは、抵抗R0c〜R2c、寄生容量C1c〜C2cを含み、放電時パラメータは、抵抗R0d〜R2d、寄生容量C1d〜C2dを含む。   Circuit elements in the equivalent circuit of FIG. 2 will be described. R represents parasitic resistance (hereinafter also simply referred to as resistance), and C represents parasitic capacitance. A subscript following R or C represents the order of resistance or parasitic capacitance. That is, R0 represents a zeroth-order resistor, and R1 represents a first-order resistor. The order corresponds to the order when an electrical signal (current, voltage, etc.) is approximated by a series. Further, the subscript following the order indicates whether the component is effective during discharging or effective during charging. That is, R0d represents a zero-order resistor that is effective during discharging, and R0c represents a zero-order resistor that is effective during charging. The values of these circuit elements are battery parameters in the equivalent circuit of FIG. That is, the battery parameters include resistors R0c to R2c and R0d to R2d, and parasitic capacitances C1c to C2c and C1d to C2d. The resistance and parasitic capacitance are collectively referred to as the internal resistance of the battery 7. Battery parameters that are effective components during charging and discharging are referred to as charging parameters and discharging parameters, respectively. That is, the charging parameter includes resistors R0c to R2c and parasitic capacitances C1c to C2c, and the discharging parameter includes resistors R0d to R2d and parasitic capacitances C1d to C2d.

温度測定部10は、電池7の温度を測定する。通常、温度測定部10は、電池7の表面温度を測定する。電圧測定部11は、電池7の端子電圧を測定する。電流測定部12は、電池7に流れる電流を測定する。充電量演算部13は、温度測定部10から電池の温度を取得し、電圧測定部11から電池の端子電圧を取得し、電流測定部12から電池に流れる電流を取得する。   The temperature measurement unit 10 measures the temperature of the battery 7. Usually, the temperature measurement unit 10 measures the surface temperature of the battery 7. The voltage measuring unit 11 measures the terminal voltage of the battery 7. The current measuring unit 12 measures the current flowing through the battery 7. The charge amount calculation unit 13 acquires the temperature of the battery from the temperature measurement unit 10, acquires the terminal voltage of the battery from the voltage measurement unit 11, and acquires the current flowing through the battery from the current measurement unit 12.

図3は、充電量演算部13の構成を示す図である。充電量演算部13は、充電時パラメータ推定部14、放電時パラメータ推定部15、選択器16、OCV算出部17、及びSOC算出部18を含む。   FIG. 3 is a diagram showing a configuration of the charge amount calculation unit 13. As shown in FIG. The charge amount calculation unit 13 includes a charging parameter estimation unit 14, a discharging parameter estimation unit 15, a selector 16, an OCV calculation unit 17, and an SOC calculation unit 18.

充電時パラメータ推定部14は、電圧測定部11から電池7の端子電圧を取得し、電流測定部12から電池7に流れる電流を取得する。充電時パラメータ推定部14は、取得した端子電圧と電流とに基づいて、電池7の充電時パラメータ、OCV及びSOH(State of Health:健全度)を推定する。充電時パラメータ推定部14が推定した電池7のOCV及びSOHをそれぞれOCV推定値及びSOH推定値という。なお、充電時パラメータ推定部14が実施する具体的な推定方法については後述する。充電時パラメータ推定部14は、推定した値を選択器16及びOCV算出部17に出力する。   The charging parameter estimation unit 14 acquires the terminal voltage of the battery 7 from the voltage measurement unit 11, and acquires the current flowing through the battery 7 from the current measurement unit 12. The charging parameter estimation unit 14 estimates charging parameters, OCV, and SOH (State of Health) of the battery 7 based on the acquired terminal voltage and current. The OCV and SOH of the battery 7 estimated by the charging parameter estimation unit 14 are referred to as an OCV estimated value and an SOH estimated value, respectively. A specific estimation method performed by the charging time parameter estimation unit 14 will be described later. The charging parameter estimation unit 14 outputs the estimated value to the selector 16 and the OCV calculation unit 17.

放電時パラメータ推定部15は、充電時パラメータ推定部14と同様の機能を有するが、電池7の放電時パラメータを推定する点において異なる。   The discharging parameter estimation unit 15 has the same function as the charging parameter estimation unit 14, but differs in that the discharging parameter of the battery 7 is estimated.

選択器16は、電流測定部12から電池7に流れる電流を取得し、その電流が充電方向の電流であるか放電方向の電流であるか判定する。選択器16は、充電時パラメータ推定部14及び放電時パラメータ推定部15がそれぞれ推定した電池7のOCV推定値及びSOH推定値を取得する。選択器16は、電流の方向が充電方向であるか放電方向であるかの判定結果に基づき、充電時パラメータに基づく電池7のOCV推定値及びSOH推定値、又は、放電時パラメータに基づく電池7のOCV推定値及びSOH推定値のいずれかを選択して、OCV算出部17に出力する。   The selector 16 acquires the current flowing through the battery 7 from the current measuring unit 12, and determines whether the current is a current in the charging direction or a current in the discharging direction. The selector 16 acquires the OCV estimated value and the SOH estimated value of the battery 7 estimated by the charging parameter estimation unit 14 and the discharging parameter estimation unit 15, respectively. The selector 16 determines the OCV estimated value and SOH estimated value of the battery 7 based on the charging parameter or the battery 7 based on the discharging parameter based on the determination result of whether the current direction is the charging direction or the discharging direction. Any one of the OCV estimated value and the SOH estimated value is selected and output to the OCV calculating unit 17.

OCV算出部17は、温度測定部10から電池7の温度を取得し、充電時パラメータ推定部14及び放電時パラメータ推定部15から電池7の充電時パラメータ及び放電時パラメータを取得する。またOCV算出部17は、選択器16が選択して出力する、充電時パラメータ、又は、放電時パラメータのいずれか一方に基づく電池7のOCV推定値及びSOH推定値を取得する。   The OCV calculating unit 17 acquires the temperature of the battery 7 from the temperature measuring unit 10, and acquires the charging parameter and discharging parameter of the battery 7 from the charging parameter estimation unit 14 and the discharging parameter estimation unit 15. Further, the OCV calculation unit 17 acquires the OCV estimated value and the SOH estimated value of the battery 7 based on either the charging parameter or the discharging parameter that the selector 16 selects and outputs.

OCV算出部17は、取得した情報に基づいて、電池7のOCVを算出し、その値をSOC算出部18に出力する。なお、OCV算出部17が算出したOCVのことを、OCV推定値と区別するために、OCV算出値ともいう。OCV算出部17がOCV算出値を算出する具体的な方法については後述する。なお、OCV算出部17に入力される電池7のOCV推定値は、充電時パラメータ推定部14又は放電時パラメータ推定部15によって推定された値であり、その値の精度は高くない。一方、OCV算出値は、後述するように電池7の内部抵抗の抵抗値とOCVとの関係に基づいて算出される値であり、その値の精度はOCV推定値より高い。   The OCV calculation unit 17 calculates the OCV of the battery 7 based on the acquired information and outputs the value to the SOC calculation unit 18. The OCV calculated by the OCV calculation unit 17 is also referred to as an OCV calculated value in order to distinguish it from the OCV estimated value. A specific method by which the OCV calculation unit 17 calculates the OCV calculation value will be described later. Note that the OCV estimated value of the battery 7 input to the OCV calculating unit 17 is a value estimated by the charging parameter estimating unit 14 or the discharging parameter estimating unit 15, and the accuracy of the value is not high. On the other hand, the OCV calculated value is a value calculated based on the relationship between the resistance value of the internal resistance of the battery 7 and the OCV, as will be described later, and the accuracy of the value is higher than the OCV estimated value.

SOC算出部18は、OCV算出部17から取得した電池7のOCV算出値に基づいて、電池7のSOC(State of Charge:充電率)又は充電量を算出する。電池7のSOCは、OCVとSOCとの間の既知の関係に基づいて算出される。また、電池7の充電量は、SOCに基づいて算出され、具体的には電池7の満充電量にSOCを乗じた値を電池7の充電量として算出する。   The SOC calculation unit 18 calculates the SOC (State of Charge) or the charge amount of the battery 7 based on the OCV calculation value of the battery 7 acquired from the OCV calculation unit 17. The SOC of battery 7 is calculated based on a known relationship between OCV and SOC. The charge amount of the battery 7 is calculated based on the SOC. Specifically, a value obtained by multiplying the full charge amount of the battery 7 by the SOC is calculated as the charge amount of the battery 7.

[電池パラメータの推定方法]
充電時パラメータ推定部14が充電時パラメータ及びOCV推定値を推定する方法について説明する。なお、放電時パラメータ推定部15についても充電時パラメータ推定部14と同様の方法で推定するため、ここでは充電時についてのみ説明する。
[Battery parameter estimation method]
A method by which the charging parameter estimation unit 14 estimates the charging parameter and the OCV estimation value will be described. It should be noted that since the discharging parameter estimation unit 15 is also estimated by the same method as the charging parameter estimation unit 14, only the charging will be described here.

