WO2017179175A1 - Estimation device, estimation program, and charging control device - Google Patents

Estimation device, estimation program, and charging control device Download PDF

Info

Publication number
WO2017179175A1
WO2017179175A1 PCT/JP2016/062022 JP2016062022W WO2017179175A1 WO 2017179175 A1 WO2017179175 A1 WO 2017179175A1 JP 2016062022 W JP2016062022 W JP 2016062022W WO 2017179175 A1 WO2017179175 A1 WO 2017179175A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal voltage
measurement
difference
parameter
resistance
Prior art date
Application number
PCT/JP2016/062022
Other languages
French (fr)
Japanese (ja)
Inventor
池田和人
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2016/062022 priority Critical patent/WO2017179175A1/en
Publication of WO2017179175A1 publication Critical patent/WO2017179175A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]

Definitions

  • This case relates to an estimation device, an estimation program, and a charge control device.
  • Secondary batteries such as lithium ion batteries are attracting attention as power storage applications such as electric mobility (electric vehicles, etc.) and stationary power storage systems.
  • electric mobility applications a technique for obtaining a charge rate SOC in order to display the remaining travel distance to the driver is desired.
  • Even in a stationary power storage system, obtaining an accurate SOC is important for accurate system control.
  • the characteristics of the secondary battery change according to conditions such as temperature and aging.
  • the equivalent circuit parameter is not changed according to the condition, high estimation accuracy cannot be obtained.
  • An object of one aspect is to provide an estimation device, an estimation program, and a charge control device that can estimate SOC with high estimation accuracy.
  • the estimation apparatus measures the measurement current and the measurement terminal voltage of a rechargeable battery at a predetermined sampling period, and the measurement of the sampling period based on the measurement current and the measurement terminal voltage.
  • a determination unit that determines a value obtained by dividing a difference in terminal voltage by a difference in the measured current as a parameter of DC resistance of the equivalent electric circuit model of the battery; and the DC resistance of the equivalent electric circuit model
  • a calculation unit that estimates a charging rate and a predicted terminal voltage of the battery by a Kalman filter using element parameters, calculates a difference between the measured terminal voltage and the predicted terminal voltage, the difference, and a Kalman gain of the Kalman filter, And a correction unit that corrects the charging rate based on.
  • SOC can be estimated with high estimation accuracy.
  • FIG. 1 is a block diagram of an estimation device according to Embodiment 1.
  • FIG. It is a figure which illustrates the equivalent electrical circuit model of a secondary battery. It is a figure which illustrates the relationship between SOC and OCV of a lithium ion battery. It is a figure which illustrates the relationship between SOC of lead acid battery, and OCV. It is explanatory drawing which shows an example of the SOC estimation process using a Kalman filter. It is a figure which illustrates the flowchart performed when a parameter determination part determines each element parameter of an equivalent electrical circuit model.
  • (A) is a figure which illustrates the relationship between (DELTA) V and (DELTA) I
  • (b) is a figure which illustrates the calculated real R0 value.
  • FIG. 1 is a block diagram of the estimation apparatus 100 according to the first embodiment.
  • the estimation apparatus 100 includes a measurement unit 10, a parameter determination unit 20, a storage unit 30, a calculation unit 40, and an output unit 50.
  • the calculation unit 40 includes a calculation unit 41 and a correction unit 42.
  • the estimation device 100 is incorporated in, for example, a charge control device for a secondary battery. Note that the estimation device 100 may be implemented as a function of a control device such as an electric vehicle or an electric motorcycle, and may control a charging control device for a secondary battery.
  • the measurement unit 10 measures the current, terminal voltage, temperature, and the like of the secondary battery 200 at a predetermined sampling period.
  • the measured current, terminal voltage, and temperature are referred to as measurement current I, measurement terminal voltage V OBS, and measurement temperature.
  • the measurement part 10 is an ammeter, a voltmeter, a thermometer etc., and outputs a measured value to the parameter determination part 20 and the calculating part 40, for example.
  • the information related to the charging rate (SOC) estimated by the calculation unit 40 is input to the output unit 50 (or when there is a request from the external device 300), the information related to the SOC is output to the external device 300, for example. Output to. External device 300 controls charging / discharging of secondary battery 200 based on the estimated SOC.
  • the storage unit 30 stores information used for processing in the parameter determination unit 20 and the calculation unit 40.
  • the storage unit 30 stores parameters of a function indicating an OCV (Open Circuit Voltage) characteristic curve, functions used for a Kalman filter, various parameters, calculation parameters for determining constituent element parameters of an equivalent electric circuit model, function parameters, and the like.
  • the OCV characteristic curve is a graph showing the OCV-SOC characteristic of the secondary battery 200. Examples of various parameters of the Kalman filter include ⁇ v indicating prediction noise, ⁇ w indicating measurement noise, and the like.
  • the parameter determination unit 20 acquires the parameters from the storage unit 30, and the constituent element parameters of the equivalent electric circuit model are determined in advance. Calculate using the following formula.
  • FIG. 2 is a diagram illustrating an equivalent electric circuit model of the secondary battery 200.
  • the equivalent electric circuit model is an RC circuit that represents a transient voltage change with respect to a current change, and includes a power supply, a DC resistance R0, and two RC circuits (C1 and R1). , C2 and R2) are connected in series.
  • the RC circuit R1C1 is configured by connecting a resistor R1 and a capacitor C1 in parallel.
  • the RC circuit R2C2 is configured by connecting a resistor R2 and a capacitor C2 in parallel.
  • the parameter determination unit 20 calculates the values of R0, R1, R2, C1, and C2 using a predetermined calculation formula.
  • a voltage is generated in the power supply by the accumulated power.
  • the voltage generated by this power supply is an open circuit voltage (OCV).
  • OCV open circuit voltage
  • the OCV of the power supply varies depending on the SOC. Moreover, even if the SOC is the same, the OCV changes between charging and discharging. For this reason, the power supply has current sources V OCV_DC (SOC) and V OCV_CC (SOC) that represent potential differences OCV that change according to changes in the SOC.
  • the current source V OCV_DC (SOC) represents the potential difference OCV during discharge.
  • a current source V OCV_CC (SOC) represents a potential difference OCV during charging.
  • the terminal voltage v of the equivalent electric circuit model is the potential difference OCV and the voltage v0.
  • the sum of voltage v1 and voltage v2. That is, the terminal voltage v is represented by v OCV + v0 + v1 + v2.
  • the calculation unit 41 estimates the SOC using a Kalman filter: KF (or an extended Kalman filter: EKF).
  • KF Kalman filter
  • the calculation unit 40 obtains the OCV characteristic parameter, various parameters for KF, etc. from the storage unit 30 and performs the SOC estimation process using each parameter of the equivalent electric circuit model input from the parameter determination unit 20. Do. Note that measurement values are input and parameters are determined for each KF calculation step. Here, the determination of the parameter includes a determination that the parameter of the previous step is used.
  • FIG. 3 is a diagram illustrating the relationship between SOC and OCV of a lithium ion battery. As illustrated in FIG. 3, in the lithium ion battery, the SOC increases from 0% and the OCV increases rapidly, and thereafter, the OCV tends to increase gently as the SOC increases. Using this relationship, the OCV can be predicted from the SOC.
  • the parameter of the function indicating the OCV characteristic curve is stored in the storage unit 30.
  • FIG. 4 is a figure which illustrates the relationship between SOC and OCV of a lead storage battery.
  • the relationship between the SOC and the OCV is substantially proportional.
  • the SOC can be estimated by obtaining the OCV using this relationship.
  • the SOC can be estimated by obtaining the OCV.
  • the calculation unit 41 estimates the current v1, v2 and SOC based on v1, v2 and SOC one step before and the input measurement current I using an equivalent electric circuit model. Moreover, the calculation part 41 calculates OCV from SOC estimated using the OCV characteristic curve. Furthermore, the calculation unit 41 predicts the predicted terminal voltage from the current v1, v2, and OCV.
  • the calculation unit 41 calculates the difference between the actually measured measurement terminal voltage V OBS and the predicted terminal voltage.
  • FIG. 5 is an explanatory diagram illustrating an example of an SOC estimation process using a Kalman filter.
  • equation (1) is an example of the state estimated value of the Kalman filter in step k, and is an example of the state estimated values of v1, v2, and SOC.
  • k indicates the number of steps of the Kalman filter.
  • ⁇ t is a time interval in which the Kalman filter is performed, and corresponds to a sampling period in which the measurement unit 10 measures the measurement current I and the measurement terminal voltage V OBS .
  • Sc a is the chargeable capacity of the secondary battery that is the target of SOC estimation. Sc, a may differ depending on the secondary battery.
  • Sc a can be obtained by use specifications and charge / discharge measurement of the secondary battery.
  • Sc and a change with temperature and deterioration based on the measured or estimated secondary battery temperature and the measured or estimated deterioration degree, every SOC estimation period or periodically / irregularly The obtained chargeable capacity value can be applied.
  • V OBS (k) represents the measurement terminal voltage in step k, and is hereinafter referred to as measurement terminal voltage.
  • [Character 1] Indicates a corrected state estimated value of the Kalman filter in step k ⁇ 1, and is hereinafter referred to as a state estimated value one step before.
  • [Character 2] Indicates the difference between the measured terminal voltage and the predicted terminal voltage in step k, and hereinafter referred to as the difference.
  • [Character 3] Indicates a state estimation value before correction of the Kalman filter in step k, and is hereinafter referred to as a state estimation value before correction.
  • [Character 4] Indicates a correction value of the estimated state value of the Kalman filter in step k, and is hereinafter referred to as a correction value.
  • G (k) represents the Kalman gain of step k.
  • A indicates Jacobian.
