JP2015210182A - Performance estimation device and performance estimation method of lead acid storage battery - Google Patents

Performance estimation device and performance estimation method of lead acid storage battery Download PDF

Info

Publication number
JP2015210182A
JP2015210182A JP2014091831A JP2014091831A JP2015210182A JP 2015210182 A JP2015210182 A JP 2015210182A JP 2014091831 A JP2014091831 A JP 2014091831A JP 2014091831 A JP2014091831 A JP 2014091831A JP 2015210182 A JP2015210182 A JP 2015210182A
Authority
JP
Japan
Prior art keywords
storage battery
lead
current
performance
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014091831A
Other languages
Japanese (ja)
Inventor
吉広 枝本
Yoshihiro Edamoto
吉広 枝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2014091831A priority Critical patent/JP2015210182A/en
Publication of JP2015210182A publication Critical patent/JP2015210182A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a performance estimation device and a performance estimation method of lead acid storage battery, improving an estimation accuracy of performances of the lead acid storage battery.SOLUTION: A performance estimation device 10 of a lead acid storage battery comprises: an estimation part 11 that estimates a parameter and an open circuit voltage of the lead acid storage battery based on a terminal voltage and charge/discharge current of the lead acid storage battery; an internal resistance calculation part 13 calculating internal resistance of the lead acid storage battery using the parameter; and a battery performance calculation part 16 that determines that a sum of an open circuit voltage reduction amount of the lead acid storage battery generated when the lead acid storage battery is discharged by current I for a time T and a voltage drop amount due to the internal resistance is equal to a difference between the open circuit voltage and a predetermined discharge final voltage, and that calculates the current I or the time T. When one of the current I and the time T is determined to a predetermined value, the battery performance calculation part 16 calculates the other of the current I and the time T.

Description

本発明は、鉛蓄電池の性能を推定する性能推定装置及び性能推定方法に関する。   The present invention relates to a performance estimation device and a performance estimation method for estimating the performance of a lead storage battery.

従来、自動車などの車両の内燃機関の始動などに使用される鉛蓄電池の性能(能力)を示す規格として、例えばJISではコールドクランキング電流(CCA:Cold Cranking Ampere)、リザーブキャパシティ(RC:Reserve Capacity)、及び5時間率容量などが規定されている。これらの規格値は、新品時の鉛蓄電池の性能評価の指標として用いられるだけでなく、鉛蓄電池の使用による性能低下を評価する指標としても用いられる。例えば、鉛蓄電池の交換時期を判断するために、定期的にこれらの値を計測することが望ましい。このため、常温環境においてこれらの値を簡易的に計測することが望まれる。例えば、特許文献1には、内部抵抗と鉛蓄電池の性能値(例えば、CCA)との関係を示す実験データを予め記憶し、鉛蓄電池の電圧と電流に基づいて計算した内部抵抗に応じて鉛蓄電池の性能値を決定する方法が記載されている。   Conventionally, as a standard indicating the performance (capacity) of a lead storage battery used for starting an internal combustion engine of a vehicle such as an automobile, for example, in JIS, cold cranking current (CCA: Cold Cranking Ampere), reserve capacity (RC: Reserve) Capacity) and 5 hour rate capacity are specified. These standard values are used not only as an index for evaluating the performance of a lead-acid battery when it is new, but also as an index for evaluating performance degradation due to the use of the lead-acid battery. For example, it is desirable to measure these values periodically in order to determine the replacement time of the lead storage battery. For this reason, it is desirable to simply measure these values in a room temperature environment. For example, in Patent Document 1, experimental data indicating the relationship between the internal resistance and the performance value (for example, CCA) of the lead storage battery is stored in advance, and lead is generated according to the internal resistance calculated based on the voltage and current of the lead storage battery. A method for determining the performance value of a storage battery is described.

特表2007−525354号公報Special table 2007-525354 gazette

しかしながら、従来技術において、鉛蓄電池の性能を判断する精度が必ずしも十分でない場合があった。例えば、鉛蓄電池の経年劣化などにより、鉛蓄電池の内部抵抗と性能値との関係は変化する。また、鉛蓄電池の性能の個体差などにより、鉛蓄電池の内部抵抗と性能値との関係は異なる。このため、予め記憶している情報が示す内部抵抗と性能値との関係は、現在の鉛蓄電池の内部抵抗と性能値との関係と必ずしも一致せず、鉛蓄電池の性能を判断する精度が低下することがあった。   However, in the prior art, the accuracy of judging the performance of the lead storage battery may not always be sufficient. For example, the relationship between the internal resistance and the performance value of the lead storage battery changes due to the deterioration of the lead storage battery over time. In addition, the relationship between the internal resistance of the lead storage battery and the performance value varies depending on individual differences in the performance of the lead storage battery. For this reason, the relationship between the internal resistance and the performance value indicated by the information stored in advance does not necessarily match the current relationship between the internal resistance and the performance value of the lead storage battery, and the accuracy of judging the performance of the lead storage battery is reduced. There was something to do.

かかる事情に鑑みてなされた本発明の目的は、鉛蓄電池の性能の推定精度を向上する鉛蓄電池の性能推定装置及び性能推定方法を提供することにある。   The objective of this invention made | formed in view of this situation is providing the performance estimation apparatus and performance estimation method of a lead storage battery which improve the estimation precision of the performance of a lead storage battery.

上記課題を解決するために、第1の発明に係る鉛蓄電池の性能推定装置は、
鉛蓄電池の端子電圧及び充放電電流に基づいて前記鉛蓄電池のパラメータ及び開放電圧をそれぞれ推定する推定部と、
前記パラメータを用いて前記鉛蓄電池の内部抵抗を演算する内部抵抗演算部と、
前記鉛蓄電池を電流Iで時間T放電する場合に発生する前記鉛蓄電池の開放電圧減少分と前記内部抵抗による電圧降下分との和が、前記開放電圧と所定の放電終止電圧との差に等しいと定められ、前記電流I又は前記時間Tを演算する電池性能演算部と、を備え、
前記電池性能演算部は、前記電流I及び前記時間Tのうち一方が所定の値に定められると、前記電流I及び前記時間Tのうち他方を演算することを特徴とする。
In order to solve the above-mentioned problem, the performance estimation device for a lead-acid battery according to the first invention comprises:
An estimation unit that estimates the parameters and open circuit voltage of the lead storage battery based on the terminal voltage and charge / discharge current of the lead storage battery, and
An internal resistance calculator for calculating the internal resistance of the lead-acid battery using the parameters;
The sum of the decrease in the open-circuit voltage of the lead-acid battery and the voltage drop due to the internal resistance that occurs when the lead-acid battery is discharged for a time T with the current I is equal to the difference between the open-circuit voltage and a predetermined discharge end voltage. A battery performance calculation unit for calculating the current I or the time T,
The battery performance calculation unit calculates the other of the current I and the time T when one of the current I and the time T is set to a predetermined value.

また、第2の発明に係る鉛蓄電池の性能推定装置において、
前記所定の放電終止電圧は7.2Vであり、前記時間Tは30秒に定められ、
前記電池性能演算部は、前記電流Iを演算することを特徴とする。
Moreover, in the performance estimation device of the lead storage battery according to the second invention,
The predetermined discharge end voltage is 7.2V, and the time T is set to 30 seconds.
The battery performance calculation unit calculates the current I.

また、第3の発明に係る鉛蓄電池の性能推定装置において、
前記所定の放電終止電圧は10.5Vであり、前記電流Iは25Aに定められ、
前記電池性能演算部は、前記時間Tを演算することを特徴とする。
Moreover, in the performance estimation device of the lead storage battery according to the third invention,
The predetermined discharge end voltage is 10.5V, and the current I is set to 25A.
The battery performance calculation unit calculates the time T.

また、第4の発明に係る鉛蓄電池の性能推定装置において、
前記所定の放電終止電圧は10.5Vであり、前記電流Iは前記鉛蓄電池の5時間率電流に定められ、
前記電池性能演算部は、前記時間Tを演算することを特徴とする。
Moreover, in the performance estimation device of the lead storage battery according to the fourth invention,
The predetermined end-of-discharge voltage is 10.5V, and the current I is determined as a 5-hour rate current of the lead acid battery,
The battery performance calculation unit calculates the time T.

また、第5の発明に係る鉛蓄電池の性能推定装置は、
前記パラメータに含まれる抵抗を温度で補正する抵抗補正部を更に備えることを特徴とする。
Moreover, the performance estimation device for a lead storage battery according to the fifth invention is:
A resistance correction unit that corrects the resistance included in the parameter with temperature is further provided.

また、第6の発明に係る鉛蓄電池の性能推定装置において、
前記内部抵抗演算部は、前記鉛蓄電池の前記内部抵抗を所定の時定数を持つ関数に定めて前記内部抵抗を演算することを特徴とする。
Moreover, in the performance estimation device for a lead storage battery according to the sixth invention,
The internal resistance calculation unit calculates the internal resistance by determining the internal resistance of the lead-acid battery as a function having a predetermined time constant.

また、第7の発明に係る鉛蓄電池の性能推定装置は、
前記開放電圧を温度で補正する開放電圧補正部を更に備えることを特徴とする。
Moreover, the performance estimation device of the lead storage battery according to the seventh invention is:
An open-circuit voltage correction unit that corrects the open-circuit voltage with temperature is further provided.

また、第8の発明に係る鉛蓄電池の性能推定装置は、
前記パラメータに基づいて前記鉛蓄電池の健全度を推定する健全度推定部を更に備え、
前記電池性能演算部は、前記健全度を用いて前記開放電圧減少分を補正することを特徴とする。
Moreover, the performance estimation device for a lead storage battery according to the eighth invention is:
Further comprising a health estimation unit that estimates the health of the lead-acid battery based on the parameters;
The battery performance calculation unit corrects the decrease in the open circuit voltage using the soundness level.