図4は、充電時パラメータ推定部14における電池パラメータ推定の方法を説明する図である。図4(a)は、電池7と電池7の等価回路71と演算器20と適応機構21とを含むブロック図である。図4(b)は電池7の等価回路71の構成を示す図である。   FIG. 4 is a diagram for explaining a battery parameter estimation method in the charging-time parameter estimation unit 14. FIG. 4 (a) is a block diagram including the battery 7, an equivalent circuit 71 of the battery 7, an arithmetic unit 20, and an adaptive mechanism 21. FIG. 4 (b) is a diagram showing a configuration of an equivalent circuit 71 of the battery 7.

図4(b)に示す電池7の等価回路71は、OCVを表す電圧発生部と、0次の内部抵抗R0と、1次の内部抵抗R1及び内部容量C1の組とを含む。1次の内部抵抗R1と1次の内部容量C1とは並列に接続される。電圧発生部と0次の内部抵抗R0と1次の内部抵抗R1及び内部容量C1の組とは、直列に接続される。等価回路71には電流iが入力され、それに応じて等価回路71の端子間に端子電圧vが出力される。   The equivalent circuit 71 of the battery 7 shown in FIG. 4 (b) includes a voltage generation unit representing OCV, a zero-order internal resistance R0, and a set of a primary internal resistance R1 and an internal capacitance C1. Primary internal resistance R1 and primary internal capacitance C1 are connected in parallel. The voltage generator, the 0th-order internal resistance R0, the primary internal resistance R1, and the set of the internal capacitance C1 are connected in series. A current i is input to the equivalent circuit 71, and a terminal voltage v is output between the terminals of the equivalent circuit 71 accordingly.

図4(b)の等価回路71において、端子電圧vはOCVと過電圧ηとの和である。過電圧ηは、電池7の内部抵抗による電圧降下を表している。過電圧ηを生じさせる0次の抵抗R0は電解液等の寄生抵抗を表し、1次の抵抗R1及び容量C1は電極内部のイオン拡散過程を模擬した寄生抵抗及び寄生容量をそれぞれ表している。   In the equivalent circuit 71 of FIG. 4B, the terminal voltage v is the sum of OCV and overvoltage η. The overvoltage η represents a voltage drop due to the internal resistance of the battery 7. The 0th-order resistance R0 that causes the overvoltage η represents a parasitic resistance such as an electrolyte, and the primary resistance R1 and the capacity C1 represent a parasitic resistance and a parasitic capacity that simulate an ion diffusion process inside the electrode, respectively.

図4(b)に示す等価回路71は、いわゆる1次のフォスタ型RC梯子回路であるが、2次以上のフォスタ型RC梯子回路であってもよいし、n次のカウエル型回路であってもよい。図2に示す等価回路はいわゆる2次のフォスタ型RC梯子回路であり、図4(b)に示す等価回路71とは異なるが、パラメータを推定する方法の基本原理は共通である。そこで、説明を簡単にするために図4(b)に示す等価回路71のパラメータを推定する方法を説明する。   The equivalent circuit 71 shown in FIG. 4 (b) is a so-called first-order Foster-type RC ladder circuit, but it may be a second-order or higher-order Foster-type RC ladder circuit or an n-order Cowell-type circuit. Also good. The equivalent circuit shown in FIG. 2 is a so-called second-order Foster-type RC ladder circuit, which is different from the equivalent circuit 71 shown in FIG. 4 (b), but the basic principle of the parameter estimation method is common. In order to simplify the explanation, a method for estimating the parameters of the equivalent circuit 71 shown in FIG.

図4(a)に示すブロック図を用いて、充電時パラメータ推定部14が電池7の電池パラメータを推定する方法を説明する。図4(a)のブロック図において、適応機構21は適応フィルタともいう。好ましくは、適応機構21は、カルマンフィルタが用いられるがこれに限られない。   A method for estimating the battery parameters of the battery 7 by the charging parameter estimation unit 14 will be described with reference to the block diagram shown in FIG. In the block diagram of FIG. 4 (a), the adaptive mechanism 21 is also referred to as an adaptive filter. Preferably, the adaptive mechanism 21 uses a Kalman filter, but is not limited thereto.

充電時パラメータ推定部14は、電池7に電流i(k)を入力した場合の電池7の端子電圧を参照信号v(k)として図1の電圧測定部11から取得する。充電時パラメータ推定部14は、電流i(k)を図4(b)の等価回路71に入力した場合に出力される電圧の出力信号v^(k)を算出する。出力信号v^(k)及び参照信号v(k)は演算器20に入力され、演算器20は参照信号v(k)と出力信号v^(k)との差を計算して推定誤差v(k)を算出し、推定誤差v(k)を適応機構21に出力する。適応機構21は、入力された推定誤差v(k)に基づいて等価回路71のパラメータ(R0,R1,C1,OCV)を補正する。充電時パラメータ推定部14は、補正された等価回路71のパラメータ(R0,R1,C1,OCV)を出力する。 The charging time parameter estimation unit 14 acquires the terminal voltage of the battery 7 when the current i (k) is input to the battery 7 as the reference signal v (k) from the voltage measurement unit 11 of FIG. The charging parameter estimation unit 14 calculates an output signal v ^ (k) of a voltage output when the current i (k) is input to the equivalent circuit 71 in FIG. 4 (b). The output signal v ^ (k) and the reference signal v (k) are input to the arithmetic unit 20, and the arithmetic unit 20 calculates the difference between the reference signal v (k) and the output signal v ^ (k) to estimate error v. calculating ~ a (k), and outputs estimated error v ~ a (k) to the adaptive mechanism 21. The adaptive mechanism 21 corrects the parameters (R0, R1, C1, OCV) of the equivalent circuit 71 based on the input estimation errors v to (k). The charging parameter estimation unit 14 outputs the corrected parameters (R0, R1, C1, OCV) of the equivalent circuit 71.

好ましくは、一実施形態においては、特許第5319854号公報に記載の電池の等価回路のパラメータの同定方法に基づき、1次のフォスタ型RC梯子回路のパラメータの逐次推定を行う。上記方法によれば、式(1)乃至(5)で定められる伝達関数が求められる。これらの式によって、伝達関数のパラメータa1,b0,b1,b2と等価回路のパラメータとが結び付けられる。

Figure 2016211923
Preferably, in one embodiment, based on a method for identifying parameters of an equivalent circuit of a battery described in Japanese Patent No. 5319854, parameters of a primary Foster-type RC ladder circuit are sequentially estimated. According to the above method, the transfer function defined by the equations (1) to (5) is obtained. By these equations, the parameters a1, b0, b1, b2 of the transfer function and the parameters of the equivalent circuit are linked.
Figure 2016211923

上記方法においては、等価回路に入力される電流iと端子電圧vとに基づいて、伝達関数のパラメータa1,b0,b1,b2を推定することができる。そして、推定したパラメータから、式(6)乃至(9)のように等価回路のパラメータを求めることができる。

Figure 2016211923
In the above method, the transfer function parameters a1, b0, b1, and b2 can be estimated based on the current i and the terminal voltage v input to the equivalent circuit. Then, the parameters of the equivalent circuit can be obtained from the estimated parameters as shown in equations (6) to (9).
Figure 2016211923

ここでは、図4(b)に示した1次のフォスタ型RC梯子回路における電池パラメータを推定する方法を代表例として説明した。この例に限られず2次以上のフォスタ型RC梯子回路であっても、その電池パラメータは、上述の式(1)に示した伝達関数の次数を上げることにより推定されうる。また、n次のカウエル型RC梯子回路であっても、対応する伝達関数を用いることにより推定されうる。   Here, the method for estimating the battery parameters in the primary Foster-type RC ladder circuit shown in FIG. 4B has been described as a representative example. The battery parameter can be estimated by increasing the order of the transfer function shown in the above formula (1) even in the case of a Foster type RC ladder circuit of second or higher order without being limited to this example. Even an n-th order Cowell RC ladder circuit can be estimated by using a corresponding transfer function.

以上説明した方法を図2の等価回路に適用することにより、充電時パラメータ推定部14及び放電時パラメータ推定部15はそれぞれ、電池7の充電時及び放電時パラメータとOCV推定値とを推定できる。また、充電時パラメータ推定部14及び放電時パラメータ推定部15はそれぞれ、電池パラメータに基づき、電池7のSOH推定値を推定できる。   By applying the above-described method to the equivalent circuit of FIG. 2, the charging parameter estimation unit 14 and the discharging parameter estimation unit 15 can estimate the charging and discharging parameters and the OCV estimation value of the battery 7, respectively. Further, the charging parameter estimation unit 14 and the discharging parameter estimation unit 15 can each estimate the SOH estimated value of the battery 7 based on the battery parameters.