  • P (k) represents the error covariance matrix of the estimated value in step k, that is, the accuracy of the estimated value.
  • ⁇ v is a covariance matrix indicating estimated noise.
  • ⁇ w is a covariance matrix indicating measurement noise.
  • the calculation unit 41 uses the following equation (2) based on the state estimated value one step before and the measurement current i (k ⁇ 1) before correction.
  • the estimated state value is calculated (step S1).
  • the calculation unit 41 uses the following formula (4) based on the measurement terminal voltage V OBS , the state estimation value before correction, and the measurement current i (k).
  • the difference between the measurement terminal voltage V OBS and the predicted terminal voltage y (k) is calculated (step S2).
  • the difference is expressed as the following formula (4).
  • the predicted terminal voltage y (k) in the above example of the equivalent electric circuit model is the sum of the OCV obtained from the estimated value of SOC and v0, v1, and v2.
  • Formula (4) can also be expressed as the following Formula (5) using the predicted terminal voltage y (k).
  • amendment part 42 calculates Jacobian A using the following formula
  • the correction unit 42 uses the following equation (7) based on the Jacobian A, the one-step previous covariance matrix P (k ⁇ 1), and the prediction noise ⁇ v, and uses the prior covariance matrix P ⁇ (k). Is calculated (step S4).
  • the correction unit 42 calculates the Kalman gain G (k) using the following equation (8) based on the prior covariance matrix P ⁇ (k) and the measurement noise ⁇ w (step S5).
  • the correcting unit 42 calculates the covariance matrix P (k) using the following equation (9) based on the Kalman gain G (k) and the prior covariance matrix P ⁇ (k) (step S6). .
  • the correcting unit 42 repeats steps S4 to S6 for each step.
  • the correction unit 42 uses the following equation (10) based on the calculated difference and the Kalman gain G (k) calculated in step S5 to correct the state estimated value.
  • a value is calculated (step S7).
  • the correcting unit 42 calculates a state estimated value using the following equation (11) based on the state estimated value before correction calculated in step S1 and the corrected value calculated in step S7 (step S8). ).
  • the state estimated value can also be expressed by the following equation (12).
  • the correction unit 42 calculates the SOC using the following equation (13) in the case of this example (step S9).
  • the calculation unit 41 and the correction unit 42 can estimate the SOC every second, for example, by repeating the processes of steps S1 to S9 as the SOC estimation process for each step.
  • SOC, v1, and v2 are estimated using the difference between the measured terminal voltage VOBS and the terminal voltage y (k) predicted from the estimated values of SOC, v1, and v2, and the Kalman gain G. The value is corrected. By repeating this step every step, the estimated values of SOC, v1, and v2 are gradually brought closer to the true value.
  • the characteristics of the secondary battery 200 change due to the temperature of the secondary battery 200, aging, and the like.
  • temperature it depends on operating conditions (mainly current value) and ambient temperature. It is ideal to change each parameter of the equivalent electric circuit model in accordance with this, but the temperature for determining the characteristic is the temperature inside the secondary battery 200, and the internal temperature of the secondary battery 200 as a product is determined in real time. It is very difficult to measure. Even if a temperature sensor is installed inside the secondary battery 200, the change in the current flowing through the secondary battery 200 may be very fast. In this case, it is considered that the temperature sensor cannot sufficiently follow the temperature change.
  • the characteristics of the secondary battery 200 are measured by changing the current value, the ambient temperature, and the degree of deterioration, and the parameters of the equivalent electric circuit model are used as a function of the current value, the ambient temperature, and the degree of deterioration.
  • a method of creating a table of parameters, current values, ambient temperature, and deterioration degree of an equivalent electric circuit model is conceivable.
  • the DC resistance parameter R0 having no time constant does not have transient characteristics. Therefore, in this embodiment, attention is paid to the fact that R0 can be calculated without including a large error in the above-described calculation of ⁇ V / ⁇ I. As a result, R0 can be calculated in real time when the secondary battery 200 is charged and discharged. This calculated R0 value is referred to as “actual R0 value”.
  • ⁇ V is a difference between the terminal voltage measured last time and the terminal voltage measured this time.
  • ⁇ I is the difference between the current value measured last time and the current value measured this time.
  • FIG. 6 is a diagram illustrating a flowchart executed when the parameter determining unit 20 determines each element parameter of the equivalent electric circuit model.
  • the parameter determination unit 20 determines whether ⁇ I is equal to or less than a threshold value (step S12). If “Yes” is determined in step S12, the parameter determination unit 20 does not calculate the actual R0 value because the error of the actual R0 value increases.
  • the threshold value can be appropriately determined. In this case, the previous actual R0 value is used for the Kalman filter (step S13).
  • step S12 determines whether or not the actual R0 value is negative (step S14). If it is determined as “Yes” in step S14, the parameter determination unit 20 excludes the actual R0 value. In this case, the previous actual R0 value is used for the Kalman filter (step S13).
  • step S14 the parameter determination unit 20 determines whether or not the difference between the actual R0 value determined last time and the actual R0 value determined this time is equal to or greater than a threshold value (step S15). . If it is determined as “Yes” in step S15, the current actual R0 value is excluded. In this case, the previous actual R0 value is used for the Kalman filter (step S13). There may be other exclusions. When the calculated value is not adopted, the calculation unit 40 uses the previous R0 value for the Kalman filter.
  • the parameter determination unit 20 uses the average (moving average) value of the calculated values as necessary.
  • the number of calculations to be averaged can be set appropriately. When ⁇ I is smaller than the threshold value and the actual R0 value is negative, the previous average value is used for the Kalman filter.
  • the parameter determination unit 20 uses the determined actual R0 value to calculate the parameters of the equivalent electric circuit model having a time constant other than R0 in the sampling period. Calculate (step S16).
  • the parameter is at least one function (f) of the actual R0 value, the measured current I, the deterioration amount, the temperature, and the sampling period, and is obtained by experiment for each battery having different characteristics.
  • f′1 (I) determined from the real R0 is used as R1
  • f′2 (I) determined from the real R0 is used as C1
  • f′3 (I determined from the real R0 is used as R2.
  • f′4 (I) determined from the actual R0 may be used as C2.
  • Each component parameter of the determined equivalent electric circuit model is output to the calculation unit 40.
  • the calculation unit 41 and the correction unit 42 estimate the SOC using a Kalman filter that uses the determined parameter of the equivalent electric circuit model.
  • FIG. 7A is a diagram illustrating the relationship between ⁇ V and ⁇ I.
  • the parameter determination unit 20 calculates R0 from ⁇ V and ⁇ I at each measurement timing.
  • FIG. 7B is a diagram illustrating the calculated actual R0 value.
  • the battery environmental temperature here is 50 ° C.
  • the R0 value calculated from only the current value I is also illustrated.
  • there is a difference in the value between when the actual R0 value is calculated from ⁇ V and ⁇ I and when the R0 value is calculated from only the current value I is Specifically, when the actual R0 value is calculated from ⁇ V and ⁇ I, R0 is a lower value than when the R0 value is calculated from only the current value I.
  • the reason why the actual R0 value is low is that the change in characteristics due to the influence of the environmental temperature is reflected.
  • FIG. 8 is a diagram illustrating the relationship between the SOC estimated by calculating the actual R0 value, the SOC estimated using the R0 value calculated only from the measured current I, and the actual measured value of the SOC.
  • the battery environmental temperature here is 50 ° C.
  • each parameter of the equivalent electric circuit model may greatly deviate from the actual characteristics of the secondary battery 200. In this case, the difference between the estimated SOC and the actual measured value of the SOC can be large.
  • the relationship between the actual R0 value and the element parameters of other equivalent electric circuit models may be obtained by experiments. Therefore, the work amount and the work time can be greatly reduced as compared to experimentally determining the relationship between the operating state, the ambient temperature, the degree of deterioration, and the element parameters of the equivalent electric circuit model.
  • the amount of calculation for determining parameters can be reduced, thereby reducing the cost of the calculation device.
  • SOC estimation of many batteries (100 or more in EV) can be performed at the same time with the same computing device.
  • FIG. 9 is a block diagram for explaining an example of the hardware configuration of the estimation apparatus 100.
  • the estimation device 100 includes a CPU 101, a RAM 102, a storage device 103, an interface 104, and the like. Each of these devices is connected by a bus or the like.
  • a CPU (Central Processing Unit) 101 is a central processing unit.
  • the CPU 101 includes one or more cores.
  • a RAM (Random Access Memory) 102 is a volatile memory that temporarily stores programs executed by the CPU 101, data processed by the CPU 101, and the like.
  • the storage device 103 is a nonvolatile storage device.
  • the storage device 103 for example, a ROM (Read Only Memory), a solid state drive (SSD) such as a flash memory, a hard disk driven by a hard disk drive, or the like can be used.
  • the interface 104 is a device that transmits and receives signals to and from an external device.
  • the CPU 101 executes a program stored in the storage device 103, each unit of the estimation device 100 is realized.
  • an MPU Micro Processing Unit
  • it may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
  • FIG. 10 is a diagram illustrating an estimation system according to a modification.
  • the parameter determination unit 20 and the calculation unit 40 obtain measurement values such as current values and terminal voltages from the measurement unit 10.
  • a server having the functions of the parameter determination unit 20 and the calculation unit 40 may acquire measurement data from the measurement unit 10 through a telecommunication line.
  • the server includes the CPU 101, the RAM 102, the storage device 103, the interface 104, and the like illustrated in FIG. 9 and realizes functions as the parameter determination unit 20 and the calculation unit 40.

