JP6161133B2 - Data extraction apparatus, data extraction method, and data extraction program - Google Patents

Data extraction apparatus, data extraction method, and data extraction program Download PDF

Info

Publication number
JP6161133B2
JP6161133B2 JP2015216762A JP2015216762A JP6161133B2 JP 6161133 B2 JP6161133 B2 JP 6161133B2 JP 2015216762 A JP2015216762 A JP 2015216762A JP 2015216762 A JP2015216762 A JP 2015216762A JP 6161133 B2 JP6161133 B2 JP 6161133B2
Authority
JP
Japan
Prior art keywords
current value
value
transient response
secondary battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015216762A
Other languages
Japanese (ja)
Other versions
JP2017016991A (en
Inventor
長光 左千男
左千男 長光
直人 長岡
直人 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha
Original Assignee
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha filed Critical Doshisha
Priority to PCT/JP2016/069575 priority Critical patent/WO2017002953A1/en
Publication of JP2017016991A publication Critical patent/JP2017016991A/en
Application granted granted Critical
Publication of JP6161133B2 publication Critical patent/JP6161133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、過渡応答特性を有する二次電池の測定データから当該二次電池の電池劣化の診断に適したデータを抽出するデータ抽出装置、データ抽出方法およびデータ抽出プログラムに関する。   The present invention relates to a data extraction apparatus, a data extraction method, and a data extraction program for extracting data suitable for diagnosis of battery deterioration of a secondary battery from measurement data of a secondary battery having transient response characteristics.

二次電池、特にリチウムイオン二次電池は、電池劣化により異常動作を行うおそれがあることから、電池劣化を診断する必要がある。電池劣化を診断する方法としては、従来から、交流重畳法による専用機器を用いた電池劣化診断方法が知られている。しかしながら、この電池劣化診断方法は、専用機器が高価であり、しかもリチウムイオン二次電池を使用機器から取り外して専用機器に接続する必要があるため、産業用機器に用いられるリチウムイオン二次電池の電池劣化診断方法としては有用ではない。   Since secondary batteries, particularly lithium ion secondary batteries, may malfunction due to battery deterioration, it is necessary to diagnose battery deterioration. As a method for diagnosing battery deterioration, a battery deterioration diagnosing method using a dedicated device based on an alternating current method has been conventionally known. However, in this battery deterioration diagnosis method, the dedicated device is expensive, and it is necessary to remove the lithium ion secondary battery from the device to be used and connect it to the dedicated device, so that the lithium ion secondary battery used for industrial devices It is not useful as a battery deterioration diagnosis method.

電池劣化を診断する別の方法としては、リチウムイオン二次電池稼働中の電圧・電流波形から内部インピーダンスを導出し、内部インピーダンスに基づいて電池劣化を診断する電池劣化診断方法が知られている(例えば、非特許文献1参照)。しかしながら、この電池劣化診断方法は、充電率(SOC)の依存性が大で、精度等に問題があるため、実用化には至っていない。   As another method for diagnosing battery deterioration, a battery deterioration diagnosis method is known in which internal impedance is derived from a voltage / current waveform during operation of a lithium ion secondary battery, and battery deterioration is diagnosed based on the internal impedance ( For example, refer nonpatent literature 1). However, this battery deterioration diagnosis method has a large dependency on the charging rate (SOC) and has a problem in accuracy and the like, and has not been put into practical use.

そこで、本願発明者は、リチウムイオン二次電池の過渡応答特性に着目した、比較的安価で実用性のある電池劣化診断方法を開発した(例えば、特願2015−33944号参照)。この電池劣化診断方法を用いてリチウムイオン二次電池の電池劣化を診断するためには、稼働中のリチウムイオン二次電池の電流値および電圧値を連続的に測定した測定データから、リチウムイオン二次電池の過渡応答時のデータを抽出する必要がある。   Accordingly, the present inventor has developed a battery deterioration diagnosis method that is relatively inexpensive and practical, focusing on the transient response characteristics of lithium ion secondary batteries (see, for example, Japanese Patent Application No. 2015-33944). In order to diagnose the battery deterioration of the lithium ion secondary battery using this battery deterioration diagnosis method, the lithium ion secondary battery is obtained from measurement data obtained by continuously measuring the current value and voltage value of the operating lithium ion secondary battery. It is necessary to extract data at the time of transient response of the secondary battery.

岡田修平、外3名、「リチウムイオン電池の劣化診断技術の開発」、横河技報、横河電機株式会社、Vol.56 No.2(2013)、p27−30Shuhei Okada, three others, “Development of degradation diagnosis technology for lithium ion batteries”, Yokogawa Technical Report, Yokogawa Electric Corporation, Vol. 2 (2013), p27-30

本発明は上記事情に鑑みてなされたものであって、その課題とするところは、過渡応答特性を有する二次電池の測定データから二次電池の電池劣化の診断に適した過渡応答時のデータを抽出することが可能なデータ抽出装置、データ抽出方法およびデータ抽出プログラムを提供することにある。   The present invention has been made in view of the above circumstances, and the problem is that data at the time of transient response suitable for diagnosis of secondary battery deterioration from measurement data of a secondary battery having transient response characteristics. Is to provide a data extraction device, a data extraction method, and a data extraction program.

上記課題を解決するために、本発明に係るデータ抽出装置は、
過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データを格納する記憶部と、
前記記憶部に格納された前記電流測定データから前記二次電池の過渡応答時の過渡応答データを抽出する抽出部と、
を備えたデータ抽出装置であって、
前記抽出部は、
電流値の変化量が第1閾値以上となる第1区間を特定する第1処理と、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2処理と、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3処理と、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4処理と、を実行することを特徴とする。
In order to solve the above-described problem, a data extraction device according to the present invention includes:
A storage unit for storing current measurement data obtained by measuring a current value of a secondary battery having a transient response characteristic at a predetermined sampling interval;
An extraction unit for extracting transient response data during transient response of the secondary battery from the current measurement data stored in the storage unit;
A data extraction device comprising:
The extraction unit includes:
A first process for identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second process for identifying a previous section that is continuous with a start point of the first section and that has a change amount with respect to a current value of the start point that is less than or equal to a second threshold that is smaller than the first threshold;
A third process for identifying a subsequent section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
And executing a fourth process of extracting current value data from the start point of the preceding section to the end point of the subsequent section as the transient response data.

上記データ抽出装置では、
前記前区間および前記後区間は、前記第1区間よりも広いことが好ましい。
In the above data extraction device,
The front section and the rear section are preferably wider than the first section.

上記データ抽出装置は、
前記二次電池の電池劣化を診断する電池劣化診断部をさらに備え、
前記記憶部には、前記二次電池の電圧値を前記サンプリング間隔で測定した電圧測定データが格納されており、
前記抽出部は、前記第4処理において、前記前区間の始点から前記後区間の終点までの電圧値データを前記過渡応答データに含めて抽出し、
前記電池劣化診断部は、前記過渡応答データに基づいて、前記二次電池の充電終了時または放電終了時における電気的等価回路の回路パラメータを算出し、前記回路パラメータに基づいて前記二次電池の電池劣化を診断するよう構成できる。
The data extraction device
A battery deterioration diagnosis unit for diagnosing battery deterioration of the secondary battery;
The storage unit stores voltage measurement data obtained by measuring the voltage value of the secondary battery at the sampling interval,
In the fourth process, the extraction unit extracts voltage value data from the start point of the previous section to the end point of the rear section in the transient response data,
The battery deterioration diagnosis unit calculates a circuit parameter of an electrical equivalent circuit at the end of charging or discharging of the secondary battery based on the transient response data, and based on the circuit parameter, It can be configured to diagnose battery degradation.

上記データ抽出装置では、
前記電気的等価回路は、前記二次電池の内部抵抗に相当する直列抵抗と、1段または2段のRC並列回路と、充電終了時または放電終了時における前記二次電池の内部電圧に相当する電圧を出力する電圧源とを直列接続した回路であることが好ましい。
In the above data extraction device,
The electrical equivalent circuit corresponds to a series resistance corresponding to the internal resistance of the secondary battery, a one-stage or two-stage RC parallel circuit, and an internal voltage of the secondary battery at the end of charging or discharging. A circuit in which a voltage source that outputs a voltage is connected in series is preferable.

上記データ抽出装置は、
前記抽出部は、複数の前記過渡応答データを抽出し、
前記電池劣化診断部は、
複数の前記過渡応答データから第1過渡応答データおよび第2過渡応答データを選択する選択処理と、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から前記第2過渡応答データにおいて電流値が前記第1閾値以上変化した後の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出する第1算出処理と、
前記第1電圧値と、前記第2電圧値と、前記回路パラメータである前記内部電圧とに基づいて、前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出する第2算出処理と、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断する診断処理と、を実行するよう構成できる。
The data extraction device
The extraction unit extracts a plurality of the transient response data,
The battery deterioration diagnosis unit
A selection process for selecting first transient response data and second transient response data from the plurality of transient response data;
Each of the first transient response data from the first current value after the current value changes more than the first threshold value to the second current value after the current value changes more than the first threshold value in the second transient response data. Multiplying the current value by each voltage value from the first voltage value at the time of measuring the first current value to the second voltage value at the time of measuring the second current value, and adding each multiplication result, A first calculation process for calculating a power integral value obtained by multiplying the addition result by the sampling interval;
Based on the first voltage value, the second voltage value, and the internal voltage that is the circuit parameter, a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value, and the second A second calculation process for calculating a difference from a voltage corresponding to the SOC of the secondary battery at the time of measuring a current value;
A diagnosis process for diagnosing battery deterioration of the secondary battery based on the deterioration index may be performed using a value obtained by dividing the power integral value by the difference as a deterioration index.

上記データ抽出装置は、
ユーザからの入力を受け付ける入力受付部をさらに備え、
前記入力受付部は、前記第1閾値、前記第2閾値、前記第3閾値、前記前区間の範囲および前記後区間の範囲に関する入力を受け付けるよう構成できる。
The data extraction device
An input receiving unit for receiving input from the user;
The input receiving unit may be configured to receive an input related to the first threshold, the second threshold, the third threshold, the range of the previous section, and the range of the subsequent section.

上記課題を解決するために、本発明に係る別のデータ抽出装置は、
過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データと、前記二次電池の電圧値を前記サンプリング間隔で測定した電圧測定データとを格納する記憶部と、
前記電流測定データから前記二次電池の過渡応答時における複数の過渡応答データを抽出する抽出部と、
前記複数の過渡応答データのうちの第1過渡応答データと第2過渡応答データとに基づいて前記二次電池の電池劣化を診断する電池劣化診断部と、
を備えたデータ抽出装置であって、
前記抽出部は、
電流値の変化量が第1閾値以上となる第1区間を特定する第1処理と、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2処理と、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3処理と、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4処理と、を実行し、
前記電池劣化診断部は、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から前記第2過渡応答データにおいて電流値が前記第1閾値以上変化した後の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出する第1算出処理と、
前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出する第2算出処理と、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断する診断処理と、を実行する
ことを特徴とする。
In order to solve the above-mentioned problem, another data extraction device according to the present invention provides:
A storage unit for storing current measurement data obtained by measuring a current value of a secondary battery having a transient response characteristic at a predetermined sampling interval, and voltage measurement data obtained by measuring a voltage value of the secondary battery at the sampling interval;
An extraction unit for extracting a plurality of transient response data at the time of transient response of the secondary battery from the current measurement data;
A battery deterioration diagnosis unit that diagnoses battery deterioration of the secondary battery based on first transient response data and second transient response data of the plurality of transient response data;
A data extraction device comprising:
The extraction unit includes:
A first process for identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second process for identifying a previous section that is continuous with a start point of the first section and that has a change amount with respect to a current value of the start point that is less than or equal to a second threshold that is smaller than the first threshold;
A third process for identifying a subsequent section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
Performing a fourth process of extracting current value data from the start point of the preceding section to the end point of the subsequent section as the transient response data;
The battery deterioration diagnosis unit
Each of the first transient response data from the first current value after the current value changes more than the first threshold value to the second current value after the current value changes more than the first threshold value in the second transient response data. Multiplying the current value by each voltage value from the first voltage value at the time of measuring the first current value to the second voltage value at the time of measuring the second current value, and adding each multiplication result, A first calculation process for calculating a power integral value obtained by multiplying the addition result by the sampling interval;
A second calculation process for calculating a difference between a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value and a voltage corresponding to the SOC of the secondary battery at the time of measuring the second current value; ,
And performing a diagnosis process for diagnosing battery deterioration of the secondary battery based on the deterioration index, using a value obtained by dividing the power integral value by the difference as a deterioration index.

上記データ抽出装置では、
前記電池劣化診断部は、前記第2算出処理において、前記第1電圧値と、前記第2電圧値と、前記二次電池の充電終了時または放電終了時における電気的等価回路の回路パラメータとに基づいて前記差分を算出し、
前記電気的等価回路は、前記二次電池の内部抵抗に相当する直列抵抗と、1段または2段のRC並列回路と、充電終了時または放電終了時における前記二次電池の内部電圧に相当する電圧を出力する電圧源とを直列接続した回路であり、
前記回路パラメータは、前記内部電圧である
ことが好ましい。
In the above data extraction device,
In the second calculation process, the battery deterioration diagnosis unit uses the first voltage value, the second voltage value, and circuit parameters of an electrical equivalent circuit at the end of charging or discharging of the secondary battery. Based on the difference,
The electrical equivalent circuit corresponds to a series resistance corresponding to the internal resistance of the secondary battery, a one-stage or two-stage RC parallel circuit, and an internal voltage of the secondary battery at the end of charging or discharging. A circuit in which a voltage source that outputs voltage is connected in series,
The circuit parameter is preferably the internal voltage.

上記課題を解決するために、本発明に係るさらに別のデータ抽出装置は、
過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データと、前記二次電池の電圧値を前記サンプリング間隔で測定した電圧測定データとを格納する記憶部と、
前記電流測定データから前記二次電池の過渡応答時における複数の過渡応答データを抽出する抽出部と、
前記複数の過渡応答データから選択した第1過渡応答データのみに基づいて前記二次電池の電池劣化を診断する電池劣化診断部と、
を備えたデータ抽出装置であって、
前記抽出部は、
電流値の変化量が第1閾値以上となる第1区間を特定する第1処理と、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2処理と、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3処理と、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4処理と、を実行し、
前記電池劣化診断部は、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から当該第1過渡応答データの前記後区間内の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出する第1算出処理と、
前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出する第2算出処理と、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断する診断処理と、を実行する
ことを特徴とする。
In order to solve the above-described problem, still another data extraction device according to the present invention includes:
A storage unit for storing current measurement data obtained by measuring a current value of a secondary battery having a transient response characteristic at a predetermined sampling interval, and voltage measurement data obtained by measuring a voltage value of the secondary battery at the sampling interval;
An extraction unit for extracting a plurality of transient response data at the time of transient response of the secondary battery from the current measurement data;
A battery deterioration diagnosis unit for diagnosing battery deterioration of the secondary battery based only on first transient response data selected from the plurality of transient response data;
A data extraction device comprising:
The extraction unit includes:
A first process for identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second process for identifying a previous section that is continuous with a start point of the first section and that has a change amount with respect to a current value of the start point that is less than or equal to a second threshold that is smaller than the first threshold;
A third process for identifying a subsequent section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
Performing a fourth process of extracting current value data from the start point of the preceding section to the end point of the subsequent section as the transient response data;
The battery deterioration diagnosis unit
In the first transient response data, each current value from a first current value after a current value has changed by more than the first threshold to a second current value in the subsequent section of the first transient response data, and the first Each voltage value from the first voltage value at the time of measuring the current value to the second voltage value at the time of measuring the second current value is multiplied and each multiplication result is added, and the sampling interval is added to the addition result. A first calculation process for calculating a multiplied power integral value;
A second calculation process for calculating a difference between a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value and a voltage corresponding to the SOC of the secondary battery at the time of measuring the second current value; ,
And performing a diagnosis process for diagnosing battery deterioration of the secondary battery based on the deterioration index, using a value obtained by dividing the power integral value by the difference as a deterioration index.

上記課題を解決するために、本発明に係るデータ抽出方法は、
過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データから、データ抽出装置が前記二次電池の過渡応答時の過渡応答データを抽出するデータ抽出方法であって、
電流値の変化量が第1閾値以上となる第1区間を特定する第1ステップと、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2ステップと、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3ステップと、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4ステップと、を含むことを特徴とする。
In order to solve the above problems, a data extraction method according to the present invention includes:
A data extraction method in which a data extraction device extracts transient response data at the time of transient response of the secondary battery from current measurement data obtained by measuring a current value of a secondary battery having transient response characteristics at a predetermined sampling interval,
A first step of identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second step of identifying a previous section that is continuous with a start point of the first section and in which a change amount with respect to a current value of the start point is equal to or less than a second threshold that is smaller than the first threshold;
A third step of identifying a rear section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
And a fourth step of extracting current value data from the start point of the previous section to the end point of the rear section as the transient response data.