[OCV算出方法]
OCV算出部17が電池7の電池パラメータ及びOCV推定値に基づいて、電池7のOCV算出値を算出する方法について説明する。なお、電池7の電池パラメータについては、上述の電池パラメータの推定方法において、2次のフォスタ型RC梯子回路について電池パラメータの推定を行って得られたものとする。すなわちこの説明では、既に充電時パラメータ推定部14において、電池7の内部抵抗の抵抗値(以下、単に抵抗値ともいう)及びOCV推定値が算出されており、OCV算出部17はこれらの値を取得できるものとする。
[OCV calculation method]
A method in which the OCV calculation unit 17 calculates the OCV calculation value of the battery 7 based on the battery parameters of the battery 7 and the OCV estimated value will be described. It is assumed that the battery parameters of the battery 7 are obtained by estimating the battery parameters for the secondary Foster-type RC ladder circuit in the above-described battery parameter estimation method. That is, in this description, the charging parameter estimation unit 14 has already calculated the resistance value of the internal resistance of the battery 7 (hereinafter also simply referred to as the resistance value) and the OCV estimation value, and the OCV calculation unit 17 calculates these values. It can be acquired.

OCV算出部17は、OCVと抵抗値との間の既知の関係に基づいて、電池7の抵抗値から、電池7のOCV算出値を算出する。ここで、電池7の抵抗値は、電池7の温度によって変化するし、電池7のSOHによっても変化する。この場合、異なる温度や異なるSOHにおけるOCVと抵抗値との間の関係をそれぞれ知ることは難しい。そこで、好ましくは、充電時パラメータ推定部14から取得した電池7の抵抗値を、電池7の温度が25℃であって電池7のSOHが100%である場合の抵抗値に換算して取り扱う。このようにすれば、OCVと換算した抵抗値との間の関係のみを把握すれば足り、OCVをより容易に算出し、さらに充電量を算出できる。   The OCV calculation unit 17 calculates the OCV calculation value of the battery 7 from the resistance value of the battery 7 based on the known relationship between the OCV and the resistance value. Here, the resistance value of the battery 7 varies depending on the temperature of the battery 7 and also varies depending on the SOH of the battery 7. In this case, it is difficult to know the relationship between the OCV and the resistance value at different temperatures and different SOHs. Therefore, preferably, the resistance value of the battery 7 acquired from the charging time parameter estimation unit 14 is converted into a resistance value when the temperature of the battery 7 is 25 ° C. and the SOH of the battery 7 is 100%. In this way, it is sufficient to grasp only the relationship between the OCV and the converted resistance value, and the OCV can be calculated more easily and the amount of charge can be further calculated.

したがって、OCV算出部17は、電池7のOCV算出値を算出するに先立って、電池7の抵抗値を、電池7の温度が25℃であって電池7のSOHが100%である場合の電池7の抵抗値に換算する。一実施形態においては、まず温度で補正し、続いてSOHで補正する。   Therefore, before calculating the OCV calculation value of the battery 7, the OCV calculation unit 17 determines the resistance value of the battery 7 when the temperature of the battery 7 is 25 ° C. and the SOH of the battery 7 is 100%. Convert to 7 resistance value. In one embodiment, the temperature is first corrected and then corrected with SOH.

抵抗値を温度で補正するために、温度補正係数が定義される。例えば、電池7の温度がt℃である場合の0次の充電時の抵抗R0cの抵抗値R0c_tと、電池7の温度が25℃である場合の抵抗値R0c(25℃)とを用いて、抵抗R0cの温度補正係数(t℃)=R0c_t÷R0c(25℃)と表される。図5(a)は、0次の充電時の抵抗R0cの温度補正係数と電池7の温度との関係を示すグラフである。横軸は電池7の温度を表し、縦軸は温度補正係数を表している。このグラフによれば、電池7の温度が25℃の場合、定義通り、温度補正係数は1である。電池7の温度が25℃より低い場合、温度補正係数は1より大きく、電池7の温度が25℃より高い場合、温度補正係数は1より小さい。図5(a)は、0次の充電時の抵抗R0cの温度補正係数を示しているが、1次及び2次の抵抗R1c,R2cについても同様の関係が定義される。また放電時の抵抗R0d,R1d,R2dについても同様である。好ましくは、温度と抵抗の温度補正係数との関係は、テーブル形式又は関数形式である。また好ましくは、温度と抵抗の温度補正係数との関係を示すデータは、OCV算出部17が保持する。また好ましくは、温度と抵抗の温度補正係数との関係を示すデータは、OCV算出部17に接続される記憶部に格納され、OCV算出部17は必要に応じて記憶部からデータを取得する。   In order to correct the resistance value with temperature, a temperature correction coefficient is defined. For example, using the resistance value R0c_t of the resistor R0c at the time of zero-order charging when the temperature of the battery 7 is t ° C, and the resistance value R0c (25 ° C) when the temperature of the battery 7 is 25 ° C, The temperature correction coefficient (t ° C.) of the resistor R0c = R0c_t ÷ R0c (25 ° C.). FIG. 5 (a) is a graph showing the relationship between the temperature correction coefficient of the resistor R0c and the temperature of the battery 7 during the zero-order charging. The horizontal axis represents the temperature of the battery 7, and the vertical axis represents the temperature correction coefficient. According to this graph, when the temperature of the battery 7 is 25 ° C., the temperature correction coefficient is 1 as defined. When the temperature of the battery 7 is lower than 25 ° C., the temperature correction coefficient is larger than 1, and when the temperature of the battery 7 is higher than 25 ° C., the temperature correction coefficient is smaller than 1. FIG. 5 (a) shows the temperature correction coefficient of the resistor R0c at the 0th-order charging, but the same relationship is defined for the primary and secondary resistors R1c and R2c. The same applies to the resistors R0d, R1d, and R2d during discharge. Preferably, the relationship between the temperature and the temperature correction coefficient of the resistance is a table format or a function format. Preferably, the OCV calculating unit 17 holds data indicating the relationship between the temperature and the temperature correction coefficient of the resistance. Preferably, the data indicating the relationship between the temperature and the temperature correction coefficient of the resistance is stored in a storage unit connected to the OCV calculation unit 17, and the OCV calculation unit 17 acquires data from the storage unit as necessary.

OCV算出部17は、上述の抵抗の温度補正係数と電池7の温度とを用いて、充電時パラメータ推定部14又は放電時パラメータ推定部15から取得した電池7の温度がt℃の場合の抵抗R(添え字を省略)の抵抗値R_tを電池7の温度が25℃の場合の抵抗値R(25℃)に換算する。つまり、次の式(10)を計算する。
R(25℃)=R_t÷抵抗Rの温度補正係数(t℃) (10)
The OCV calculation unit 17 uses the temperature correction coefficient of the resistance and the temperature of the battery 7 to determine the resistance when the temperature of the battery 7 acquired from the charging parameter estimation unit 14 or the discharging parameter estimation unit 15 is t ° C. The resistance value R_t of R (subscript is omitted) is converted into a resistance value R (25 ° C.) when the temperature of the battery 7 is 25 ° C. That is, the following formula (10) is calculated.
R (25 ℃) = R_t ÷ resistance R temperature correction coefficient (t ℃) (10)