Abstract

An estimation device is provided with: a measurement unit for measuring a measurement current and measurement terminal voltage of a rechargeable battery at a prescribed sampling period; a determination unit for making DC resistance parameters for an equivalent circuit model of the battery values obtained on the basis of the measurement current and measurement terminal voltage by dividing the measurement terminal voltage differences at the sampling intervals by the measurement current differences; a calculation unit for estimating the state of charge of the battery and a predicted terminal voltage with a Kalman filter using element parameters including the DC resistances of the equivalent circuit model and calculating the difference between the measurement terminal voltage and the predicted terminal voltage; and a correction unit for correcting the state of charge on the basis of the difference and the Kalman gain of the Kalman filter.

Description

推定装置、推定プログラムおよび充電制御装置Estimation device, estimation program, and charge control device
 本件は、推定装置、推定プログラムおよび充電制御装置に関する。 This case relates to an estimation device, an estimation program, and a charge control device.
 リチウムイオン電池などの2次電池は、電動モビリティ(電気自動車等)、定置蓄電システム等の蓄電用途として注目されている。電動モビリティ用途では、残走行距離を運転者に表示するために充電率SOCを得る技術が望まれている。定置蓄電システムにおいても、正確なSOCを得ることは正確なシステム制御のために重要である。 Secondary batteries such as lithium ion batteries are attracting attention as power storage applications such as electric mobility (electric vehicles, etc.) and stationary power storage systems. In electric mobility applications, a technique for obtaining a charge rate SOC in order to display the remaining travel distance to the driver is desired. Even in a stationary power storage system, obtaining an accurate SOC is important for accurate system control.
 正確な制御が望まれる理由として、過充電や過放電を防止することが挙げられる。不正確なSOCしか得られない場合には、大きい充放電マージンを取らざるを得ないので、電池本来の蓄電性能を発揮することが困難となる。これは電池の数を増やすことになり、システムのコストの増加につながる。 The reason why accurate control is desired is to prevent overcharge and overdischarge. When only an inaccurate SOC can be obtained, a large charge / discharge margin must be taken, and it becomes difficult to exhibit the battery's original power storage performance. This increases the number of batteries, leading to an increase in system cost.
 そこで、カルマンフィルタ等で等価回路パラメータを推定することでSOCを推定する技術が開示されている(例えば、特許文献1参照)。 Therefore, a technique for estimating the SOC by estimating an equivalent circuit parameter using a Kalman filter or the like is disclosed (for example, see Patent Document 1).
特開2012-58089号公報JP 2012-58089 A
 しかしながら、2次電池の特性は、温度、経年変化等の条件に応じて変化する。上記技術では、条件に応じて等価回路パラメータを変化させていないため、高い推定精度が得られない。 However, the characteristics of the secondary battery change according to conditions such as temperature and aging. In the above technique, since the equivalent circuit parameter is not changed according to the condition, high estimation accuracy cannot be obtained.
 1つの側面では、高い推定精度でSOCを推定することができる推定装置、推定プログラムおよび充電制御装置を提供することを目的とする。 An object of one aspect is to provide an estimation device, an estimation program, and a charge control device that can estimate SOC with high estimation accuracy.
 1つの態様では、推定装置は、充電可能な電池の測定電流および測定端子電圧を所定のサンプリング周期で測定する測定部と、前記測定電流および前記測定端子電圧に基づいて、前記サンプリング周期の前記測定端子電圧の差分を前記測定電流の差分で除することで得た値を、前記電池の等価電気回路モデルの直流抵抗のパラメータとして決定する決定部と、前記等価電気回路モデルの前記直流抵抗を含む素子パラメータを用いたカルマンフィルタにより、前記電池の充電率および予測端子電圧を推定し、前記測定端子電圧と前記予測端子電圧との差分を算出する算出部と、前記差分と、前記カルマンフィルタのカルマンゲインとに基づいて前記充電率を補正する補正部と、を備える。 In one aspect, the estimation apparatus measures the measurement current and the measurement terminal voltage of a rechargeable battery at a predetermined sampling period, and the measurement of the sampling period based on the measurement current and the measurement terminal voltage. A determination unit that determines a value obtained by dividing a difference in terminal voltage by a difference in the measured current as a parameter of DC resistance of the equivalent electric circuit model of the battery; and the DC resistance of the equivalent electric circuit model A calculation unit that estimates a charging rate and a predicted terminal voltage of the battery by a Kalman filter using element parameters, calculates a difference between the measured terminal voltage and the predicted terminal voltage, the difference, and a Kalman gain of the Kalman filter, And a correction unit that corrects the charging rate based on.
 高い推定精度でSOCを推定することができる。 SOC can be estimated with high estimation accuracy.
実施例1に係る推定装置のブロック図である。1 is a block diagram of an estimation device according to Embodiment 1. FIG. 2次電池の等価電気回路モデルを例示する図である。It is a figure which illustrates the equivalent electrical circuit model of a secondary battery. リチウムイオン電池のSOCとOCVとの関係を例示する図である。It is a figure which illustrates the relationship between SOC and OCV of a lithium ion battery. 鉛蓄電池のSOCとOCVとの関係を例示する図である。It is a figure which illustrates the relationship between SOC of lead acid battery, and OCV. カルマンフィルタを用いたSOC推定処理の一例を示す説明図である。It is explanatory drawing which shows an example of the SOC estimation process using a Kalman filter. パラメータ決定部が等価電気回路モデルの各素子パラメータを決定する際に実行するフローチャートを例示する図である。It is a figure which illustrates the flowchart performed when a parameter determination part determines each element parameter of an equivalent electrical circuit model. (a)はΔVとΔIとの関係を例示する図であり、(b)は算出された実R0値を例示する図である。(A) is a figure which illustrates the relationship between (DELTA) V and (DELTA) I, (b) is a figure which illustrates the calculated real R0 value. 実R0値を算出して推定されたSOCと、測定電流Iだけから算出されたR0値を用いて推定されたSOCと、SOCの実測値との関係を例示する図である。It is a figure which illustrates the relationship between the SOC estimated by calculating the actual R0 value, the SOC estimated using the R0 value calculated only from the measured current I, and the actual measured value of the SOC. 推定装置のハードウェア構成の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the hardware constitutions of an estimation apparatus. 変形例にかかる推定システムについて例示する図である。It is a figure which illustrates about the estimation system concerning a modification.
 以下、図面を参照しつつ、実施例について説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 図1は、実施例1に係る推定装置100のブロック図である。図1で例示するように、推定装置100は、測定部10、パラメータ決定部20、記憶部30、演算部40、および出力部50を備える。演算部40は、算出部41および補正部42を備える。推定装置100は、例えば、2次電池の充電制御装置に組み込まれる。なお、推定装置100は、例えば、電気自動車や電動バイク等の制御装置の一機能として実装して、2次電池の充電制御装置を制御するようにしてもよい。 FIG. 1 is a block diagram of the estimation apparatus 100 according to the first embodiment. As illustrated in FIG. 1, the estimation apparatus 100 includes a measurement unit 10, a parameter determination unit 20, a storage unit 30, a calculation unit 40, and an output unit 50. The calculation unit 40 includes a calculation unit 41 and a correction unit 42. The estimation device 100 is incorporated in, for example, a charge control device for a secondary battery. Note that the estimation device 100 may be implemented as a function of a control device such as an electric vehicle or an electric motorcycle, and may control a charging control device for a secondary battery.
 測定部10は、2次電池200の電流、端子電圧、温度等を所定のサンプリング周期で測定する。測定された電流、端子電圧および温度を、測定電流I、測定端子電圧VOBSおよび測定温度と称する。測定部10は、例えば、電流計、電圧計、温度計等で、測定値をパラメータ決定部20および演算部40に出力する。 The measurement unit 10 measures the current, terminal voltage, temperature, and the like of the secondary battery 200 at a predetermined sampling period. The measured current, terminal voltage, and temperature are referred to as measurement current I, measurement terminal voltage V OBS, and measurement temperature. The measurement part 10 is an ammeter, a voltmeter, a thermometer etc., and outputs a measured value to the parameter determination part 20 and the calculating part 40, for example.
 出力部50は、演算部40で推定された充電率(SOC)に係る情報が入力されると(あるいは外部装置300からの要求があった場合に)、SOCに係る情報を、例えば外部装置300に出力する。外部装置300は、推定されたSOCに基づいて、2次電池200の充放電を制御する。 When the information related to the charging rate (SOC) estimated by the calculation unit 40 is input to the output unit 50 (or when there is a request from the external device 300), the information related to the SOC is output to the external device 300, for example. Output to. External device 300 controls charging / discharging of secondary battery 200 based on the estimated SOC.
 記憶部30は、パラメータ決定部20および演算部40における処理に用いる情報を記憶する。記憶部30は、OCV(Open Circuit Voltage)特性曲線を示す関数のパラメータ、カルマンフィルタに用いる関数や各種パラメータ、等価電気回路モデルの構成素子パラメータを決定するための計算および関数のパラメータ等を記憶する。OCV特性曲線は、2次電池200のOCV-SOC特性を示すグラフである。カルマンフィルタの各種パラメータとしては、例えば、予測ノイズを示すΣv、測定ノイズを示すΣw等が挙げられる。 The storage unit 30 stores information used for processing in the parameter determination unit 20 and the calculation unit 40. The storage unit 30 stores parameters of a function indicating an OCV (Open Circuit Voltage) characteristic curve, functions used for a Kalman filter, various parameters, calculation parameters for determining constituent element parameters of an equivalent electric circuit model, function parameters, and the like. The OCV characteristic curve is a graph showing the OCV-SOC characteristic of the secondary battery 200. Examples of various parameters of the Kalman filter include Σv indicating prediction noise, Σw indicating measurement noise, and the like.
 パラメータ決定部20は、まず、測定部10から測定端子電圧VOBSおよび測定電流Iが入力されると、記憶部30からパラメータを取得して、等価電気回路モデルの構成素子パラメータを、予め決定された計算式を用いて算出する。 First, when the measurement terminal voltage V OBS and the measurement current I are input from the measurement unit 10, the parameter determination unit 20 acquires the parameters from the storage unit 30, and the constituent element parameters of the equivalent electric circuit model are determined in advance. Calculate using the following formula.
 図2は、2次電池200の等価電気回路モデルを例示する図である。図2で例示するように、等価電気回路モデルは、電流変化に対して過渡的な電圧の変化を表すRC回路であって、電源と、直流抵抗R0と、2つのRC回路(C1およびR1と、C2およびR2)とが直列に接続された構成を有する。RC回路R1C1は、抵抗R1とコンデンサC1とが並列に接続されて構成されている。RC回路R2C2は、抵抗R2とコンデンサC2とが並列に接続されて構成されている。パラメータ決定部20は、予め決定された計算式を用いてR0,R1,R2,C1およびC2の値を算出する。 FIG. 2 is a diagram illustrating an equivalent electric circuit model of the secondary battery 200. As illustrated in FIG. 2, the equivalent electric circuit model is an RC circuit that represents a transient voltage change with respect to a current change, and includes a power supply, a DC resistance R0, and two RC circuits (C1 and R1). , C2 and R2) are connected in series. The RC circuit R1C1 is configured by connecting a resistor R1 and a capacitor C1 in parallel. The RC circuit R2C2 is configured by connecting a resistor R2 and a capacitor C2 in parallel. The parameter determination unit 20 calculates the values of R0, R1, R2, C1, and C2 using a predetermined calculation formula.