また、第9の発明に係る鉛蓄電池の性能推定装置において、
前記電池性能演算部は、演算した前記電流Iと所定の基準値との比較に基づいて前記鉛蓄電池の健全度を演算し、又は演算した前記時間Tと所定の基準値との比較に基づいて前記鉛蓄電池の健全度を演算することを特徴とする。
Moreover, in the performance estimation apparatus of the lead storage battery according to the ninth invention,
The battery performance calculation unit calculates the soundness of the lead storage battery based on a comparison between the calculated current I and a predetermined reference value, or based on a comparison between the calculated time T and a predetermined reference value. The health level of the lead storage battery is calculated.

また、第10の発明に係る鉛蓄電池の性能推定方法は、
鉛蓄電池の端子電圧及び充放電電流に基づいて前記鉛蓄電池のパラメータ及び開放電圧をそれぞれ推定するステップと、
前記パラメータを用いて前記鉛蓄電池の内部抵抗を演算するステップと、
前記鉛蓄電池を電流Iで時間T放電する場合に発生する前記鉛蓄電池の開放電圧減少分と前記内部抵抗における電圧降下分との和が、前記開放電圧と所定の放電終止電圧との差に等しいと定められ、前記電流I又は前記時間Tを演算するステップと、を含み、
前記電流I又は前記時間Tを演算する前記ステップにおいて、前記電流I及び前記時間Tのうち一方が所定の値に定められると、前記電流I及び前記時間Tのうち他方を演算する
ことを特徴とする。
Moreover, the performance estimation method of the lead storage battery according to the tenth invention is as follows:
Estimating the parameters and open circuit voltage of the lead storage battery based on the terminal voltage and charge / discharge current of the lead storage battery, respectively;
Calculating the internal resistance of the lead acid battery using the parameters;
The sum of the decrease in the open-circuit voltage of the lead-acid battery and the voltage drop in the internal resistance that occurs when the lead-acid battery is discharged for a time T with current I is equal to the difference between the open-circuit voltage and a predetermined discharge end voltage. And calculating the current I or the time T,
In the step of calculating the current I or the time T, when one of the current I and the time T is set to a predetermined value, the other of the current I and the time T is calculated. To do.

第1の発明に係る鉛蓄電池の性能推定装置によれば、鉛蓄電池の現在の状態に基づいて電流I又は時間Tを演算するため、電池性能の個体差又は経年劣化などの影響を低減し、鉛蓄電池の性能の推定精度を向上可能である。また、車両の走行中に電流I又は時間Tを演算可能であるため、例えば試験のために鉛蓄電池を車両から取り出すことなく、簡易な方法で鉛蓄電池の性能を評価可能である。   According to the performance estimation device for a lead storage battery according to the first invention, since the current I or time T is calculated based on the current state of the lead storage battery, the influence of individual differences in battery performance or aging deterioration is reduced, The estimation accuracy of the performance of the lead storage battery can be improved. Further, since the current I or the time T can be calculated while the vehicle is running, the performance of the lead storage battery can be evaluated by a simple method without taking the lead storage battery from the vehicle for testing, for example.

また、第2の発明に係る鉛蓄電池の性能推定装置によれば、JISで定められたCCA試験を簡易な方法で実施し、鉛蓄電池の性能であるコールドクランキング電流を評価可能である。   Moreover, according to the performance estimation apparatus of the lead storage battery which concerns on 2nd invention, the CCA test defined by JIS can be implemented by a simple method, and the cold cranking current which is the performance of a lead storage battery can be evaluated.

また、第3の発明に係る鉛蓄電池の性能推定装置によれば、JISで定められたRC試験を簡易な方法で実施し、鉛蓄電池の性能であるリザーブキャパシティを評価可能である。   Moreover, according to the performance estimation apparatus of the lead storage battery which concerns on 3rd invention, the RC test defined by JIS can be implemented by a simple method, and the reserve capacity which is the performance of a lead storage battery can be evaluated.

また、第4の発明に係る鉛蓄電池の性能推定装置によれば、JISで定められた5時間率容量試験を簡易な方法で実施し、鉛蓄電池の性能である5時間率容量を評価可能である。   Moreover, according to the performance estimation apparatus of the lead storage battery which concerns on 4th invention, the 5 hour rate capacity test defined by JIS can be implemented by a simple method, and the 5 hour rate capacity which is the performance of a lead storage battery can be evaluated. is there.

また、第5の発明に係る鉛蓄電池の性能推定装置によれば、パラメータに含まれる抵抗の温度依存性が補正されるため、鉛蓄電池の内部抵抗Rの推定精度を向上し、鉛蓄電池の性能の推定精度を更に向上可能である。   Moreover, according to the performance estimation device for a lead storage battery according to the fifth aspect of the invention, the temperature dependence of the resistance included in the parameter is corrected, so that the estimation accuracy of the internal resistance R of the lead storage battery is improved, and the performance of the lead storage battery is improved. The estimation accuracy can be further improved.

また、第6の発明に係る鉛蓄電池の性能推定装置によれば、過渡現象により時間経過とともに変化する内部抵抗Rの推定精度が向上するため、鉛蓄電池の性能の推定精度を更に向上可能である。   Moreover, according to the performance estimation device for a lead storage battery according to the sixth aspect of the invention, the estimation accuracy of the internal resistance R that changes with time due to a transient phenomenon is improved, so that the estimation accuracy of the performance of the lead storage battery can be further improved. .

また、第7の発明に係る鉛蓄電池の性能推定装置によれば、開放電圧OCVの温度依存性が補正されるため、鉛蓄電池の開放電圧OCVの推定精度を向上し、鉛蓄電池の性能の推定精度を更に向上可能である。   In addition, according to the performance estimation device for a lead storage battery according to the seventh invention, the temperature dependence of the open circuit voltage OCV is corrected. Therefore, the estimation accuracy of the open circuit voltage OCV of the lead storage battery is improved, and the performance of the lead storage battery is estimated. The accuracy can be further improved.

また、第8の発明に係る鉛蓄電池の性能推定装置によれば、推定した健全度SOHを用いて開放電圧減少分ΔV1を補正するため、開放電圧減少分ΔV1の推定精度を向上し、鉛蓄電池の性能の推定精度を更に向上可能である。 Moreover, according to the performance estimation device for a lead storage battery according to the eighth aspect of the invention, since the open circuit voltage decrease ΔV 1 is corrected using the estimated soundness SOH, the estimation accuracy of the open circuit voltage decrease ΔV 1 is improved, The estimation accuracy of the performance of the lead storage battery can be further improved.

また、第9の発明に係る鉛蓄電池の性能推定装置によれば、演算した電流I又は時間Tと、所定の基準値との比較に基づいて、鉛蓄電池の健全度SOHを推定可能である。また、車両の走行中に電流I又は時間Tを演算可能であるため、例えば試験のために鉛蓄電池を車両から取り出すことなく、簡易な方法で鉛蓄電池の健全度SOHを評価可能である。   In addition, according to the performance estimation device for a lead storage battery according to the ninth aspect, the soundness SOH of the lead storage battery can be estimated based on a comparison between the calculated current I or time T and a predetermined reference value. Further, since the current I or the time T can be calculated while the vehicle is running, for example, the soundness SOH of the lead storage battery can be evaluated by a simple method without removing the lead storage battery from the vehicle for testing.

また、第10の発明に係る鉛蓄電池の性能推定方法によれば、鉛蓄電池の現在の状態に基づいて電流I又は時間Tを演算するため、電池性能の個体差又は経年劣化などの影響を低減し、鉛蓄電池の性能の推定精度を向上可能である。また、車両の走行中に電流I又は時間Tを演算可能であるため、例えば試験のために鉛蓄電池を車両から取り出すことなく、簡易な方法で鉛蓄電池の性能を評価可能である。   In addition, according to the performance estimation method for a lead storage battery according to the tenth invention, the current I or time T is calculated based on the current state of the lead storage battery, thereby reducing the influence of individual differences in battery performance or deterioration over time. In addition, the estimation accuracy of the performance of the lead storage battery can be improved. Further, since the current I or the time T can be calculated while the vehicle is running, the performance of the lead storage battery can be evaluated by a simple method without taking the lead storage battery from the vehicle for testing, for example.

本発明の実施の形態1に係る鉛蓄電池の性能推定装置の機能ブロック図である。It is a functional block diagram of the performance estimation apparatus of the lead acid battery which concerns on Embodiment 1 of this invention. 鉛蓄電池の等価回路モデルの例を示す図である。It is a figure which shows the example of the equivalent circuit model of a lead acid battery. 鉛蓄電池の抵抗と温度との関係を説明する図である。It is a figure explaining the relationship between resistance of lead acid battery, and temperature. 鉛蓄電池の内部抵抗の変化を説明する図である。It is a figure explaining the change of internal resistance of a lead acid battery. 鉛蓄電池の放電による端子電圧の変化を説明する図である。It is a figure explaining the change of the terminal voltage by discharge of a lead acid battery. 図1の鉛蓄電池の性能推定装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the performance estimation apparatus of the lead acid battery of FIG. 本発明の実施の形態2に係る鉛蓄電池の性能推定装置の機能ブロック図である。It is a functional block diagram of the performance estimation apparatus of the lead acid battery which concerns on Embodiment 2 of this invention.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
はじめに、本発明の実施の形態1に係る鉛蓄電池の性能推定装置について説明する。実施の形態1に係る鉛蓄電池の性能推定装置は、例えば自動車などの車両に備えられる。性能推定装置は、例えばJISで定められたCCA試験規格、RC試験規格、及び5時間率容量試験規格のうちの任意の1つの規格に基づいて、車両に備えられた鉛蓄電池の性能を評価する性能評価試験を実施する。
(Embodiment 1)
First, the performance estimation apparatus for a lead storage battery according to Embodiment 1 of the present invention will be described. The performance estimation device for a lead storage battery according to Embodiment 1 is provided in a vehicle such as an automobile, for example. The performance estimation device evaluates the performance of the lead storage battery provided in the vehicle based on, for example, any one of the CCA test standard, the RC test standard, and the 5-hour rate capacity test standard defined by JIS. Conduct a performance evaluation test.