さらに内部抵抗値をSOHで補正するためにSOH補正係数が定義される。電池7のSOHがx%であり、電池7の温度が25℃である場合の0次の充電時の抵抗R0cの抵抗値R0c(25℃,x%) (上述のR0c(25℃)に等しい)と、電池7のSOHが100%であり、電池7の温度が25℃である場合の抵抗R0cの抵抗値R0c(25℃,100%)とを用いて、抵抗R0cのSOH補正係数(x%)=R0c(25℃,x%)÷R0c(25℃,100%)と表される。例えば図5(b)は、0次の充電時の抵抗R0cのSOH補正係数と電池7のSOHとの関係を示すグラフである。横軸は電池7のSOHを表し、縦軸はSOH補正係数を表している。このグラフによれば、電池7のSOHが100%の場合、定義通り、SOH補正係数は1である。電池7のSOHが100%より低い場合、SOH補正係数は1より大きい。図5(b)は、0次の充電時の抵抗R0cのSOH補正係数を示しているが、1次及び2次の抵抗R1c,R2cについても同様の関係が定義される。また放電時の抵抗R0d,R1d,R2dについても同様である。好ましくは、SOHと抵抗のSOH補正係数との関係は、テーブル形式又は関数形式である。また好ましくは、SOHと抵抗のSOH補正係数との関係を示すデータは、OCV算出部17が保持する。また好ましくは、SOHと抵抗のSOH補正係数との関係を示すデータは、OCV算出部17に接続される記憶部に格納され、OCV算出部17は必要に応じて記憶部からデータを取得する。   Further, an SOH correction coefficient is defined to correct the internal resistance value with SOH. When the SOH of the battery 7 is x% and the temperature of the battery 7 is 25 ° C., the resistance value R0c (25 ° C., x%) of the resistance R0c at the time of zero-order charging (equal to the above-described R0c (25 ° C.)) ) And the resistance value R0c of the resistor R0c (25 ° C, 100%) when the SOH of the battery 7 is 100% and the temperature of the battery 7 is 25 ° C, the SOH correction coefficient (x %) = R0c (25 ° C., x%) ÷ R0c (25 ° C., 100%). For example, FIG. 5 (b) is a graph showing the relationship between the SOH correction coefficient of the resistor R0c and the SOH of the battery 7 at the zero-order charge. The horizontal axis represents the SOH of the battery 7, and the vertical axis represents the SOH correction coefficient. According to this graph, when the SOH of the battery 7 is 100%, the SOH correction coefficient is 1 as defined. When the SOH of the battery 7 is lower than 100%, the SOH correction coefficient is larger than 1. FIG. 5 (b) shows the SOH correction coefficient of the resistor R0c at the 0th-order charging, but the same relationship is defined for the primary and secondary resistors R1c and R2c. The same applies to the resistors R0d, R1d, and R2d during discharge. Preferably, the relationship between the SOH and the SOH correction coefficient of the resistor is a table format or a function format. Preferably, the OCV calculation unit 17 holds data indicating the relationship between the SOH and the resistance SOH correction coefficient. Preferably, data indicating the relationship between the SOH and the resistance SOH correction coefficient is stored in a storage unit connected to the OCV calculation unit 17, and the OCV calculation unit 17 acquires data from the storage unit as necessary.

OCV算出部17は、上述の抵抗のSOH補正係数と電池7のSOH推定値とを用いて、電池7の温度が25℃の場合の抵抗R(添え字を省略)の抵抗値R(25℃,x%)を電池7の温度が25℃であり、電池7のSOHが100%の場合の抵抗値R(25℃,100%)にさらに換算する。つまり、次の式(11)を計算する。以下、抵抗値R(25℃,100%)を補正抵抗値R_corともいう。
R(25℃,100%)=R(25℃,x%)÷抵抗RのSOH補正係数(x%) (11)
The OCV calculating unit 17 uses the resistance SOH correction coefficient and the estimated SOH value of the battery 7 to calculate the resistance value R (25 ° C.) of the resistance R when the temperature of the battery 7 is 25 ° C. , x%) is further converted into a resistance value R (25 ° C., 100%) when the temperature of the battery 7 is 25 ° C. and the SOH of the battery 7 is 100%. That is, the following formula (11) is calculated. Hereinafter, the resistance value R (25 ° C., 100%) is also referred to as a corrected resistance value R_cor.
R (25 ° C, 100%) = R (25 ° C, x%) ÷ SOH correction factor for resistance R (x%) (11)

OCV算出部17は、補正抵抗値R_corを用いて、電池7のOCV算出値を算出する。図6は、補正抵抗値R_corとOCVとの関係を表すグラフである。横軸はOCVを表し、縦軸は補正抵抗値を表している。ここで図6(a)(b)(c)はそれぞれ、0次の抵抗R0c又はR0d、1次の抵抗R1c又はR1d、2次の抵抗R2c又はR2dに対応する。またそれぞれのグラフにおいて、破線は放電時の抵抗R0d,R1d,R2dを表し、実線は充電時の抵抗R0c,R1c,R2cを表している。   The OCV calculation unit 17 calculates the OCV calculation value of the battery 7 using the corrected resistance value R_cor. FIG. 6 is a graph showing the relationship between the corrected resistance value R_cor and OCV. The horizontal axis represents OCV, and the vertical axis represents the correction resistance value. Here, FIGS. 6 (a), 6 (b) and 6 (c) correspond to the 0th-order resistor R0c or R0d, the primary resistor R1c or R1d, and the secondary resistor R2c or R2d, respectively. In each graph, the broken lines represent the resistances R0d, R1d, and R2d during discharging, and the solid lines represent the resistances R0c, R1c, and R2c during charging.

OCV算出部17は、充電時パラメータ又は放電時パラメータのいずれか一方を用いてOCV算出値を算出しうる。ここではまず、充電時パラメータを用いてOCV算出値を算出する方法について説明する。   The OCV calculation unit 17 can calculate the OCV calculation value using either the charging parameter or the discharging parameter. Here, first, a method of calculating the OCV calculation value using the charging parameter will be described.

図6(a)によれば、充電時の0次の抵抗R0cの補正抵抗値R0c_corは、OCVがα[V]より小さい領域では右下がり、OCVがα[V]より大きい領域では右上がりである。この2領域におけるグラフの傾きの絶対値を比較すると、OCVがα[V]より大きい領域よりも、OCVがα[V]より小さい領域の方がグラフの傾きの絶対値は大きい。したがって、抵抗R0cの補正抵抗値R0c_corからOCV算出値を算出する場合には、OCVがα[V]より大きい場合よりも、OCVがα[V]より小さい場合の方が、補正抵抗値R0c_corの誤差による影響が小さく、OCV算出値がより正確に算出できる。なお図6(a)の抵抗R0cとOCVとの関係は、SOCが低いほど、充電時の電池7の内部抵抗値が大きく推定されることを表している。   According to FIG. 6 (a), the corrected resistance value R0c_cor of the 0th-order resistor R0c during charging decreases to the right when the OCV is smaller than α [V], and increases to the right when the OCV is larger than α [V]. is there. Comparing the absolute values of the slopes of the graphs in these two regions, the absolute values of the slopes of the graphs are larger in the region where OCV is smaller than α [V] than in the region where OCV is larger than α [V]. Therefore, when calculating the OCV calculated value from the corrected resistance value R0c_cor of the resistor R0c, the corrected resistance value R0c_cor is smaller when the OCV is smaller than α [V] than when the OCV is larger than α [V]. The influence of errors is small, and the OCV calculation value can be calculated more accurately. Note that the relationship between the resistance R0c and OCV in FIG. 6 (a) indicates that the lower the SOC, the greater the estimated internal resistance value of the battery 7 during charging.

図6(b)によれば、充電時の1次の抵抗R1cの補正抵抗値R1c_corは、OCVの値の変化に対してほぼフラットである。したがって、補正抵抗値R1c_corからOCVを算出することは難しい。   According to FIG. 6 (b), the correction resistance value R1c_cor of the primary resistance R1c during charging is substantially flat with respect to the change in the OCV value. Therefore, it is difficult to calculate the OCV from the corrected resistance value R1c_cor.

図6(c)によれば、充電時の2次の抵抗R2cの補正抵抗値R2c_corは、OCVがα[V]より小さい領域では右下がり、OCVがα[V]より大きい領域では右上がりである。この2領域におけるグラフの傾きの絶対値を比較すると、OCVがα[V]より小さい領域よりも、OCVがα[V]より大きい領域の方がグラフの傾きの絶対値は大きい。したがって、補正抵抗値R2c_corからOCV算出値を算出する場合には、OCVがα[V]より小さい場合よりも、OCVがα[V]より大きい場合の方が、補正抵抗値R2cの誤差による影響が小さく、OCV算出値がより正確に算出できる。   According to FIG. 6 (c), the correction resistance value R2c_cor of the secondary resistance R2c during charging decreases to the right when the OCV is smaller than α [V], and increases to the right when the OCV is larger than α [V]. is there. Comparing the absolute values of the slopes of the graphs in these two regions, the absolute values of the slopes of the graphs are larger in the region where OCV is larger than α [V] than in the region where OCV is smaller than α [V]. Therefore, when calculating the OCV calculation value from the corrected resistance value R2c_cor, the effect of the correction resistance value R2c error is greater when OCV is larger than α [V] than when OCV is smaller than α [V]. The OCV calculation value can be calculated more accurately.

以上のことから、OCV算出部17は、OCVがα[V]より小さい場合には抵抗R0cの補正抵抗値R0c_corからOCV算出値を算出し、OCVがα[V]より大きい場合には抵抗R2cの補正抵抗値R2c_corからOCV算出値を算出することが好ましい。   From the above, the OCV calculating unit 17 calculates the OCV calculated value from the corrected resistance value R0c_cor of the resistor R0c when OCV is smaller than α [V], and the resistor R2c when OCV is larger than α [V]. It is preferable to calculate the OCV calculation value from the corrected resistance value R2c_cor.