 なお、等価電気回路モデルにおいて、電源では、蓄積された電力により電圧が生じる。この電源で生じる電圧が開回路電圧(OCV:Open Circuit Voltage)である。電源は、SOCによってOCVが変化する。また、電源は、SOCが同一でも充電時と放電時とでOCVが変化する。このため、電源は、SOCの変化に応じて変化する電位差OCVを表す電流源VOCV_DC(SOC)およびVOCV_CC(SOC)を有する。ここで、電流源VOCV_DC(SOC)は、放電時の電位差OCVを表す。電流源VOCV_CC(SOC)は、充電時の電位差OCVを表す。 In the equivalent electric circuit model, a voltage is generated in the power supply by the accumulated power. The voltage generated by this power supply is an open circuit voltage (OCV). The OCV of the power supply varies depending on the SOC. Moreover, even if the SOC is the same, the OCV changes between charging and discharging. For this reason, the power supply has current sources V OCV_DC (SOC) and V OCV_CC (SOC) that represent potential differences OCV that change according to changes in the SOC. Here, the current source V OCV_DC (SOC) represents the potential difference OCV during discharge. A current source V OCV_CC (SOC) represents a potential difference OCV during charging.
 直流抵抗R0の両端の電位差をv0とし、RC回路R1C1の両端の電位差をv1とし、RC回路R2C2の両端の電位差をv2とすると、等価電気回路モデルの端子電圧vは、電位差OCVと、電圧v0と、電圧v1と、電圧v2との和で表される。すなわち、端子電圧vは、v=OCV+v0+v1+v2で表される。 When the potential difference between both ends of the DC resistor R0 is v0, the potential difference between both ends of the RC circuit R1C1 is v1, and the potential difference between both ends of the RC circuit R2C2 is v2, the terminal voltage v of the equivalent electric circuit model is the potential difference OCV and the voltage v0. And the sum of voltage v1 and voltage v2. That is, the terminal voltage v is represented by v = OCV + v0 + v1 + v2.
 算出部41は、測定部10から測定電流Iおよび測定端子電圧VOBSが入力されると、カルマンフィルタ:KF(あるいは拡張カルマンフィルター:EKF)を用いて、SOCを推定する。カルマンフィルタにおいては、演算部40は、記憶部30からOCV特性パラメータ、KF用各種パラメータ等を入手し、パラメータ決定部20から入力された等価電気回路モデルの各パラメータを用いて、SOCの推定処理を行う。なお、KFの計算ステップ毎に、測定値の入力、パラメータの決定が行われる。ここで、パラメータの決定には、前ステップのパラメータを使用するという判断を含む。 When the measurement current I and the measurement terminal voltage V OBS are input from the measurement unit 10, the calculation unit 41 estimates the SOC using a Kalman filter: KF (or an extended Kalman filter: EKF). In the Kalman filter, the calculation unit 40 obtains the OCV characteristic parameter, various parameters for KF, etc. from the storage unit 30 and performs the SOC estimation process using each parameter of the equivalent electric circuit model input from the parameter determination unit 20. Do. Note that measurement values are input and parameters are determined for each KF calculation step. Here, the determination of the parameter includes a determination that the parameter of the previous step is used.
 ここで、SOC-OCV特性について説明する。図3は、リチウムイオン電池のSOCとOCVとの関係を例示する図である。図3で例示するように、リチウムイオン電池においては、SOCが0%から上昇するとともにOCVが急激に上昇し、その後、SOCの上昇とともにOCVがなだらかに上昇する傾向がある。この関係を用いて、SOCからOCVを予測することができる。このOCV特性曲線を示す関数のパラメータは、記憶部30に記憶されている。 Here, the SOC-OCV characteristics will be described. FIG. 3 is a diagram illustrating the relationship between SOC and OCV of a lithium ion battery. As illustrated in FIG. 3, in the lithium ion battery, the SOC increases from 0% and the OCV increases rapidly, and thereafter, the OCV tends to increase gently as the SOC increases. Using this relationship, the OCV can be predicted from the SOC. The parameter of the function indicating the OCV characteristic curve is stored in the storage unit 30.
 なお、図4は、鉛蓄電池のSOCとOCVとの関係を例示する図である。図4で例示するように、鉛蓄電池においては、SOCとOCVとの関係に略比例関係がある。2次電池200として鉛蓄電池を用いる場合には、この関係を用いて、OCVを得ることによってSOCを推定することができる。ニッケル水素電池などの他の2次電池においても、OCVとSOCとの間には所定の関係があるため、OCVを得ることによってSOCを推定することができる。 In addition, FIG. 4 is a figure which illustrates the relationship between SOC and OCV of a lead storage battery. As illustrated in FIG. 4, in the lead storage battery, the relationship between the SOC and the OCV is substantially proportional. When a lead storage battery is used as the secondary battery 200, the SOC can be estimated by obtaining the OCV using this relationship. In other secondary batteries such as a nickel metal hydride battery, since there is a predetermined relationship between the OCV and the SOC, the SOC can be estimated by obtaining the OCV.
 以下、カルマンフィルタを用いたSOCの推定処理について説明する。算出部41は、等価電気回路モデルを用いて、1ステップ前のv1、v2およびSOCと、入力される測定電流Iとに基づいて、現在のv1、v2およびSOCを推定する。また、算出部41は、OCV特性曲線を用いて推定したSOCからOCVを算出する。さらに、算出部41は、現在のv1、v2およびOCVから予測端子電圧を予測する。 Hereinafter, SOC estimation processing using a Kalman filter will be described. The calculation unit 41 estimates the current v1, v2 and SOC based on v1, v2 and SOC one step before and the input measurement current I using an equivalent electric circuit model. Moreover, the calculation part 41 calculates OCV from SOC estimated using the OCV characteristic curve. Furthermore, the calculation unit 41 predicts the predicted terminal voltage from the current v1, v2, and OCV.
 次に、算出部41は、実際に測定された測定端子電圧VOBSと、予測端子電圧との差分を算出する。 Next, the calculation unit 41 calculates the difference between the actually measured measurement terminal voltage V OBS and the predicted terminal voltage.
 続いて、図5を参照しつつ、カルマンフィルタの詳細について説明する。図5は、カルマンフィルタを用いたSOC推定処理の一例を示す説明図である。まず、下記式(1)は、ステップkのカルマンフィルタの状態推定値の一例であり、v1,v2およびSOCの状態推定値の一例である。kは、カルマンフィルタのステップ数を示す。Δtは、カルマンフィルタが行われる時間間隔であり、測定部10が測定電流Iおよび測定端子電圧VOBSを測定するサンプリング周期に相当する。
Figure JPOXMLDOC01-appb-M000001
ここで、Sc,aは、SOC推定の対象である2次電池の蓄電可能容量である。2次電池によりSc,aは異なる場合がある。また、Sc,aは、2次電池の使用仕様と充放電測定により求めることができる。また、Sc,aは、温度と劣化により変化するので、測定あるいは推定された2次電池の温度、および測定あるいは推定された劣化度を基に、SOC推定周期毎にあるいは定期/不定期に、求めた蓄電可能容量値を適用することができる。
Next, details of the Kalman filter will be described with reference to FIG. FIG. 5 is an explanatory diagram illustrating an example of an SOC estimation process using a Kalman filter. First, the following equation (1) is an example of the state estimated value of the Kalman filter in step k, and is an example of the state estimated values of v1, v2, and SOC. k indicates the number of steps of the Kalman filter. Δt is a time interval in which the Kalman filter is performed, and corresponds to a sampling period in which the measurement unit 10 measures the measurement current I and the measurement terminal voltage V OBS .
Figure JPOXMLDOC01-appb-M000001
Here, Sc , a is the chargeable capacity of the secondary battery that is the target of SOC estimation. Sc, a may differ depending on the secondary battery. In addition, Sc, a can be obtained by use specifications and charge / discharge measurement of the secondary battery. In addition, since Sc and a change with temperature and deterioration, based on the measured or estimated secondary battery temperature and the measured or estimated deterioration degree, every SOC estimation period or periodically / irregularly The obtained chargeable capacity value can be applied.
 次に、図5の説明に用いる文字を説明する。VOBS(k)は、ステップkの測定端子電圧を示し、以下、測定端子電圧という。
[文字1]
Figure JPOXMLDOC01-appb-I000002
は、ステップk-1のカルマンフィルタの補正された状態推定値を示し、以下、1ステップ前の状態推定値という。
[文字2]
Figure JPOXMLDOC01-appb-I000003
は、ステップkの測定端子電圧と予測端子電圧との差分を示し、以下、差分という。
[文字3]
Figure JPOXMLDOC01-appb-I000004
は、ステップkのカルマンフィルタの補正前の状態推定値を示し、以下、補正前の状態推定値という。
[文字4]
Figure JPOXMLDOC01-appb-I000005
は、ステップkのカルマンフィルタの状態推定値の補正値を示し、以下、補正値
という。
Next, characters used in the description of FIG. 5 will be described. V OBS (k) represents the measurement terminal voltage in step k, and is hereinafter referred to as measurement terminal voltage.
[Character 1]
Figure JPOXMLDOC01-appb-I000002
Indicates a corrected state estimated value of the Kalman filter in step k−1, and is hereinafter referred to as a state estimated value one step before.
[Character 2]
Figure JPOXMLDOC01-appb-I000003
Indicates the difference between the measured terminal voltage and the predicted terminal voltage in step k, and hereinafter referred to as the difference.
[Character 3]
Figure JPOXMLDOC01-appb-I000004
Indicates a state estimation value before correction of the Kalman filter in step k, and is hereinafter referred to as a state estimation value before correction.
[Character 4]
Figure JPOXMLDOC01-appb-I000005
Indicates a correction value of the estimated state value of the Kalman filter in step k, and is hereinafter referred to as a correction value.
 G(k)は、ステップkのカルマンゲインを示す。Aは、ヤコビアンを示す。P(k)は、ステップkの推定値の誤差の共分散行列、つまり推定値の精度を示す。Σvは、推定ノイズを示す共分散行列である。Σwは、測定ノイズを示す共分散行列である。 G (k) represents the Kalman gain of step k. A indicates Jacobian. P (k) represents the error covariance matrix of the estimated value in step k, that is, the accuracy of the estimated value. Σv is a covariance matrix indicating estimated noise. Σw is a covariance matrix indicating measurement noise.
 算出部41は、測定電流i(k)が入力されると、1ステップ前の状態推定値と、測定電流i(k-1)とに基づいて、下記の式(2)を用いて補正前の状態推定値を算出する(ステップS1)。ここで、測定電流i(k)は、1秒ごとに入力される場合を示しており、Δt=1であることから、例えば、簡易的に下記に示す式(3)の関係を用いることができる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
When the measurement current i (k) is input, the calculation unit 41 uses the following equation (2) based on the state estimated value one step before and the measurement current i (k−1) before correction. The estimated state value is calculated (step S1). Here, the measurement current i (k) indicates a case where the measurement current i (k) is input every second, and Δt = 1. Therefore, for example, the relationship of the following formula (3) can be used simply. it can.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 算出部41は、測定端子電圧VOBSが入力されると、測定端子電圧VOBSと、補正前の状態推定値と、測定電流i(k)とに基づいて、下記式(4)を用いて測定端子電圧VOBSと予測端子電圧y(k)との差分を算出する(ステップS2)。当該差分は、下記式(4)のように表す。なお、上述の等価電気回路モデルの例における予測端子電圧y(k)は、SOCの推定値から得たOCVと、v0,v1およびv2を合計した値となる。
Figure JPOXMLDOC01-appb-M000008
また、式(4)は、予測端子電圧y(k)を用いて、下記の式(5)とも表現できる。
Figure JPOXMLDOC01-appb-M000009
When the measurement terminal voltage V OBS is input, the calculation unit 41 uses the following formula (4) based on the measurement terminal voltage V OBS , the state estimation value before correction, and the measurement current i (k). The difference between the measurement terminal voltage V OBS and the predicted terminal voltage y (k) is calculated (step S2). The difference is expressed as the following formula (4). Note that the predicted terminal voltage y (k) in the above example of the equivalent electric circuit model is the sum of the OCV obtained from the estimated value of SOC and v0, v1, and v2.
Figure JPOXMLDOC01-appb-M000008
Moreover, Formula (4) can also be expressed as the following Formula (5) using the predicted terminal voltage y (k).
Figure JPOXMLDOC01-appb-M000009
 次に、補正部42は、1ステップ前の状態推定値に基づいて、下記の式(6)を用いてヤコビアンAを算出する(ステップS3)。