ここで、JISで定められた上述の試験について具体的に説明する。CCA試験は、鉛蓄電池の温度が−18℃において、鉛蓄電池の定電流放電開始から30秒目電圧が7.2Vとなる放電電流(コールドクランキング電流)を評価する試験である。RC試験は、鉛蓄電池の温度が25℃において、鉛蓄電池を放電終止電圧10.5Vまで電流25Aで放電した場合の持続時間(リザーブキャパシティ)を評価する試験である。5時間率試験は、鉛蓄電池の温度が25℃において、鉛蓄電池を放電終止電圧10.5Vまで5時間率電流で放電した場合の持続時間を測定し、当該時間を5時間率電流で乗じた容量(5時間率容量)を評価する試験である。即ち、上述の試験は何れも、所定の温度において鉛蓄電池を所定の放電終止電圧Veまで電流I(定電流)で時間T放電した場合における電流I又は時間Tを評価する試験である。 Here, the above-described test defined by JIS will be specifically described. The CCA test is a test for evaluating a discharge current (cold cranking current) at which the voltage of the lead storage battery is 7.2 V after the start of constant current discharge of the lead storage battery at a temperature of -18 ° C. The RC test is a test for evaluating the duration (reserved capacity) when a lead storage battery is discharged at a current of 25 A to a discharge end voltage of 10.5 V when the temperature of the lead storage battery is 25 ° C. In the 5-hour rate test, when the temperature of the lead storage battery was 25 ° C., the duration when the lead storage battery was discharged to a discharge end voltage of 10.5 V with a 5-hour rate current was measured, and the time was multiplied by the 5-hour rate current. This is a test for evaluating the capacity (5-hour rate capacity). That is, all of the above-described tests are tests for evaluating the current I or the time T when the lead storage battery is discharged for a time T with a current I (constant current) to a predetermined end-of-discharge voltage V e at a predetermined temperature.

鉛蓄電池の性能推定装置の構成について説明する。図1に示すように、鉛蓄電池の性能推定装置10は、推定部11と、抵抗補正部12と、内部抵抗演算部13と、開放電圧補正部14と、記憶部15と、電池性能演算部16と、を備える。推定部11、抵抗補正部12、内部抵抗演算部13、開放電圧補正部14、及び電池性能演算部16は、例えばプロセッサ及びメモリを有する車載のマイクロ・コンピュータなどの情報処理装置で構成することができる。また、記憶部15は、例えば車載のメモリなどの記憶装置で構成することができる。   The configuration of the lead storage battery performance estimation device will be described. As shown in FIG. 1, the performance estimation device 10 for a lead storage battery includes an estimation unit 11, a resistance correction unit 12, an internal resistance calculation unit 13, an open-circuit voltage correction unit 14, a storage unit 15, and a battery performance calculation unit. 16. The estimation unit 11, the resistance correction unit 12, the internal resistance calculation unit 13, the open-circuit voltage correction unit 14, and the battery performance calculation unit 16 may be configured by an information processing device such as an in-vehicle microcomputer having a processor and a memory, for example. it can. Moreover, the memory | storage part 15 can be comprised with memory | storage devices, such as a vehicle-mounted memory, for example.

推定部11は、車両の走行時における鉛蓄電池の充放電電流i及び端子電圧vの測定値を取得する。充放電電流i及び端子電圧vは、例えば車両に備えられた電流センサ及び電圧センサからそれぞれ取得可能である。推定部11は、充放電電流i及び端子電圧vに基づき、例えばカルマン・フィルタなどの適応フィルタを用いて、鉛蓄電池の等価回路モデルのパラメータ及び開放電圧OCV(Open Circuit Voltage)を逐次推定する。実施の形態1において、図2に示す一次のフォスタ型RC梯子回路を等価回路モデルとして採用する。かかる場合、推定するパラメータは、抵抗R0、抵抗R1、及び容量C1である。鉛蓄電池の等価回路モデルは、鉛電池の内部を表す任意の数学モデルを採用可能であり、例えばn次のフォスタ型RC梯子回路又はn次のカウエル型RC梯子回路などを採用してもよい。 The estimation unit 11 acquires measured values of the charge / discharge current i and the terminal voltage v of the lead storage battery when the vehicle is traveling. The charge / discharge current i and the terminal voltage v can be obtained from, for example, a current sensor and a voltage sensor provided in the vehicle. Based on the charge / discharge current i and the terminal voltage v, the estimation unit 11 sequentially estimates parameters of an equivalent circuit model of the lead storage battery and an open circuit voltage OCV (Open Circuit Voltage) using an adaptive filter such as a Kalman filter. In the first embodiment, the primary Foster-type RC ladder circuit shown in FIG. 2 is adopted as an equivalent circuit model. In such a case, the parameters to be estimated are the resistance R 0 , the resistance R 1 , and the capacitance C 1 . As the equivalent circuit model of the lead-acid battery, any mathematical model representing the inside of the lead battery can be adopted. For example, an n-th order Foster-type RC ladder circuit or an n-th order Cowell-type RC ladder circuit may be employed.

ここで、図2に示す一次のフォスタ型RC梯子回路について説明する。一次のフォスタ型RC梯子回路は、容量C0と、抵抗R0と、抵抗R1及び容量C1の並列回路と、が直列に接続された回路である。容量C0の両端の電圧が、開放電圧OCVである。抵抗R0は、鉛蓄電池の電解液の抵抗及び結線の抵抗などのオーム抵抗を示す。抵抗R1は、鉛蓄電池の電荷移動過程及び/又は拡散過程における反応抵抗を示す。容量C1は、電気二重層による静電容量を示す。 Here, the primary Foster-type RC ladder circuit shown in FIG. 2 will be described. The primary Foster-type RC ladder circuit is a circuit in which a capacitor C 0 , a resistor R 0, and a parallel circuit of the resistor R 1 and the capacitor C 1 are connected in series. The voltage across the capacitor C 0 is the open circuit voltage OCV. The resistance R 0 indicates an ohmic resistance such as the resistance of the electrolytic solution of the lead storage battery and the resistance of connection. Resistor R 1 represents a reaction resistance in the charge transfer process and / or diffusion process of lead-acid batteries. Capacitance C 1 indicates the capacitance due to the electric double layer.

図1に示す抵抗補正部12は、鉛蓄電池の温度tmpを取得する。温度tmpは、例えば車両に備えられた温度センサから取得可能である。抵抗補正部12は、温度tmpに基づいて、推定部11が推定した鉛蓄電池のパラメータに含まれる抵抗(例えば、抵抗R1)を温度で補正する。以下、詳細に説明する。 The resistance correction unit 12 illustrated in FIG. 1 acquires the temperature tmp of the lead storage battery. The temperature tmp can be acquired from, for example, a temperature sensor provided in the vehicle. The resistance correction unit 12 corrects the resistance (for example, the resistance R 1 ) included in the parameters of the lead storage battery estimated by the estimation unit 11 based on the temperature tmp with the temperature. Details will be described below.

抵抗補正部12は、一次のフォスタ型RC梯子回路の抵抗R1と、鉛蓄電池の温度tmpとの対応関係を示す対応情報を予め記憶する。一般的に、抵抗R1及び温度tmpは、図3に示すように温度tmpが低いほど抵抗R1の値が増加する対応関係を有している。かかる対応関係を示す対応情報は、実験又はシミュレーションにより予め算出可能である。 The resistance correction unit 12 stores in advance correspondence information indicating a correspondence relationship between the resistance R 1 of the primary Foster-type RC ladder circuit and the temperature tmp of the lead storage battery. Generally, the resistance R 1 and the temperature tmp have a correspondence relationship in which the value of the resistance R 1 increases as the temperature tmp decreases as shown in FIG. The correspondence information indicating the correspondence relationship can be calculated in advance by experiments or simulations.

抵抗補正部12は、取得した鉛蓄電池の温度tmp及び対応情報に基づいて、推定部11が推定した抵抗R1の値を所定の温度に対応する値に補正する。所定の温度は、実施する試験の規格に応じて定められる。例えば、所定の温度は、CCA試験を実施する場合、JISで規定された−18℃に定められる。また、所定の温度は、RC試験又は5時間率容量試験を実施する場合、JISで規定された25℃に定められる。 The resistance correction unit 12 corrects the value of the resistance R 1 estimated by the estimation unit 11 to a value corresponding to a predetermined temperature based on the acquired temperature tmp of the lead storage battery and correspondence information. The predetermined temperature is determined according to the standard of the test to be performed. For example, the predetermined temperature is set to −18 ° C. defined by JIS when the CCA test is performed. The predetermined temperature is set to 25 ° C. defined by JIS when the RC test or the 5-hour rate capacity test is performed.

図1に示す内部抵抗演算部13は、鉛蓄電池のパラメータ(抵抗R0、抵抗R1、及び容量C1)を取得する。内部抵抗演算部13は、取得したパラメータに基づいて、鉛蓄電池の内部抵抗(合成抵抗)Rを演算する。 The internal resistance calculation unit 13 shown in FIG. 1 acquires parameters (resistance R 0 , resistance R 1 , and capacity C 1 ) of the lead storage battery. The internal resistance calculator 13 calculates the internal resistance (synthetic resistance) R of the lead storage battery based on the acquired parameter.

好適には、内部抵抗演算部13は、鉛蓄電池の内部抵抗Rを所定の時定数を持つ関数に定めて、内部抵抗Rを演算する。以下、詳細に説明する。   Preferably, the internal resistance calculator 13 determines the internal resistance R of the lead storage battery as a function having a predetermined time constant, and calculates the internal resistance R. Details will be described below.