上述の通り、OCVに応じて、OCV算出値を算出するための抵抗値を電池パラメータに含まれる抵抗値の中から使い分けることが好ましい。ここで、抵抗値を使い分けるために、OCV算出部17は、OCV推定値を用いて場合分けしてOCV算出値を算出するために用いる抵抗値を選択する。つまり、OCV算出部17は、充電時パラメータ推定部14から取得したOCV推定値に基づいて、どの抵抗値を用いるか決定する。このようにOCV推定値により場合分けして抵抗値を使い分ければ、OCV算出値をより正確に算出し、より正確な充電量を算出できる。   As described above, it is preferable to properly use the resistance value for calculating the OCV calculation value from among the resistance values included in the battery parameters in accordance with the OCV. Here, in order to use the resistance value properly, the OCV calculation unit 17 selects a resistance value to be used for calculating the OCV calculation value by dividing the case using the OCV estimation value. That is, the OCV calculation unit 17 determines which resistance value to use based on the OCV estimation value acquired from the charging parameter estimation unit 14. In this way, if the resistance value is properly used according to the OCV estimated value, the OCV calculated value can be calculated more accurately and the charge amount can be calculated more accurately.

次に、放電時パラメータを用いてOCV算出値を算出する方法について説明する。   Next, a method for calculating the OCV calculation value using the discharge parameter will be described.

図6(a)によれば、放電時の0次の抵抗R0dの補正抵抗値R0d_corは、OCVがα[V]より小さい領域では右上がり、OCVがα[V]より大きい領域ではほぼフラットである。したがって、補正抵抗値R0d_corからOCV算出値を算出する場合には、OCVがα[V]より大きい場合よりも、OCVがα[V]より小さい場合の方が、補正抵抗値R0d_corの誤差による影響が小さく、OCV算出値がより正確に算出できる。   According to FIG. 6 (a), the corrected resistance value R0d_cor of the zero-order resistor R0d during discharge rises to the right in the region where OCV is smaller than α [V], and is almost flat in the region where OCV is larger than α [V]. is there. Therefore, when calculating the OCV calculated value from the corrected resistance value R0d_cor, the effect of the error in the corrected resistance value R0d_cor is greater when OCV is smaller than α [V] than when OCV is larger than α [V]. The OCV calculation value can be calculated more accurately.

図6(b)によれば、放電時の1次の抵抗R1dの補正抵抗値R1d_corは、OCVの値の変化に対してほぼフラットである。したがって、補正抵抗値R1d_corからOCVを算出することは難しい。   According to FIG. 6 (b), the corrected resistance value R1d_cor of the primary resistance R1d during discharging is substantially flat with respect to the change in the OCV value. Therefore, it is difficult to calculate the OCV from the corrected resistance value R1d_cor.

図6(c)によれば、放電時の2次の抵抗R2dの補正抵抗値R2d_corは、OCVがα[V]より小さい領域では右下がり、OCVがα[V]より大きい領域では右上がりである。この2領域におけるグラフの傾きの絶対値を比較すると、OCVがα[V]より小さい領域よりも、OCVがα[V]より大きい領域の方がグラフの傾きの絶対値は大きい。したがって、補正抵抗値R2d_corからOCV算出値を算出する場合には、OCVがα[V]より小さい場合よりも、OCVがα[V]より大きい場合の方が、補正抵抗値R2d_corの誤差による影響が小さく、OCV算出値がより正確に算出できる。   According to FIG. 6 (c), the corrected resistance value R2d_cor of the secondary resistance R2d during discharge decreases to the right when the OCV is smaller than α [V], and increases to the right when the OCV is larger than α [V]. is there. Comparing the absolute values of the slopes of the graphs in these two regions, the absolute values of the slopes of the graphs are larger in the region where OCV is larger than α [V] than in the region where OCV is smaller than α [V]. Therefore, when calculating the OCV calculated value from the corrected resistance value R2d_cor, the effect of the corrected resistance value R2d_cor is more affected when OCV is larger than α [V] than when OCV is smaller than α [V]. The OCV calculation value can be calculated more accurately.

以上のことから、OCV算出部17は、OCVがα[V]より小さい場合には抵抗R0dの補正抵抗値R0d_corからOCV算出値を算出し、OCVがα[V]より大きい場合には抵抗R2dの補正抵抗値R2d_corからOCV算出値を算出することが好ましい。   From the above, the OCV calculating unit 17 calculates the OCV calculated value from the corrected resistance value R0d_cor of the resistor R0d when OCV is smaller than α [V], and the resistor R2d when OCV is larger than α [V]. It is preferable to calculate the OCV calculation value from the corrected resistance value R2d_cor.

また、放電時パラメータを用いてOCV算出値を算出する場合も充電時パラメータを用いる場合と同様、OCV算出部17は、放電時パラメータ推定部15から取得したOCV推定値に基づいて、どの抵抗値を用いるか決定することが好ましい。   In addition, when calculating the OCV calculation value using the discharge time parameter, as in the case of using the charge time parameter, the OCV calculation unit 17 determines which resistance value based on the OCV estimation value obtained from the discharge time parameter estimation unit 15. It is preferable to determine whether to use.

以上説明したように、充電時及び放電時いずれか一方の電池7の抵抗値とOCV推定値とを用いて、電池7のOCV(OCV算出値)を精度よく算出することができる。場合分けに用いる値は、電池7の抵抗値とOCVとの関係によって、適宜所定の閾値が決定されうる。OCV算出部17は、OCV推定値が所定の閾値よりも大きいか小さいかによって場合分けしてOCVを算出する。   As described above, the OCV (OCV calculated value) of the battery 7 can be accurately calculated by using the resistance value and the OCV estimated value of either the battery 7 during charging or discharging. As a value used for the case division, a predetermined threshold value can be appropriately determined depending on the relationship between the resistance value of the battery 7 and the OCV. The OCV calculation unit 17 calculates the OCV according to the case depending on whether the OCV estimated value is larger or smaller than a predetermined threshold.

一実施形態においては、0次の抵抗R0c又はR0dの抵抗値のことを第1抵抗値ともいい、2次の抵抗R2c又はR2dの抵抗値のことを第2抵抗値ともいう。つまり、電池7の内部抵抗の抵抗値は、第1抵抗値及び第2抵抗値を含む。OCV算出部17は、充電時、放電時のいずれの場合でも、第1抵抗値又は第2抵抗値のいずれか一方とOCVとの関係に基づいてOCV算出値を算出する。好ましくは、OCV算出部17は、OCV推定値が所定の閾値より小さい場合には、0次の抵抗R0c又はR0dの抵抗値、すなわち第1抵抗値を選択して、第1抵抗値とOCVとの関係に基づいて、OCV算出値を算出する。また好ましくは、OCV算出部17は、OCV推定値が所定の閾値より大きい場合には、2次の抵抗R2c又はR2dの抵抗値、すなわち第2抵抗値を選択して、第2抵抗値とOCVとの関係に基づいて、OCV算出値を算出する。このように第1又は第2抵抗値のいずれか一方を選択してOCV算出値を算出することにより、より正確なOCV算出値を算出し、さらにより正確な充電量を算出できる。   In one embodiment, the resistance value of the zeroth-order resistor R0c or R0d is also referred to as a first resistance value, and the resistance value of the second-order resistor R2c or R2d is also referred to as a second resistance value. That is, the resistance value of the internal resistance of the battery 7 includes the first resistance value and the second resistance value. The OCV calculation unit 17 calculates the OCV calculation value based on the relationship between either the first resistance value or the second resistance value and the OCV in both cases of charging and discharging. Preferably, the OCV calculation unit 17 selects the resistance value of the 0th-order resistor R0c or R0d, that is, the first resistance value when the estimated OCV value is smaller than a predetermined threshold, and the first resistance value and the OCV The OCV calculation value is calculated based on the relationship. Preferably, the OCV calculation unit 17 selects the resistance value of the secondary resistance R2c or R2d, that is, the second resistance value when the OCV estimated value is larger than the predetermined threshold value, and the second resistance value and the OCV Based on the relationship, the OCV calculation value is calculated. Thus, by calculating either the first or second resistance value and calculating the OCV calculated value, it is possible to calculate a more accurate OCV calculated value and to calculate a more accurate charge amount.

図4(b)の等価回路パラメータに関する説明で述べたように、0次の抵抗R0c又はR0dは電解液等の抵抗を表し、1次の抵抗R1c又はR1dは電極内部のイオン拡散過程を模擬した抵抗を表す。また、図2の等価回路に含まれる2次の抵抗R2c又はR2dも電極内部のイオン拡散過程を模擬した抵抗を表す。   As described in the explanation of the equivalent circuit parameters in FIG. 4 (b), the 0th-order resistor R0c or R0d represents the resistance of the electrolyte or the like, and the first-order resistor R1c or R1d simulated the ion diffusion process inside the electrode. Represents resistance. Also, the secondary resistance R2c or R2d included in the equivalent circuit of FIG. 2 represents a resistance simulating the ion diffusion process inside the electrode.