Figure JPOXMLDOC01-appb-M000010
Next, the correction | amendment part 42 calculates Jacobian A using the following formula | equation (6) based on the state estimated value one step before (step S3).
Figure JPOXMLDOC01-appb-M000010
 補正部42は、ヤコビアンAと、1ステップ前の共分散行列P(k-1)と、予測ノイズΣvとに基づいて、下記の式(7)を用いて事前共分散行列P(k)を算出する(ステップS4)。
Figure JPOXMLDOC01-appb-M000011
The correction unit 42 uses the following equation (7) based on the Jacobian A, the one-step previous covariance matrix P (k−1), and the prediction noise Σv, and uses the prior covariance matrix P (k). Is calculated (step S4).
Figure JPOXMLDOC01-appb-M000011
 補正部42は、事前共分散行列P(k)と、測定ノイズΣwとに基づいて、下記の式(8)を用いてカルマンゲインG(k)を算出する(ステップS5)。
Figure JPOXMLDOC01-appb-M000012
The correction unit 42 calculates the Kalman gain G (k) using the following equation (8) based on the prior covariance matrix P (k) and the measurement noise Σw (step S5).
Figure JPOXMLDOC01-appb-M000012
 補正部42は、カルマンゲインG(k)と、事前共分散行列P(k)とに基づいて、下記の式(9)を用いて共分散行列P(k)を算出する(ステップS6)。補正部42は、ステップS4~ステップS6を1ステップごとに繰り返す。
Figure JPOXMLDOC01-appb-M000013
The correcting unit 42 calculates the covariance matrix P (k) using the following equation (9) based on the Kalman gain G (k) and the prior covariance matrix P (k) (step S6). . The correcting unit 42 repeats steps S4 to S6 for each step.
Figure JPOXMLDOC01-appb-M000013
 次に、補正部42は、算出された差分と、ステップS5で算出されたカルマンゲインG(k)とに基づいて、下記の式(10)を用いて、状態推定値を修正するための修正値を算出する(ステップS7)。
Figure JPOXMLDOC01-appb-M000014
Next, the correction unit 42 uses the following equation (10) based on the calculated difference and the Kalman gain G (k) calculated in step S5 to correct the state estimated value. A value is calculated (step S7).
Figure JPOXMLDOC01-appb-M000014
 補正部42は、ステップS1で算出された補正前の状態推定値と、ステップS7で算出された修正値とに基づいて、下記の式(11)を用いて状態推定値を算出する(ステップS8)。ここで、状態推定値は、下記の式(12)とも表すことができる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
The correcting unit 42 calculates a state estimated value using the following equation (11) based on the state estimated value before correction calculated in step S1 and the corrected value calculated in step S7 (step S8). ). Here, the state estimated value can also be expressed by the following equation (12).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 補正部42は、状態推定値に基づいて、今回の例の場合、下記の式(13)を用いてSOCを算出する(ステップS9)。
Figure JPOXMLDOC01-appb-M000017
Based on the state estimated value, the correction unit 42 calculates the SOC using the following equation (13) in the case of this example (step S9).
Figure JPOXMLDOC01-appb-M000017
 このように、算出部41および補正部42は、SOC推定処理としてステップS1~S9の処理を1ステップごとに繰り返すことによって、例えば、1秒ごとにSOCを推定できる。以上のカルマンフィルタでは、実測した測定端子電圧VOBSとSOC,v1,v2の推定値から予測した端子電圧y(k)との差分と、カルマンゲインGとを用いて、SOC,v1,v2の推定値を補正している。これを毎ステップ繰り返すことで、徐々にSOC,v1,v2の推定値を真値に近づけている。 As described above, the calculation unit 41 and the correction unit 42 can estimate the SOC every second, for example, by repeating the processes of steps S1 to S9 as the SOC estimation process for each step. In the above Kalman filter, SOC, v1, and v2 are estimated using the difference between the measured terminal voltage VOBS and the terminal voltage y (k) predicted from the estimated values of SOC, v1, and v2, and the Kalman gain G. The value is corrected. By repeating this step every step, the estimated values of SOC, v1, and v2 are gradually brought closer to the true value.
 ところで、2次電池200の特性は2次電池200の温度、経年変化等に起因して変化してしまう。温度に関しては動作状況(主に電流値)と周囲温度に左右される。これに合わせて等価電気回路モデルの各パラメータを変化させることが理想であるが、特性を決定する温度は2次電池200内部の温度であり、製品としての2次電池200の内部温度をリアルタイムで測定することは非常に難しい。また、仮に2次電池200内部に温度センサを設置したとしても、2次電池200を流れる電流の変化は非常に速い場合がある。この場合、温度センサは十分に温度変化に追随できないと考えられる。電流値や周囲温度から内部温度を推定する手法も提案されてはいるが、この推定温度には誤差が伴うので、結果としてSOC推定精度の悪化につながる。劣化をリアルタイムで推定することも困難である。劣化推定手法の提案もあるが、温度推定と同様に誤差を引き起こす。 Incidentally, the characteristics of the secondary battery 200 change due to the temperature of the secondary battery 200, aging, and the like. Regarding temperature, it depends on operating conditions (mainly current value) and ambient temperature. It is ideal to change each parameter of the equivalent electric circuit model in accordance with this, but the temperature for determining the characteristic is the temperature inside the secondary battery 200, and the internal temperature of the secondary battery 200 as a product is determined in real time. It is very difficult to measure. Even if a temperature sensor is installed inside the secondary battery 200, the change in the current flowing through the secondary battery 200 may be very fast. In this case, it is considered that the temperature sensor cannot sufficiently follow the temperature change. Although a method for estimating the internal temperature from the current value and the ambient temperature has been proposed, an error is accompanied with the estimated temperature, and as a result, the SOC estimation accuracy is deteriorated. It is also difficult to estimate degradation in real time. There is also a proposal for a degradation estimation method, but it causes an error as with temperature estimation.
 この課題を解決する手法として、電流値、周囲温度、劣化度を変えて2次電池200の特性を測定し、等価電気回路モデルのパラメータを電流値、周囲温度、劣化度の関数とする、あるいは等価電気回路モデルのパラメータと電流値、周囲温度、劣化度のテーブルを作成する方法が考えられる。しかしながら、上記パラメータの組合せが非常に多いため、全特性を測定することは現実的ではない。しかも、必ずしも上記パラメータだけで実際の特性を反映したパラメータを決定できない可能性(他の要因)もある。 As a method for solving this problem, the characteristics of the secondary battery 200 are measured by changing the current value, the ambient temperature, and the degree of deterioration, and the parameters of the equivalent electric circuit model are used as a function of the current value, the ambient temperature, and the degree of deterioration. A method of creating a table of parameters, current values, ambient temperature, and deterioration degree of an equivalent electric circuit model is conceivable. However, since there are so many combinations of the above parameters, it is not practical to measure all characteristics. In addition, there is a possibility (other factors) that the parameters reflecting actual characteristics cannot be determined with the above parameters alone.
 2次電池200の内部温度変化に合せて等価電気回路モデルのパラメータを簡易に変化させる方法として、各パラメータを電流の関数として記述して用いる方法が提案されているが、固定パラメータに比べて推定精度は上がるものの、周囲温度他の要因を考慮していないため、完全に内部温度を反映できず、精度は十分でない。
上述の等価電気回路モデルの場合の例:R0=f0(I)、R1=fa(I)、C1=fb(I)、R2=fc(I)、C2=fd(I)
As a method for easily changing the parameters of the equivalent electric circuit model in accordance with the internal temperature change of the secondary battery 200, a method has been proposed in which each parameter is described and used as a function of current. Although the accuracy is improved, the ambient temperature and other factors are not taken into account, so the internal temperature cannot be completely reflected, and the accuracy is not sufficient.
Example of the above-described equivalent electric circuit model: R0 = f0 (I), R1 = fa (I), C1 = fb (I), R2 = fc (I), C2 = fd (I)
 上記の様に、2次電池200の温度、経年変化等により等価電気回路モデルのパラメータをリアルタイムに正しく変化させる手法がなかったため、様々なバッテリー使用条件で高いSOC推定精度が得られなかった。 As described above, since there was no method for correctly changing the parameters of the equivalent electric circuit model in real time due to the temperature and aging of the secondary battery 200, high SOC estimation accuracy could not be obtained under various battery usage conditions.
 2次電池200の動作においては、充放電による電流の変化(ΔI)に伴い電圧が変化(ΔV)している。また、等価電気回路モデルのパラメータのうち、時定数を持たない直流抵抗パラメータR0は、過渡特性を持たない。そこで、本実施例においては、前述のΔV/ΔIの計算で大きな誤差を含まずにR0を算出できることに着目した。これにより、2次電池200の充放電動作時にリアルタイムにR0を算出できることになる。この算出されたR0値を「実R0値」と称する。なお、ΔVは、前回測定された端子電圧と今回測定された端子電圧との差分である。ΔIは、前回測定された電流値と今回測定された電流値との差分である。 In the operation of the secondary battery 200, the voltage changes (ΔV) with the change of current (ΔI) due to charging / discharging. Of the parameters of the equivalent electric circuit model, the DC resistance parameter R0 having no time constant does not have transient characteristics. Therefore, in this embodiment, attention is paid to the fact that R0 can be calculated without including a large error in the above-described calculation of ΔV / ΔI. As a result, R0 can be calculated in real time when the secondary battery 200 is charged and discharged. This calculated R0 value is referred to as “actual R0 value”. ΔV is a difference between the terminal voltage measured last time and the terminal voltage measured this time. ΔI is the difference between the current value measured last time and the current value measured this time.
 測定部10は、2次電池200を流れる電流および端子電圧を所定のサンプリング周期で逐次測定している。そこで、パラメータ決定部20は、等価電気回路モデルのパラメータR0、R1、R2、C1およびC2のうち、まず、R0を決定する。具体的には、パラメータ決定部20は、この測定電流Iおよび測定端子電圧VOBSを使って実R0値を計算する。実R0値の計算は、サンプリング周期ごとに前回計測からの電流変化ΔIと電圧変化ΔVとから、R0=ΔV/ΔIで求められる。 The measurement unit 10 sequentially measures the current flowing through the secondary battery 200 and the terminal voltage at a predetermined sampling period. Therefore, the parameter determining unit 20 first determines R0 among the parameters R0, R1, R2, C1, and C2 of the equivalent electric circuit model. Specifically, the parameter determination unit 20 calculates the actual R0 value using the measurement current I and the measurement terminal voltage V OBS . The actual R0 value is calculated from R0 = ΔV / ΔI from the current change ΔI and the voltage change ΔV from the previous measurement for each sampling period.
 図6は、パラメータ決定部20が等価電気回路モデルの各素子パラメータを決定する際に実行するフローチャートを例示する図である。図6で例示するように、パラメータ決定部20は、電流変化ΔIと電圧変化ΔVとから、R0=ΔV/ΔIにより実R0値を算出する(ステップS11)。次に、パラメータ決定部20は、ΔIが閾値以下であるか否かを判定する(ステップS12)。ステップS12で「Yes」と判定された場合、パラメータ決定部20は、実R0値の誤差が大きくなるので実R0値を計算しない。閾値は適切に定めることができる。この場合においては、前回の実R0値をカルマンフィルタに用いる(ステップS13)。 FIG. 6 is a diagram illustrating a flowchart executed when the parameter determining unit 20 determines each element parameter of the equivalent electric circuit model. As illustrated in FIG. 6, the parameter determination unit 20 calculates an actual R0 value from the current change ΔI and the voltage change ΔV by R0 = ΔV / ΔI (step S11). Next, the parameter determination unit 20 determines whether ΔI is equal to or less than a threshold value (step S12). If “Yes” is determined in step S12, the parameter determination unit 20 does not calculate the actual R0 value because the error of the actual R0 value increases. The threshold value can be appropriately determined. In this case, the previous actual R0 value is used for the Kalman filter (step S13).