上記データ抽出方法では、
前記前区間および前記後区間は、前記第1区間よりも広いことが好ましい。
In the above data extraction method,
The front section and the rear section are preferably wider than the first section.

上記データ抽出方法は、
前記第4ステップにおいて、前記前区間の始点から前記後区間の終点までの電圧値データを前記過渡応答データに含めて抽出した場合、
前記過渡応答データに基づいて、前記二次電池の充電終了時または放電終了時における電気的等価回路の回路パラメータを算出し、前記回路パラメータに基づいて前記二次電池の電池劣化を診断する第5ステップをさらに含むことが好ましい。
The above data extraction method is:
In the fourth step, when voltage value data from the start point of the previous section to the end point of the rear section is included in the transient response data and extracted,
A circuit parameter of an electrical equivalent circuit at the end of charging or discharging of the secondary battery is calculated based on the transient response data, and a battery deterioration of the secondary battery is diagnosed based on the circuit parameter. Preferably, the method further includes a step.

上記データ抽出方法では、
前記電気的等価回路は、前記二次電池の内部抵抗に相当する直列抵抗と、1段または2段のRC並列回路と、充電終了時または放電終了時における前記二次電池の内部電圧に相当する電圧を出力する電圧源とを直列接続した回路であることが好ましい。
In the above data extraction method,
The electrical equivalent circuit corresponds to a series resistance corresponding to the internal resistance of the secondary battery, a one-stage or two-stage RC parallel circuit, and an internal voltage of the secondary battery at the end of charging or discharging. A circuit in which a voltage source that outputs a voltage is connected in series is preferable.

上記データ抽出方法では、
複数の前記過渡応答データのうちの第1過渡応答データと第2過渡応答データとに基づいて前記二次電池の電池劣化を診断する第6ステップをさらに含み、
前記第6ステップは、
複数の前記過渡応答データから前記第1過渡応答データおよび前記第2過渡応答データを選択するステップと、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から前記第2過渡応答データにおいて電流値が前記第1閾値以上変化した後の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出するステップと、
前記第1電圧値と、前記第2電圧値と、前記回路パラメータである前記内部電圧とに基づいて、前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出するステップと、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断するステップと、を含むよう構成できる。
In the above data extraction method,
A sixth step of diagnosing battery deterioration of the secondary battery based on first transient response data and second transient response data of the plurality of transient response data;
The sixth step includes
Selecting the first transient response data and the second transient response data from a plurality of the transient response data;
Each of the first transient response data from the first current value after the current value changes more than the first threshold value to the second current value after the current value changes more than the first threshold value in the second transient response data. Multiplying the current value by each voltage value from the first voltage value at the time of measuring the first current value to the second voltage value at the time of measuring the second current value, and adding each multiplication result, Calculating a power integral value obtained by multiplying the addition result by the sampling interval;
Based on the first voltage value, the second voltage value, and the internal voltage that is the circuit parameter, a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value, and the second Calculating a difference from a voltage corresponding to the SOC of the secondary battery at the time of measuring a current value;
And a step of diagnosing battery deterioration of the secondary battery based on the deterioration index using a value obtained by dividing the power integral value by the difference as a deterioration index.

上記課題を解決するために、本発明に係る別のデータ抽出方法は、
過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データから、データ抽出装置が前記二次電池の過渡応答時における複数の過渡応答データを抽出する抽出ステップと、
前記二次電池の電圧値を前記サンプリング間隔で測定した電圧測定データと、前記複数の過渡応答データのうちの第1過渡応答データおよび第2過渡応答データとに基づいて、前記データ抽出装置が前記二次電池の電池劣化を診断する診断ステップと、
を含むデータ抽出方法であって、
前記抽出ステップは、
電流値の変化量が第1閾値以上となる第1区間を特定する第1ステップと、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2ステップと、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3ステップと、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4ステップと、を含み、
前記診断ステップは、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から前記第2過渡応答データにおいて電流値が前記第1閾値以上変化した後の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出するステップと、
前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出するステップと、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断するステップと、を含む
ことを特徴とする。
In order to solve the above problems, another data extraction method according to the present invention is as follows.
An extraction step in which the data extraction device extracts a plurality of transient response data at the time of the transient response of the secondary battery from current measurement data obtained by measuring the current value of the secondary battery having a transient response characteristic at a predetermined sampling interval;
Based on the voltage measurement data obtained by measuring the voltage value of the secondary battery at the sampling interval, and the first transient response data and the second transient response data of the plurality of transient response data, the data extraction device includes the data A diagnostic step for diagnosing battery deterioration of the secondary battery;
A data extraction method including:
The extraction step includes
A first step of identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second step of identifying a previous section that is continuous with a start point of the first section and in which a change amount with respect to a current value of the start point is equal to or less than a second threshold that is smaller than the first threshold;
A third step of identifying a rear section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
A fourth step of extracting current value data from the start point of the previous section to the end point of the rear section as the transient response data,
The diagnostic step includes
Each of the first transient response data from the first current value after the current value changes more than the first threshold value to the second current value after the current value changes more than the first threshold value in the second transient response data. Multiplying the current value by each voltage value from the first voltage value at the time of measuring the first current value to the second voltage value at the time of measuring the second current value, and adding each multiplication result, Calculating a power integral value obtained by multiplying the addition result by the sampling interval;
Calculating a difference between a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value and a voltage corresponding to the SOC of the secondary battery at the time of measuring the second current value;
And a step of diagnosing battery deterioration of the secondary battery based on the deterioration index using a value obtained by dividing the power integral value by the difference as a deterioration index.

上記データ抽出方法は、
前記診断ステップでは、前記第1電圧値と、前記第2電圧値と、前記二次電池の充電終了時または放電終了時における電気的等価回路の回路パラメータとに基づいて前記差分を算出し、
前記電気的等価回路は、前記二次電池の内部抵抗に相当する直列抵抗と、1段または2段のRC並列回路と、充電終了時または放電終了時における前記二次電池の内部電圧に相当する電圧を出力する電圧源とを直列接続した回路であり、
前記回路パラメータは、前記内部電圧である
ことが好ましい。
The above data extraction method is:
In the diagnosis step, the difference is calculated based on the first voltage value, the second voltage value, and a circuit parameter of an electrical equivalent circuit at the end of charging or discharging of the secondary battery,
The electrical equivalent circuit corresponds to a series resistance corresponding to the internal resistance of the secondary battery, a one-stage or two-stage RC parallel circuit, and an internal voltage of the secondary battery at the end of charging or discharging. A circuit in which a voltage source that outputs voltage is connected in series,
The circuit parameter is preferably the internal voltage.

上記課題を解決するために、本発明に係るさらに別のデータ抽出方法は、
過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データから、データ抽出装置が前記二次電池の過渡応答時における複数の過渡応答データを抽出する抽出ステップと、
前記二次電池の電圧値を前記サンプリング間隔で測定した電圧測定データと、前記複数の過渡応答データから選択した第1過渡応答データのみに基づいて、前記データ抽出装置が前記二次電池の電池劣化を診断する診断ステップと、
を含むデータ抽出方法であって、
前記抽出ステップは、
電流値の変化量が第1閾値以上となる第1区間を特定する第1ステップと、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2ステップと、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3ステップと、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4ステップと、を含み、
前記診断ステップは、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から当該第1過渡応答データの前記後区間内の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出するステップと、
前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出するステップと、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断するステップと、を含む
ことを特徴とする。
In order to solve the above problem, still another data extraction method according to the present invention is as follows.
An extraction step in which the data extraction device extracts a plurality of transient response data at the time of the transient response of the secondary battery from current measurement data obtained by measuring the current value of the secondary battery having a transient response characteristic at a predetermined sampling interval;
Based on only the voltage measurement data obtained by measuring the voltage value of the secondary battery at the sampling interval and the first transient response data selected from the plurality of transient response data, the data extraction device performs battery deterioration of the secondary battery. Diagnostic steps to diagnose
A data extraction method including:
The extraction step includes
A first step of identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second step of identifying a previous section that is continuous with a start point of the first section and in which a change amount with respect to a current value of the start point is equal to or less than a second threshold that is smaller than the first threshold;
A third step of identifying a rear section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
A fourth step of extracting current value data from the start point of the previous section to the end point of the rear section as the transient response data,
The diagnostic step includes
In the first transient response data, each current value from a first current value after a current value has changed by more than the first threshold to a second current value in the subsequent section of the first transient response data, and the first Each voltage value from the first voltage value at the time of measuring the current value to the second voltage value at the time of measuring the second current value is multiplied and each multiplication result is added, and the sampling interval is added to the addition result. Calculating a power integral value multiplied by;
Calculating a difference between a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value and a voltage corresponding to the SOC of the secondary battery at the time of measuring the second current value;
And a step of diagnosing battery deterioration of the secondary battery based on the deterioration index using a value obtained by dividing the power integral value by the difference as a deterioration index.

上記課題を解決するために、本発明に係るデータ抽出プログラムは、上記いずれかのデータ抽出方法をコンピュータに実行させるためのプログラムであることを特徴とする。   In order to solve the above problems, a data extraction program according to the present invention is a program for causing a computer to execute any one of the above data extraction methods.

本発明によれば、過渡応答特性を有する二次電池の測定データから二次電池の電池劣化の診断に適した過渡応答時のデータを抽出することが可能なデータ抽出装置、データ抽出方法およびデータ抽出プログラムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the data extraction apparatus which can extract the data at the time of the transient response suitable for the diagnosis of the battery deterioration of a secondary battery from the measurement data of the secondary battery which has a transient response characteristic, a data extraction method, and data An extraction program can be provided.

(A)は、過渡応答特性を考慮していないリチウムイオン二次電池の電気的等価回路図である。(B)は、過渡応答特性および内部電圧V(SOC)を考慮したリチウムイオン二次電池の電気的等価回路図である。(A) is the electrical equivalent circuit schematic of the lithium ion secondary battery which does not consider the transient response characteristic. (B) is an electrical equivalent circuit diagram of a lithium ion secondary battery in consideration of transient response characteristics and internal voltage V 0 (SOC). (A)は、内部電圧Vの電圧偏差△Vを考慮したリチウムイオン二次電池の電気的等価回路図である。(B)は、電圧偏差△Vを1段のRC並列回路で示したリチウムイオン二次電池の電気的等価回路図である。(A) is an electrically equivalent circuit diagram of a lithium ion secondary battery in consideration of voltage deviation △ V 0 of the internal voltage V 0. (B) is an electrical equivalent circuit diagram of a lithium ion secondary battery in which the voltage deviation ΔV 0 is shown by a one-stage RC parallel circuit. 充電終了時または放電終了時におけるリチウムイオン二次電池の電気的等価回路図である。FIG. 3 is an electrical equivalent circuit diagram of a lithium ion secondary battery at the end of charging or at the end of discharging. パルス電流でリチウムイオン二次電池を充電したときの電流・電圧波形図である。FIG. 6 is a current / voltage waveform diagram when a lithium ion secondary battery is charged with a pulse current. 本発明の一実施形態に係るデータ抽出装置のブロック図である。It is a block diagram of the data extraction device concerning one embodiment of the present invention. 本発明の過渡応答データを説明するための図である。It is a figure for demonstrating the transient response data of this invention. (A)は、電動バイクに搭載されたリチウムイオン二次電池の電流測定データである。(B)は、(A)の電流測定データと同時に測定された電圧測定データである。(A) is current measurement data of the lithium ion secondary battery mounted on the electric motorcycle. (B) is voltage measurement data measured simultaneously with the current measurement data of (A). 図7の電流測定データおよび電圧測定データから抽出した過渡応答データである。It is the transient response data extracted from the current measurement data and voltage measurement data of FIG. 本発明の他の実施形態に係るデータ抽出装置のブロック図である。It is a block diagram of the data extraction apparatus which concerns on other embodiment of this invention. 第1過渡応答データおよび第2過渡応答データを含む電流測定データと、電圧測定データとを示す図である。It is a figure which shows the current measurement data containing 1st transient response data and 2nd transient response data, and voltage measurement data. 本発明による電池劣化の診断を比較・説明するための図であって、(A)は、劣化指標△Q/△VをSOC全領域での平均値とした図、(B)は、劣化指標△Q/△VをSOCが40%未満での平均値とした図である。FIG. 7 is a diagram for comparing and explaining diagnosis of battery deterioration according to the present invention, in which (A) is a diagram in which a degradation index ΔQ / ΔV is an average value in the entire SOC region, and (B) is a degradation index. It is the figure which made (DELTA) Q / (DELTA) V the average value in SOC less than 40%. 電流が零ではない過渡応答時におけるリチウムイオン二次電池の電気的等価回路図である。It is an electrical equivalent circuit diagram of the lithium ion secondary battery at the time of a transient response where the current is not zero. 電流が零ではない過渡応答時におけるリチウムイオン二次電池の電圧変化を説明するための図である。It is a figure for demonstrating the voltage change of the lithium ion secondary battery at the time of the transient response where an electric current is not zero.

以下、添付図面を参照して、本発明に係るデータ抽出装置、データ抽出方法およびデータ抽出プログラムの実施形態について説明する。なお、以下では、過渡応答特性を有する二次電池として、リチウムイオン二次電池を例に挙げて説明する。   Hereinafter, embodiments of a data extraction device, a data extraction method, and a data extraction program according to the present invention will be described with reference to the accompanying drawings. In the following, a lithium ion secondary battery will be described as an example of a secondary battery having transient response characteristics.

(第1実施形態)
本実施形態に係るデータ抽出装置は、電池劣化の診断に適した過渡応答時のデータを抽出するだけでなく、抽出した過渡応答時のデータに基づいてリチウムイオン二次電池の電池劣化を診断する。したがって、まず、電池劣化の診断に必要なリチウムイオン二次電池の電気的等価回路について説明する。
(First embodiment)
The data extraction apparatus according to the present embodiment not only extracts data at the time of transient response suitable for diagnosis of battery deterioration, but also diagnoses battery deterioration of the lithium ion secondary battery based on the extracted data at the time of transient response. . Therefore, first, an electrical equivalent circuit of a lithium ion secondary battery necessary for diagnosis of battery deterioration will be described.

[電気的等価回路]
図1〜図3に、リチウムイオン二次電池の電気的等価回路(以下、等価回路)を示す。図1(A)に示す等価回路は、リチウムイオン二次電池の内部抵抗RB0とリチウムイオン二次電池の内部電圧Vを出力する電圧源Eとを直列接続した最も簡易な回路である。図1(A)において、Vはリチウムイオン二次電池の内部インピーダンス(内部抵抗RB0)による電圧降下を示し、Vはリチウムイオン二次電池の端子電圧を示し、Iはリチウムイオン二次電池の電流を示す。ただし、電流Iは充電方向を正とする。
[Electrical equivalent circuit]
1 to 3 show an electrical equivalent circuit (hereinafter referred to as an equivalent circuit) of a lithium ion secondary battery. The equivalent circuit shown in FIG. 1A is the simplest circuit in which an internal resistance R B0 of a lithium ion secondary battery and a voltage source E 0 that outputs the internal voltage V 0 of the lithium ion secondary battery are connected in series. . In FIG. 1 (A), V Z represents a voltage drop due to the internal impedance of the lithium ion secondary battery (internal resistance R B0), V B denotes the terminal voltage of the lithium ion secondary battery, I B is the lithium ion secondary Indicates the current of the secondary battery. However, the current I B is a positive charging direction.