ここで、電池の電解液と電極との反応は、電解液等の抵抗に依存する速い反応と、電極内部のイオン拡散過程に依存する遅い反応とに分けられる。つまり、電解液等の抵抗を表す0次の抵抗R0c又はR0dの抵抗値、すなわち第1抵抗値は、電極内部のイオン拡散過程を表す2次の抵抗R2c又はR2dの抵抗値、すなわち第2抵抗値よりも、電池の電解液と電極との反応速度が速い成分を反映している。このように第1及び第2抵抗値を使い分けてOCV算出値を算出することで、電池内部の反応過程に即した形でOCV算出値を算出し、さらに充電量を算出できる。また電池の等価回路として0〜2次の抵抗を含む等価回路を用いることで、電池内部の反応過程により一層即した形でOCV算出値を算出し、さらに充電量を算出できる。   Here, the reaction between the battery electrolyte and the electrode can be divided into a fast reaction that depends on the resistance of the electrolyte and the like, and a slow reaction that depends on the ion diffusion process inside the electrode. That is, the resistance value of the 0th-order resistor R0c or R0d representing the resistance of the electrolyte solution, that is, the first resistance value is the resistance value of the second-order resistor R2c or R2d representing the ion diffusion process inside the electrode, that is, the second resistance. It reflects the component whose reaction rate between the battery electrolyte and the electrode is faster than the value. Thus, by calculating the OCV calculation value by properly using the first and second resistance values, it is possible to calculate the OCV calculation value in accordance with the reaction process inside the battery and further calculate the charge amount. In addition, by using an equivalent circuit including a 0th to 2nd order resistance as an equivalent circuit of the battery, it is possible to calculate an OCV calculation value in a form more in line with a reaction process inside the battery, and further calculate a charge amount.

また好ましくは、所定の閾値は2つ以上設定される。この場合、3以上の場合に分けられることとなる。このようにすればより正確にOCVを算出しうる。   Preferably, two or more predetermined threshold values are set. In this case, it is divided into three or more cases. In this way, OCV can be calculated more accurately.

なお、図6(a)によれば、OCVがα[V]より小さい場合において、充電時の0次の抵抗R0cの抵抗値の傾きの絶対値は、放電時の0次の抵抗R0dの抵抗値の傾きの絶対値より大きい。したがって、一実施形態においては、放電時の抵抗R0dの抵抗値を用いるより、充電時の抵抗R0cの抵抗値を用いる方がより正確なOCV算出値を算出し、さらに充電量を算出しうる。   According to FIG. 6 (a), when OCV is smaller than α [V], the absolute value of the slope of the resistance value of the zeroth-order resistor R0c during charging is the resistance of the zeroth-order resistor R0d during discharging. Greater than absolute value slope. Therefore, in one embodiment, it is possible to calculate a more accurate OCV calculation value and further calculate the charge amount by using the resistance value of the resistor R0c during charging than using the resistance value of the resistor R0d during discharging.

[SOC算出方法]
SOC算出部18が、SOCとOCVとの間の関係に基づいてSOCを算出する方法を説明する。図7は、SOCとOCVとの間の関係を示すグラフである。横軸はOCVを表し、縦軸はSOCを表す。図7のグラフによれば、SOC算出部18は、OCV算出部17から取得したOCV算出値を変換してSOCを算出することができる。
[SOC calculation method]
A method in which the SOC calculation unit 18 calculates the SOC based on the relationship between the SOC and the OCV will be described. FIG. 7 is a graph showing the relationship between SOC and OCV. The horizontal axis represents OCV, and the vertical axis represents SOC. According to the graph of FIG. 7, the SOC calculation unit 18 can calculate the SOC by converting the OCV calculation value acquired from the OCV calculation unit 17.

またSOC算出部18は、算出したSOCから電池7の充電量を算出する。具体的には、電池7の既知の満充電量にSOCを乗じることにより、電池7の充電量を算出する。   In addition, the SOC calculation unit 18 calculates the charge amount of the battery 7 from the calculated SOC. Specifically, the charge amount of the battery 7 is calculated by multiplying the known full charge amount of the battery 7 by the SOC.

以上説明してきたように、一実施形態に係る充電量推定装置1は、電池7の充電量を算出することができる。   As described above, the charge amount estimation device 1 according to an embodiment can calculate the charge amount of the battery 7.

[充電量推定方法のフローチャート]
次に、図8に示すフローチャートにより、一実施形態に係る充電量推定装置1により実行される充電量推定方法を説明する。
[Flowchart of charge amount estimation method]
Next, a charge amount estimation method executed by the charge amount estimation apparatus 1 according to an embodiment will be described with reference to the flowchart shown in FIG.

まず、図1の充電量推定装置1の温度測定部10、電圧測定部11及び電流測定部12により、電池7の温度、電池7の端子電圧及び電池7の電流をそれぞれ測定して検出する(ステップS1)。別の言い方をすれば、電池7の温度、電圧及び電流をセンサにより検出する。   First, the temperature measurement unit 10, the voltage measurement unit 11 and the current measurement unit 12 of the charge amount estimation apparatus 1 of FIG. 1 respectively measure and detect the temperature of the battery 7, the terminal voltage of the battery 7, and the current of the battery 7 ( Step S1). In other words, the temperature, voltage and current of the battery 7 are detected by a sensor.

次に、充電量推定装置1の充電量演算部13は、温度測定部10、電圧測定部11及び電流測定部12から、電池7の温度、電池7の端子電圧及び電池7の電流をそれぞれ取得する。図2の充電量演算部13の充電時パラメータ推定部14及び放電時パラメータ推定部はそれぞれ、電池7の充電時及び放電時パラメータを個別に推定する。また、充電時パラメータ推定部14及び放電時パラメータ推定部は電池7のOCV推定値及びSOH推定値を推定する(ステップS2)。パラメータを推定する方法は、既に説明した通りである。   Next, the charge amount calculation unit 13 of the charge amount estimation device 1 acquires the temperature of the battery 7, the terminal voltage of the battery 7, and the current of the battery 7 from the temperature measurement unit 10, the voltage measurement unit 11, and the current measurement unit 12, respectively. To do. The charging parameter estimation unit 14 and the discharging parameter estimation unit of the charging amount calculation unit 13 in FIG. 2 individually estimate the charging and discharging parameters of the battery 7, respectively. Further, the charging parameter estimation unit 14 and the discharging parameter estimation unit estimate the OCV estimated value and the SOH estimated value of the battery 7 (step S2). The method for estimating the parameter is as described above.

次に、充電量演算部13のOCV算出部17は、充電時パラメータ推定部14又は放電時パラメータ推定部15から充電時又は放電時パラメータを取得する。またOCV算出部17は、選択器16から、電池7に流れる電流の方向に応じて選択された充電時又は放電時の電池7のOCV推定値及びSOH推定値を取得する(ステップS3)。さらに温度測定部10から電池7の温度を取得する。   Next, the OCV calculation unit 17 of the charge amount calculation unit 13 acquires a charging or discharging parameter from the charging parameter estimation unit 14 or the discharging parameter estimation unit 15. Further, the OCV calculating unit 17 acquires the OCV estimated value and the SOH estimated value of the battery 7 at the time of charging or discharging selected according to the direction of the current flowing through the battery 7 from the selector 16 (step S3). Further, the temperature of the battery 7 is acquired from the temperature measuring unit 10.

次に、OCV算出部17は、電池7の抵抗値Rを電池7の温度に基づいて補正し、電池7の温度が25℃である場合に相当する抵抗値R(25℃)を算出する(ステップS4)。   Next, the OCV calculation unit 17 corrects the resistance value R of the battery 7 based on the temperature of the battery 7, and calculates a resistance value R (25 ° C.) corresponding to the case where the temperature of the battery 7 is 25 ° C. ( Step S4).

次にOCV算出部17は、ステップS4で温度補正した電池7の抵抗値R(25℃,x%)(R(25℃)に等しい)を電池7のSOH推定値に基づいて補正し、電池7のSOHが100%である場合に相当する抵抗値R(25℃,100%)を算出する(ステップS5)。   Next, the OCV calculation unit 17 corrects the resistance value R (25 ° C., x%) of the battery 7 whose temperature is corrected in step S4 based on the estimated SOH value of the battery 7 and corrects the battery 7 A resistance value R (25 ° C., 100%) corresponding to the case where the SOH of 7 is 100% is calculated (step S5).

次にOCV算出部17は、電池7のOCV推定値が所定の閾値より大きいかどうか判定する(ステップS6)。   Next, the OCV calculation unit 17 determines whether or not the OCV estimated value of the battery 7 is larger than a predetermined threshold (step S6).

電池7のOCV推定値が所定の閾値より小さい場合(ステップS6:NO)、OCV算出部17は、図6(a)に示した0次の抵抗R0c又はR0dの抵抗値とOCVとの関係からOCVを算出する(ステップS7)。   When the OCV estimated value of the battery 7 is smaller than the predetermined threshold value (step S6: NO), the OCV calculating unit 17 calculates the relationship between the resistance value of the zeroth-order resistor R0c or R0d and OCV shown in FIG. OCV is calculated (step S7).

電池7のOCV推定値が所定の閾値より大きい場合(ステップS6:YES)、OCV算出部17は、図6(c)に示した2次の抵抗R2c又はR2dの抵抗値とOCVとの関係からOCVを算出する(ステップS8)。   When the OCV estimated value of the battery 7 is larger than the predetermined threshold value (step S6: YES), the OCV calculation unit 17 calculates the relationship between the resistance value of the secondary resistor R2c or R2d and OCV shown in FIG. OCV is calculated (step S8).

次に、充電量演算部13のSOC算出部18は、OCV算出部17から電池7のOCVを取得し、図7に示したSOCとOCVとの関係から電池7のSOCを算出する(ステップS9)。さらに電池7の満充電量にSOCを乗じることによって、電池7の充電量を算出する。   Next, the SOC calculation unit 18 of the charge amount calculation unit 13 acquires the OCV of the battery 7 from the OCV calculation unit 17, and calculates the SOC of the battery 7 from the relationship between the SOC and the OCV shown in FIG. 7 (step S9 ). Further, the charge amount of the battery 7 is calculated by multiplying the full charge amount of the battery 7 by the SOC.

以上のように、図8のフローチャートに示した充電量推定方法によれば、電池7のSOC及び充電量を算出することができる。   As described above, according to the charge amount estimation method shown in the flowchart of FIG. 8, the SOC and the charge amount of the battery 7 can be calculated.

(変形例)
一実施形態に係る充電量推定方法によれば、充電時パラメータ推定部14又は放電時パラメータ推定部15で推定した電池パラメータ及びOCV推定値からOCV算出部17でOCV算出値を算出し、SOC算出部18で電池7のSOC及び充電量を算出した。一方、充電時パラメータ推定部14又は放電時パラメータ推定部15が電池7のSOCを推定するように構成することもできる。この場合の構成について変形例として説明する。
(Modification)
According to the charge amount estimation method according to an embodiment, the OCV calculation unit 17 calculates the OCV calculation value from the battery parameter and the OCV estimation value estimated by the charge parameter estimation unit 14 or the discharge parameter estimation unit 15, and calculates the SOC. The unit 18 calculated the SOC and charge amount of the battery 7. On the other hand, the charging parameter estimation unit 14 or the discharging parameter estimation unit 15 may be configured to estimate the SOC of the battery 7. The configuration in this case will be described as a modified example.

充電時パラメータ推定部14又は放電時パラメータ推定部15が電池7のSOCを推定して、SOC推定値を算出する場合(本変形例の場合)、図3のOCV算出部17は、SOCを算出する部分として機能する。すなわち、OCV算出部17は、0次又は2次の抵抗の抵抗値とSOCとの関係に基づき、SOC推定値からSOCを算出する。   When the charging parameter estimation unit 14 or the discharging parameter estimation unit 15 estimates the SOC of the battery 7 and calculates the SOC estimation value (in this modification), the OCV calculation unit 17 in FIG. 3 calculates the SOC. It functions as a part to do. That is, the OCV calculation unit 17 calculates the SOC from the estimated SOC value based on the relationship between the resistance value of the zeroth-order or second-order resistor and the SOC.

さらに本変形例の場合、図3のSOC算出部18は、OCVを算出する部分として機能する。すなわちSOC算出部18は、SOCとOCVとの関係に基づき、OCV算出部17で算出したSOCからOCVを算出する。   Further, in the case of this modification, the SOC calculation unit 18 in FIG. 3 functions as a part for calculating OCV. That is, the SOC calculation unit 18 calculates the OCV from the SOC calculated by the OCV calculation unit 17 based on the relationship between the SOC and the OCV.

本変形例の構成であっても、上記説明してきた一実施形態と同様にSOCをより正確に算出することができる。   Even in the configuration of the present modification, the SOC can be calculated more accurately as in the embodiment described above.

本発明を諸図面および実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形または修正をおこなうことが容易であることに注意されたい。従って、これらの変形または修正は本発明の範囲に含まれることに留意されたい。例えば、各構成部、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部およびステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。   Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes or modifications based on the present disclosure. Therefore, it should be noted that these variations or modifications are included in the scope of the present invention. For example, the functions included in each component, each step, etc. can be rearranged so that there is no logical contradiction, and a plurality of components, steps, etc. can be combined into one or divided. It is.

1 充電量推定装置
10 温度測定部
11 電圧測定部
12 電流測定部
13 充電量演算部
14 充電時パラメータ推定部
15 放電時パラメータ推定部
16 選択器
17 OCV算出部
18 SOC算出部
20 演算器
21 適応機構
7 電池
71 電池の等価回路
8 負荷
9 充電器
1 Charge estimation device
10 Temperature measurement unit
11 Voltage measurement section
12 Current measurement section
13 Charge calculation unit
14 Charging parameter estimator
15 Discharge parameter estimation unit
16 Selector
17 OCV calculator
18 SOC calculator
20 Calculator
21 Adaptation mechanism
7 batteries
71 Battery equivalent circuit
8 Load
9 Charger

Claims (9)

充放電を行う電池の内部抵抗の抵抗値であって第1抵抗値及び第2抵抗値を含む内部抵抗の抵抗値及び開放電圧を逐次推定する充電量推定方法において、
前記電池の充電時の内部抵抗の抵抗値と前記電池の放電時の内部抵抗の抵抗値とを個別に推定するステップと、
前記充電時又は放電時の内部抵抗の抵抗値のうち前記第1又は前記第2抵抗値のいずれか一方に基づいて前記電池の充電率を算出するステップと
を含む充電量推定方法。
In the charge amount estimation method for sequentially estimating the resistance value of the internal resistance including the first resistance value and the second resistance value and the open circuit voltage, which is the resistance value of the internal resistance of the battery that performs charging and discharging,
Individually estimating the resistance value of the internal resistance during charging of the battery and the resistance value of the internal resistance during discharging of the battery;
Calculating a charging rate of the battery based on one of the first resistance value and the second resistance value among the resistance values of the internal resistance at the time of charging or discharging.
請求項1に記載の充電量推定方法において、
前記充電時の内部抵抗の抵抗値に基づいて前記充電量を算出する、充電量推定方法。
The charge amount estimation method according to claim 1,
The charge amount estimation method which calculates the said charge amount based on the resistance value of the internal resistance at the time of the said charge.
請求項1又は2に記載の充電量推定方法において、
前記第1抵抗値は、前記第2抵抗値よりも、前記電池の電解液と電極との反応速度が速い成分を反映する
ことを特徴とする充電量推定方法。
In the charge amount estimation method according to claim 1 or 2,
The charge amount estimation method, wherein the first resistance value reflects a component having a faster reaction rate between the battery electrolyte and the electrode than the second resistance value.
請求項1乃至3いずれか一項に記載の充電量推定方法において、
前記電池の内部抵抗は、前記電池の充電時に有効となる抵抗R0c、抵抗R1c、及び抵抗R2cを含み、
前記電池の充電時の前記第1及び第2抵抗値はそれぞれ、前記抵抗R0c及び抵抗R2cの抵抗値である
ことを特徴とする充電量推定方法。
In the charge amount estimation method according to any one of claims 1 to 3,
The internal resistance of the battery includes a resistor R0c, a resistor R1c, and a resistor R2c that are effective when charging the battery,
The charging amount estimation method, wherein the first and second resistance values when charging the battery are resistance values of the resistors R0c and R2c, respectively.
請求項1乃至4いずれか一項に記載の充電量推定方法において、
所定の閾値と前記電池の開放電圧の推定値とに基づいて、前記第1抵抗値及び前記第2抵抗値のいずれか一方を選択するステップをさらに含み、
前記電池の充電率を算出するステップは、前記選択するステップで選択した前記第1又は第2抵抗値のいずれか一方に基づいて前記電池の充電率を算出する
ことを特徴とする充電量推定方法。
The charge amount estimation method according to any one of claims 1 to 4,
Further comprising selecting one of the first resistance value and the second resistance value based on a predetermined threshold and an estimated value of the open circuit voltage of the battery;
The step of calculating the charging rate of the battery calculates the charging rate of the battery based on one of the first and second resistance values selected in the selecting step. .
請求項5に記載の充電量推定方法において、
前記選択するステップにおいて、前記電池の開放電圧の推定値が前記所定の閾値より低い場合、前記第1抵抗値を選択する
ことを特徴とする充電量推定方法。
In the charge amount estimation method according to claim 5,
In the selecting step, when the estimated value of the open circuit voltage of the battery is lower than the predetermined threshold, the first resistance value is selected.
請求項1乃至6いずれか一項に記載の充電量推定方法において、
前記電池の健全度を推定するステップをさらに含み、
前記内部抵抗の抵抗値は、前記電池の健全度に基づいて補正される
ことを特徴とする充電量推定方法。
The charge amount estimation method according to any one of claims 1 to 6,
Further comprising estimating the health of the battery;
The charge amount estimation method, wherein the resistance value of the internal resistance is corrected based on a soundness level of the battery.
請求項1乃至7いずれか一項に記載の充電量推定方法において、
前記電池の温度を測定するステップをさらに含み、
前記内部抵抗の抵抗値は、前記電池の温度に基づいて補正される
ことを特徴とする充電量推定方法。
The charge amount estimation method according to any one of claims 1 to 7,
Further comprising measuring the temperature of the battery;
The charge amount estimation method according to claim 1, wherein the resistance value of the internal resistance is corrected based on a temperature of the battery.
充放電を行う電池の内部抵抗の抵抗値であって第1抵抗値及び第2抵抗値を含む内部抵抗の抵抗値及び開放電圧を逐次推定する充電量推定装置において、
前記電池の充電時の内部抵抗の抵抗値を推定する充電時パラメータ推定部と、
前記電池の放電時の内部抵抗の抵抗値を推定する放電時パラメータ推定部と、
前記充電時又は放電時の内部抵抗の抵抗値のうち前記第1又は前記第2抵抗値のいずれか一方に基づいて前記電池の充電率を算出する充電率推定部と
を備える充電量推定装置。
In the charge amount estimation device that sequentially estimates the resistance value of the internal resistance including the first resistance value and the second resistance value and the open circuit voltage, which is the resistance value of the internal resistance of the battery that performs charging and discharging,
A charging parameter estimator for estimating a resistance value of the internal resistance during charging of the battery;
A discharge parameter estimation unit for estimating a resistance value of the internal resistance during discharge of the battery;
A charge amount estimation apparatus comprising: a charge rate estimation unit that calculates a charge rate of the battery based on one of the first resistance value and the second resistance value among the resistance values of the internal resistance during charging or discharging.
JP2015094387A 2015-05-01 2015-05-01 Charging rate calculation method and charging rate calculation device Active JP6541412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015094387A JP6541412B2 (en) 2015-05-01 2015-05-01 Charging rate calculation method and charging rate calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015094387A JP6541412B2 (en) 2015-05-01 2015-05-01 Charging rate calculation method and charging rate calculation device

Publications (2)

Publication Number Publication Date
JP2016211923A true JP2016211923A (en) 2016-12-15
JP6541412B2 JP6541412B2 (en) 2019-07-10

Family

ID=57550090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015094387A Active JP6541412B2 (en) 2015-05-01 2015-05-01 Charging rate calculation method and charging rate calculation device

Country Status (1)

Country Link
JP (1) JP6541412B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096953A (en) * 2016-12-16 2018-06-21 三菱自動車工業株式会社 Battery state estimation device
KR20200011154A (en) * 2018-07-24 2020-02-03 (주)엘탑 Charging system using battery estimation
WO2022239391A1 (en) * 2021-05-12 2022-11-17 東洋システム株式会社 Battery performance evaluation device and battery performance evaluation method
JP2022176226A (en) * 2021-05-12 2022-11-25 東洋システム株式会社 Battery performance evaluation device and battery performance evaluation method
WO2023168542A1 (en) * 2022-03-09 2023-09-14 宁德时代新能源科技股份有限公司 Method and device for calibrating contact resistance of battery connecting piece, and electric device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191113A (en) * 2002-12-10 2004-07-08 Nissan Motor Co Ltd Charging rate estimation device of secondary battery
JP2006292565A (en) * 2005-04-12 2006-10-26 Furukawa Electric Co Ltd:The Method for discriminating secondary cell degradation condition and secondary cell degradation condition discriminating device
JP2010135075A (en) * 2008-12-02 2010-06-17 Calsonic Kansei Corp Method and device for estimating temperature of battery pack
JP2010175484A (en) * 2009-01-31 2010-08-12 Calsonic Kansei Corp Method for estimating internal resistance component of battery and method for estimating charge capacity
JP2013142649A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Device for measuring state of charge
JP2014102248A (en) * 2012-10-24 2014-06-05 Gs Yuasa Corp Power storage state detection apparatus
JP2014149280A (en) * 2013-02-04 2014-08-21 Toshiba Corp Battery performance estimation method and battery performance estimation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191113A (en) * 2002-12-10 2004-07-08 Nissan Motor Co Ltd Charging rate estimation device of secondary battery
JP2006292565A (en) * 2005-04-12 2006-10-26 Furukawa Electric Co Ltd:The Method for discriminating secondary cell degradation condition and secondary cell degradation condition discriminating device
JP2010135075A (en) * 2008-12-02 2010-06-17 Calsonic Kansei Corp Method and device for estimating temperature of battery pack
JP2010175484A (en) * 2009-01-31 2010-08-12 Calsonic Kansei Corp Method for estimating internal resistance component of battery and method for estimating charge capacity
JP2013142649A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Device for measuring state of charge
JP2014102248A (en) * 2012-10-24 2014-06-05 Gs Yuasa Corp Power storage state detection apparatus
JP2014149280A (en) * 2013-02-04 2014-08-21 Toshiba Corp Battery performance estimation method and battery performance estimation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096953A (en) * 2016-12-16 2018-06-21 三菱自動車工業株式会社 Battery state estimation device
KR20200011154A (en) * 2018-07-24 2020-02-03 (주)엘탑 Charging system using battery estimation
KR102094012B1 (en) * 2018-07-24 2020-03-26 (주)엘탑 Charging system using battery estimation
WO2022239391A1 (en) * 2021-05-12 2022-11-17 東洋システム株式会社 Battery performance evaluation device and battery performance evaluation method
JP2022174849A (en) * 2021-05-12 2022-11-25 東洋システム株式会社 Battery performance evaluation device and battery performance evaluation method
JP2022176226A (en) * 2021-05-12 2022-11-25 東洋システム株式会社 Battery performance evaluation device and battery performance evaluation method
JP7214253B2 (en) 2021-05-12 2023-01-30 東洋システム株式会社 BATTERY PERFORMANCE EVALUATION DEVICE AND BATTERY PERFORMANCE EVALUATION METHOD
JP7242109B2 (en) 2021-05-12 2023-03-20 東洋システム株式会社 BATTERY PERFORMANCE EVALUATION DEVICE AND BATTERY PERFORMANCE EVALUATION METHOD
WO2023168542A1 (en) * 2022-03-09 2023-09-14 宁德时代新能源科技股份有限公司 Method and device for calibrating contact resistance of battery connecting piece, and electric device

Also Published As

Publication number Publication date
JP6541412B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
CN107690585B (en) Method and apparatus for determining the state of health and state of charge of a lithium sulfur battery
JP6182025B2 (en) Battery health estimation device and health estimation method
CN106461732B (en) Method for estimating state of health of battery
KR100927541B1 (en) Apparatus and method for estimating battery's resistance characteristics based on open circuit voltage estimated by battery voltage variation pattern
JP6490414B2 (en) Secondary battery state detection device and secondary battery state detection method
WO2014045706A1 (en) State-of-charge estimation device and state-of-charge estimation method
EP3663780B1 (en) Deterioration state computation method and deterioration state computation device
WO2013141100A1 (en) Cell state estimation device
US10408887B2 (en) Method for estimating degradation of rechargeable battery, degradation estimation circuit, electronic apparatus and vehicle including same
JP6548387B2 (en) Method and apparatus for estimating state of charge of secondary battery
JP6541412B2 (en) Charging rate calculation method and charging rate calculation device
JP6509725B2 (en) Estimating the state of charge of the battery
CN105634051B (en) Remaining battery level predicting device and battery pack
JP5653881B2 (en) Secondary battery state detection device and secondary battery state detection method
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
JP6044512B2 (en) Battery characteristics learning device
US10054645B2 (en) Deterioration determination method, deterioration determination device, and storage medium
JP2015038444A (en) Secondary battery remaining capacity estimation method and secondary battery remaining capacity estimation apparatus
JP2013250071A (en) Full charge capacity detection device and storage battery system
JP2015185284A (en) Secondary-battery internal temperature estimating device and method
JP2010203885A (en) Device of estimating inputtable/outputtable power of secondary battery
JP6161133B2 (en) Data extraction apparatus, data extraction method, and data extraction program
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP2015210182A (en) Performance estimation device and performance estimation method of lead acid storage battery
EP3605123A1 (en) Storage battery control device and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190611

R150 Certificate of patent or registration of utility model

Ref document number: 6541412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316354

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350