 ステップS12で「No」と判定された場合、パラメータ決定部20は、実R0値がマイナスであるか否かを判定する(ステップS14)。ステップS14で「Yes」と判定された場合、パラメータ決定部20は、当該実R0値を除外する。この場合においては、前回の実R0値をカルマンフィルタに用いる(ステップS13)。 If it is determined “No” in step S12, the parameter determination unit 20 determines whether or not the actual R0 value is negative (step S14). If it is determined as “Yes” in step S14, the parameter determination unit 20 excludes the actual R0 value. In this case, the previous actual R0 value is used for the Kalman filter (step S13).
 ステップS14で「No」と判定された場合、パラメータ決定部20は、前回に決定した実R0値と今回決定した実R0値との差分が閾値以上であるか否かを判定する(ステップS15)。ステップS15で「Yes」と判定された場合、今回の実R0値を除外する。この場合においては、前回の実R0値をカルマンフィルタに用いる(ステップS13)。他にも除外される場合がある。計算した値が採用されない場合は、演算部40は、前回のR0値をカルマンフィルタに用いる。 When it is determined “No” in step S14, the parameter determination unit 20 determines whether or not the difference between the actual R0 value determined last time and the actual R0 value determined this time is equal to or greater than a threshold value (step S15). . If it is determined as “Yes” in step S15, the current actual R0 value is excluded. In this case, the previous actual R0 value is used for the Kalman filter (step S13). There may be other exclusions. When the calculated value is not adopted, the calculation unit 40 uses the previous R0 value for the Kalman filter.
 パラメータ決定部20は、必要に応じて、上記計算した値の平均(移動平均)値を用いる。平均する計算回数は、適切に設定することができる。ΔIが閾値よりも小さい場合、実R0値がマイナスとなる場合は、前回の平均値をカルマンフィルタに用いる。 The parameter determination unit 20 uses the average (moving average) value of the calculated values as necessary. The number of calculations to be averaged can be set appropriately. When ΔI is smaller than the threshold value and the actual R0 value is negative, the previous average value is used for the Kalman filter.
 ステップS15で「No」と判定された場合またはステップS13の実行後、パラメータ決定部20は、決定した実R0値を用いて、R0以外の時定数をもつ等価電気回路モデルのパラメータをサンプリング周期で算出する(ステップS16)。パラメータは実R0値、測定電流I、劣化量、温度、サンプリング周期の少なくとも一つの関数(f)とし、特性の異なる電池毎に実験により求めておく。上述の等価回路モデルの場合の例:R1=f1(R0,I,…)、C1=f2(R0,I,…)、R2=f3(R0,I,…)、C2=f4(R0,I,…)と表される。または、R1として実R0から決定される関数f´1(I)を用い、C1として実R0から決定されるf´2(I)を用い、R2として実R0から決定されるf´3(I)を用い、C2として実R0から決定されるf´4(I)を用いてもよい。決定された等価電気回路モデルの各構成素子パラメータは、演算部40に出力される。算出部41および補正部42は、決定された等価電気回路モデルのパラメータを用いたカルマンフィルタにより、SOCの推定を行う。 If “No” is determined in step S15 or after execution of step S13, the parameter determination unit 20 uses the determined actual R0 value to calculate the parameters of the equivalent electric circuit model having a time constant other than R0 in the sampling period. Calculate (step S16). The parameter is at least one function (f) of the actual R0 value, the measured current I, the deterioration amount, the temperature, and the sampling period, and is obtained by experiment for each battery having different characteristics. Example of the above-described equivalent circuit model: R1 = f1 (R0, I,...), C1 = f2 (R0, I,...), R2 = f3 (R0, I,...), C2 = f4 (R0, I , ...). Alternatively, the function f′1 (I) determined from the real R0 is used as R1, f′2 (I) determined from the real R0 is used as C1, and f′3 (I determined from the real R0 is used as R2. ) And f′4 (I) determined from the actual R0 may be used as C2. Each component parameter of the determined equivalent electric circuit model is output to the calculation unit 40. The calculation unit 41 and the correction unit 42 estimate the SOC using a Kalman filter that uses the determined parameter of the equivalent electric circuit model.
 図7(a)は、ΔVとΔIとの関係を例示する図である。パラメータ決定部20は、各計測のタイミングでΔVとΔIとからR0を算出する。図7(b)は、算出された実R0値を例示する図である。ここでの電池環境温度は、50℃である。なお、図7(b)においては、電流値Iだけから算出されたR0値も併せて例示する。図7(b)で例示するように、ΔVとΔIとから実R0値を算出する場合と電流値IだけからR0値を算出した場合とで、値に差が生じた。具体的には、ΔVとΔIとから実R0値を算出する場合は、電流値IだけからR0値を算出した場合と比較して、R0が低い値となった。ここで、実R0値が低かったのは、環境温度の影響による特性の変化を反映しているためである。 FIG. 7A is a diagram illustrating the relationship between ΔV and ΔI. The parameter determination unit 20 calculates R0 from ΔV and ΔI at each measurement timing. FIG. 7B is a diagram illustrating the calculated actual R0 value. The battery environmental temperature here is 50 ° C. In FIG. 7B, the R0 value calculated from only the current value I is also illustrated. As illustrated in FIG. 7B, there is a difference in the value between when the actual R0 value is calculated from ΔV and ΔI and when the R0 value is calculated from only the current value I. Specifically, when the actual R0 value is calculated from ΔV and ΔI, R0 is a lower value than when the R0 value is calculated from only the current value I. Here, the reason why the actual R0 value is low is that the change in characteristics due to the influence of the environmental temperature is reflected.
 動作状態、周囲温度、劣化度の変化を反映した実R0値を算出し、この実R0値を用いて電池の等価電気回路の各素子パラメータを決定することにより、動作状態、周囲温度、劣化度が変化に対応して適切なパラメータに変更されるようになり高精度でSOCの推定が可能になる。 By calculating an actual R0 value reflecting changes in the operating state, ambient temperature, and deterioration degree, and determining each element parameter of the equivalent electric circuit of the battery using this actual R0 value, the operating state, ambient temperature, deterioration degree Is changed to an appropriate parameter corresponding to the change, and the SOC can be estimated with high accuracy.
 図8は、実R0値を算出して推定されたSOCと、測定電流Iだけから算出されたR0値を用いて推定されたSOCと、SOCの実測値との関係を例示する図である。ここでの電池環境温度は、50℃である。図8で例示するように、測定電流Iだけから算出されたR0値を用いた場合には、等価電気回路モデルの各パラメータが実際の2次電池200の特性と大きくズレることがある。この場合には、推定されたSOCとSOCの実測値との間の乖離が大きくなり得る。これに対して、実R0値を算出して他のパラメータを算出する場合には、当該他のパラメータのズレを抑制することができる。それにより、推定されたSOCとSOCの実測値との間の乖離が小さくなる。 FIG. 8 is a diagram illustrating the relationship between the SOC estimated by calculating the actual R0 value, the SOC estimated using the R0 value calculated only from the measured current I, and the actual measured value of the SOC. The battery environmental temperature here is 50 ° C. As illustrated in FIG. 8, when the R0 value calculated from only the measured current I is used, each parameter of the equivalent electric circuit model may greatly deviate from the actual characteristics of the secondary battery 200. In this case, the difference between the estimated SOC and the actual measured value of the SOC can be large. On the other hand, when calculating the actual R0 value and calculating other parameters, it is possible to suppress the deviation of the other parameters. Thereby, the discrepancy between the estimated SOC and the actual measured value of the SOC is reduced.
 実R0値と他の等価電気回路モデルの素子パラメータとの関係は、実験により求めればよい。したがって、動作状態、周囲温度、劣化度と等価電気回路モデルの素子パラメータの関係を実験的に求めることと比較して、作業量と作業時間を大幅に減少することができる。 The relationship between the actual R0 value and the element parameters of other equivalent electric circuit models may be obtained by experiments. Therefore, the work amount and the work time can be greatly reduced as compared to experimentally determining the relationship between the operating state, the ambient temperature, the degree of deterioration, and the element parameters of the equivalent electric circuit model.
 動作状態、周囲温度、劣化度と等価電気回路モデルのパラメータの関係からパラメータを決定する方法に比べて、パラメータを決定する計算量を減少することができるので、計算装置のコストを減らすことができる。あるいは、同じ計算装置で、一度に多くの電池(EVでは100個以上)のSOC推定が可能になる。 Compared with the method of determining parameters based on the relationship between operating conditions, ambient temperature, degree of deterioration, and parameters of the equivalent electric circuit model, the amount of calculation for determining parameters can be reduced, thereby reducing the cost of the calculation device. . Alternatively, SOC estimation of many batteries (100 or more in EV) can be performed at the same time with the same computing device.
 図9は、推定装置100のハードウェア構成の一例を説明するためのブロック図である。図9で例示するように、推定装置100は、CPU101、RAM102、記憶装置103、インタフェース104などを備える。これらの各機器は、バスなどによって接続されている。CPU(Central Processing Unit)101は、中央演算処理装置である。CPU101は、1以上のコアを含む。RAM(Random Access Memory)102は、CPU101が実行するプログラム、CPU101が処理するデータなどを一時的に記憶する揮発性メモリである。記憶装置103は、不揮発性記憶装置である。記憶装置103として、例えば、ROM(Read Only Memory)、フラッシュメモリなどのソリッド・ステート・ドライブ(SSD)、ハードディスクドライブに駆動されるハードディスクなどを用いることができる。インタフェース104は、外部機器との信号の送受信を行う機器である。CPU101が記憶装置103に記憶されているプログラムを実行することによって、推定装置100の各部が実現される。または、CPUの代わりにMPU(Micro Processing Unit)等を用いても良い。または、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されるようにしてもよい。 FIG. 9 is a block diagram for explaining an example of the hardware configuration of the estimation apparatus 100. As illustrated in FIG. 9, the estimation device 100 includes a CPU 101, a RAM 102, a storage device 103, an interface 104, and the like. Each of these devices is connected by a bus or the like. A CPU (Central Processing Unit) 101 is a central processing unit. The CPU 101 includes one or more cores. A RAM (Random Access Memory) 102 is a volatile memory that temporarily stores programs executed by the CPU 101, data processed by the CPU 101, and the like. The storage device 103 is a nonvolatile storage device. As the storage device 103, for example, a ROM (Read Only Memory), a solid state drive (SSD) such as a flash memory, a hard disk driven by a hard disk drive, or the like can be used. The interface 104 is a device that transmits and receives signals to and from an external device. When the CPU 101 executes a program stored in the storage device 103, each unit of the estimation device 100 is realized. Alternatively, an MPU (Micro Processing Unit) or the like may be used instead of the CPU. Alternatively, for example, it may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
(変形例)
 図10は、変形例にかかる推定システムについて例示する図である。上記各例においては、パラメータ決定部20および演算部40は、測定部10から電流値、端子電圧などの測定値を取得している。これに対して、パラメータ決定部20および演算部40の機能を有するサーバが、電気通信回線を通じて測定部10から測定データを取得してもよい。例えば、サーバは、図9のCPU101、RAM102、記憶装置103、インタフェース104などを備え、パラメータ決定部20および演算部40としての機能を実現する。
(Modification)
FIG. 10 is a diagram illustrating an estimation system according to a modification. In each of the above examples, the parameter determination unit 20 and the calculation unit 40 obtain measurement values such as current values and terminal voltages from the measurement unit 10. On the other hand, a server having the functions of the parameter determination unit 20 and the calculation unit 40 may acquire measurement data from the measurement unit 10 through a telecommunication line. For example, the server includes the CPU 101, the RAM 102, the storage device 103, the interface 104, and the like illustrated in FIG. 9 and realizes functions as the parameter determination unit 20 and the calculation unit 40.
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.
 10 測定部
 20 パラメータ決定部
 30 記憶部
 40 演算部
 50 出力部
 100 推定装置
 200 2次電池
 300 外部装置
DESCRIPTION OF SYMBOLS 10 Measurement part 20 Parameter determination part 30 Memory | storage part 40 Calculation part 50 Output part 100 Estimation apparatus 200 Secondary battery 300 External apparatus