図1(A)に示す等価回路において、内部電圧Vは、リチウムイオン二次電池のSOC(充電率)に依存する。また、端子電圧Vは、例えばパルス電流による充電が開始されると、急峻に上昇した後、時間経過に伴い徐々に上昇する一方、パルス電流による充電を終了すると、急峻に下降した後、時間経過に伴い徐々に下降する。すなわち、パルス電流が遮断された後の端子電圧Vは、リチウムイオン二次電池の過渡応答特性に応じて減衰する。これらのことから、リチウムイオン二次電池の等価回路として、図1(B)に示すように、内部抵抗RB0と、2段のRC並列回路と、SOCに依存した内部電圧V(SOC)を出力する電圧源E(SOC)とを直列接続した回路(モデルA)を用いることができる。この等価回路(モデルA)において2段のRC並列回路を用いているのは、電流遮断後に徐々に下降する端子電圧Vの波形に2つの傾きが観測されたためである。この等価回路(モデルA)は、内部電圧Vの特性がSOCの関数として良く知られているリチウムイオン二次電池に対しては有用であるが、内部電圧VのSOC特性、すなわち内部電圧V(SOC)が知られていないリチウムイオン二次電池に対しては適用することができない。 In the equivalent circuit shown in FIG. 1A, the internal voltage V 0 depends on the SOC (charge rate) of the lithium ion secondary battery. Further, for example, when charging by a pulse current is started, the terminal voltage V B rises steeply and then gradually rises with time. On the other hand, when charging by the pulse current is finished, the terminal voltage V B drops sharply and then time Gradually descends over time. That is, the terminal voltage V B after the pulse current is cut off attenuates according to the transient response characteristics of the lithium ion secondary battery. Therefore, as an equivalent circuit of the lithium ion secondary battery, as shown in FIG. 1B, an internal resistance R B0 , a two-stage RC parallel circuit, and an SOC-dependent internal voltage V 0 (SOC) Can be used as a circuit (model A) in which a voltage source E 0 (SOC) that outputs is connected in series. The reason why the two-stage RC parallel circuit is used in this equivalent circuit (model A) is that two slopes are observed in the waveform of the terminal voltage V B that gradually decreases after the current interruption. This equivalent circuit (model A) is useful for a lithium ion secondary battery in which the characteristic of the internal voltage V 0 is well known as a function of the SOC, but the SOC characteristic of the internal voltage V 0 , that is, the internal voltage It cannot be applied to a lithium ion secondary battery in which V 0 (SOC) is not known.

ところで、充電開始前の端子電圧V(0)は、充電開始前のSOCにおける内部電圧V(0)に相当する。また、充電終了後の端子電圧V(t)と充電開始前の端子電圧V(0)(=V(0))との差分は、内部インピーダンスによる電圧降下Vと充電による内部電圧Vの電圧偏差(電圧増加)△Vとの和に相当する。これらのことから、リチウムイオン二次電池の等価回路として、図2(A)に示すように、内部抵抗RB0と、2段のRC並列回路と、電圧偏差△Vを出力する電圧源△Eと、内部電圧V(0)を出力する電圧源E(0)とを直列接続した回路を用いることができる。この等価回路は、電圧偏差△Vを知ることができれば、内部電圧VのSOC特性、すなわち内部電圧V(SOC)が知られていないリチウムイオン二次電池に対しても適用することができる。図2(B)に、図2(A)に示す回路において電圧偏差△Vを出力する電圧源△Eを、抵抗RB3およびコンデンサCB3からなる1段のRC並列回路に置き換えた等価回路(モデルB)を示す。 By the way, the terminal voltage V B (0) before the start of charging corresponds to the internal voltage V 0 (0) in the SOC before the start of charging. Further, the difference between the terminal voltage V B (t) after the end of charging and the terminal voltage V B (0) (= V 0 (0)) before the start of charging is the voltage drop V Z due to internal impedance and the internal voltage due to charging. This corresponds to the sum of the voltage deviation of V 0 (voltage increase) ΔV 0 . Therefore, as an equivalent circuit of the lithium ion secondary battery, as shown in FIG. 2A, a voltage source Δ that outputs an internal resistance R B0 , a two-stage RC parallel circuit, and a voltage deviation ΔV 0. A circuit in which E 0 and a voltage source E 0 (0) that outputs the internal voltage V 0 (0) are connected in series can be used. The equivalent circuit, if it is possible to know the voltage deviation △ V 0, SOC characteristic of the internal voltage V 0, that is also applicable to a lithium ion secondary battery that is not known internal voltage V 0 (SOC) it can. In FIG. 2 (B), a voltage source △ E 0 for outputting a voltage difference △ V 0 in the circuit shown in FIG. 2 (A), was replaced by the RC parallel circuit of one stage including the resistor R B3 and the capacitor C B3 equivalent A circuit (model B) is shown.

上述したように、電流遮断後(充電終了後)の端子電圧Vは、リチウムイオン二次電池の過渡応答特性に応じて減衰する。このときの電圧変化分は、SOCに依存せず、内部インピーダンスによる電圧降下Vのみによって定まる。このことから、リチウムイオン二次電池の電流遮断時(充電終了時)における等価回路として、図3に示すように、内部抵抗RB0と、2段のRC並列回路と、内部電圧V(一定の電圧)を出力する電圧源Eとを直列接続した回路(モデルC)を用いることができる。 As described above, the terminal voltage V B after interruption of current (after completion of charging) attenuates according to the transient response characteristics of the lithium ion secondary battery. Voltage change in this case is independent of the SOC, determined only by the voltage drop V Z due to the internal impedance. From this, as shown in FIG. 3, as an equivalent circuit at the time of current interruption (at the end of charging) of the lithium ion secondary battery, an internal resistance R B0 , a two-stage RC parallel circuit, and an internal voltage V 0 (constant) circuit and a voltage source E 0 for outputting a voltage) connected in series (model C) can be used.

ここで、図1(B)に示す等価回路(モデルA)における内部電圧V(SOC)はSOCの関数であるのに対して、等価回路(モデルC)における内部電圧Vは定数である(定数と見なすことができる)。等価回路(モデルC)を適用している時間範囲内では、電流が流れていない時間範囲内なためSOCが変化しないからである。このため、等価回路(モデルC)では、内部電圧VからSOCを推定することができる。すなわち、等価回路(モデルC)では、内部電圧Vが大であればSOCも大であり、内部電圧Vが小であればSOCも小である。よって、等価回路(モデルC)における内部電圧VとSOCとの関係を示すデータ(例えば、プロファイルまたはテーブル)があれば、当該データに基づいてSOCを推定することができる。 Here, the internal voltage V 0 (SOC) in the equivalent circuit (model A) shown in FIG. 1B is a function of the SOC, whereas the internal voltage V 0 in the equivalent circuit (model C) is a constant. (Can be considered a constant). This is because within the time range in which the equivalent circuit (model C) is applied, the SOC does not change because it is within the time range in which no current flows. Therefore, in the equivalent circuit (Model C), the SOC can be estimated from the internal voltage V 0. That is, in the equivalent circuit (Model C), SOC if internal voltage V 0 is larger is large, SOC is also small if the internal voltage V 0 is small. Therefore, if there is data (for example, a profile or a table) indicating the relationship between the internal voltage V 0 and the SOC in the equivalent circuit (model C), the SOC can be estimated based on the data.

等価回路(モデルC)では、回路パラメータの演算を簡略化するためにRC並列回路を1段にしてもよい。例えば、図3に示す等価回路(モデルC)において、2段のRC並列回路を抵抗RB1およびコンデンサCB1からなる1段のRC並列回路にした場合、リチウムイオン二次電池の電流遮断時の端子電圧V、すなわちリチウムイオン二次電池の過渡応答時の端子電圧Vは、下記の(1)式で与えられる。

Figure 0006161133
なお、下記の図4の場合、電流遮断後(充電終了後)のリチウムイオン二次電池の過渡応答時の端子電圧Vは、下記の(2)式で与えられる。
Figure 0006161133
In the equivalent circuit (model C), the RC parallel circuit may be one stage in order to simplify the calculation of circuit parameters. For example, in the equivalent circuit shown in FIG. 3 (model C), when a two-stage RC parallel circuit is a one-stage RC parallel circuit including a resistor R B1 and a capacitor C B1 , The terminal voltage V B , that is, the terminal voltage V B at the time of transient response of the lithium ion secondary battery is given by the following equation (1).
Figure 0006161133
In the case of FIG. 4 below, the terminal voltage V B at the transient response of the lithium ion secondary battery after current interruption (after completion of charging) is given by the following equation (2).
Figure 0006161133

図4に、パルス電流でリチウムイオン二次電池を充電したときの電流・電圧波形を示す。同図に示すように、内部電圧Vは充電中に上昇し、充電終了後は一定となる。このため、本実施形態に係るデータ抽出装置、データ抽出方法およびデータ抽出プログラムでは、SOCが変化せず内部電圧Vの変動分(電圧偏差△V)を考慮する必要のない充電終了後(または放電終了後)の端子電圧Vを電池劣化の診断に用いる。言い換えれば、本実施形態に係るデータ抽出装置、データ抽出方法およびデータ抽出プログラムでは、充電終了時(または放電終了時)における等価回路(モデルC)を用いて、リチウムイオン二次電池の電池劣化を診断する。 FIG. 4 shows current / voltage waveforms when a lithium ion secondary battery is charged with a pulse current. As shown in the figure, the internal voltage V 0 rises during charging and becomes constant after the end of charging. For this reason, in the data extraction device, the data extraction method, and the data extraction program according to the present embodiment, after the end of charging, the SOC does not change and it is not necessary to consider the fluctuation of the internal voltage V 0 (voltage deviation ΔV 0 ) ( or the terminal voltage V B of the discharge after the end) is used for the diagnosis of battery deterioration. In other words, in the data extraction device, the data extraction method, and the data extraction program according to the present embodiment, the battery deterioration of the lithium ion secondary battery is performed using the equivalent circuit (model C) at the end of charging (or at the end of discharging). Diagnose.

[データ抽出装置]
図5に、本実施形態に係るデータ抽出装置1を示す。データ抽出装置1は、記憶部2と、抽出部3と、電池劣化診断部4と、入力受付部5とを備えている。記憶部2、抽出部3および電池劣化診断部4は、例えばマイコンで構成することができ、入力受付部5は、例えばキーボードおよびディスプレイで構成することができる。
[Data extraction device]
FIG. 5 shows a data extraction apparatus 1 according to this embodiment. The data extraction device 1 includes a storage unit 2, an extraction unit 3, a battery deterioration diagnosis unit 4, and an input reception unit 5. The memory | storage part 2, the extraction part 3, and the battery deterioration diagnostic part 4 can be comprised with a microcomputer, for example, and the input reception part 5 can be comprised with a keyboard and a display, for example.

記憶部2には、稼働中のリチウムイオン二次電池の電流値、電圧値および周囲温度を所定のサンプリング間隔で連続的に測定した測定データが格納される。測定データのうち、電流値に関するものを電流測定データといい、電圧値に関するものを電圧測定データといい、周囲温度に関するものを温度測定データという。   The storage unit 2 stores measurement data obtained by continuously measuring the current value, voltage value, and ambient temperature of the operating lithium ion secondary battery at a predetermined sampling interval. Among the measurement data, the data related to the current value is called current measurement data, the data related to the voltage value is called voltage measurement data, and the data related to the ambient temperature is called temperature measurement data.

また、記憶部2には、等価回路(モデルC)における内部電圧VとSOCとの関係を示すデータ(例えば、プロファイルまたはテーブル)が格納されていることが好ましい。等価回路(モデルC)は、上述のとおり、リチウムイオン二次電池の内部電圧Vの特性がSOCに依存しない充電終了時または放電終了時における等価回路であって、具体的には、リチウムイオン二次電池の内部抵抗RB0と、1段または2段のRC並列回路と、充電終了時または放電終了時におけるリチウムイオン二次電池の内部電圧Vを出力する電圧源Eとを直列接続した回路である。 The storage unit 2 preferably stores data (for example, a profile or a table) indicating the relationship between the internal voltage V 0 and the SOC in the equivalent circuit (model C). As described above, the equivalent circuit (model C) is an equivalent circuit at the end of charging or discharging at which the characteristic of the internal voltage V 0 of the lithium ion secondary battery does not depend on the SOC. The internal resistance R B0 of the secondary battery, the one-stage or two-stage RC parallel circuit, and the voltage source E 0 that outputs the internal voltage V 0 of the lithium ion secondary battery at the end of charging or discharging are connected in series. Circuit.

抽出部3は、記憶部2に格納された測定データから、リチウムイオン二次電池の過渡応答時の過渡応答データを抽出する。図6に、時刻t1において放電が終了したリチウムイオン二次電池の過渡応答データを示す。なお、図6では、電圧値データおよび周囲温度データを省略している。   The extraction unit 3 extracts transient response data during the transient response of the lithium ion secondary battery from the measurement data stored in the storage unit 2. FIG. 6 shows transient response data of the lithium ion secondary battery that has been discharged at time t1. In FIG. 6, the voltage value data and the ambient temperature data are omitted.

抽出部3は、図6に示すような過渡応答データを抽出するために、
(1)電流測定データにおいて、電流値の変化量が第1閾値X1以上となる第1区間を特定する第1処理と、
(2)第1区間の始点と連続し、始点の電流値に対する変化量が第1閾値X1よりも小さい第2閾値X2以下となる前区間を特定する第2処理と、
(3)第1区間の終点と連続し、終点の電流値に対する変化量が第1閾値X1よりも小さい第3閾値X3以下となる後区間を特定する第3処理と、
(4)前区間の始点から後区間の終点までの電流値データと、当該電流値データに対応した区間の電圧値データおよび周囲温度データとを過渡応答データとして抽出する第4処理と、
を実行する。なお、本実施形態では、電流値の変化量を絶対値で表すものとする。
In order to extract the transient response data as shown in FIG.
(1) In the current measurement data, a first process for identifying a first section in which the amount of change in the current value is equal to or greater than the first threshold value X1,
(2) a second process that identifies a previous section that is continuous with the start point of the first section and in which the amount of change with respect to the current value at the start point is less than or equal to the second threshold value X2, which is smaller than the first threshold value X1;
(3) a third process for identifying a subsequent section that is continuous with the end point of the first section and whose amount of change with respect to the current value at the end point is equal to or less than a third threshold value X3 that is smaller than the first threshold value X1;
(4) a fourth process of extracting current value data from the start point of the previous section to the end point of the subsequent section, and voltage value data and ambient temperature data of the section corresponding to the current value data as transient response data;
Execute. In the present embodiment, the amount of change in the current value is expressed as an absolute value.

電池劣化診断部4は、過渡応答データに基づいて等価回路(モデルC)の回路パラメータを算出し、算出した回路パラメータに基づいてリチウムイオン二次電池の電池劣化を診断する。例えば、内部抵抗RB0と、抵抗RB1およびコンデンサCB1からなる1段のRC並列回路と、一定の内部電圧Vを出力する電圧源Eとを直列接続した等価回路(モデルC)の場合、内部抵抗RB0およびRC並列回路の抵抗RB1は電池劣化に伴い大となるが、内部抵抗RB0は接触抵抗による影響が大であるため、RC並列回路の抵抗RB1により電池劣化を診断することが好ましい。 The battery deterioration diagnosis unit 4 calculates circuit parameters of the equivalent circuit (model C) based on the transient response data, and diagnoses battery deterioration of the lithium ion secondary battery based on the calculated circuit parameters. For example, the internal resistance R B0, resistors R B1 and 1-step and RC parallel circuit comprising a capacitor C B1, constant equivalent circuit of the voltage source E 0 for outputting the internal voltage V 0 in series connection (Model C) In this case, the internal resistance R B0 and the resistance R B1 of the RC parallel circuit increase as the battery deteriorates. However, since the internal resistance R B0 is greatly affected by the contact resistance, the battery deterioration is caused by the resistance R B1 of the RC parallel circuit. It is preferable to diagnose.

RC並列回路の抵抗RB1により電池劣化を診断する場合、電池劣化診断部4は、第4処理で抽出した過渡応答データに基づいて、等価回路(モデルC)の回路パラメータを算出する。次いで、電池劣化診断部4は、記憶部2に格納された等価回路(モデルC)における内部電圧VとSOCとの関係を示すデータに基づいて、回路パラメータの内部電圧VからSOCを推定する。そして、電池劣化診断部4は、SOCに対する回路パラメータの抵抗RB1により、リチウムイオン二次電池の電池劣化を診断する。例えば、SOCが同じであるにもかかわらず抵抗RB1が増加している場合、電池劣化診断部4は、リチウムイオン二次電池が劣化していると診断する。なお、抵抗RB1の値は周囲温度の影響を受けるので、電池劣化診断部4は、温度測定データに基づいて周囲温度毎に抵抗RB1の値を統計的に整理して比較することが好ましい。 When diagnosing battery deterioration using the resistance R B1 of the RC parallel circuit, the battery deterioration diagnosis unit 4 calculates circuit parameters of the equivalent circuit (model C) based on the transient response data extracted in the fourth process. Next, the battery deterioration diagnosis unit 4 estimates the SOC from the internal voltage V 0 of the circuit parameter based on the data indicating the relationship between the internal voltage V 0 and the SOC in the equivalent circuit (model C) stored in the storage unit 2. To do. The battery deterioration diagnosis unit 4 diagnoses the battery deterioration of the lithium ion secondary battery based on the resistance R B1 of the circuit parameter with respect to the SOC. For example, when the resistance R B1 is increasing even though the SOC is the same, the battery deterioration diagnosis unit 4 diagnoses that the lithium ion secondary battery is deteriorated. Since the value of the resistance R B1 is affected by the ambient temperature, it is preferable that the battery deterioration diagnosis unit 4 statistically organizes and compares the value of the resistance R B1 for each ambient temperature based on the temperature measurement data. .