図4は、一次のフォスタ型RC梯子回路の内部抵抗Rの時間変化を示す図である。放電を開始してから時間Tが経過するときの内部抵抗Rは、抵抗R0、抵抗R1、容量C1、及び時間Tを用いて、式(1)で表される。
R=R0+R1{1−e-T/(R1C1)} (1)
式(1)の右辺第2項は、抵抗R1及び容量C1の並列回路の抵抗を示しており、時定数τ=R11を有する関数で表される。
FIG. 4 is a diagram showing the time change of the internal resistance R of the primary Foster-type RC ladder circuit. The internal resistance R when the time T elapses from the start of discharge is expressed by Equation (1) using the resistance R 0 , the resistance R 1 , the capacitance C 1 , and the time T.
R = R 0 + R 1 { 1-e -T / (R1C1)} (1)
The second term of the right side of equation (1), the resistance R 1 and shows the resistance of the parallel circuit of the capacitor C 1, is represented by a function having a time constant tau = R 1 C 1.

内部抵抗演算部13は、式(1)により内部抵抗Rを演算する。例えばCCA試験を実施する場合、内部抵抗演算部13は、JISの規定に基づき時間T=30秒に定めて、鉛蓄電池の放電開始から30秒が経過するときの内部抵抗Rを演算する。また、RC試験又は5時間率容量試験を実施する場合、内部抵抗演算部13は、前回の評価試験において推定した時間Tを用いて、式(1)により内部抵抗Rを演算してもよい。   The internal resistance calculation unit 13 calculates the internal resistance R according to the equation (1). For example, when the CCA test is performed, the internal resistance calculation unit 13 sets time T = 30 seconds based on JIS regulations, and calculates the internal resistance R when 30 seconds have elapsed from the start of discharge of the lead storage battery. Further, when performing the RC test or the 5-hour rate capacity test, the internal resistance calculation unit 13 may calculate the internal resistance R by the equation (1) using the time T estimated in the previous evaluation test.

図1に示す開放電圧補正部14は、鉛蓄電池の温度tmpを取得する。開放電圧補正部14は、温度tmpに基づいて、推定部11が推定した鉛蓄電池の開放電圧OCVを温度で補正する。以下、詳細に説明する。   The open circuit voltage correction | amendment part 14 shown in FIG. 1 acquires temperature tmp of a lead acid battery. The open-circuit voltage correction unit 14 corrects the open-circuit voltage OCV of the lead storage battery estimated by the estimation unit 11 with the temperature based on the temperature tmp. Details will be described below.

一般的に、鉛蓄電池の開放電圧OCVは温度依存性を有しており、温度tmpが高いほど開放電圧OCVの値が低下する。温度tmp1における開放電圧OCV1と、温度tmp2における開放電圧OCV2との関係は、例えば式(2)で表される。
OCV2=OCV1+N{0.0007(tmp1−tmp2)] (2)
ここで、Nは鉛蓄電池のセル数である。開放電圧補正部14は、取得した温度tmpをtmp1、及び推定部11が推定した開放電圧OCVをOCV1にそれぞれ定めて、式(2)により所定の温度tmp2における開放電圧OCV2を演算する。所定の温度tmp2は、実施する試験の規格に応じて定められる。例えば、所定の温度tmp2は、CCA試験を実施する場合、JISで規定された−18℃に定められる。また、所定の温度tmp2は、RC試験又は5時間率容量試験を実施する場合、JISで規定された25℃に定められる。開放電圧補正部14は、演算したOCV2を、補正した開放電圧OCVに定める。
In general, the open circuit voltage OCV of a lead storage battery has temperature dependence, and the value of the open circuit voltage OCV decreases as the temperature tmp increases. And the open-circuit voltage OCV 1 at temperatures tmp 1, the relationship between the open circuit voltage OCV 2 at temperatures tmp 2 is represented by example equation (2).
OCV 2 = OCV 1 + N {0.0007 (tmp 1 −tmp 2 )] (2)
Here, N is the number of cells of the lead storage battery. The open-circuit voltage correction unit 14 determines the acquired temperature tmp as tmp 1 and the open-circuit voltage OCV estimated by the estimation unit 11 as OCV 1 , and calculates the open-circuit voltage OCV 2 at a predetermined temperature tmp 2 using Equation (2). To do. The predetermined temperature tmp 2 is determined according to the standard of the test to be performed. For example, when the CCA test is performed, the predetermined temperature tmp 2 is set to −18 ° C. defined by JIS. The predetermined temperature tmp 2 is set to 25 ° C. defined by JIS when the RC test or the 5-hour rate capacity test is performed. The open-circuit voltage correction unit 14 determines the calculated OCV 2 as the corrected open-circuit voltage OCV.

記憶部15は、鉛蓄電池に関する情報を予め記憶する。鉛蓄電池に関する情報は、例えば電荷あたりの端子電圧変化量Vdiff/DC、及び鉛蓄電池の5時間率電流I5hの値を含む。DCは、鉛蓄電池の設計容量(Design Capacity)である。電荷あたりの端子電圧変化量Vdiff/DC及び5時間率電流I5hは、実験又はシミュレーションにより予め決定した値を用いてもよく、或いは公称値を用いてもよい。 The memory | storage part 15 memorize | stores the information regarding a lead storage battery beforehand. The information on the lead storage battery includes, for example, the value of the terminal voltage change amount V diff / DC per charge and the value of the 5-hour rate current I 5h of the lead storage battery. DC is the design capacity of the lead acid battery. As the terminal voltage change amount V diff / DC per charge and the 5-hour rate current I 5h , values determined in advance by experiment or simulation may be used, or nominal values may be used.

好適には、記憶部15は、複数の所定の温度にそれぞれ対応付けて、対応する温度における電荷あたりの端子電圧変化量Vdiff/DCを予め記憶する。所定の温度は、実施する試験毎の規格で定められた温度である。例えば、記憶部15は、−18℃及び25℃にそれぞれ対応する電荷あたりの端子電圧変化量Vdiff/DCを予め記憶する。 Preferably, the storage unit 15 stores in advance the terminal voltage change amount V diff / DC per charge at the corresponding temperature in association with a plurality of predetermined temperatures. The predetermined temperature is a temperature defined by a standard for each test to be performed. For example, the storage unit 15 stores in advance terminal voltage change amounts V diff / DC per charge corresponding to −18 ° C. and 25 ° C., respectively.

電池性能演算部16は、内部抵抗演算部13から内部抵抗Rを、開放電圧補正部14から開放電圧OCVを、及び記憶部15から電荷あたりの端子電圧変化量Vdiff/DCをそれぞれ取得する。好適には、電池性能演算部16が取得する電荷あたりの端子電圧変化量Vdiff/DCは、実施する試験の規格で定められた鉛蓄電池の温度に対応する値である。電池性能演算部16は、取得した情報を用いて、鉛蓄電池を放電終止電圧Veまで電流Iで時間T放電する場合の電流I又は時間Tを演算する。以下、詳細に説明する。 The battery performance calculation unit 16 acquires the internal resistance R from the internal resistance calculation unit 13, the open circuit voltage OCV from the open circuit voltage correction unit 14, and the terminal voltage change amount V diff / DC per charge from the storage unit 15. Preferably, the terminal voltage change amount V diff / DC per charge acquired by the battery performance calculation unit 16 is a value corresponding to the temperature of the lead storage battery defined by the standard of the test to be performed. The battery performance calculation unit 16 calculates the current I or the time T when the lead storage battery is discharged for the time T with the current I to the end-of-discharge voltage V e using the acquired information. Details will be described below.

鉛蓄電池の端子電圧は、放電が進むにつれて減少する。図5に示す実線は、鉛蓄電池を放電終止電圧Veまで電流Iで時間T放電する場合における鉛蓄電池の端子電圧の時間変化を示す。図5に示す一点鎖線は、鉛蓄電池の内部抵抗Rをゼロと定めた場合における端子電圧の時間変化を示す。放電開始から時間Tが経過するまでに生じる端子電圧の減少分は、容量C0に蓄えられた電荷の放電により生じる開放電圧OCVの減少分ΔV1と、電流Iが内部抵抗Rを流れることにより生じる電圧降下分ΔV2との和と考えられる。 The terminal voltage of the lead acid battery decreases as the discharge proceeds. The solid line shown in FIG. 5 shows the time change of the terminal voltage of the lead storage battery when the lead storage battery is discharged for a time T with the current I up to the end-of-discharge voltage V e . The dashed-dotted line shown in FIG. 5 shows the time change of the terminal voltage when the internal resistance R of the lead storage battery is set to zero. The decrease in the terminal voltage that occurs from the start of discharge until the time T elapses is due to the decrease ΔV 1 in the open circuit voltage OCV caused by the discharge of the charge stored in the capacitor C 0 and the current I flowing through the internal resistance R. This is considered to be the sum of the generated voltage drop ΔV 2 .

開放電圧減少分ΔV1は、式(3)で表される。

Figure 2015210182
The open circuit voltage decrease ΔV 1 is expressed by Equation (3).
Figure 2015210182

また、内部抵抗Rで発生する電圧降下分ΔV2は、式(4)で表される。
ΔV2=RI (4)
Further, the voltage drop ΔV 2 generated by the internal resistance R is expressed by the equation (4).
ΔV 2 = RI (4)

ここで、充放電電流がゼロであるときの端子電圧は、鉛蓄電池の開放電圧OCVに等しい。このため、放電開始直前の端子電圧の値を、開放電圧補正部14が補正した開放電圧OCVに定める。かかる場合、開放電圧減少分ΔV1と電圧降下分ΔV2との和は、開放電圧OCVと放電終止電圧Veとの差に等しい。即ち、式(5)が成り立つ。
OCV−Ve=ΔV1+ΔV2 (5)
Here, the terminal voltage when the charge / discharge current is zero is equal to the open-circuit voltage OCV of the lead storage battery. For this reason, the value of the terminal voltage immediately before the start of discharge is set to the open circuit voltage OCV corrected by the open circuit voltage correction unit 14. In such a case, the sum of the open circuit voltage decrease ΔV 1 and the voltage drop ΔV 2 is equal to the difference between the open circuit voltage OCV and the discharge end voltage V e . That is, Expression (5) is established.
OCV−V e = ΔV 1 + ΔV 2 (5)

式(3)−式(5)において、内部抵抗Rと、開放電圧OCVと、電荷あたりの端子電圧変化量Vdiff/DCとは、電池性能演算部16がそれぞれ取得した値である。また、放電終止電圧Veと、電流I又は時間Tとには、実施する試験の規格で定められた値が用いられる。以下、電池性能演算部16が行う電流I又は時間Tの演算処理について、実施する試験毎に具体的に説明する。 In Expressions (3) to (5), the internal resistance R, the open circuit voltage OCV, and the terminal voltage change amount V diff / DC per charge are values acquired by the battery performance calculation unit 16, respectively. Further, as the discharge end voltage V e and the current I or the time T, values determined by the standard of the test to be performed are used. Hereinafter, the calculation process of the current I or time T performed by the battery performance calculation unit 16 will be specifically described for each test to be performed.

(CCA試験)
電池性能演算部16は、CCA試験を実施する場合、JISの規定に従って時間T=30秒、及び放電終止電圧Ve=7.2Vに定めて、式(3)−式(5)に基づく式(6)及び式(7)により電流Iを演算する。

Figure 2015210182
I=(OCV−7.2)/(R+A) (7)
ここで、A=30・Vdiff/DCとおいた。 (CCA test)
When performing the CCA test, the battery performance calculation unit 16 sets time T = 30 seconds and discharge end voltage V e = 7.2 V in accordance with JIS regulations, and is based on Formula (3) -Formula (5). The current I is calculated by (6) and Equation (7).
Figure 2015210182
I = (OCV−7.2) / (R + A) (7)
Here, A = 30 · V diff / DC.

(RC試験)
電池性能演算部16は、RC試験を実施する場合、JISの規定に従って電流I=25A、及び放電終止電圧Ve=10.5Vに定めて、式(3)−式(5)に基づく式(8)及び式(9)により時間Tを演算する。

Figure 2015210182
T=(OCV−10.5−25R)/B (9)
ここで、B=25・Vdiff/DCとおいた。 (RC test)
When performing the RC test, the battery performance calculation unit 16 sets the current I = 25 A and the discharge end voltage V e = 10.5 V according to the JIS regulations, and the formula (3) −the formula based on the formula (5) ( The time T is calculated by 8) and equation (9).
Figure 2015210182
T = (OCV-10.5-25R) / B (9)
Here, B = 25 · V diff / DC.

(5時間率容量試験)
電池性能演算部16は、5時間率容量試験を実施する場合、鉛蓄電池の5時間率電流I5hの値を記憶部15から取得する。電池性能演算部16は、JISの規定に従って電流I=I5h、及び放電終止電圧Ve=10.5Vに定めて、式(3)−式(5)に基づく式(10)及び式(11)により時間Tを演算する。

Figure 2015210182
T=(OCV−10.5−RI5h)/C (11)
ここで、C=I5h・Vdiff/DCとおいた。好適には、電池性能演算部16は、演算した時間Tに5時間率電流I5hを乗じて5時間率容量を更に演算する。 (5-hour rate capacity test)
The battery performance calculation unit 16 acquires the value of the 5-hour rate current I 5h of the lead storage battery from the storage unit 15 when performing the 5-hour rate capacity test. The battery performance calculation unit 16 determines the current I = I 5h and the discharge end voltage V e = 10.5V in accordance with JIS regulations, and formulas (10) and (11) based on formulas (3)-(5). ) To calculate the time T.
Figure 2015210182
T = (OCV-10.5−RI 5h ) / C (11)
Here, C = I 5h · V diff / DC. Preferably, the battery performance calculation unit 16 further calculates the 5-hour rate capacity by multiplying the calculated time T by the 5-hour rate current I 5h .

次に、鉛蓄電池の性能推定装置10が行う鉛蓄電池の性能評価試験の処理について、図6のフローチャートを参照して説明する。本処理は、例えば鉛蓄電池及び性能推定装置10を備えた車両の走行時に実行される。図6は、CCA試験を実施する処理を例示している。   Next, the lead storage battery performance evaluation test process performed by the lead storage battery performance estimation apparatus 10 will be described with reference to the flowchart of FIG. 6. This process is performed, for example, when the vehicle including the lead storage battery and the performance estimation device 10 is traveling. FIG. 6 illustrates a process for performing a CCA test.

はじめに、推定部11は、鉛蓄電池の充放電電流i及び端子電圧vを取得して、鉛蓄電池のパラメータ及び開放電圧OCVを推定する(ステップS100)。パラメータは、例えば一次のフォスタ型RC梯子回路に含まれる抵抗R0、抵抗R1、及び容量C1である。 First, the estimation part 11 acquires the charging / discharging current i and terminal voltage v of a lead storage battery, and estimates the parameter and open circuit voltage OCV of a lead storage battery (step S100). The parameters are, for example, a resistor R 0 , a resistor R 1 , and a capacitor C 1 included in the primary Foster-type RC ladder circuit.

次に、抵抗補正部12は、鉛蓄電池の温度tmpを取得して、ステップS101で推定したパラメータのうち、抵抗R1を温度で補正する(ステップS101)。具体的には、抵抗補正部12は、推定した抵抗R1を、−18℃における抵抗の値に補正する。 Next, the resistance correction unit 12 acquires the temperature tmp of the lead storage battery, and corrects the resistance R 1 with the temperature among the parameters estimated in step S101 (step S101). Specifically, the resistance correction unit 12 corrects the estimated resistance R 1 to a resistance value at −18 ° C.

次に、内部抵抗演算部13は、ステップS100において推定した抵抗R0及び容量C1と、ステップS101において補正した抵抗R1とに基づいて、内部抵抗Rを演算する(ステップS102)。好適には、内部抵抗演算部13は、時間T=30秒に定めて、式(1)により鉛蓄電池の放電開始から30秒が経過するときの内部抵抗Rを演算する。 Next, the internal resistance calculator 13 calculates the internal resistance R based on the resistance R 0 and the capacitance C 1 estimated in step S100 and the resistance R 1 corrected in step S101 (step S102). Preferably, the internal resistance calculation unit 13 sets the time T = 30 seconds, and calculates the internal resistance R when 30 seconds have elapsed from the start of discharge of the lead storage battery according to Equation (1).

次に、開放電圧補正部14は、鉛蓄電池の温度tmpを取得して、ステップS100において推定した開放電圧OCVを温度で補正する(ステップS103)。具体的には、開放電圧補正部14は、推定した開放電圧OCVを、−18℃における電圧の値に補正する。   Next, the open-circuit voltage correction unit 14 acquires the temperature tmp of the lead storage battery, and corrects the open-circuit voltage OCV estimated in step S100 with the temperature (step S103). Specifically, the open-circuit voltage correction unit 14 corrects the estimated open-circuit voltage OCV to a voltage value at −18 ° C.

そして、電池性能演算部16は、鉛蓄電池の電荷あたりの端子電圧変化量Vdiff/DCを記憶部15から取得する。電池性能演算部16は、取得した電荷あたりの端子電圧変化量Vdiff/DCと、ステップS102において演算した内部抵抗Rと、ステップS103において補正した開放電圧OCVとを用いて、鉛蓄電池の定電流放電開始から30秒目電圧が7.2Vとなる電流Iを式(7)により演算する(ステップS104)。 Then, the battery performance calculation unit 16 acquires the terminal voltage change amount V diff / DC per charge of the lead storage battery from the storage unit 15. The battery performance calculation unit 16 uses the acquired terminal voltage change amount V diff / DC per charge, the internal resistance R calculated in step S102, and the open-circuit voltage OCV corrected in step S103, to provide a constant current for the lead storage battery. A current I at which the voltage at the 30th second from the start of discharge becomes 7.2 V is calculated by the equation (7) (step S104).

上述した実施の形態1に係る鉛蓄電池の性能推定装置10によれば、推定部11は、車両に実際に備えられた鉛蓄電池の充放電電流i及び端子電圧vに基づいてパラメータ及び開放電圧OCVを推定する。電池性能演算部16は、推定したパラメータ及び開放電圧OCVに基づいて、鉛蓄電池を放電する場合の電流I又は時間Tを演算する。このように、鉛蓄電池の現在の状態に基づいて電流I又は時間Tを演算するため、電池性能の個体差又は経年劣化などの影響を低減し、鉛蓄電池の性能の推定精度を向上可能である。また、車両の走行中に電流I又は時間Tを演算可能であるため、例えば試験のために鉛蓄電池を車両から取り出すことなく、簡易な方法で鉛蓄電池の性能を評価可能である。   According to the performance estimation device 10 for a lead storage battery according to the first embodiment described above, the estimation unit 11 uses parameters and open circuit voltage OCV based on the charge / discharge current i and the terminal voltage v of the lead storage battery actually provided in the vehicle. Is estimated. The battery performance calculator 16 calculates the current I or time T when discharging the lead storage battery based on the estimated parameter and the open circuit voltage OCV. As described above, since the current I or time T is calculated based on the current state of the lead storage battery, it is possible to reduce the influence of individual differences in battery performance or aging deterioration, and to improve the estimation accuracy of the performance of the lead storage battery. . Further, since the current I or the time T can be calculated while the vehicle is running, the performance of the lead storage battery can be evaluated by a simple method without taking the lead storage battery from the vehicle for testing, for example.

また、鉛蓄電池の性能推定装置10によれば、例えばJISで定められたCCA試験、RC試験、及び5時間率容量試験を簡易な方法で実施し、鉛蓄電池の性能であるコールドクランキング電流、リザーブキャパシティ、及び5時間率容量を評価可能である。   Moreover, according to the performance estimation apparatus 10 of a lead storage battery, for example, a CCA test, an RC test, and a 5-hour rate capacity test defined by JIS are performed by a simple method, and the cold cranking current that is the performance of the lead storage battery, Reserve capacity and 5 hour rate capacity can be evaluated.

また、鉛蓄電池の性能推定装置10によれば、抵抗補正部12は、推定部11が推定したパラメータに含まれる抵抗を温度で補正する。一般的に、鉛蓄電池の電荷移動過程又は拡散過程における抵抗は、温度依存性を有する。抵抗補正部12により、当該温度依存性が補正されるため、鉛蓄電池の内部抵抗Rの推定精度を向上し、鉛蓄電池の性能の推定精度を更に向上可能である。   Moreover, according to the performance estimation apparatus 10 of a lead storage battery, the resistance correction unit 12 corrects the resistance included in the parameter estimated by the estimation unit 11 with the temperature. Generally, the resistance in the charge transfer process or diffusion process of a lead storage battery has temperature dependence. Since the temperature dependency is corrected by the resistance correction unit 12, the estimation accuracy of the internal resistance R of the lead storage battery can be improved, and the estimation accuracy of the performance of the lead storage battery can be further improved.

また、内部抵抗演算部13は、鉛蓄電池の内部抵抗Rを所定の時定数を持つ関数に定めて内部抵抗Rを演算する。一般的に、鉛蓄電池の電荷移動過程及び拡散過程における抵抗は、放電を開始すると、過渡現象により時間経過とともに変化する。内部抵抗演算部13により、内部抵抗Rの推定精度が向上するため、鉛蓄電池の性能の推定精度を更に向上可能である。   Further, the internal resistance calculation unit 13 calculates the internal resistance R by setting the internal resistance R of the lead storage battery as a function having a predetermined time constant. Generally, the resistance in the charge transfer process and the diffusion process of a lead storage battery changes with time due to a transient phenomenon when discharge is started. Since the estimation accuracy of the internal resistance R is improved by the internal resistance calculation unit 13, the estimation accuracy of the performance of the lead storage battery can be further improved.

また、鉛蓄電池の性能推定装置10によれば、開放電圧補正部14は、推定部11が推定した開放電圧OCVを温度で補正する。一般的に、鉛蓄電池の開放電圧OCVは、温度依存性を有する。抵抗補正部12により、当該温度依存性が補正されるため、鉛蓄電池の開放電圧OCVの推定精度を向上し、鉛蓄電池の性能の推定精度を更に向上可能である。   Moreover, according to the performance estimation apparatus 10 of lead acid battery, the open circuit voltage correction | amendment part 14 correct | amends the open circuit voltage OCV which the estimation part 11 estimated with temperature. Generally, the open circuit voltage OCV of a lead storage battery has temperature dependence. Since the temperature dependency is corrected by the resistance correction unit 12, the estimation accuracy of the open-circuit voltage OCV of the lead storage battery can be improved, and the estimation accuracy of the performance of the lead storage battery can be further improved.

(実施の形態2)
次に、本発明の実施の形態2に係る鉛蓄電池の性能推定装置について説明する。実施の形態1と同一の構成については同一の符号を付し、説明は省略する。実施の形態2に係る鉛蓄電池の性能推定装置は、健全度推定部を更に備える点が実施の形態1と異なる。
(Embodiment 2)
Next, a performance estimation device for a lead storage battery according to Embodiment 2 of the present invention will be described. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. The performance estimation device for a lead storage battery according to Embodiment 2 differs from Embodiment 1 in that it further includes a soundness estimation unit.

図7に示すように、実施の形態2に係る鉛蓄電池の性能推定装置100は、推定部11と、抵抗補正部12と、内部抵抗演算部13と、開放電圧補正部14と、記憶部15と、電池性能演算部160と、健全度推定部170と、を備える。   As shown in FIG. 7, the performance estimation device 100 for a lead storage battery according to the second embodiment includes an estimation unit 11, a resistance correction unit 12, an internal resistance calculation unit 13, an open-circuit voltage correction unit 14, and a storage unit 15. And a battery performance calculation unit 160 and a soundness estimation unit 170.

健全度推定部170は、鉛蓄電池の内部抵抗Rと、鉛蓄電池の健全度SOH(State Of Health)との対応関係を示す対応情報を予め記憶する。当該対応情報は、実験又はシミュレーションにより予め算出可能である。健全度SOHは、鉛蓄電池の劣化度合いの指標である。健全度SOHは、例えば鉛蓄電池の満充電容量FCC(Full Charge Capacity)及び設計容量DCを用いて式(12)で表される。
SOH=FCC/DC (12)
The soundness level estimation unit 170 stores in advance correspondence information indicating a correspondence relationship between the internal resistance R of the lead acid battery and the soundness level SOH (State Of Health) of the lead acid battery. The correspondence information can be calculated in advance by experiment or simulation. The soundness level SOH is an index of the degree of deterioration of the lead storage battery. The soundness level SOH is expressed by the formula (12) using, for example, a full charge capacity FCC (Full Charge Capacity) and a design capacity DC of a lead storage battery.
SOH = FCC / DC (12)

健全度推定部170は、鉛蓄電池のパラメータを取得する。パラメータは、例えば一次のフォスタ型RC梯子回路の抵抗R0、抵抗R1、及び容量C1である。取得する抵抗R1は、推定部11が推定した値であってもよく、抵抗補正部12が補正した値であってもよい。健全度推定部170は、取得したパラメータに基づいて鉛蓄電池の内部抵抗Rを演算する。健全度推定部170は、内部抵抗Rに対応する健全度SOHを対応情報から抽出することにより、鉛蓄電池の健全度SOHを推定する。 The soundness estimation unit 170 acquires the parameters of the lead storage battery. The parameters are, for example, the resistance R 0 , the resistance R 1 , and the capacitance C 1 of the primary Foster-type RC ladder circuit. The acquired resistance R 1 may be a value estimated by the estimation unit 11 or a value corrected by the resistance correction unit 12. The soundness level estimation unit 170 calculates the internal resistance R of the lead storage battery based on the acquired parameter. The soundness estimation unit 170 estimates the soundness SOH of the lead storage battery by extracting the soundness SOH corresponding to the internal resistance R from the correspondence information.

電池性能演算部160は、内部抵抗演算部13から内部抵抗Rを、開放電圧補正部14から開放電圧OCVを、記憶部15から電荷あたりの端子電圧変化量Vdiff/DCを、及び健全度推定部170から健全度SOHをそれぞれ取得する。 The battery performance calculation unit 160 calculates the internal resistance R from the internal resistance calculation unit 13, the open circuit voltage OCV from the open circuit voltage correction unit 14, the terminal voltage change amount V diff / DC per charge from the storage unit 15, and the soundness estimation. The soundness level SOH is acquired from the unit 170.

電池性能演算部160は、式(3)により演算した開放電圧減少分ΔV1を、健全度SOHの逆数を乗じて補正する。換言すると、電池性能演算部160は、式(3)に替えて式(13)により、補正された開放電圧減少分ΔV1を演算する。

Figure 2015210182
The battery performance calculation unit 160 corrects the open circuit voltage decrease ΔV 1 calculated by the equation (3) by multiplying the inverse of the soundness level SOH. In other words, the battery performance calculation unit 160 calculates the corrected open-circuit voltage decrease ΔV 1 according to the equation (13) instead of the equation (3).
Figure 2015210182

電池性能演算部160は、式(13)、式(4)、及び式(5)に基づいて、鉛蓄電池を放電終止電圧Veまで電流Iで時間T放電する場合の電流I又は時間Tを演算する。実施する試験毎に電池性能演算部16が行う電流I又は時間Tの演算処理については実施の形態1と同様であるため、説明は省略する。 The battery performance calculation unit 160 calculates the current I or the time T when the lead storage battery is discharged for the time T with the current I to the end-of-discharge voltage V e based on the equations (13), (4), and (5). Calculate. Since the calculation process of the current I or time T performed by the battery performance calculation unit 16 for each test to be performed is the same as that of the first embodiment, the description thereof is omitted.

上述した実施の形態2に係る鉛蓄電池の性能推定装置100によれば、電池性能演算部160は、健全度推定部170が推定した健全度SOHを用いて、開放電圧減少分ΔV1を補正する。当該補正により、開放電圧減少分ΔV1は、式(13)に示すように、設計容量DCに替えて、鉛蓄電池の現在の状態に基づいて推定した満充電容量FCCを用いて演算される。このため、開放電圧減少分ΔV1の推定精度を向上し、鉛蓄電池の性能の推定精度を更に向上可能である。 According to the lead storage battery performance estimation device 100 according to Embodiment 2 described above, the battery performance calculation unit 160 corrects the open circuit voltage decrease ΔV 1 using the soundness level SOH estimated by the soundness level estimation unit 170. . With this correction, the open circuit voltage decrease ΔV1 is calculated using the full charge capacity FCC estimated based on the current state of the lead storage battery, instead of the design capacity DC, as shown in Expression (13). For this reason, it is possible to improve the estimation accuracy of the open circuit voltage decrease ΔV 1 and further improve the estimation accuracy of the performance of the lead storage battery.

(変形例)
次に、本発明の実施の形態の変形例に係る鉛蓄電池の性能推定装置について説明する。実施の形態1と同一の構成については同一の符号を付し、説明は省略する。変形例に係る鉛蓄電池の性能推定装置は、更に鉛蓄電池の健全度SOHを演算する点が実施の形態1と異なる。
(Modification)
Next, a performance estimation device for a lead storage battery according to a modification of the embodiment of the present invention will be described. The same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. The performance estimation device for a lead storage battery according to the modified example is different from the first embodiment in that the soundness SOH of the lead storage battery is further calculated.

変形例に係る鉛蓄電池の性能推定装置10は、実施の形態1と同様に、推定部11と、抵抗補正部12と、内部抵抗演算部13と、開放電圧補正部14と、記憶部15と、電池性能演算部16と、を備える。   Similar to the first embodiment, the performance estimation device 10 for a lead storage battery according to the modification includes an estimation unit 11, a resistance correction unit 12, an internal resistance calculation unit 13, an open-circuit voltage correction unit 14, and a storage unit 15. The battery performance calculation unit 16 is provided.

電池性能演算部16は、実施の形態1と同様に演算した電流I又は時間Tと、実施する試験に応じて定められた基準値との比較に基づいて、鉛蓄電池の健全度SOHを演算する。基準値は、例えば、実施する試験毎にJISで定められた電流I又は時間Tの実力標準値に定められる。例えば、形式が34B17Lである鉛蓄電池の場合、CCA試験における基準値ICCAは、コールドクランキング電流の実力標準値である279Aに定められる。また、RC試験における基準値TRCは、リザーブキャパシティの実力標準値である47分に定められる。また、5時間率容量試験における基準値C5hは、5時間率容量の実力標準値である27Ahに定められる。基準値は、JISで定められた実力標準値の他、例えば新品時の鉛蓄電池を用いて電池性能演算部16が演算した電流I又は時間Tの値に定めてもよい。 The battery performance calculation unit 16 calculates the soundness SOH of the lead storage battery based on a comparison between the current I or time T calculated in the same manner as in the first embodiment and a reference value determined according to the test to be performed. . The reference value is determined, for example, as an actual standard value of current I or time T determined by JIS for each test to be performed. For example, in the case of a lead storage battery of the type 34B17L, the reference value I CCA in the CCA test is set to 279A, which is an actual standard value of the cold cranking current. In addition, the reference value T RC in the RC test is set to 47 minutes, which is a standard value of reserve capacity. Further, the reference value C 5h at 5 hour rate capacity test is defined in a merit standard value of 5-hour rate capacity 27Ah. The reference value may be set to the value of the current I or the time T calculated by the battery performance calculation unit 16 using, for example, a new lead-acid battery, in addition to the ability standard value determined by JIS.

具体的には、電池性能演算部16は、CCA試験を実施する場合、演算した電流I及び基準値ICCAを用いて、式(14)により健全度SOHを演算する。
SOH=(I/ICCA)×100 (14)
Specifically, when the CCA test is performed, the battery performance calculation unit 16 calculates the soundness level SOH by using the calculated current I and the reference value I CCA according to the equation (14).
SOH = (I / I CCA ) × 100 (14)

また、電池性能演算部16は、RC試験を実施する場合、演算した時間T及び基準値TRCを用いて、式(15)により健全度SOHを演算する。
SOH=(T/TRC)×100 (15)
In addition, when performing the RC test, the battery performance calculation unit 16 calculates the soundness level SOH according to the equation (15) using the calculated time T and the reference value T RC .
SOH = (T / T RC ) × 100 (15)

また、電池性能演算部16は、5時間率容量試験を実施する場合、5時間率電流I5h、演算した時間T、及び基準値C5hを用いて、式(16)により健全度SOHを演算する。
SOH=(I5h×T/C5h)×100 (16)
In addition, when performing the 5-hour rate capacity test, the battery performance calculation unit 16 calculates the soundness degree SOH according to the equation (16) using the 5-hour rate current I 5h , the calculated time T, and the reference value C 5h. To do.
SOH = (I 5h × T / C 5h ) × 100 (16)

上述した実施の形態の変形例に係る鉛蓄電池の性能推定装置10によれば、電池性能演算部16が演算した電流I又は時間Tと、所定の基準値との比較に基づいて、鉛蓄電池の健全度SOHを推定可能である。また、車両の走行中に電流I又は時間Tを演算可能であるため、例えば試験のために鉛蓄電池を車両から取り出すことなく、簡易な方法で鉛蓄電池の健全度SOHを評価可能である。   According to the performance estimation device 10 for a lead storage battery according to the modified example of the above-described embodiment, based on a comparison between the current I or time T calculated by the battery performance calculation unit 16 and a predetermined reference value, The degree of soundness SOH can be estimated. Further, since the current I or the time T can be calculated while the vehicle is running, for example, the soundness SOH of the lead storage battery can be evaluated by a simple method without removing the lead storage battery from the vehicle for testing.

本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。したがって、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段やステップ等を1つに組み合わせたり、あるいは分割したりすることが可能である。   Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, functions and the like included in each means and each step can be rearranged so as not to be logically contradictory, and a plurality of means and steps can be combined into one or divided. .

また、鉛蓄電池の性能推定装置10及び100は、鉛蓄電池が完全充電状態であって車両が走行を開始したときに、鉛蓄電池の性能評価試験の処理を開始してもよい。このようにして、以下に説明するように、電流I又は時間Tの推定精度を更に向上可能である。CCA試験、RC試験、及び5時間率容量試験の実施において、鉛蓄電池の状態は完全充電状態であることがJISで定められている。鉛蓄電池が完全充電状態において車両が走行を開始したときに鉛蓄電池の性能評価試験の処理を実行することにより、推定部11が推定する開放電圧OCVの値が、完全充電状態である鉛蓄電池の開放電圧の値に近づく。このようにして、鉛蓄電池の性能推定装置10は、JISで定められた試験条件により近い条件で鉛蓄電池の性能を推定するので、電流I又は時間Tの推定精度を更に向上可能である。   Further, the lead storage battery performance estimation devices 10 and 100 may start processing of the lead storage battery performance evaluation test when the lead storage battery is in a fully charged state and the vehicle starts running. In this way, as will be described below, the estimation accuracy of the current I or time T can be further improved. In the implementation of the CCA test, the RC test, and the 5 hour rate capacity test, JIS stipulates that the state of the lead-acid battery is a fully charged state. By executing the performance evaluation test process of the lead storage battery when the vehicle starts running when the lead storage battery is in a fully charged state, the value of the open circuit voltage OCV estimated by the estimation unit 11 is the value of the lead storage battery in the fully charged state. It approaches the value of the open circuit voltage. Thus, since the performance estimation apparatus 10 of a lead storage battery estimates the performance of a lead storage battery on the conditions close | similar to the test conditions defined by JIS, the estimation precision of the electric current I or time T can further be improved.

また、上述した実施の形態2において、健全度推定部170は、鉛蓄電池のパラメータを取得して内部抵抗Rを演算するが、内部抵抗演算部13が演算した内部抵抗Rを取得してもよい。   Moreover, in Embodiment 2 mentioned above, although the soundness estimation part 170 calculates the internal resistance R by acquiring the parameter of lead acid battery, you may acquire the internal resistance R which the internal resistance calculation part 13 calculated. .

また、上述した変形例に係る鉛蓄電池の性能推定装置10は、実施の形態1の性能推定装置10と同様の構成であるものとして説明したが、実施の形態2と同様に、推定部11と、抵抗補正部12と、内部抵抗演算部13と、開放電圧補正部14と、記憶部15と、電池性能演算部160と、健全度推定部170と、を備える構成であってもよい。   Moreover, although the performance estimation apparatus 10 of the lead storage battery which concerns on the modification mentioned above was demonstrated as what is the structure similar to the performance estimation apparatus 10 of Embodiment 1, similarly to Embodiment 2, the estimation part 11 and The resistance correction unit 12, the internal resistance calculation unit 13, the open-circuit voltage correction unit 14, the storage unit 15, the battery performance calculation unit 160, and the soundness estimation unit 170 may be used.

10、100 性能推定装置
11 推定部
12 抵抗補正部
13 内部抵抗演算部
14 開放電圧補正部
15 記憶部
16、160 電池性能演算部
170 健全度推定部
DESCRIPTION OF SYMBOLS 10,100 Performance estimation apparatus 11 Estimation part 12 Resistance correction part 13 Internal resistance calculation part 14 Open-circuit voltage correction part 15 Memory | storage part 16,160 Battery performance calculation part 170 Soundness estimation part

Claims (10)

鉛蓄電池の端子電圧及び充放電電流に基づいて前記鉛蓄電池のパラメータ及び開放電圧をそれぞれ推定する推定部と、
前記パラメータを用いて前記鉛蓄電池の内部抵抗を演算する内部抵抗演算部と、
前記鉛蓄電池を電流Iで時間T放電する場合に発生する前記鉛蓄電池の開放電圧減少分と前記内部抵抗による電圧降下分との和が、前記開放電圧と所定の放電終止電圧との差に等しいと定められ、前記電流I又は前記時間Tを演算する電池性能演算部と、を備え、
前記電池性能演算部は、前記電流I及び前記時間Tのうち一方が所定の値に定められると、前記電流I及び前記時間Tのうち他方を演算する、鉛蓄電池の性能推定装置。
An estimation unit that estimates the parameters and open circuit voltage of the lead storage battery based on the terminal voltage and charge / discharge current of the lead storage battery, and
An internal resistance calculator for calculating the internal resistance of the lead-acid battery using the parameters;
The sum of the decrease in the open-circuit voltage of the lead-acid battery and the voltage drop due to the internal resistance that occurs when the lead-acid battery is discharged for a time T with the current I is equal to the difference between the open-circuit voltage and a predetermined discharge end voltage. A battery performance calculation unit for calculating the current I or the time T,
The battery performance calculation unit is a performance estimation device for a lead storage battery, which calculates one of the current I and the time T when one of the current I and the time T is set to a predetermined value.
請求項1に記載の鉛蓄電池の性能推定装置であって、
前記所定の放電終止電圧は7.2Vであり、前記時間Tは30秒に定められ、
前記電池性能演算部は、前記電流Iを演算する、鉛蓄電池の性能推定装置。
It is a performance estimation apparatus of the lead acid battery according to claim 1,
The predetermined discharge end voltage is 7.2V, and the time T is set to 30 seconds.
The battery performance calculation unit is a lead storage battery performance estimation device that calculates the current I.
請求項1に記載の鉛蓄電池の性能推定装置であって、
前記所定の放電終止電圧は10.5Vであり、前記電流Iは25Aに定められ、
前記電池性能演算部は、前記時間Tを演算する、鉛蓄電池の性能推定装置。
It is a performance estimation apparatus of the lead acid battery according to claim 1,
The predetermined discharge end voltage is 10.5V, and the current I is set to 25A.
The battery performance calculation unit is a lead storage battery performance estimation device that calculates the time T.
請求項1に記載の鉛蓄電池の性能推定装置であって、
前記所定の放電終止電圧は10.5Vであり、前記電流Iは前記鉛蓄電池の5時間率電流に定められ、
前記電池性能演算部は、前記時間Tを演算する、鉛蓄電池の性能推定装置。
It is a performance estimation apparatus of the lead acid battery according to claim 1,
The predetermined end-of-discharge voltage is 10.5V, and the current I is determined as a 5-hour rate current of the lead acid battery,
The battery performance calculation unit is a lead storage battery performance estimation device that calculates the time T.
請求項1乃至4の何れか一項に記載の鉛蓄電池の性能推定装置であって、
前記パラメータに含まれる抵抗を温度で補正する抵抗補正部を更に備える、鉛蓄電池の性能推定装置。
It is the performance estimation apparatus of the lead acid battery as described in any one of Claims 1 thru | or 4, Comprising:
The performance estimation apparatus of a lead storage battery further provided with the resistance correction | amendment part which correct | amends the resistance contained in the said parameter with temperature.
請求項1乃至5の何れか一項に記載の鉛蓄電池の性能推定装置であって、
前記内部抵抗演算部は、前記鉛蓄電池の前記内部抵抗を所定の時定数を持つ関数に定めて前記内部抵抗を演算する、鉛蓄電池の性能推定装置。
It is the performance estimation apparatus of the lead acid battery as described in any one of Claims 1 thru | or 5, Comprising:
The said internal resistance calculating part is a performance estimation apparatus of the lead acid battery which calculates the said internal resistance by setting the said internal resistance of the said lead acid battery to a function with a predetermined time constant.
請求項1乃至6の何れか一項に記載の鉛蓄電池の性能推定装置であって、
前記開放電圧を温度で補正する開放電圧補正部を更に備える、鉛蓄電池の性能推定装置。
It is the performance estimation apparatus of the lead acid battery as described in any one of Claims 1 thru | or 6, Comprising:
The performance estimation apparatus of a lead storage battery further provided with the open circuit voltage correction | amendment part which correct | amends the said open circuit voltage with temperature.
請求項1乃至7の何れか一項に記載の鉛蓄電池の性能推定装置であって、
前記パラメータに基づいて前記鉛蓄電池の健全度を推定する健全度推定部を更に備え、
前記電池性能演算部は、前記健全度を用いて前記開放電圧減少分を補正する、鉛蓄電池の性能推定装置。
It is the performance estimation apparatus of the lead acid battery as described in any one of Claims 1 thru | or 7, Comprising:
Further comprising a health estimation unit that estimates the health of the lead-acid battery based on the parameters;
The said battery performance calculating part is a performance estimation apparatus of the lead storage battery which correct | amends the said open circuit voltage reduction | decrease using the said soundness degree.
請求項1乃至8の何れか一項に記載の鉛蓄電池の性能推定装置であって、
前記電池性能演算部は、演算した前記電流Iと所定の基準値との比較に基づいて前記鉛蓄電池の健全度を演算し、又は演算した前記時間Tと所定の基準値との比較に基づいて前記鉛蓄電池の健全度を演算する、鉛蓄電池の性能推定装置。
It is the performance estimation apparatus of the lead acid battery as described in any one of Claims 1 thru | or 8, Comprising:
The battery performance calculation unit calculates the soundness of the lead storage battery based on a comparison between the calculated current I and a predetermined reference value, or based on a comparison between the calculated time T and a predetermined reference value. The performance estimation apparatus of the lead acid battery which calculates the soundness degree of the said lead acid battery.
鉛蓄電池の端子電圧及び充放電電流に基づいて前記鉛蓄電池のパラメータ及び開放電圧をそれぞれ推定するステップと、
前記パラメータを用いて前記鉛蓄電池の内部抵抗を演算するステップと、
前記鉛蓄電池を電流Iで時間T放電する場合に発生する前記鉛蓄電池の開放電圧減少分と前記内部抵抗における電圧降下分との和が、前記開放電圧と所定の放電終止電圧との差に等しいと定められ、前記電流I又は前記時間Tを演算するステップと、を含み、
前記電流I又は前記時間Tを演算する前記ステップにおいて、前記電流I及び前記時間Tのうち一方が所定の値に定められると、前記電流I及び前記時間Tのうち他方を演算する、鉛蓄電池の性能推定方法。
Estimating the parameters and open circuit voltage of the lead storage battery based on the terminal voltage and charge / discharge current of the lead storage battery, respectively;
Calculating the internal resistance of the lead acid battery using the parameters;
The sum of the decrease in the open-circuit voltage of the lead-acid battery and the voltage drop in the internal resistance that occurs when the lead-acid battery is discharged for a time T with current I is equal to the difference between the open-circuit voltage and a predetermined discharge end voltage. And calculating the current I or the time T,
In the step of calculating the current I or the time T, when one of the current I and the time T is set to a predetermined value, the other of the current I and the time T is calculated. Performance estimation method.
JP2014091831A 2014-04-25 2014-04-25 Performance estimation device and performance estimation method of lead acid storage battery Pending JP2015210182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014091831A JP2015210182A (en) 2014-04-25 2014-04-25 Performance estimation device and performance estimation method of lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014091831A JP2015210182A (en) 2014-04-25 2014-04-25 Performance estimation device and performance estimation method of lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2015210182A true JP2015210182A (en) 2015-11-24

Family

ID=54612466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014091831A Pending JP2015210182A (en) 2014-04-25 2014-04-25 Performance estimation device and performance estimation method of lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2015210182A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416390A (en) * 2016-12-05 2019-03-01 株式会社Lg化学 Cell managing device and its method
KR20190050169A (en) * 2017-11-02 2019-05-10 주식회사 엘지화학 Method, apparatus and recording medium for estimating parameters of battery equivalent circuit model
CN113030743A (en) * 2021-02-06 2021-06-25 广西电网有限责任公司南宁供电局 Valve-regulated lead-acid battery state evaluation method based on battery discharge behavior
CN113075571A (en) * 2021-03-24 2021-07-06 湖北亿纬动力有限公司 Lithium ion battery OCV determining method, device and system
CN116243179A (en) * 2023-05-11 2023-06-09 上海泰矽微电子有限公司 Battery discharge voltage processing method and device, electronic equipment and medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109416390A (en) * 2016-12-05 2019-03-01 株式会社Lg化学 Cell managing device and its method
US11073566B2 (en) 2016-12-05 2021-07-27 Lg Chem, Ltd. Battery management apparatus and method thereof
KR20190050169A (en) * 2017-11-02 2019-05-10 주식회사 엘지화학 Method, apparatus and recording medium for estimating parameters of battery equivalent circuit model
CN110573892A (en) * 2017-11-02 2019-12-13 株式会社Lg化学 method, apparatus and recording medium for estimating parameters of battery equivalent circuit model
KR102194844B1 (en) * 2017-11-02 2020-12-23 주식회사 엘지화학 Method, apparatus and recording medium for estimating parameters of battery equivalent circuit model
US11119157B2 (en) 2017-11-02 2021-09-14 Lg Chem, Ltd. Method, apparatus and recording medium for estimating parameters of battery equivalent circuit model
CN110573892B (en) * 2017-11-02 2021-10-22 株式会社Lg化学 Method, apparatus and recording medium for estimating parameters of battery equivalent circuit model
CN113030743A (en) * 2021-02-06 2021-06-25 广西电网有限责任公司南宁供电局 Valve-regulated lead-acid battery state evaluation method based on battery discharge behavior
CN113075571A (en) * 2021-03-24 2021-07-06 湖北亿纬动力有限公司 Lithium ion battery OCV determining method, device and system
CN116243179A (en) * 2023-05-11 2023-06-09 上海泰矽微电子有限公司 Battery discharge voltage processing method and device, electronic equipment and medium

Similar Documents

Publication Publication Date Title
JP6490414B2 (en) Secondary battery state detection device and secondary battery state detection method
KR100970841B1 (en) Apparatus and Method for estimating battery's state of health based on battery voltage variation pattern
KR100911317B1 (en) Apparatus and method for estimating battery's state of health based on battery voltage variation pattern
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
EP3107146B1 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
US20150234013A1 (en) Battery state estimation device and storage battery system
JP6509725B2 (en) Estimating the state of charge of the battery
JP5653881B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2015210182A (en) Performance estimation device and performance estimation method of lead acid storage battery
JPWO2016129248A1 (en) Secondary battery charge state estimation device and charge state estimation method
WO2019230033A1 (en) Parameter estimation device, parameter estimation method, and computer program
US20170269164A1 (en) Automatic method for estimating the state of charge of a cell of a battery
US20090187359A1 (en) System and method for estimating battery state of charge
JP6369340B2 (en) Power storage device and method for controlling power storage device
JP2016090330A (en) Battery parameter estimation device
WO2017179175A1 (en) Estimation device, estimation program, and charging control device
JP6541412B2 (en) Charging rate calculation method and charging rate calculation device
JP6452403B2 (en) Secondary battery state detection device and secondary battery state detection method
KR20160097243A (en) Assessing the quantity of energy in a motor vehicle battery
JP2016065828A (en) Estimation program, estimation method and estimation device
JP6421986B2 (en) Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP2014174172A (en) Method of determining residual capacity of battery
JP2015094710A (en) Device and method for estimating soundness of battery
KR20130045093A (en) Soc estimation method using polarizing voltage and open circuit voltage