Claims (9)

  1.  充電可能な電池の測定電流および測定端子電圧を所定のサンプリング周期で測定する測定部と、
     前記測定電流および前記測定端子電圧に基づいて、前記サンプリング周期の前記測定端子電圧の差分を前記測定電流の差分で除することで得た値を、前記電池の等価電気回路モデルの直流抵抗のパラメータとして決定する決定部と、
     前記等価電気回路モデルの前記直流抵抗を含む素子パラメータを用いたカルマンフィルタにより、前記電池の充電率および予測端子電圧を推定し、前記測定端子電圧と前記予測端子電圧との差分を算出する算出部と、
     前記差分と、前記カルマンフィルタのカルマンゲインとに基づいて前記充電率を補正する補正部と、を備えることを特徴とする推定装置。
    A measurement unit that measures a measurement current and a measurement terminal voltage of a rechargeable battery at a predetermined sampling period;
    Based on the measurement current and the measurement terminal voltage, a value obtained by dividing the difference of the measurement terminal voltage in the sampling period by the difference of the measurement current is a parameter of DC resistance of the equivalent electric circuit model of the battery. A decision unit to decide as
    A calculation unit that estimates a charging rate and a predicted terminal voltage of the battery by a Kalman filter using an element parameter including the DC resistance of the equivalent electric circuit model, and calculates a difference between the measured terminal voltage and the predicted terminal voltage; ,
    An estimation device comprising: a correction unit that corrects the charging rate based on the difference and a Kalman gain of the Kalman filter.
  2.  前記決定部は、前記等価電気回路モデルの前記直流抵抗以外の素子パラメータを、前記直流抵抗のパラメータから、予め定めておいた関数または表を用いて決定することを特徴とする請求項1記載の推定装置。 The said determination part determines the element parameters other than the said DC resistance of the said equivalent electrical circuit model from the parameter of the said DC resistance using the function or table | surface defined beforehand. Estimating device.
  3.  前記決定部は、前記直流抵抗以外の素子パラメータを決定する際に、前記サンプリング周期の複数回で得られた前記直流素子のパラメータを用いることを特徴とする請求項1または2記載の推定装置。 The estimation device according to claim 1 or 2, wherein the determining unit uses parameters of the DC element obtained at a plurality of times of the sampling period when determining an element parameter other than the DC resistance.
  4.  前記決定部は、前記直流抵抗以外の素子パラメータを決定する際に、前記測定電流を用いることを特徴とする請求項1~3のいずれか一項に記載の推定装置。 4. The estimation apparatus according to claim 1, wherein the determination unit uses the measurement current when determining an element parameter other than the DC resistance.
  5.  前記決定部は、前記測定電流の差分が閾値以下である場合には、前回に決定した直流抵抗のパラメータを用いて、前記直流抵抗以外の素子パラメータを決定することを特徴とする請求項1~4のいずれか一項に記載の推定装置。 The determining unit determines an element parameter other than the DC resistance by using a previously determined DC resistance parameter when the difference between the measured currents is equal to or less than a threshold value. 5. The estimation device according to any one of 4.
  6.  前記決定部は、前記直流素子の決定したパラメータと、前回に決定したパラメータとの差分が閾値以上である場合には、当該前回に決定したパラメータを用いて、前記直流抵抗以外の素子パラメータを決定することを特徴とする請求項1~5のいずれか一項に記載の推定装置。 When the difference between the parameter determined by the DC element and the parameter determined last time is equal to or greater than the threshold, the determination unit determines an element parameter other than the DC resistance using the parameter determined last time. The estimation apparatus according to any one of claims 1 to 5, wherein:
  7.  前記測定部は、前記電池の温度を測定し、
     前記決定部は、前記前回に決定したパラメータと、前記測定電流、前記サンプリング周期および前記測定部が測定した温度の少なくとも1つを用いて、前記直流抵抗以外の素子パラメータを決定することを特徴とする請求項5または6記載の推定装置。
    The measurement unit measures the temperature of the battery,
    The determination unit determines an element parameter other than the DC resistance using at least one of the parameter determined last time, the measurement current, the sampling period, and the temperature measured by the measurement unit. The estimation apparatus according to claim 5 or 6.
  8.  コンピュータに、
     充電可能な電池の、所定のサンプリング周期で測定された測定電流および測定端子電圧に基づいて、前記サンプリング周期の前記測定端子電圧の差分を前記測定電流の差分で除することで得た値を、前記電池の等価電気回路モデルの直流抵抗のパラメータとして決定する処理と、
     前記等価電気回路モデルの前記直流抵抗を含む素子パラメータを用いたカルマンフィルタにより、前記電池の充電率および予測端子電圧を推定し、前記測定端子電圧と前記予測端子電圧との差分を算出する処理と、
     前記差分と、前記カルマンフィルタのカルマンゲインとに基づいて前記充電率を補正する処理と、を実行させることを特徴とする推定プログラム。
    On the computer,
    Based on the measurement current and the measurement terminal voltage measured at a predetermined sampling period of the rechargeable battery, a value obtained by dividing the difference of the measurement terminal voltage of the sampling period by the difference of the measurement current, Processing to determine as a parameter of DC resistance of the equivalent electric circuit model of the battery;
    A process of estimating a charging rate and a predicted terminal voltage of the battery by a Kalman filter using an element parameter including the DC resistance of the equivalent electric circuit model, and calculating a difference between the measured terminal voltage and the predicted terminal voltage;
    An estimation program for executing the process of correcting the charging rate based on the difference and a Kalman gain of the Kalman filter.
  9.  充電可能な電池の測定電流および測定端子電圧を所定のサンプリング周期で測定する測定部と、前記測定電流および前記測定端子電圧に基づいて、前記サンプリング周期の前記測定端子電圧の差分を前記測定電流の差分で除することで得た値を、前記電池の等価電気回路モデルの直流抵抗のパラメータとして決定する決定部と、前記等価電気回路モデルの前記直流抵抗を含む素子パラメータを用いたカルマンフィルタにより、前記電池の充電率および予測端子電圧を推定し、前記測定端子電圧と前記予測端子電圧との差分を算出する算出部と、前記差分と前記カルマンフィルタのカルマンゲインとに基づいて前記充電率を補正する補正部と、を備える推定装置と、
     前記補正部によって補正された前記充電率に基づいて前記電池の充放電制御を行う制御装置と、を備えることを特徴とする充電制御装置。
    A measurement unit that measures a measurement current and a measurement terminal voltage of a rechargeable battery at a predetermined sampling period, and based on the measurement current and the measurement terminal voltage, a difference between the measurement terminal voltages of the sampling period The value obtained by dividing by the difference is determined by a determining unit that determines the DC resistance parameter of the equivalent electric circuit model of the battery, and the Kalman filter using the element parameter including the DC resistance of the equivalent electric circuit model, A calculation unit that estimates a battery charging rate and a predicted terminal voltage, calculates a difference between the measured terminal voltage and the predicted terminal voltage, and a correction that corrects the charging rate based on the difference and a Kalman gain of the Kalman filter An estimation device comprising:
    And a control device that performs charge / discharge control of the battery based on the charge rate corrected by the correction unit.
PCT/JP2016/062022 2016-04-14 2016-04-14 Estimation device, estimation program, and charging control device WO2017179175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062022 WO2017179175A1 (en) 2016-04-14 2016-04-14 Estimation device, estimation program, and charging control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062022 WO2017179175A1 (en) 2016-04-14 2016-04-14 Estimation device, estimation program, and charging control device