入力受付部5は、抽出部3が第1処理を実行する前に、第1閾値X1、第2閾値X2、第3閾値X3、前区間の範囲および後区間の範囲に関し、ユーザからの入力を受け付ける。入力受付部5がユーザからの入力を受け付けると、抽出部3は、ユーザからの入力に従って第1処理〜第4処理を実行し、電池劣化診断部4は、上述のとおり電池劣化を診断する。なお、前区間および後区間が第1区間よりも広い範囲となるように、ユーザの入力に制限をかけることが好ましい。   The input receiving unit 5 receives input from the user regarding the first threshold value X1, the second threshold value X2, the third threshold value X3, the range of the previous section and the range of the subsequent section before the extraction unit 3 executes the first process. Accept. If the input reception part 5 receives the input from a user, the extraction part 3 will perform 1st process-4th process according to the input from a user, and the battery deterioration diagnosis part 4 will diagnose battery deterioration as mentioned above. In addition, it is preferable to limit a user's input so that a front area and a rear area may become a range wider than a 1st area.

[データ抽出方法]
次に、本実施形態に係るデータ抽出方法について説明する。本実施形態に係るデータ抽出方法は、リチウムイオン二次電池の電流値、電圧値および周囲温度を所定のサンプリング間隔で測定した測定データから、データ抽出装置1が過渡応答データを抽出するものである。
[Data extraction method]
Next, a data extraction method according to this embodiment will be described. In the data extraction method according to the present embodiment, the data extraction device 1 extracts transient response data from measurement data obtained by measuring the current value, voltage value, and ambient temperature of a lithium ion secondary battery at a predetermined sampling interval. .

具体的には、本実施形態に係るデータ抽出方法は、
(1)電流測定データにおいて、電流値の変化量が第1閾値X1以上となる第1区間を特定する第1ステップと、
(2)第1区間の始点と連続し、始点の電流値に対する変化量が第1閾値X1よりも小さい第2閾値X2以下となる前区間を特定する第2ステップと、
(3)第1区間の終点と連続し、終点の電流値に対する変化量が第1閾値X1よりも小さい第3閾値X3以下となる後区間を特定する第3ステップと、
(4)前区間の始点から後区間の終点までの電流値データと、当該電流値データに対応した区間の電圧値データおよび周囲温度データとを過渡応答データとして抽出する第4ステップと、
(5)過渡応答データに基づいてリチウムイオン二次電池の等価回路(モデルC)の回路パラメータを算出し、回路パラメータに基づいてリチウムイオン二次電池の電池劣化を診断する第5ステップと、
を含む。
Specifically, the data extraction method according to this embodiment is:
(1) In the current measurement data, a first step of specifying a first section in which the amount of change in the current value is equal to or greater than the first threshold value X1,
(2) a second step of specifying a previous section that is continuous with the start point of the first section and in which a change amount with respect to the current value of the start point is equal to or less than a second threshold value X2 that is smaller than the first threshold value X1;
(3) a third step of specifying a rear section that is continuous with the end point of the first section and in which the amount of change with respect to the current value of the end point is equal to or less than a third threshold value X3 that is smaller than the first threshold value X1;
(4) a fourth step of extracting current value data from the start point of the previous section to the end point of the subsequent section, and voltage value data and ambient temperature data of the section corresponding to the current value data as transient response data;
(5) calculating a circuit parameter of an equivalent circuit (model C) of the lithium ion secondary battery based on the transient response data, and diagnosing the battery deterioration of the lithium ion secondary battery based on the circuit parameter;
including.

測定データの一例として、図7(A)に、電動バイクに搭載されたリチウムイオン二次電池の数年分の電流測定データを示し、図7(B)に、当該電流測定データに対応した(当該電流測定データと同時に測定した)電圧測定データを示す。電流測定データおよび電圧測定データのサンプリング間隔は0.5秒である。また、本実験に用いた電動バイクには回生機能はなく、電動バイクに搭載されたリチウムイオン二次電池は、電動バイクの走行中に放電されるが、電動バイクの停止時には充放電は行われない。以下、図7(A)および(B)に示す測定データから、データ抽出装置1が放電終了時の過渡応答データ(図8参照)を抽出するデータ抽出方法について説明する。   As an example of measurement data, FIG. 7A shows current measurement data for several years of a lithium ion secondary battery mounted on an electric motorcycle, and FIG. 7B corresponds to the current measurement data ( Voltage measurement data (measured simultaneously with the current measurement data) is shown. The sampling interval of current measurement data and voltage measurement data is 0.5 seconds. In addition, the electric motorcycle used in this experiment has no regenerative function, and the lithium ion secondary battery mounted on the electric motorcycle is discharged while the electric motorcycle is running, but charging and discharging are performed when the electric motorcycle is stopped. Absent. Hereinafter, a data extraction method in which the data extraction apparatus 1 extracts transient response data (see FIG. 8) at the end of discharge from the measurement data shown in FIGS. 7A and 7B will be described.

データ抽出装置1の抽出部3および電池劣化診断部4がデータ抽出方法を実行する前に、データ抽出装置1の入力受付部5が、第1閾値X1、第2閾値X2、第3閾値X3、前区間の範囲および後区間の範囲に関し、ユーザからの入力を受け付けたものとする。ここでは、第1閾値X1を12[A]とし、第2閾値X2を8[A]とし、第3閾値X3を2[A]とし、前区間の範囲(データ数)および後区間の範囲(データ数)をいずれも4とする。また、第1区間の範囲(データ数)は2に設定されているものとする。   Before the extraction unit 3 and the battery deterioration diagnosis unit 4 of the data extraction device 1 execute the data extraction method, the input reception unit 5 of the data extraction device 1 performs the first threshold value X1, the second threshold value X2, the third threshold value X3, It is assumed that an input from the user is received regarding the range of the previous section and the range of the subsequent section. Here, the first threshold value X1 is set to 12 [A], the second threshold value X2 is set to 8 [A], the third threshold value X3 is set to 2 [A], the range of the previous section (number of data) and the range of the subsequent section ( The number of data is 4 for all. Further, it is assumed that the range (number of data) of the first section is set to 2.

第1ステップでは、抽出部3が、図7(A)の電流測定データに含まれるn(nは1以上の整数)個目の電流値データと(n+1)個目の電流値データとに基づいて電流値の変化量を演算し、電流値の変化量が第1閾値X1(=12[A])以上となる第1区間(データ数=2)を特定する。図8に示すように、150.0秒時の電流値が−13.04[A]であり、150.5秒時の電流値が−0.42[A]であるため、この区間における電流値の変化量は、12.62[A]となり第1閾値X1(=12[A])以上となる。よって、抽出部3は、150.0秒から150.5秒までの区間を、第1区間として特定する。   In the first step, the extraction unit 3 is based on the n (n is an integer of 1 or more) current value data and the (n + 1) th current value data included in the current measurement data in FIG. Then, the change amount of the current value is calculated, and the first section (the number of data = 2) in which the change amount of the current value is equal to or larger than the first threshold value X1 (= 12 [A]) is specified. As shown in FIG. 8, the current value at 150.0 seconds is −13.04 [A], and the current value at 150.5 seconds is −0.42 [A]. The amount of change in value is 12.62 [A], which is equal to or greater than the first threshold value X1 (= 12 [A]). Therefore, the extraction unit 3 identifies the section from 150.0 seconds to 150.5 seconds as the first section.

第2ステップでは、抽出部3が、第1区間の始点である150.0秒時の電流値データと連続し、第1区間の始点の電流値(150.0秒時の電流値)に対する変化量が第2閾値X2(=8[A])以下となる前区間(データ数=4)を特定する。図8に示すように、150.0秒時の電流値データと連続した4つの電流値データ、すなわち148.0秒、148.5秒、149.0秒、149.5秒時の電流値データは、いずれも150.0秒時の電流値に対する変化量が第2閾値X2(=8[A])以下となる。よって、抽出部3は、148.0秒から149.5秒までの区間を、前区間として特定する。   In the second step, the extraction unit 3 is continuous with the current value data at 150.0 seconds, which is the start point of the first section, and changes with respect to the current value at the start point of the first section (current value at 150.0 seconds). The previous section (number of data = 4) in which the amount is equal to or less than the second threshold value X2 (= 8 [A]) is specified. As shown in FIG. 8, current value data at 150.0 seconds and four current value data continuous, that is, current value data at 148.0 seconds, 148.5 seconds, 149.0 seconds, and 149.5 seconds. In both cases, the amount of change with respect to the current value at 150.0 seconds is equal to or less than the second threshold value X2 (= 8 [A]). Therefore, the extraction unit 3 identifies the section from 148.0 seconds to 149.5 seconds as the previous section.

第3ステップでは、抽出部3が、第1区間の終点である150.5秒時の電流値データと連続し、第1区間の終点の電流値(150.5秒時の電流値)に対する変化量が第3閾値X3(=2[A])以下となる後区間(データ数=4)を特定する。図8に示すように、150.5秒時の電流値データと連続した4つの電流値データ、すなわち151.0秒、151.5秒、152.0秒、152.5秒時の電流値データは、いずれも150.5秒時の電流値に対する変化量が第3閾値X3(=2[A])以下となる。よって、抽出部3は、151.0秒から152.5秒のまで区間を、後区間として特定する。   In the third step, the extraction unit 3 continues to the current value data at 150.5 seconds, which is the end point of the first section, and changes with respect to the current value at the end point of the first section (current value at 150.5 seconds). A rear section (the number of data = 4) in which the amount is equal to or less than the third threshold value X3 (= 2 [A]) is specified. As shown in FIG. 8, the current value data at 150.5 seconds and four current value data continuous, that is, current value data at 151.0 seconds, 151.5 seconds, 152.0 seconds, and 152.5 seconds. In both cases, the amount of change with respect to the current value at 150.5 seconds is equal to or less than the third threshold value X3 (= 2 [A]). Therefore, the extraction unit 3 specifies a section from 151.0 seconds to 152.5 seconds as a subsequent section.

第4ステップでは、抽出部3が、前区間の始点である148.0秒から後区間の終点である152.5秒までの電流値データと、同区間の電圧値データおよび周囲温度データとを過渡応答データとして抽出する。すなわち、抽出部3により前区間、第1区間、後区間のすべてが特定された場合にのみ、過渡応答データが抽出される。   In the fourth step, the extraction unit 3 obtains the current value data from the start point of 148.0 seconds that is the start point of the previous section to the end point of 152.5 seconds that is the end point of the subsequent section, the voltage value data and the ambient temperature data of the same section. Extracted as transient response data. That is, transient response data is extracted only when all of the previous section, the first section, and the subsequent section are specified by the extraction unit 3.

第5ステップでは、電池劣化診断部4が、抽出部3により抽出された過渡応答データに基づいて、等価回路(モデルC)の回路パラメータを算出し、算出した回路パラメータに基づいてリチウムイオン二次電池の電池劣化を診断する。例えば、内部抵抗RB0と、抵抗RB1およびコンデンサCB1からなる1段のRC並列回路と、一定の内部電圧Vを出力する電圧源Eとを直列接続した等価回路(モデルC)の場合、電池劣化診断部4は、過渡応答データに基づいて内部抵抗RB0、抵抗RB1、コンデンサCB1および内部電圧Vを算出する。次いで、電池劣化診断部4は、記憶部2に格納された等価回路(モデルC)における内部電圧VとSOCとの関係を示すデータに基づいて、内部電圧VからSOCを推定する。そして、電池劣化診断部4は、SOCに対する抵抗RB1に基づいて、リチウムイオン二次電池の電池劣化を診断する。 In the fifth step, the battery deterioration diagnosis unit 4 calculates the circuit parameters of the equivalent circuit (model C) based on the transient response data extracted by the extraction unit 3, and the lithium ion secondary based on the calculated circuit parameters. Diagnose battery deterioration. For example, the internal resistance R B0, resistors R B1 and 1-step and RC parallel circuit comprising a capacitor C B1, constant equivalent circuit of the voltage source E 0 for outputting the internal voltage V 0 in series connection (Model C) In this case, the battery deterioration diagnosis unit 4 calculates the internal resistance R B0 , the resistance R B1 , the capacitor C B1, and the internal voltage V 0 based on the transient response data. Next, the battery deterioration diagnosis unit 4 estimates the SOC from the internal voltage V 0 based on data indicating the relationship between the internal voltage V 0 and the SOC in the equivalent circuit (model C) stored in the storage unit 2. The battery deterioration diagnosis unit 4 diagnoses the battery deterioration of the lithium ion secondary battery based on the resistance R B1 to the SOC.

[データ抽出プログラム]
次に、本実施形態に係るデータ抽出プログラムについて説明する。本実施形態に係るデータ抽出プログラムは、コンピュータに上述のデータ抽出方法を実行させるためのものである。
[Data extraction program]
Next, the data extraction program according to this embodiment will be described. The data extraction program according to the present embodiment is for causing a computer to execute the above-described data extraction method.

記憶媒体またはネットワークを介して本実施形態に係るデータ抽出プログラムがコンピュータに提供され、かつ当該コンピュータが本実施形態に係るデータ抽出プログラムを読み出して実行することで、当該コンピュータは、少なくとも一部がデータ抽出装置1として機能し、上述のデータ抽出方法を実行することが可能になる。   A data extraction program according to the present embodiment is provided to a computer via a storage medium or a network, and the computer reads out and executes the data extraction program according to the present embodiment, so that the computer has at least a part of data. It functions as the extraction device 1 and can execute the data extraction method described above.

結局、本実施形態に係るデータ抽出装置1、データ抽出方法およびデータ抽出プログラムによれば、過渡応答特性を有するリチウムイオン二次電池の測定データからリチウムイオン二次電池の電池劣化の診断に適した過渡応答データを自動的に抽出することができる。さらに、本実施形態に係るデータ抽出装置1、データ抽出方法およびデータ抽出プログラムによれば、抽出した過渡応答データに基づいてリチウムイオン二次電池の等価回路(モデルC)の回路パラメータを算出することで、リチウムイオン二次電池の電池劣化を診断することができる。   After all, according to the data extraction device 1, the data extraction method, and the data extraction program according to the present embodiment, it is suitable for diagnosis of battery deterioration of the lithium ion secondary battery from the measurement data of the lithium ion secondary battery having transient response characteristics. Transient response data can be extracted automatically. Furthermore, according to the data extraction device 1, the data extraction method, and the data extraction program according to the present embodiment, the circuit parameters of the equivalent circuit (model C) of the lithium ion secondary battery are calculated based on the extracted transient response data. Thus, the battery deterioration of the lithium ion secondary battery can be diagnosed.

(第2実施形態)
次に、第2実施形態に係るデータ抽出装置、データ抽出方法およびデータ抽出プログラムについて説明する。
(Second Embodiment)
Next, a data extraction apparatus, a data extraction method, and a data extraction program according to the second embodiment will be described.

[データ抽出装置]
図9に、本実施形態に係るデータ抽出装置1’を示す。本実施形態に係るデータ抽出装置1’は、記憶部2、抽出部3、電池劣化診断部4’および入力受付部5を備えている。なお、図5と同一の符号を付した構成要素については第1実施形態で説明したものと同様なので、ここでは説明を一部省略する。
[Data extraction device]
FIG. 9 shows a data extraction apparatus 1 ′ according to this embodiment. The data extraction apparatus 1 ′ according to this embodiment includes a storage unit 2, an extraction unit 3, a battery deterioration diagnosis unit 4 ′, and an input reception unit 5. In addition, since the component which attached | subjected the code | symbol same as FIG. 5 is the same as that of what was demonstrated in 1st Embodiment, description is abbreviate | omitted here.

電池劣化診断部4’は、抽出部3が電流測定データに対して第1処理〜第4処理を実行して抽出した複数の過渡応答データから、2つの過渡応答データ(第1過渡応答データと第2過渡応答データ)を選択する。第1過渡応答データおよび第2過渡応答データの選択の仕方は、入力受付部5においてユーザが任意に設定することができる。例えば、図10に示すように、隣接する2つの過渡応答データを第1過渡応答データおよび第2過渡応答データとしてもよいし、最初に抽出された過渡応答データを第1過渡応答データとし、X番目(X≧3)に抽出された過渡応答データを第2過渡応答データとしてもよい。   The battery deterioration diagnosis unit 4 ′ includes two transient response data (first transient response data and first transient response data) from the plurality of transient response data extracted by the extraction unit 3 performing the first to fourth processes on the current measurement data. 2nd transient response data) is selected. The user can arbitrarily set how to select the first transient response data and the second transient response data in the input reception unit 5. For example, as shown in FIG. 10, two adjacent transient response data may be the first transient response data and the second transient response data, or the first extracted transient response data is the first transient response data, and X The transient response data extracted in the order (X ≧ 3) may be used as the second transient response data.

電池劣化診断部4’は、
(1)上記のとおり、複数の過渡応答データから第1過渡応答データおよび第2過渡応答データを選択する選択処理と、
(2)第1過渡応答データにおいて電流値が第1閾値X1以上変化した後の第1電流値A1から第2過渡応答データにおいて電流値が第1閾値X1以上変化した後の第2電流値A2までの各電流値(A1、・・・、A2)と、第1電流値A1の測定時における第1電圧値V1から第2電流値A2の測定時における第2電圧値V2までの各電圧値(V1、・・・、V2)とを乗算して各乗算結果を加算するとともに、その加算結果にサンプリング間隔△Tを乗算した電力積分値△Q(=(V1×A1+・・・+V2×A2)×△T)を算出する第1算出処理と、
(3)第1電流値A1の測定時におけるリチウムイオン二次電池のSOCに対応する電圧VE1と第2電流値A2の測定時におけるリチウムイオン二次電池のSOCに対応する電圧VE2との差分△V(>0)を算出する第2算出処理と、
(4)電力積分値△Qを差分△Vで除算した値を劣化指標△Q/△Vとし、劣化指標△Q/△Vに基づいてリチウムイオン二次電池の電池劣化を診断する診断処理と、
を実行する。
The battery deterioration diagnosis unit 4 ′
(1) As described above, a selection process for selecting first transient response data and second transient response data from a plurality of transient response data;
(2) The second current value A2 after the current value has changed more than the first threshold value X1 in the second transient response data from the first current value A1 after the current value has changed more than the first threshold value X1 in the first transient response data. Current values (A1,..., A2) and voltage values from the first voltage value V1 when measuring the first current value A1 to the second voltage value V2 when measuring the second current value A2. (V1,..., V2) are multiplied and each multiplication result is added, and the addition result is multiplied by a sampling interval ΔT. Power integral value ΔQ (= (V1 × A1 +... + V2 × A2) ) × ΔT), a first calculation process;
(3) The difference between the voltage VE1 corresponding to the SOC of the lithium ion secondary battery at the time of measuring the first current value A1 and the voltage VE2 corresponding to the SOC of the lithium ion secondary battery at the time of measuring the second current value A2. A second calculation process for calculating V (>0);
(4) A diagnostic process for diagnosing battery deterioration of the lithium ion secondary battery based on the degradation index ΔQ / ΔV, with a value obtained by dividing the power integral value ΔQ by the difference ΔV as a degradation index ΔQ / ΔV; ,
Execute.

電池劣化診断部4’は、第1算出処理において、記憶部2に格納された電流測定データに基づいて第1電流値A1から第2電流値A2までの各電流値を取得し、記憶部2に格納された電圧測定データに基づいて第1電圧値V1から第2電圧値V2までの各電圧値を取得する。また、電池劣化診断部4’は、第2算出処理において、第1電圧値V1と、第2電圧値V2と、電気的等価回路(モデルC)とに基づいてリチウムイオン二次電池のSOCに対応する電圧VE1、VE2を算出し、差分△Vを算出する。   In the first calculation process, the battery deterioration diagnosis unit 4 ′ acquires each current value from the first current value A1 to the second current value A2 based on the current measurement data stored in the storage unit 2, and the storage unit 2 Each voltage value from the first voltage value V1 to the second voltage value V2 is acquired based on the voltage measurement data stored in the. In addition, the battery deterioration diagnosis unit 4 ′ determines the SOC of the lithium ion secondary battery based on the first voltage value V1, the second voltage value V2, and the electrical equivalent circuit (model C) in the second calculation process. Corresponding voltages VE1 and VE2 are calculated, and a difference ΔV is calculated.

具体的には、第1電圧値V1および第2電圧値V2は、上記(2)式の端子電圧Vに相当するので、第1電圧値V1および上記(2)式から、第1電圧値V1の測定時における内部電圧V(V1)を算出することができ、第2電圧値V2および上記(2)式から、第2電圧値V2の測定時における内部電圧V(V2)を算出することができる。ここで、リチウムイオン二次電池のSOCに対応する電圧VEとは、SOCに依存しない定数または電流一定時に線形関数となる電圧であって、当該電圧からSOCを推定することができるものをいう。電気的等価回路(モデルC)の場合、内部電圧Vがリチウムイオン二次電池のSOCに対応する電圧VEとなる。よって、電池劣化診断部4’は、SOC(V1)に対応する内部電圧V(V1)と、SOC(V2)に対応する内部電圧V(V2)から、差分△V(=V(V2)−V(V1)、または=V(V1)−V(V2))、すなわち、差分△V(=VE2−VE1、または=VE1−VE2)を算出することができる。 Specifically, the first voltage value V1 and the second voltage value V2, the equation (2) it is equal to the terminal voltage V B, from the first voltage value V1 and the equation (2), the first voltage value The internal voltage V 0 (V1) at the time of measuring V1 can be calculated, and the internal voltage V 0 (V2) at the time of measuring the second voltage value V2 is calculated from the second voltage value V2 and the above equation (2). can do. Here, the voltage VE corresponding to the SOC of the lithium ion secondary battery is a voltage that is a constant that does not depend on the SOC or a linear function when the current is constant, and that can estimate the SOC from the voltage. In the case of an electrical equivalent circuit (model C), the internal voltage V 0 is a voltage VE corresponding to the SOC of the lithium ion secondary battery. Thus, battery deterioration diagnosis unit 4 'includes an internal voltage V 0 (V1) corresponding to SOC (V1), from the internal voltage V 0 corresponding to SOC (V2) (V2), the difference △ V (= V 0 ( V2) −V 0 (V1) or = V 0 (V1) −V 0 (V2)), that is, the difference ΔV (= VE2−VE1 or = VE1−VE2) can be calculated.

電池劣化診断部4’は、診断処理において、SOCに対する劣化指標△Q/△Vにより、リチウムイオン二次電池の電池劣化を診断する。例えば、SOCが同じであるにもかかわらず劣化指標△Q/△Vの絶対値が減少している場合、電池劣化診断部4’は、リチウムイオン二次電池が劣化していると診断する。   The battery deterioration diagnosis unit 4 ′ diagnoses the battery deterioration of the lithium ion secondary battery based on the deterioration index ΔQ / ΔV for the SOC in the diagnosis process. For example, when the absolute value of the deterioration index ΔQ / ΔV is decreasing despite the SOC being the same, the battery deterioration diagnosis unit 4 ′ diagnoses that the lithium ion secondary battery has deteriorated.

なお、電池劣化診断部4’は、診断処理で△Q/△Vを算出するにあたって、第2算出処理において△Vが適切な値かどうかを判断し、不適切と判断した場合は、診断処理をスキップしてもよい。例えば、△VがSOCで0〜10%未満の電位差のときには、診断処理(△Q/△Vの演算)を行わないようにしてもよい。このように診断処理をスキップした場合、電池劣化診断部4’は、再び選択処理を行い、少なくとも一方の過渡応答データが前回とは異なるように、再び2つ過渡応答データ(第1過渡応答データおよび第2過渡応答データ)を選択するよう構成できる。   The battery deterioration diagnosis unit 4 ′ determines whether ΔV is an appropriate value in the second calculation process when calculating ΔQ / ΔV in the diagnosis process. May be skipped. For example, when ΔV is an SOC and the potential difference is less than 0 to 10%, the diagnosis process (calculation of ΔQ / ΔV) may not be performed. When the diagnosis process is skipped in this way, the battery deterioration diagnosis unit 4 ′ performs the selection process again and again sets two transient response data (first transient response data) so that at least one transient response data is different from the previous one. And the second transient response data) can be selected.

[データ抽出方法]
次に、本実施形態に係るデータ抽出方法について説明する。本実施形態に係るデータ抽出方法は、抽出ステップと診断ステップとを含む。
[Data extraction method]
Next, a data extraction method according to this embodiment will be described. The data extraction method according to the present embodiment includes an extraction step and a diagnosis step.

抽出ステップは、第2実施形態に係るデータ抽出装置1’が電流測定データから複数の過渡応答データを抽出するステップであり、第1実施形態と大部分が共通している。すなわち、抽出ステップは、
(1)電流測定データにおいて、電流値の変化量が第1閾値X1以上となる第1区間を特定する第1ステップと、
(2)第1区間の始点と連続し、始点の電流値に対する変化量が第1閾値X1よりも小さい第2閾値X2以下となる前区間を特定する第2ステップと、
(3)第1区間の終点と連続し、終点の電流値に対する変化量が第1閾値X1よりも小さい第3閾値X3以下となる後区間を特定する第3ステップと、
(4)前区間の始点から後区間の終点までの電流値データを過渡応答データとして抽出する第4ステップと、
を含む。
The extraction step is a step in which the data extraction device 1 ′ according to the second embodiment extracts a plurality of transient response data from the current measurement data, and is mostly common to the first embodiment. That is, the extraction step is:
(1) In the current measurement data, a first step for identifying a first section in which the amount of change in the current value is equal to or greater than the first threshold value X1;
(2) a second step of specifying a previous section that is continuous with the start point of the first section and in which a change amount with respect to the current value of the start point is equal to or less than a second threshold value X2 that is smaller than the first threshold value X1;
(3) a third step of specifying a rear section that is continuous with the end point of the first section and in which the amount of change with respect to the current value of the end point is equal to or less than a third threshold value X3 that is smaller than the first threshold value X1;
(4) a fourth step of extracting current value data from the start point of the previous section to the end point of the subsequent section as transient response data;
including.

診断ステップは、第2実施形態に係るデータ抽出装置1’が、抽出ステップにおいて抽出した複数の過渡応答データから2つの過渡応答データ(第1過渡応答データと第2過渡応答データ)を選択し、当該第1過渡応答データおよび第2過渡応答データに基づいてリチウムイオン二次電池の電池劣化を診断するステップである。   In the diagnosis step, the data extraction device 1 ′ according to the second embodiment selects two transient response data (first transient response data and second transient response data) from the plurality of transient response data extracted in the extraction step, This is a step of diagnosing battery deterioration of the lithium ion secondary battery based on the first transient response data and the second transient response data.

具体的には、診断ステップは、
(1)複数の過渡応答データから第1過渡応答データと第2過渡応答データとを選択するステップと(例えば、図10参照)、
(2)第1過渡応答データにおいて電流値が第1閾値X1以上変化した後の第1電流値A1から第2過渡応答データにおいて電流値が第1閾値X1以上変化した後の第2電流値A2までの各電流値(A1、・・・、A2)と、第1電流値A1の測定時における第1電圧値V1から第2電流値A2の測定時における第2電圧値V2までの各電圧値(V1、・・・、V2)とを乗算して各乗算結果を加算するとともに、その加算結果にサンプリング間隔△Tを乗算した電力積分値△Q(=(V1×A1+・・・+V2×A2)×△T)を算出するステップと、
(3)第1電流値A1の測定時におけるリチウムイオン二次電池のSOCに対応する電圧VE1と第2電流値A2の測定時におけるリチウムイオン二次電池のSOCに対応する電圧VE2との差分△V(>0)を算出するステップと、
(4)電力積分値△Qを差分△Vで除算した値を劣化指標△Q/△Vとし、劣化指標△Q/△Vに基づいてリチウムイオン二次電池の電池劣化を診断するステップと、
を含む。なお、各ステップは、電池劣化診断部4’の選択処理、第1算出処理、第2算出処理および診断処理と同様であるため、説明を省略する。
Specifically, the diagnostic step is:
(1) selecting first transient response data and second transient response data from a plurality of transient response data (for example, see FIG. 10);
(2) The second current value A2 after the current value has changed more than the first threshold value X1 in the second transient response data from the first current value A1 after the current value has changed more than the first threshold value X1 in the first transient response data. Current values (A1,..., A2) and voltage values from the first voltage value V1 when measuring the first current value A1 to the second voltage value V2 when measuring the second current value A2. (V1,..., V2) are multiplied and each multiplication result is added, and the addition result is multiplied by a sampling interval ΔT. Power integral value ΔQ (= (V1 × A1 +... + V2 × A2) ) × ΔT),
(3) The difference between the voltage VE1 corresponding to the SOC of the lithium ion secondary battery at the time of measuring the first current value A1 and the voltage VE2 corresponding to the SOC of the lithium ion secondary battery at the time of measuring the second current value A2. Calculating V (>0);
(4) A value obtained by dividing the power integral value ΔQ by the difference ΔV is set as a deterioration index ΔQ / ΔV, and the battery deterioration of the lithium ion secondary battery is diagnosed based on the deterioration index ΔQ / ΔV;
including. Since each step is the same as the selection process, the first calculation process, the second calculation process, and the diagnosis process of the battery deterioration diagnosis unit 4 ′, description thereof is omitted.

[データ抽出プログラム]
次に、本実施形態に係るデータ抽出プログラムについて説明する。本実施形態に係るデータ抽出プログラムは、コンピュータに第2実施形態に係るデータ抽出方法を実行させるためのものである。換言すれば、コンピュータを第2実施形態に係るデータ抽出装置1’として機能させるためのものである。
[Data extraction program]
Next, the data extraction program according to this embodiment will be described. The data extraction program according to the present embodiment is for causing a computer to execute the data extraction method according to the second embodiment. In other words, the computer functions as the data extraction device 1 ′ according to the second embodiment.

結局、本実施形態に係るデータ抽出装置1’、データ抽出方法およびデータ抽出プログラムによれば、過渡応答特性を有するリチウムイオン二次電池の測定データからリチウムイオン二次電池の電池劣化の診断に適した過渡応答データを自動的に抽出することができる。さらに、本実施形態に係るデータ抽出装置1’、データ抽出方法およびデータ抽出プログラムによれば、抽出した2つの過渡応答データ(第1過渡応答データと第2過渡応答データ)に基づいて劣化指標△Q/△Vを算出することで、劣化指標△Q/△Vを用いてリチウムイオン二次電池の電池劣化を診断することができる。   After all, according to the data extraction apparatus 1 ′, the data extraction method, and the data extraction program according to the present embodiment, it is suitable for diagnosis of battery deterioration of the lithium ion secondary battery from the measurement data of the lithium ion secondary battery having transient response characteristics. The transient response data can be extracted automatically. Furthermore, according to the data extraction device 1 ′, the data extraction method, and the data extraction program according to the present embodiment, the degradation index Δ is based on the extracted two transient response data (first transient response data and second transient response data). By calculating Q / ΔV, battery deterioration of the lithium ion secondary battery can be diagnosed using the deterioration index ΔQ / ΔV.

ところで、リチウムイオン二次電池の電池劣化には、内部抵抗に変化が見られなくても電池容量が減少(劣化)している場合や、電池容量に変化が見られなくても内部抵抗が増加(劣化)している場合や、内部抵抗も電池容量も劣化している場合がある。図11に、充放電回数に対するリチウムイオン二次電池の電池容量[kWh](図11の実線)、抵抗RB1[Ω](図11の黒の丸)、劣化指標△Q/△V[kWh/V](図11の黒の四角)の関係を示す。なお、図11において、一点鎖線は抵抗RB1の近似曲線を示し、破線は劣化指標△Q/△Vの近似曲線を示す。また、比較のために、縦軸のスケールを調整している。 By the way, for battery deterioration of a lithium ion secondary battery, the internal resistance increases even if the battery capacity decreases (deteriorates) even if the internal resistance does not change or the battery capacity does not change. (Deterioration) or internal resistance and battery capacity may be deteriorated. FIG. 11 shows the battery capacity [kWh] (solid line in FIG. 11), resistance R B1 [Ω] (black circle in FIG. 11), deterioration index ΔQ / ΔV [kWh] with respect to the number of charge / discharge cycles. / V] (black square in FIG. 11). In FIG. 11, the alternate long and short dash line indicates an approximate curve of the resistance R B1 , and the broken line indicates an approximate curve of the deterioration index ΔQ / ΔV. In addition, the scale of the vertical axis is adjusted for comparison.

図11(A)および(B)において、リチウムイオン二次電池の電池容量は、リチウムイオン二次電池をフル充電した後にフル放電させて測定したものである。抵抗RB1は、第1実施形態に係るデータ抽出装置1で測定したものである。劣化指標△Q/△Vは、第2実施形態に係るデータ抽出装置1’で測定したものであるが(A)の劣化指標△Q/△Vは、リチウムイオン二次電池のSOC全領域での劣化指標△Q/△Vの平均値であるのに対して、(B)の劣化指標△Q/△Vは、リチウムイオン二次電池のSOCが40%未満での劣化指標△Q/△Vの平均値である。 11A and 11B, the battery capacity of the lithium ion secondary battery is measured by fully discharging the lithium ion secondary battery and then fully discharging it. The resistance R B1 is measured by the data extraction device 1 according to the first embodiment. The degradation index ΔQ / ΔV is measured by the data extraction apparatus 1 ′ according to the second embodiment, but the degradation index ΔQ / ΔV in (A) is the entire SOC range of the lithium ion secondary battery. The deterioration index ΔQ / ΔV of (B) is the deterioration index ΔQ / Δ when the SOC of the lithium ion secondary battery is less than 40%. Average value of V.

図11(A)および(B)に示されているように、抵抗RB1は、充放電回数が増えるにつれて増加している。一方、劣化指標△Q/△Vとリチウムイオン二次電池の電池容量は、充放電回数が増えるにつれてほぼ同じ傾向で減少している。特に、図11(A)では、劣化指標△Q/△Vがリチウムイオン二次電池本来の電池容量の変化をかなり正確に表現できていることが分かる。また、図11(B)においても、劣化指標△Q/△Vについて不安定性(推定バラツキの増加)が観察されるものの、充放電回数の増加に伴う減少傾向が観察される。以上のことから、劣化指標△Q/△Vを測定することで、リチウムイオン二次電池の電池容量の劣化を診断できること、より詳しくは、測定領域が低SOC領域(ここでは、SOC40%未満の領域)の場合であっても、電池容量の劣化を診断でき、測定領域がSOC全領域の場合は、より正確に電池容量の劣化を診断できることが分かる。すなわち、第1実施形態によればリチウムイオン二次電池の内部抵抗の劣化を診断することができ、第2実施形態によればリチウムイオン二次電池の電池容量の劣化を診断することができる。 As shown in FIGS. 11A and 11B, the resistance R B1 increases as the number of charge / discharge cycles increases. On the other hand, the deterioration index ΔQ / ΔV and the battery capacity of the lithium ion secondary battery decrease with the same tendency as the number of charge / discharge cycles increases. In particular, in FIG. 11A, it can be seen that the deterioration index ΔQ / ΔV can express the change in the original battery capacity of the lithium ion secondary battery fairly accurately. Also, in FIG. 11B, although instability (increase in estimated variation) is observed for the degradation index ΔQ / ΔV, a decreasing trend with an increase in the number of charge / discharge cycles is observed. From the above, it is possible to diagnose the deterioration of the battery capacity of the lithium ion secondary battery by measuring the deterioration index ΔQ / ΔV. More specifically, the measurement area is a low SOC area (here, less than 40% SOC). Even in the case of (region), it can be seen that battery capacity deterioration can be diagnosed, and when the measurement area is the entire SOC area, battery capacity deterioration can be diagnosed more accurately. That is, according to the first embodiment, deterioration of the internal resistance of the lithium ion secondary battery can be diagnosed, and according to the second embodiment, deterioration of the battery capacity of the lithium ion secondary battery can be diagnosed.

したがって、第1実施形態と第2実施形態とを併用することで、具体的には、第1実施形態の電池劣化診断部4に電池劣化診断部4’の機能を追加するか、または第2実施形態の電池劣化診断部4’に電池劣化診断部4の機能を追加することで、リチウムイオン二次電池の電池劣化を、(1)内部抵抗のみが劣化している場合と、(2)電池容量のみが劣化している場合と、(3)内部抵抗も電池容量も劣化している場合とに大別できる。   Therefore, by combining the first embodiment and the second embodiment, specifically, the function of the battery deterioration diagnosis unit 4 ′ is added to the battery deterioration diagnosis unit 4 of the first embodiment, or the second By adding the function of the battery deterioration diagnosis unit 4 to the battery deterioration diagnosis unit 4 ′ of the embodiment, the battery deterioration of the lithium ion secondary battery is (1) when only the internal resistance is deteriorated, and (2) It can be broadly divided into a case where only the battery capacity is deteriorated and a case (3) where both the internal resistance and the battery capacity are deteriorated.

例えば、自動車用のリチウムイオン二次電池は、内部抵抗が劣化していると自動車用として使用することはできないが、電池容量が劣化していなければ(劣化が比較的少ない場合も含む)、家庭用のリチウムイオン二次電池として再利用することができる。第1実施形態と第2実施形態とを併用することで、このように再利用可能なリチウムイオン二次電池を選別することができる。   For example, lithium ion secondary batteries for automobiles cannot be used for automobiles if their internal resistance has deteriorated, but if the battery capacity has not deteriorated (including cases where the deterioration is relatively small), It can be reused as a lithium ion secondary battery. By using the first embodiment and the second embodiment in combination, a reusable lithium ion secondary battery can be selected.

以上、本発明に係るデータ抽出装置、データ抽出方法およびデータ抽出プログラムの各実施形態について説明したが、本発明は上記各実施形態に限定されるものではない。   The embodiments of the data extraction device, the data extraction method, and the data extraction program according to the present invention have been described above, but the present invention is not limited to the above embodiments.

(第1実施形態に関する変形例)
例えば、上記第1実施形態に係るデータ抽出装置1では、記憶部2および抽出部3と、電池劣化診断部4および入力受付部5とを別々の装置にすることができる。この場合、記憶部2および抽出部3のみが、本発明に係るデータ抽出装置となる。さらに、この場合、第5ステップを除く第1〜第4ステップが本発明に係るデータ抽出方法に含まれることになり、データ抽出プログラムは、第5ステップを含まないデータ抽出方法をコンピュータに実行させるためのプログラムとなる。
(Modification regarding the first embodiment)
For example, in the data extraction device 1 according to the first embodiment, the storage unit 2 and the extraction unit 3, the battery deterioration diagnosis unit 4, and the input reception unit 5 can be separate devices. In this case, only the storage unit 2 and the extraction unit 3 are the data extraction device according to the present invention. In this case, the first to fourth steps except for the fifth step are included in the data extraction method according to the present invention, and the data extraction program causes the computer to execute the data extraction method that does not include the fifth step. Program.

第1区間の範囲(データ数)が3以上に設定されている場合、第1処理および第1ステップにおける電流値の変化量は、第1区間の始点の電流値データと第1区間の終点の電流値データとに基づいて演算することができる。例えば、第1区間の範囲(データ数)が3の場合、抽出部3は、電流測定データに含まれるn個目の電流値データと(n+2)個目の電流値データとに基づいて電流値の変化量を演算することができる。なお、前区間の範囲および後区間の範囲は、いずれも第1区間の範囲よりも広く(データ数が多く)なるように設定されることが好ましい。   When the range (number of data) of the first section is set to 3 or more, the amount of change in the current value in the first process and the first step is the current value data at the start point of the first section and the end point of the first section. Calculation can be performed based on the current value data. For example, when the range (number of data) of the first section is 3, the extraction unit 3 determines the current value based on the nth current value data and the (n + 2) th current value data included in the current measurement data. Can be calculated. Note that the range of the previous section and the range of the rear section are preferably set so as to be wider (the number of data is larger) than the range of the first section.

また、上記第1実施形態において、回生機能を持たない電動バイクを例に挙げたが、もちろん回生機能を有するハイブリッドカーにも本発明を適用することができる。この場合、第1区間における放電から電流遮断への電流変化を検出するのみならず、充電から電流遮断への変化を検出するものであってもよい。   Moreover, in the said 1st Embodiment, although the electric motorcycle which does not have a regeneration function was mentioned as an example, of course, this invention is applicable also to the hybrid car which has a regeneration function. In this case, not only the current change from the discharge to the current interruption in the first section but also the change from the charge to the current interruption may be detected.

さらに、前区間と後区間の電流変化量がそれぞれの閾値以内であれば、第1区間における電流変化が多少オーバーシュートもしくはアンダーシュートしても、若干の補正を加えるだけで本発明が適用できる。例えば、電流が放電から(電流遮断を通りこして)充電に変化したとしても、その後の(後区間における)電流変化が小さければ充電時の電圧は単調増加(逆に、充電から放電に変化した場合には単調減少)することが予測されるので、その分を補正すれば、電流遮断時の電圧変化を推定することができる。つまり、これらはモデルAやモデルBに相当する推定手法である。   Furthermore, if the amount of current change in the previous section and the subsequent section is within the respective threshold values, the present invention can be applied with only slight correction even if the current change in the first section is somewhat overshooted or undershooted. For example, even if the current changes from discharging to charging (through current interruption), if the current change thereafter (in the subsequent section) is small, the voltage during charging increases monotonously (conversely, changing from charging to discharging) In this case, it is predicted that the voltage decreases monotonously), and if the amount is corrected, the voltage change at the time of current interruption can be estimated. That is, these are estimation methods corresponding to model A and model B.

(第2実施形態に関する変形例)
第1実施形態の電池劣化診断における抵抗RB1の算出にはモデルCを利用したデータ抽出プログラムによる手段(データ抽出方法またはデータ抽出装置)を用いることが有効であるが、第2実施形態の電池劣化診断における劣化指標△Q/△Vの算出は、モデルCを利用したデータ抽出プログラム(データ抽出方法またはデータ抽出装置)に依存せずに任意の2点間での電力積分値を使用することも可能である。ただし、モデルCを利用したデータ抽出プログラム等に依存しないためには、抵抗RB1の推定やSOCの推定を実行できるモデルAやモデルB等の他の手法の適用が必要である。なお、モデルAとかモデルBでは、モデルCのように電流遮断後を前提としていないため、電流が零ではない、過渡応答時の電流の任意波形を対象とすることになる。
(Modification regarding the second embodiment)
For the calculation of the resistance R B1 in the battery deterioration diagnosis of the first embodiment, it is effective to use a means (data extraction method or data extraction apparatus) based on a data extraction program using the model C, but the battery of the second embodiment The calculation of the deterioration index ΔQ / ΔV in the deterioration diagnosis uses the power integrated value between any two points without depending on the data extraction program (data extraction method or data extraction apparatus) using the model C. Is also possible. However, in order not to depend on a data extraction program using the model C, it is necessary to apply other methods such as the model A and the model B that can execute the estimation of the resistance R B1 and the estimation of the SOC. Note that model A and model B do not assume after current interruption as in model C, and therefore target an arbitrary waveform of current during transient response, where the current is not zero.

電流が零ではない過渡応答時の電流波形を対象とする場合、下記のとおり、過渡応答時における等価回路(モデルC’)の回路パラメータを利用して劣化指標△Q/△Vを算出することで、上記第2実施形態とほぼ同様に、リチウムイオン二次電池の電池容量の劣化を診断することができる。   When the current waveform during a transient response where the current is not zero is targeted, the degradation index ΔQ / ΔV is calculated using the circuit parameters of the equivalent circuit (model C ′) during the transient response as described below. Thus, the deterioration of the battery capacity of the lithium ion secondary battery can be diagnosed in substantially the same manner as in the second embodiment.

図12に、過渡応答時における等価回路(モデルC’)を示す。この等価回路は、図3に示す等価回路(モデルC)に、内部電圧Vの電圧偏差△Vを出力する電圧源△Eを追加したものである。電圧偏差△Vは図2(A)の等価回路にも存在するが、図2(A)の電圧偏差△Vが任意の関数であるのに対して、モデルC’における電圧偏差△Vは、線形関数である。この等価回路(モデルC’)から、リチウムイオン二次電池の過渡応答時の端子電圧Vは、下記の(3)式で与えられる。

Figure 0006161133
(3)式の△Vは、上記のとおり、リチウムイオン二次電池の充電や放電による内部電圧Vの変化を表現する項であり、電流が一定の場合には、単調に時間変化する線形関数である。△Vは、放電の場合は単調減少し、充電の場合は単調増加する。 FIG. 12 shows an equivalent circuit (model C ′) at the time of transient response. The equivalent circuit, the equivalent circuit (Model C) shown in FIG. 3, with the addition of a voltage source △ E 0 for outputting a voltage difference △ V 0 of the internal voltage V 0. Although the voltage difference △ V 0 is also present in the equivalent circuit shown in FIG. 2 (A), the voltage difference △ V 0 shown in FIG. 2 (A) that is an arbitrary function, voltage deviation in the model C '△ V 0 is a linear function. From this equivalent circuit (model C ′), the terminal voltage V B at the transient response of the lithium ion secondary battery is given by the following equation (3).
Figure 0006161133
In the equation (3), ΔV 0 is a term that expresses a change in the internal voltage V 0 due to charging or discharging of the lithium ion secondary battery as described above, and changes monotonically with time when the current is constant. It is a linear function. ΔV 0 monotonously decreases in the case of discharging and monotonously increases in the case of charging.

また、図13(A)〜(C)に示すように、電流が零ではない過渡応答時(モデルC’)の電圧変化I(図13(A)参照)は、電流が零になる過渡応答時(モデルC)の電圧変化II(図13(B)参照)に、内部電圧Vの電圧偏差△Vにより表現される電圧変化IIIを加えたもの(または、電圧変化IIIを差し引いたもの)であることからも(図13(C)参照)、電流が零ではない過渡応答時のリチウムイオン二次電池の端子電圧Vは、上記の(3)式で与えられることが分かる。 Further, as shown in FIGS. 13A to 13C, during the transient response where the current is not zero (model C ′), the voltage change I (see FIG. 13A) is a transient response in which the current becomes zero. when the voltage change (model C) II (see FIG. 13 (B)), plus the voltage variation III represented by the voltage difference △ V 0 of the internal voltage V 0 (or minus the voltage change III (See FIG. 13C), it can be seen that the terminal voltage V B of the lithium ion secondary battery at the time of transient response where the current is not zero is given by the above equation (3).

したがって、等価回路(モデルC’)の回路パラメータを利用する場合、電池劣化診断部4’は、
(1)選択処理において、抽出部3が抽出した複数の過渡応答データから、電流が零ではない過渡応答時の第1過渡応答データおよび第2過渡応答データを選択し、
(2)第1算出処理において、第1過渡応答データ内の第1電流値A1から第2過渡応答データ内の第2電流値A2までの各電流値(A1、・・・、A2)と、第1電流値A1の測定時における第1電圧値V1から第2電流値A2の測定時における第2電圧値V2までの各電圧値(V1、・・・、V2)とを乗算して各乗算結果を加算するとともに、その加算結果にサンプリング間隔△Tを乗算した電力積分値△Q(=(V1×A1+・・・+V2×A2)×△T)を算出し、
(3)第2算出処理において、第1電流値A1の測定時におけるリチウムイオン二次電池のSOCに対応する電圧VE1(=(3)式の内部電圧V(V1)+電圧偏差△V(V1))と第2電流値A2の測定時におけるリチウムイオン二次電池のSOCに対応する電圧VE2(=(3)式の内部電圧V(V2)+電圧偏差△V(V2))との差分△V(>0)を算出し、
(4)診断処理において、電力積分値△Qを差分△Vで除算した値を劣化指標△Q/△Vとし、劣化指標△Q/△Vに基づいてリチウムイオン二次電池の電池劣化を診断する。
Therefore, when the circuit parameters of the equivalent circuit (model C ′) are used, the battery deterioration diagnosis unit 4 ′
(1) In the selection process, the first transient response data and the second transient response data at the time of the transient response in which the current is not zero are selected from the plurality of transient response data extracted by the extraction unit 3,
(2) In the first calculation process, each current value (A1,..., A2) from the first current value A1 in the first transient response data to the second current value A2 in the second transient response data; Each multiplication is performed by multiplying each voltage value (V1,..., V2) from the first voltage value V1 when measuring the first current value A1 to the second voltage value V2 when measuring the second current value A2. The result is added, and the power integration value ΔQ (= (V1 × A1 +... + V2 × A2) × ΔT) obtained by multiplying the addition result by the sampling interval ΔT is calculated.
(3) In the second calculation process, the voltage VE1 corresponding to the SOC of the lithium ion secondary battery at the time of measuring the first current value A1 (= the internal voltage V 0 (V1) of the equation (3) + voltage deviation ΔV 0 (V1)) and the voltage VE2 corresponding to the SOC of the lithium ion secondary battery at the time of measuring the second current value A2 (= the internal voltage V 0 (V2) + voltage deviation ΔV 0 (V2) in equation (3)) ΔV (> 0) is calculated from
(4) In the diagnosis process, a value obtained by dividing the power integral value ΔQ by the difference ΔV is set as a deterioration index ΔQ / ΔV, and the battery deterioration of the lithium ion secondary battery is diagnosed based on the deterioration index ΔQ / ΔV. To do.

さらに、上記第2実施形態では、モデルCで求めた時点と、他のモデルAやモデルBで推定した時点の2点間での電力積分値△Qを算出していくような、組み合わせも可能である。例えば、第1過渡応答データに含まれる第1電流値A1から別の方法(モデルAやモデルBを利用した方法)で抽出した第3過渡応答データに含まれる第3電流値A3までの各電流値(A1、・・・、A3)と、第1電圧値V1から第3電流値A3の測定時における第3電圧値V3までの各電圧値(V1、・・・、V3)とを乗算して各乗算結果を加算するとともに、その加算結果にサンプリング間隔△Tを乗算した電力積分値△Q(=(V1×A1+・・・+V3×A3)×△T)を算出してもよい。   Furthermore, in the second embodiment, a combination is possible in which the power integration value ΔQ between the two points of the time point obtained by the model C and the time point estimated by the other models A and B is calculated. It is. For example, each current from the first current value A1 included in the first transient response data to the third current value A3 included in the third transient response data extracted by another method (method using model A or model B). The value (A1,..., A3) is multiplied by the respective voltage values (V1,..., V3) from the first voltage value V1 to the third voltage value V3 when measuring the third current value A3. In addition, the multiplication results may be added, and the power integration value ΔQ (= (V1 × A1 +... + V3 × A3) × ΔT) obtained by multiplying the addition result by the sampling interval ΔT may be calculated.

また、上記第2実施形態では、2つの過渡応答データ(第1過渡応答データと第2過渡応答データ)から算出した劣化指標△Q/△Vを用いて、リチウムイオン二次電池の電池劣化を診断しているが、1つの過渡応答データのみから算出した劣化指標△Q/△Vを用いて、リチウムイオン二次電池の電池劣化を診断してもよい。   In the second embodiment, the battery deterioration of the lithium ion secondary battery is determined by using the deterioration index ΔQ / ΔV calculated from the two transient response data (first transient response data and second transient response data). Although the diagnosis is made, the battery deterioration of the lithium ion secondary battery may be diagnosed using the deterioration index ΔQ / ΔV calculated from only one transient response data.

例えば、第1過渡応答データのみを用いる場合、電池劣化診断部4’は、
(1)複数の過渡応答データから第1過渡応答データを選択する選択処理と、
(2)第1過渡応答データにおいて電流値が第1閾値X1以上変化した後の第1電流値A1から当該第1過渡応答データの後区間内の電流値Aまでの各電流値(A1、・・・、A)と、第1電流値A1の測定時における第1電圧値V1から電流値Aの測定時における電圧値Vまでの各電圧値(V1、・・・、V)とを乗算して各乗算結果を加算するとともに、その加算結果にサンプリング間隔△Tを乗算した電力積分値△Q(=(V1×A1+・・・+V×A)×△T)を算出する第1算出処理と、
(3)第1電流値A1の測定時におけるリチウムイオン二次電池のSOCに対応する電圧VE1と電流値Aの測定時におけるリチウムイオン二次電池のSOCに対応する電圧VEとの差分△V(>0)を算出する第2算出処理と、
(4)電力積分値△Qを差分△Vで除算した値を劣化指標△Q/△Vとし、劣化指標△Q/△Vに基づいてリチウムイオン二次電池の電池劣化を診断する診断処理と、
を実行する。
For example, when only the first transient response data is used, the battery deterioration diagnosis unit 4 ′
(1) selection processing for selecting first transient response data from a plurality of transient response data;
(2) the current value from the first current value A1 after the current value in the first transient response data changes first threshold X1 or until the current value A X of the first in the interval after the transient response data (A1, ..., and a X), each voltage value from the first voltage value V1 at the time of measurement of the first current value A1 to a voltage value V X during measurement of the current value a X (V1, ..., V X ) And adding each multiplication result and multiplying the addition result by a sampling interval ΔT to obtain a power integral value ΔQ (= (V1 × A1 +... + V X × A X ) × ΔT). A first calculation process to calculate;
(3) the difference between the voltages VE X corresponding to the SOC of the lithium ion secondary battery at the time of measurement of the voltage VE1 and current values A X corresponding to the SOC of the lithium ion secondary battery at the time of measurement of the first current value A1 △ A second calculation process for calculating V (>0);
(4) A diagnostic process for diagnosing battery deterioration of the lithium ion secondary battery based on the degradation index ΔQ / ΔV, with a value obtained by dividing the power integral value ΔQ by the difference ΔV as a degradation index ΔQ / ΔV; ,
Execute.

この変形例の方法(1つの過渡応答データのみから劣化指標△Q/△Vを算出する方法)と、上記第2実施形態の方法(2つの過渡応答データから劣化指標△Q/△Vを算出する方法)は、下記の点を踏まえて使い分けることが好ましい。
(1)上記第2実施形態の方法は、電流変化(過渡応答)の頻度が高く、抽出される過渡応答データの出現頻度が高い場合に、有効である。
(2)この変形例の方法は、電流変化(過渡応答)の頻度が低く、抽出される過渡応答データの出現頻度が低いものの、電流変化後(過渡応答後)の電流値が一定となる時間が継続する場合(放電状態または充電状態が継続する場合)に、有効である。
The method of this modification (a method of calculating the degradation index ΔQ / ΔV from only one transient response data) and the method of the second embodiment (the degradation index ΔQ / ΔV is calculated from two transient response data) It is preferable to use a different method based on the following points.
(1) The method of the second embodiment is effective when the frequency of current change (transient response) is high and the frequency of appearance of extracted transient response data is high.
(2) In the method of this modification, the frequency of current change (transient response) is low and the frequency of appearance of the extracted transient response data is low, but the current value after the current change (after transient response) is constant. Is effective when the battery continues (when the discharged state or the charged state continues).

なお、この変形例における第1過渡応答データの範囲は、上記第2実施形態における第1過渡応答データの範囲よりも広い方が好ましい。   In addition, it is preferable that the range of the first transient response data in this modification is wider than the range of the first transient response data in the second embodiment.

(その他の変形例)
上記各実施形態では、二次電池としてリチウムイオン二次電池を例に挙げて説明したが、本発明に係るデータ抽出装置およびデータ抽出方法は、過渡応答特性を有する二次電池であれば、リチウムイオン二次電池以外にも適用することができる。
(Other variations)
In each of the above embodiments, a lithium ion secondary battery has been described as an example of a secondary battery. However, the data extraction device and the data extraction method according to the present invention can be used as long as the secondary battery has transient response characteristics. It can be applied to other than ion secondary batteries.

また、本発明は車やバイクなどの輸送手段以外にも、例えば住宅への電力供給用の太陽光発電システムにおける蓄電池にも適用できる。この種のシステムにおいても天候の急激な変化等により充放電電流が遮断もしくはそれに近い状態に変化する場合があるからである。ただし、車やバイクと比べて全般的に変化が緩いので、それに合わせてサンプリング間隔を長くする(例えば2秒以上)など、若干の最適化は必要である。   Further, the present invention can be applied to, for example, a storage battery in a solar power generation system for supplying electric power to a house, in addition to transportation means such as a car and a motorcycle. This is because even in this type of system, the charging / discharging current may be interrupted or changed to a state close thereto due to a sudden change in the weather. However, since changes are generally gentle compared to cars and motorcycles, some optimization is required, such as increasing the sampling interval accordingly (for example, 2 seconds or more).

1、1’ データ抽出装置
2 記憶部
3 抽出部
4、4’ 電池劣化診断部
5 入力受付部
DESCRIPTION OF SYMBOLS 1, 1 'Data extraction device 2 Memory | storage part 3 Extraction part 4, 4' Battery deterioration diagnostic part 5 Input reception part

Claims (18)

過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データを格納する記憶部と、
前記記憶部に格納された前記電流測定データから前記二次電池の過渡応答時の過渡応答データを抽出する抽出部と、
を備えたデータ抽出装置であって、
前記抽出部は、
電流値の変化量が第1閾値以上となる第1区間を特定する第1処理と、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2処理と、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3処理と、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4処理と、を実行する
ことを特徴とするデータ抽出装置。
A storage unit for storing current measurement data obtained by measuring a current value of a secondary battery having a transient response characteristic at a predetermined sampling interval;
An extraction unit for extracting transient response data during transient response of the secondary battery from the current measurement data stored in the storage unit;
A data extraction device comprising:
The extraction unit includes:
A first process for identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second process for identifying a previous section that is continuous with a start point of the first section and that has a change amount with respect to a current value of the start point that is less than or equal to a second threshold that is smaller than the first threshold;
A third process for identifying a subsequent section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
And a fourth process of extracting current value data from the start point of the preceding section to the end point of the subsequent section as the transient response data.
前記前区間および前記後区間は、前記第1区間よりも広い
ことを特徴とする請求項1に記載のデータ抽出装置。
The data extraction apparatus according to claim 1, wherein the front section and the rear section are wider than the first section.
前記二次電池の電池劣化を診断する電池劣化診断部をさらに備え、
前記記憶部には、前記二次電池の電圧値を前記サンプリング間隔で測定した電圧測定データが格納されており、
前記抽出部は、前記第4処理において、前記前区間の始点から前記後区間の終点までの電圧値データを前記過渡応答データに含めて抽出し、
前記電池劣化診断部は、前記過渡応答データに基づいて、前記二次電池の充電終了時または放電終了時における電気的等価回路の回路パラメータを算出し、前記回路パラメータに基づいて前記二次電池の電池劣化を診断する
ことを特徴とする請求項1または2に記載のデータ抽出装置。
A battery deterioration diagnosis unit for diagnosing battery deterioration of the secondary battery;
The storage unit stores voltage measurement data obtained by measuring the voltage value of the secondary battery at the sampling interval,
In the fourth process, the extraction unit extracts voltage value data from the start point of the previous section to the end point of the rear section in the transient response data,
The battery deterioration diagnosis unit calculates a circuit parameter of an electrical equivalent circuit at the end of charging or discharging of the secondary battery based on the transient response data, and based on the circuit parameter, The data extraction apparatus according to claim 1, wherein battery deterioration is diagnosed.
前記電気的等価回路は、前記二次電池の内部抵抗に相当する直列抵抗と、1段または2段のRC並列回路と、充電終了時または放電終了時における前記二次電池の内部電圧に相当する電圧を出力する電圧源とを直列接続した回路である
ことを特徴とする請求項3に記載のデータ抽出装置。
The electrical equivalent circuit corresponds to a series resistance corresponding to the internal resistance of the secondary battery, a one-stage or two-stage RC parallel circuit, and an internal voltage of the secondary battery at the end of charging or discharging. 4. The data extraction device according to claim 3, wherein the data extraction device is a circuit in which a voltage source that outputs a voltage is connected in series.
前記抽出部は、複数の前記過渡応答データを抽出し、
前記電池劣化診断部は、
複数の前記過渡応答データから第1過渡応答データおよび第2過渡応答データを選択する選択処理と、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から前記第2過渡応答データにおいて電流値が前記第1閾値以上変化した後の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出する第1算出処理と、
前記第1電圧値と、前記第2電圧値と、前記回路パラメータである前記内部電圧とに基づいて、前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出する第2算出処理と、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断する診断処理と、を実行する
ことを特徴とする請求項4に記載のデータ抽出装置。
The extraction unit extracts a plurality of the transient response data,
The battery deterioration diagnosis unit
A selection process for selecting first transient response data and second transient response data from the plurality of transient response data;
Each of the first transient response data from the first current value after the current value changes more than the first threshold value to the second current value after the current value changes more than the first threshold value in the second transient response data. Multiplying the current value by each voltage value from the first voltage value at the time of measuring the first current value to the second voltage value at the time of measuring the second current value, and adding each multiplication result, A first calculation process for calculating a power integral value obtained by multiplying the addition result by the sampling interval;
Based on the first voltage value, the second voltage value, and the internal voltage that is the circuit parameter, a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value, and the second A second calculation process for calculating a difference from a voltage corresponding to the SOC of the secondary battery at the time of measuring a current value;
5. The diagnosis processing for diagnosing battery deterioration of the secondary battery based on the deterioration index is performed using a value obtained by dividing the power integral value by the difference as a deterioration index. Data extraction device.
ユーザからの入力を受け付ける入力受付部をさらに備え、
前記入力受付部は、前記第1閾値、前記第2閾値、前記第3閾値、前記前区間の範囲および前記後区間の範囲に関する入力を受け付ける
ことを特徴とする請求項1〜5のいずれか一項に記載のデータ抽出装置。
An input receiving unit for receiving input from the user;
The said input reception part receives the input regarding the said 1st threshold value, the said 2nd threshold value, the said 3rd threshold value, the range of the said front area, and the range of the said back area, The any one of Claims 1-5 characterized by the above-mentioned. The data extraction device according to item.
過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データと、前記二次電池の電圧値を前記サンプリング間隔で測定した電圧測定データとを格納する記憶部と、
前記電流測定データから前記二次電池の過渡応答時における複数の過渡応答データを抽出する抽出部と、
前記複数の過渡応答データのうちの第1過渡応答データと第2過渡応答データとに基づいて前記二次電池の電池劣化を診断する電池劣化診断部と、
を備えたデータ抽出装置であって、
前記抽出部は、
電流値の変化量が第1閾値以上となる第1区間を特定する第1処理と、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2処理と、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3処理と、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4処理と、を実行し、
前記電池劣化診断部は、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から前記第2過渡応答データにおいて電流値が前記第1閾値以上変化した後の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出する第1算出処理と、
前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出する第2算出処理と、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断する診断処理と、を実行する
ことを特徴とするデータ抽出装置。
A storage unit for storing current measurement data obtained by measuring a current value of a secondary battery having a transient response characteristic at a predetermined sampling interval, and voltage measurement data obtained by measuring a voltage value of the secondary battery at the sampling interval;
An extraction unit for extracting a plurality of transient response data at the time of transient response of the secondary battery from the current measurement data;
A battery deterioration diagnosis unit that diagnoses battery deterioration of the secondary battery based on first transient response data and second transient response data of the plurality of transient response data;
A data extraction device comprising:
The extraction unit includes:
A first process for identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second process for identifying a previous section that is continuous with a start point of the first section and that has a change amount with respect to a current value of the start point that is less than or equal to a second threshold that is smaller than the first threshold;
A third process for identifying a subsequent section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
Performing a fourth process of extracting current value data from the start point of the preceding section to the end point of the subsequent section as the transient response data;
The battery deterioration diagnosis unit
Each of the first transient response data from the first current value after the current value changes more than the first threshold value to the second current value after the current value changes more than the first threshold value in the second transient response data. Multiplying the current value by each voltage value from the first voltage value at the time of measuring the first current value to the second voltage value at the time of measuring the second current value, and adding each multiplication result, A first calculation process for calculating a power integral value obtained by multiplying the addition result by the sampling interval;
A second calculation process for calculating a difference between a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value and a voltage corresponding to the SOC of the secondary battery at the time of measuring the second current value; ,
A data extraction apparatus that performs a diagnosis process for diagnosing battery deterioration of the secondary battery based on the deterioration index, using a value obtained by dividing the power integral value by the difference as a deterioration index.
前記電池劣化診断部は、前記第2算出処理において、前記第1電圧値と、前記第2電圧値と、前記二次電池の充電終了時または放電終了時における電気的等価回路の回路パラメータとに基づいて前記差分を算出し、
前記電気的等価回路は、前記二次電池の内部抵抗に相当する直列抵抗と、1段または2段のRC並列回路と、充電終了時または放電終了時における前記二次電池の内部電圧に相当する電圧を出力する電圧源とを直列接続した回路であり、
前記回路パラメータは、前記内部電圧である
ことを特徴とする請求項7に記載のデータ抽出装置。
In the second calculation process, the battery deterioration diagnosis unit uses the first voltage value, the second voltage value, and circuit parameters of an electrical equivalent circuit at the end of charging or discharging of the secondary battery. Based on the difference,
The electrical equivalent circuit corresponds to a series resistance corresponding to the internal resistance of the secondary battery, a one-stage or two-stage RC parallel circuit, and an internal voltage of the secondary battery at the end of charging or discharging. A circuit in which a voltage source that outputs voltage is connected in series,
The data extraction apparatus according to claim 7, wherein the circuit parameter is the internal voltage.
過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データと、前記二次電池の電圧値を前記サンプリング間隔で測定した電圧測定データとを格納する記憶部と、
前記電流測定データから前記二次電池の過渡応答時における複数の過渡応答データを抽出する抽出部と、
前記複数の過渡応答データから選択した第1過渡応答データのみに基づいて前記二次電池の電池劣化を診断する電池劣化診断部と、
を備えたデータ抽出装置であって、
前記抽出部は、
電流値の変化量が第1閾値以上となる第1区間を特定する第1処理と、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2処理と、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3処理と、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4処理と、を実行し、
前記電池劣化診断部は、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から当該第1過渡応答データの前記後区間内の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出する第1算出処理と、
前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出する第2算出処理と、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断する診断処理と、を実行する
ことを特徴とするデータ抽出装置。
A storage unit for storing current measurement data obtained by measuring a current value of a secondary battery having a transient response characteristic at a predetermined sampling interval, and voltage measurement data obtained by measuring a voltage value of the secondary battery at the sampling interval;
An extraction unit for extracting a plurality of transient response data at the time of transient response of the secondary battery from the current measurement data;
A battery deterioration diagnosis unit for diagnosing battery deterioration of the secondary battery based only on first transient response data selected from the plurality of transient response data;
A data extraction device comprising:
The extraction unit includes:
A first process for identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second process for identifying a previous section that is continuous with a start point of the first section and that has a change amount with respect to a current value of the start point that is less than or equal to a second threshold that is smaller than the first threshold;
A third process for identifying a subsequent section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
Performing a fourth process of extracting current value data from the start point of the preceding section to the end point of the subsequent section as the transient response data;
The battery deterioration diagnosis unit
In the first transient response data, each current value from a first current value after a current value has changed by more than the first threshold to a second current value in the subsequent section of the first transient response data, and the first Each voltage value from the first voltage value at the time of measuring the current value to the second voltage value at the time of measuring the second current value is multiplied and each multiplication result is added, and the sampling interval is added to the addition result. A first calculation process for calculating a multiplied power integral value;
A second calculation process for calculating a difference between a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value and a voltage corresponding to the SOC of the secondary battery at the time of measuring the second current value; ,
A data extraction apparatus that performs a diagnosis process for diagnosing battery deterioration of the secondary battery based on the deterioration index, using a value obtained by dividing the power integral value by the difference as a deterioration index.
過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データから、データ抽出装置が前記二次電池の過渡応答時の過渡応答データを抽出するデータ抽出方法であって、
電流値の変化量が第1閾値以上となる第1区間を特定する第1ステップと、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2ステップと、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3ステップと、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4ステップと、を含む
ことを特徴とするデータ抽出方法。
A data extraction method in which a data extraction device extracts transient response data at the time of transient response of the secondary battery from current measurement data obtained by measuring a current value of a secondary battery having transient response characteristics at a predetermined sampling interval,
A first step of identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second step of identifying a previous section that is continuous with a start point of the first section and in which a change amount with respect to a current value of the start point is equal to or less than a second threshold that is smaller than the first threshold;
A third step of identifying a rear section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
And a fourth step of extracting current value data from the start point of the preceding section to the end point of the subsequent section as the transient response data.
前記前区間および前記後区間は、前記第1区間よりも広い
ことを特徴とする請求項10に記載のデータ抽出方法。
The data extraction method according to claim 10, wherein the front section and the rear section are wider than the first section.
前記第4ステップにおいて、前記前区間の始点から前記後区間の終点までの電圧値データを前記過渡応答データに含めて抽出し、
前記過渡応答データに基づいて、前記二次電池の充電終了時または放電終了時における電気的等価回路の回路パラメータを算出し、前記回路パラメータに基づいて前記二次電池の電池劣化を診断する第5ステップをさらに含む
ことを特徴とする請求項10または11に記載のデータ抽出方法。
In the fourth step, voltage value data from the start point of the previous section to the end point of the rear section is included in the transient response data and extracted.
A circuit parameter of an electrical equivalent circuit at the end of charging or discharging of the secondary battery is calculated based on the transient response data, and a battery deterioration of the secondary battery is diagnosed based on the circuit parameter. The data extraction method according to claim 10, further comprising a step.
前記電気的等価回路は、前記二次電池の内部抵抗に相当する直列抵抗と、1段または2段のRC並列回路と、充電終了時または放電終了時における前記二次電池の内部電圧に相当する電圧を出力する電圧源とを直列接続した回路である
ことを特徴とする請求項12に記載のデータ抽出方法。
The electrical equivalent circuit corresponds to a series resistance corresponding to the internal resistance of the secondary battery, a one-stage or two-stage RC parallel circuit, and an internal voltage of the secondary battery at the end of charging or discharging. 13. The data extraction method according to claim 12, wherein the data extraction method is a circuit in which a voltage source that outputs a voltage is connected in series.
複数の前記過渡応答データのうちの第1過渡応答データと第2過渡応答データとに基づいて前記二次電池の電池劣化を診断する第6ステップをさらに含み、
前記第6ステップは、
複数の前記過渡応答データから前記第1過渡応答データおよび前記第2過渡応答データを選択するステップと、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から前記第2過渡応答データにおいて電流値が前記第1閾値以上変化した後の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出するステップと、
前記第1電圧値と、前記第2電圧値と、前記回路パラメータである前記内部電圧とに基づいて、前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出するステップと、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断するステップと、を含む
ことを特徴とする請求項13に記載のデータ抽出方法。
A sixth step of diagnosing battery deterioration of the secondary battery based on first transient response data and second transient response data of the plurality of transient response data;
The sixth step includes
Selecting the first transient response data and the second transient response data from a plurality of the transient response data;
Each of the first transient response data from the first current value after the current value changes more than the first threshold value to the second current value after the current value changes more than the first threshold value in the second transient response data. Multiplying the current value by each voltage value from the first voltage value at the time of measuring the first current value to the second voltage value at the time of measuring the second current value, and adding each multiplication result, Calculating a power integral value obtained by multiplying the addition result by the sampling interval;
Based on the first voltage value, the second voltage value, and the internal voltage that is the circuit parameter, a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value, and the second Calculating a difference from a voltage corresponding to the SOC of the secondary battery at the time of measuring a current value;
The data extraction method according to claim 13, further comprising: diagnosing battery deterioration of the secondary battery based on the deterioration index using a value obtained by dividing the power integral value by the difference as a deterioration index. Method.
過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データから、データ抽出装置が前記二次電池の過渡応答時における複数の過渡応答データを抽出する抽出ステップと、
前記二次電池の電圧値を前記サンプリング間隔で測定した電圧測定データと、前記複数の過渡応答データのうちの第1過渡応答データおよび第2過渡応答データとに基づいて、前記データ抽出装置が前記二次電池の電池劣化を診断する診断ステップと、
を含むデータ抽出方法であって、
前記抽出ステップは、
電流値の変化量が第1閾値以上となる第1区間を特定する第1ステップと、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2ステップと、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3ステップと、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4ステップと、を含み、
前記診断ステップは、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から前記第2過渡応答データにおいて電流値が前記第1閾値以上変化した後の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出するステップと、
前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出するステップと、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断するステップと、を含む
ことを特徴とするデータ抽出方法。
An extraction step in which the data extraction device extracts a plurality of transient response data at the time of the transient response of the secondary battery from current measurement data obtained by measuring the current value of the secondary battery having a transient response characteristic at a predetermined sampling interval;
Based on the voltage measurement data obtained by measuring the voltage value of the secondary battery at the sampling interval, and the first transient response data and the second transient response data of the plurality of transient response data, the data extraction device includes the data A diagnostic step for diagnosing battery deterioration of the secondary battery;
A data extraction method including:
The extraction step includes
A first step of identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second step of identifying a previous section that is continuous with a start point of the first section and in which a change amount with respect to a current value of the start point is equal to or less than a second threshold that is smaller than the first threshold;
A third step of identifying a rear section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
A fourth step of extracting current value data from the start point of the previous section to the end point of the rear section as the transient response data,
The diagnostic step includes
Each of the first transient response data from the first current value after the current value changes more than the first threshold value to the second current value after the current value changes more than the first threshold value in the second transient response data. Multiplying the current value by each voltage value from the first voltage value at the time of measuring the first current value to the second voltage value at the time of measuring the second current value, and adding each multiplication result, Calculating a power integral value obtained by multiplying the addition result by the sampling interval;
Calculating a difference between a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value and a voltage corresponding to the SOC of the secondary battery at the time of measuring the second current value;
And a step of diagnosing battery deterioration of the secondary battery based on the deterioration index using a value obtained by dividing the power integral value by the difference as a deterioration index.
前記診断ステップでは、前記第1電圧値と、前記第2電圧値と、前記二次電池の充電終了時または放電終了時における電気的等価回路の回路パラメータとに基づいて前記差分を算出し、
前記電気的等価回路は、前記二次電池の内部抵抗に相当する直列抵抗と、1段または2段のRC並列回路と、充電終了時または放電終了時における前記二次電池の内部電圧に相当する電圧を出力する電圧源とを直列接続した回路であり、
前記回路パラメータは、前記内部電圧である
ことを特徴とする請求項15に記載のデータ抽出方法。
In the diagnosis step, the difference is calculated based on the first voltage value, the second voltage value, and a circuit parameter of an electrical equivalent circuit at the end of charging or discharging of the secondary battery,
The electrical equivalent circuit corresponds to a series resistance corresponding to the internal resistance of the secondary battery, a one-stage or two-stage RC parallel circuit, and an internal voltage of the secondary battery at the end of charging or discharging. A circuit in which a voltage source that outputs voltage is connected in series,
The data extraction method according to claim 15, wherein the circuit parameter is the internal voltage.
過渡応答特性を有する二次電池の電流値を所定のサンプリング間隔で測定した電流測定データから、データ抽出装置が前記二次電池の過渡応答時における複数の過渡応答データを抽出する抽出ステップと、
前記二次電池の電圧値を前記サンプリング間隔で測定した電圧測定データと、前記複数の過渡応答データから選択した第1過渡応答データのみに基づいて、前記データ抽出装置が前記二次電池の電池劣化を診断する診断ステップと、
を含むデータ抽出方法であって、
前記抽出ステップは、
電流値の変化量が第1閾値以上となる第1区間を特定する第1ステップと、
前記第1区間の始点と連続し、前記始点の電流値に対する変化量が前記第1閾値よりも小さい第2閾値以下となる前区間を特定する第2ステップと、
前記第1区間の終点と連続し、前記終点の電流値に対する変化量が前記第1閾値よりも小さい第3閾値以下となる後区間を特定する第3ステップと、
前記前区間の始点から前記後区間の終点までの電流値データを前記過渡応答データとして抽出する第4ステップと、を含み、
前記診断ステップは、
前記第1過渡応答データにおいて電流値が前記第1閾値以上変化した後の第1電流値から当該第1過渡応答データの前記後区間内の第2電流値までの各電流値と、前記第1電流値の測定時における第1電圧値から前記第2電流値の測定時における第2電圧値までの各電圧値とを乗算して各乗算結果を加算するとともに、その加算結果に前記サンプリング間隔を乗算した電力積分値を算出するステップと、
前記第1電流値の測定時における前記二次電池のSOCに対応する電圧と前記第2電流値の測定時における前記二次電池のSOCに対応する電圧との差分を算出するステップと、
前記電力積分値を前記差分で除算した値を劣化指標とし、前記劣化指標に基づいて前記二次電池の電池劣化を診断するステップと、を含む
ことを特徴とするデータ抽出方法。
An extraction step in which the data extraction device extracts a plurality of transient response data at the time of the transient response of the secondary battery from current measurement data obtained by measuring the current value of the secondary battery having a transient response characteristic at a predetermined sampling interval;
Based on only the voltage measurement data obtained by measuring the voltage value of the secondary battery at the sampling interval and the first transient response data selected from the plurality of transient response data, the data extraction device performs battery deterioration of the secondary battery. Diagnostic steps to diagnose
A data extraction method including:
The extraction step includes
A first step of identifying a first section in which the amount of change in the current value is equal to or greater than a first threshold;
A second step of identifying a previous section that is continuous with a start point of the first section and in which a change amount with respect to a current value of the start point is equal to or less than a second threshold that is smaller than the first threshold;
A third step of identifying a rear section that is continuous with the end point of the first section and whose amount of change with respect to the current value of the end point is equal to or less than a third threshold value that is smaller than the first threshold value;
A fourth step of extracting current value data from the start point of the previous section to the end point of the rear section as the transient response data,
The diagnostic step includes
In the first transient response data, each current value from a first current value after a current value has changed by more than the first threshold to a second current value in the subsequent section of the first transient response data, and the first Each voltage value from the first voltage value at the time of measuring the current value to the second voltage value at the time of measuring the second current value is multiplied and each multiplication result is added, and the sampling interval is added to the addition result. Calculating a power integral value multiplied by;
Calculating a difference between a voltage corresponding to the SOC of the secondary battery at the time of measuring the first current value and a voltage corresponding to the SOC of the secondary battery at the time of measuring the second current value;
And a step of diagnosing battery deterioration of the secondary battery based on the deterioration index using a value obtained by dividing the power integral value by the difference as a deterioration index.
請求項10〜17のいずれか一項に記載のデータ抽出方法をコンピュータに実行させるためのデータ抽出プログラム。   The data extraction program for making a computer perform the data extraction method as described in any one of Claims 10-17.
JP2015216762A 2015-07-02 2015-11-04 Data extraction apparatus, data extraction method, and data extraction program Active JP6161133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069575 WO2017002953A1 (en) 2015-07-02 2016-07-01 Data extracting device, data extracting method, and data extracting program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015133303 2015-07-02
JP2015133303 2015-07-02

Publications (2)

Publication Number Publication Date
JP2017016991A JP2017016991A (en) 2017-01-19
JP6161133B2 true JP6161133B2 (en) 2017-07-12

Family

ID=57829339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015216762A Active JP6161133B2 (en) 2015-07-02 2015-11-04 Data extraction apparatus, data extraction method, and data extraction program

Country Status (1)

Country Link
JP (1) JP6161133B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6776940B2 (en) * 2017-02-24 2020-10-28 株式会社デンソー Signal detector
JP7103084B2 (en) * 2017-09-05 2022-07-20 株式会社デンソー Signal detector
JP6745554B2 (en) 2018-03-28 2020-08-26 東洋システム株式会社 Degradation state determination device and degradation state determination method
CN110967645B (en) * 2019-05-24 2021-05-07 宁德时代新能源科技股份有限公司 SOC correction method and apparatus, battery management system, and storage medium
KR20210048810A (en) * 2019-10-24 2021-05-04 주식회사 엘지화학 Apparatus and method for diagnosing degeneracy of battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221418A (en) * 1997-02-06 1998-08-21 Shindengen Electric Mfg Co Ltd Device and method for judging deterioration of battery
JP2011047820A (en) * 2009-08-27 2011-03-10 Toshiba Corp Secondary cell device and vehicle
JP5924617B2 (en) * 2012-06-05 2016-05-25 学校法人同志社 Equivalent circuit synthesis method and apparatus, and circuit diagnostic method

Also Published As

Publication number Publication date
JP2017016991A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
EP2963434B1 (en) Battery state estimation method and system using dual extended kalman filter, and recording medium for performing the method
JP6161133B2 (en) Data extraction apparatus, data extraction method, and data extraction program
KR102215450B1 (en) Method and device to learn and estimate battery state information
KR101684092B1 (en) Apparatus and Method for caculating degradation degree
KR102177721B1 (en) Apparatus and Method for estimating deterioration of battery pack
JP5944291B2 (en) Battery parameter estimation apparatus and method
JP6488105B2 (en) Storage battery evaluation apparatus and method
CN107576915B (en) battery capacity estimation method and device
JPWO2019171688A1 (en) Rechargeable battery residual performance evaluation method, secondary battery residual performance evaluation program, arithmetic unit, and residual performance evaluation system
KR20160067510A (en) Method and apparatus for estimating state of battery
JP6450565B2 (en) Battery parameter estimation device
KR101777334B1 (en) Apparatus and method for estimating SOH of battery
JP2016090330A (en) Battery parameter estimation device
CN104931882A (en) Power battery capacity correction method and apparatus
JP6711981B2 (en) Battery parameter estimation device
KR102274383B1 (en) Assessing the quantity of energy in a motor vehicle battery
JP6575308B2 (en) Internal resistance calculation device, computer program, and internal resistance calculation method
JP2017538929A (en) Method for automatically estimating the state of charge of a battery cell
KR101776844B1 (en) Estimation Method of State of Health of Car Battery Using Battery Sensor
JP6171128B2 (en) Battery control system, vehicle control system
JP2006126172A (en) State-detecting method of secondary battery, and state detector of secondary battery
WO2017002953A1 (en) Data extracting device, data extracting method, and data extracting program
JP6541412B2 (en) Charging rate calculation method and charging rate calculation device
JP2015041513A (en) Device for controlling power storage battery
JP2018148720A (en) Battery control device and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170405

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R150 Certificate of patent or registration of utility model

Ref document number: 6161133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250