Publications (1)

Publication Number Publication Date
WO2017179175A1 true WO2017179175A1 (en) 2017-10-19

Family

ID=60042473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062022 WO2017179175A1 (en) 2016-04-14 2016-04-14 Estimation device, estimation program, and charging control device

Country Status (1)

Country Link
WO (1) WO2017179175A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051752A (en) * 2017-11-29 2018-05-18 艾体威尔电子技术(北京)有限公司 A kind of battery capacity acquisition method
CN108248427A (en) * 2018-01-15 2018-07-06 上海中科深江电动车辆有限公司 The method of dynamic corrections SOC errors
CN108427080A (en) * 2018-06-20 2018-08-21 上海海事大学 The state-of-charge computational methods of the power battery pack of hybrid power ship
CN109116241A (en) * 2018-06-28 2019-01-01 厦门美图移动科技有限公司 A kind of battery testing method, mobile terminal and storage medium
CN109917299A (en) * 2019-04-08 2019-06-21 青岛大学 A kind of three layers of filtering evaluation method of lithium battery charge state
JP2019146302A (en) * 2018-02-16 2019-08-29 株式会社半導体エネルギー研究所 Charging state estimation device for secondary battery, abnormality detection device, and management system for secondary battery
CN113391212A (en) * 2021-06-23 2021-09-14 山东大学 Lithium ion battery equivalent circuit parameter online identification method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192726A (en) * 2006-01-20 2007-08-02 Nissan Motor Co Ltd Soc calculator for battery
JP2009133675A (en) * 2007-11-29 2009-06-18 Sony Corp Battery pack and method of calculating internal impedance
JP2012511225A (en) * 2008-12-04 2012-05-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for detecting the state of charge of a secondary intercalation battery of a rechargeable battery
JP2015105874A (en) * 2013-11-29 2015-06-08 富士通株式会社 Function creation program, function creation method, function creation device, and state-of-charge estimation program
JP2015105863A (en) * 2013-11-29 2015-06-08 富士通株式会社 Estimation program, estimation method, and estimation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192726A (en) * 2006-01-20 2007-08-02 Nissan Motor Co Ltd Soc calculator for battery
JP2009133675A (en) * 2007-11-29 2009-06-18 Sony Corp Battery pack and method of calculating internal impedance
JP2012511225A (en) * 2008-12-04 2012-05-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for detecting the state of charge of a secondary intercalation battery of a rechargeable battery
JP2015105874A (en) * 2013-11-29 2015-06-08 富士通株式会社 Function creation program, function creation method, function creation device, and state-of-charge estimation program
JP2015105863A (en) * 2013-11-29 2015-06-08 富士通株式会社 Estimation program, estimation method, and estimation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051752A (en) * 2017-11-29 2018-05-18 艾体威尔电子技术(北京)有限公司 A kind of battery capacity acquisition method
CN108248427A (en) * 2018-01-15 2018-07-06 上海中科深江电动车辆有限公司 The method of dynamic corrections SOC errors
JP2019146302A (en) * 2018-02-16 2019-08-29 株式会社半導体エネルギー研究所 Charging state estimation device for secondary battery, abnormality detection device, and management system for secondary battery
CN108427080A (en) * 2018-06-20 2018-08-21 上海海事大学 The state-of-charge computational methods of the power battery pack of hybrid power ship
CN109116241A (en) * 2018-06-28 2019-01-01 厦门美图移动科技有限公司 A kind of battery testing method, mobile terminal and storage medium
CN109917299A (en) * 2019-04-08 2019-06-21 青岛大学 A kind of three layers of filtering evaluation method of lithium battery charge state
CN113391212A (en) * 2021-06-23 2021-09-14 山东大学 Lithium ion battery equivalent circuit parameter online identification method and system
CN113391212B (en) * 2021-06-23 2022-05-17 山东大学 Lithium ion battery equivalent circuit parameter online identification method and system

Similar Documents

Publication Publication Date Title
WO2017179175A1 (en) Estimation device, estimation program, and charging control device
JP6455409B2 (en) Battery state estimation device
US10656210B2 (en) Secondary battery state detection device and secondary battery state detection method
US20180024200A1 (en) Secondary battery state-of-charge estimating device and secondary battery state-of-charge estimating method
KR102177721B1 (en) Apparatus and Method for estimating deterioration of battery pack
CN108701872B (en) Battery management system, battery system, and hybrid vehicle control system
US20190036356A1 (en) Method and System for Estimating Battery Open Cell Voltage, State of Charge, and State of Health During Operation of the Battery
US8639460B2 (en) Apparatus for estimating open circuit voltage of battery, apparatus for estimating state of charge of battery, and method for controlling the same
US20190235027A1 (en) Battery assembly state estimation device and battery assembly state estimation method
EP3107146B1 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
EP3015876A1 (en) Storage battery evaluating apparatus and method
US10191117B2 (en) Battery remaining power predicting device and battery pack
TW201702623A (en) Method and apparatus for determining the state of health and state of charge of lithium sulfur batteries
KR20180047768A (en) Method and appratus for caculating state of health(soh) of a battery
JP6221884B2 (en) Estimation program, estimation method, and estimation apparatus
US11095130B2 (en) Power storage apparatus for estimating an open-circuit voltage
JP6450565B2 (en) Battery parameter estimation device
JP6299187B2 (en) Estimation program, estimation method, and estimation apparatus
JP5653881B2 (en) Secondary battery state detection device and secondary battery state detection method
JP6330605B2 (en) Estimation program, estimation method, and estimation apparatus
WO2018025350A1 (en) Estimation device, estimation program, and charging control device
JP2015524048A (en) Estimating battery charge
JP7392305B2 (en) SOC estimation device
JP6541412B2 (en) Charging rate calculation method and charging rate calculation device
JP6421411B2 (en) Estimation program for estimating battery charging rate, estimation method for estimating battery charging rate, and estimation device for estimating battery charging rate

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898635

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP