JP2016210962A - Electrode forming composition, electrode manufactured using the same, and solar cell - Google Patents
Electrode forming composition, electrode manufactured using the same, and solar cell Download PDFInfo
- Publication number
- JP2016210962A JP2016210962A JP2016048853A JP2016048853A JP2016210962A JP 2016210962 A JP2016210962 A JP 2016210962A JP 2016048853 A JP2016048853 A JP 2016048853A JP 2016048853 A JP2016048853 A JP 2016048853A JP 2016210962 A JP2016210962 A JP 2016210962A
- Authority
- JP
- Japan
- Prior art keywords
- meth
- electrode
- acrylate
- composition
- glass frit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 85
- 239000011521 glass Substances 0.000 claims abstract description 43
- -1 acrylate compound Chemical class 0.000 claims abstract description 34
- 239000000843 powder Substances 0.000 claims abstract description 29
- 239000011230 binding agent Substances 0.000 claims abstract description 10
- 239000002904 solvent Substances 0.000 claims abstract description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 32
- 229910052797 bismuth Inorganic materials 0.000 claims description 17
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 229910052714 tellurium Inorganic materials 0.000 claims description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 7
- 239000000654 additive Substances 0.000 claims description 6
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 6
- 239000002270 dispersing agent Substances 0.000 claims description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 4
- 239000013008 thixotropic agent Substances 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 239000002518 antifoaming agent Substances 0.000 claims description 3
- 239000003963 antioxidant agent Substances 0.000 claims description 3
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 claims description 3
- 239000007822 coupling agent Substances 0.000 claims description 3
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 239000000049 pigment Substances 0.000 claims description 3
- 239000004014 plasticizer Substances 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 239000003381 stabilizer Substances 0.000 claims description 3
- 239000012756 surface treatment agent Substances 0.000 claims description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims description 3
- 230000003078 antioxidant effect Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 239000000326 ultraviolet stabilizing agent Substances 0.000 claims description 2
- 239000005355 lead glass Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 15
- 238000000034 method Methods 0.000 description 14
- 235000012431 wafers Nutrition 0.000 description 12
- 239000002245 particle Substances 0.000 description 10
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229920001249 ethyl cellulose Polymers 0.000 description 3
- 235000019325 ethyl cellulose Nutrition 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229910002909 Bi-Te Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 229940116411 terpineol Drugs 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- KZVBBTZJMSWGTK-UHFFFAOYSA-N 1-[2-(2-butoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOCCCC KZVBBTZJMSWGTK-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- CRWNQZTZTZWPOF-UHFFFAOYSA-N 2-methyl-4-phenylpyridine Chemical compound C1=NC(C)=CC(C=2C=CC=CC=2)=C1 CRWNQZTZTZWPOF-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000007603 infrared drying Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229940113115 polyethylene glycol 200 Drugs 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000010022 rotary screen printing Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/14—Conductive material dispersed in non-conductive inorganic material
- H01B1/16—Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Sustainable Energy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Photovoltaic Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、電極形成用組成物ならびにこれを用いて製造された電極および太陽電池に関するものである。 The present invention relates to an electrode forming composition, and an electrode and a solar cell produced using the composition.
太陽電池は、太陽光の光子(photon)を電気に変換させるpn接合の光電効果を利用して電気エネルギーを発生させる。太陽電池は、pn接合が構成される半導体ウエハまたは基板の上下面にそれぞれ前面電極と後面電極とが形成されている。太陽電池は、半導体ウエハに入射する太陽光によってpn接合の光電効果が誘導され、これから発生した電子が電極を通して外部に流れる電流を提供する。 A solar cell generates electric energy by using a photoelectric effect of a pn junction that converts sunlight photons into electricity. In the solar cell, a front electrode and a rear electrode are respectively formed on the upper and lower surfaces of a semiconductor wafer or substrate on which a pn junction is formed. In a solar cell, a photoelectric effect of a pn junction is induced by sunlight incident on a semiconductor wafer, and an electron generated therefrom provides a current that flows to the outside through an electrode.
このような太陽電池の電極は、電極形成用組成物の塗布、パターニングおよび焼成によって、ウエハの表面に一定のパターンで形成される。 The electrodes of such a solar cell are formed in a certain pattern on the surface of the wafer by applying, patterning and baking the electrode forming composition.
太陽電池の変換効率を向上させるために、基板との接触性を向上して接触抵抗(Rc)とシリーズ抵抗(Rs)とを最小化させたり、有機物でスクリーンマスクのパターンの線幅を小さく調節したりすることにより、微細線幅(fine line)を形成して短絡電流(Isc)を高める方法が知られている。 In order to improve the conversion efficiency of solar cells, contact resistance (Rc) and series resistance (Rs) are minimized by improving the contact with the substrate, and the line width of the screen mask pattern is adjusted to be small with organic matter For example, a method of increasing the short-circuit current (I sc ) by forming a fine line width is known.
しかし、スクリーンマスクを利用して電極パターンの線幅を減少させる方法は、シリーズ抵抗(Rs)の上昇を誘発し、微細パターンの連続印刷性を低下させることがある。 However, the method of reducing the line width of the electrode pattern using a screen mask may increase the series resistance (Rs) and reduce the continuous printability of the fine pattern.
基板に形成された電極パターンは、太陽電池を構成するセルがリボンで互いに連結して最終モジュールとして製作される工程において、基板によく付着していなければならないが、電極パターンが基板から剥離し、導通不良が発生して信頼性が低下することがある。 The electrode pattern formed on the substrate must be well attached to the substrate in the process where the cells constituting the solar cell are connected to each other with a ribbon and manufactured as a final module, but the electrode pattern peels off the substrate, Failure of conduction may occur and reliability may be reduced.
そのため、電極パターン形成時の印刷性を確保しつつ、電極パターンの付着性を向上させることができる電極形成用組成物が要求されている。 Therefore, there is a demand for an electrode forming composition that can improve the adhesion of the electrode pattern while ensuring the printability during the formation of the electrode pattern.
本発明は、上記点に鑑みてなされたものであって、本発明の目的は、連続印刷性に優れ、基板と電極パターンとの付着力を増加させて太陽電池の効率と信頼性とを向上させることのできる電極形成用組成物を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to improve the efficiency and reliability of a solar cell by increasing the adhesion between a substrate and an electrode pattern, with excellent continuous printability. It is providing the composition for electrode formation which can be made to be made.
本発明の他の目的は、前記電極形成用組成物を用いて製造された電極を提供することである。 Another object of the present invention is to provide an electrode manufactured using the electrode forming composition.
また他の目的は、前記電極を含む太陽電池を提供することである。 Another object is to provide a solar cell including the electrode.
前記およびその他の目的は、下記で説明する本発明によって全て達成することができる。 The above and other objects can all be achieved by the present invention described below.
上記課題を解決するための本発明に係る一実施形態は、導電性粉末と、ガラスフリットと、有機バインダー、多官能性(メタ)アクリレート化合物および溶媒を含む有機ビヒクルと、を含む電極形成用組成物であって、前記多官能性(メタ)アクリレート化合物は、200〜500の分子量を有し、前記電極形成用組成物100重量%に対して0.15〜2重量%で含まれる電極形成用組成物を提供する。 One embodiment according to the present invention for solving the above-mentioned problems is a composition for forming an electrode, which comprises a conductive powder, a glass frit, and an organic vehicle containing an organic binder, a polyfunctional (meth) acrylate compound and a solvent. The polyfunctional (meth) acrylate compound has a molecular weight of 200 to 500 and is contained in an amount of 0.15 to 2% by weight with respect to 100% by weight of the electrode forming composition. A composition is provided.
本発明の一実施形態によれば、前記多官能性(メタ)アクリレート化合物は、ジ(メタ)アクリレート化合物、トリ(メタ)アクリレート化合物、テトラ(メタ)アクリレート化合物およびこれらの混合物からなる群より選択される。 According to one embodiment of the present invention, the polyfunctional (meth) acrylate compound is selected from the group consisting of di (meth) acrylate compounds, tri (meth) acrylate compounds, tetra (meth) acrylate compounds, and mixtures thereof. Is done.
本発明の一実施形態によれば、前記多官能性(メタ)アクリレート化合物は、トリメチロールプロパントリ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートおよびこれらの混合物からなる群より選択される。 According to one embodiment of the present invention, the polyfunctional (meth) acrylate compound is trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, triethylene glycol di (Meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate and mixtures thereof Selected from the group.
本発明の一実施形態によれば、前記多官能性(メタ)アクリレート化合物は、前記電極形成用組成物100重量%に対して0.15〜2重量%の量で含まれる。 According to an embodiment of the present invention, the polyfunctional (meth) acrylate compound is included in an amount of 0.15 to 2% by weight with respect to 100% by weight of the electrode forming composition.
本発明の一実施形態によれば、前記多官能性(メタ)アクリレート化合物は、250〜400の分子量を有する。 According to one embodiment of the present invention, the polyfunctional (meth) acrylate compound has a molecular weight of 250-400.
本発明の一実施形態によれば、前記多官能性(メタ)アクリレート化合物は、前記電極形成用組成物を200〜400℃で熱処理した後に生成された膜に、残存することができる。 According to an embodiment of the present invention, the polyfunctional (meth) acrylate compound can remain in a film formed after heat-treating the electrode forming composition at 200 to 400 ° C.
本発明の一実施形態によれば、前記ガラスフリットは、ビスマス系ガラスフリット、鉛系ガラスフリットおよびこれらの混合物からなる群より選択される。 According to an embodiment of the present invention, the glass frit is selected from the group consisting of bismuth-based glass frit, lead-based glass frit, and mixtures thereof.
本発明の一実施形態によれば、前記ビスマス系ガラスフリットは、ビスマス(Bi)−テルリウム(Te)ガラスフリットであってよい。 According to an embodiment of the present invention, the bismuth-based glass frit may be a bismuth (Bi) -tellurium (Te) glass frit.
本発明の一実施形態によれば、前記ビスマス(Bi)−テルリウム(Te)ガラスフリットは、酸化物換算でテルリウム20〜80モル%とビスマス20〜80モル%とを含む。 According to one embodiment of the present invention, the bismuth (Bi) -tellurium (Te) glass frit contains 20-80 mol% tellurium and 20-80 mol% bismuth in terms of oxide.
本発明の一実施形態によれば、前記電極形成用組成物は、前記導電性粉末60〜95重量%;前記ガラスフリット0.5〜20重量%;および前記有機ビヒクル1〜30重量%を含む。 According to an embodiment of the present invention, the composition for forming an electrode includes the conductive powder 60 to 95% by weight; the glass frit 0.5 to 20% by weight; and the organic vehicle 1 to 30% by weight. .
本発明の一実施形態によれば、前記電極形成用組成物は、表面処理剤、分散剤、揺変剤、可塑剤、粘度安定化剤、消泡剤、顔料、紫外線安定剤、酸化防止剤およびカップリング剤からなる群より選択される添加剤を1種以上さらに含む。 According to one embodiment of the present invention, the electrode forming composition comprises a surface treatment agent, a dispersant, a thixotropic agent, a plasticizer, a viscosity stabilizer, an antifoaming agent, a pigment, an ultraviolet stabilizer, and an antioxidant. And one or more additives selected from the group consisting of coupling agents.
本発明の他の実施形態は、前記電極形成用組成物を用いて製造される電極を提供する。 Other embodiment of this invention provides the electrode manufactured using the said composition for electrode formation.
本発明のまた他の実施形態は、前記電極を含む太陽電池を提供する。 Another embodiment of the present invention provides a solar cell including the electrode.
本発明による電極形成用組成物は、連続印刷性に優れ、基板と電極パターンとの付着力を増加させて太陽電池の効率を向上させることができる。 The composition for forming an electrode according to the present invention is excellent in continuous printability, and can increase the adhesion between the substrate and the electrode pattern to improve the efficiency of the solar cell.
以下、添付した図面を参考として本発明の実施形態について本発明が属する技術分野における通常の知識を有する者が容易に実施できるように詳しく説明する。しかし、本発明は、多様な異なる形態で実現でき、ここで説明する実施例に限定されない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains can easily implement the embodiments. However, the present invention can be implemented in a variety of different forms and is not limited to the embodiments described herein.
図面では様々な層および領域を明確に表現するために厚さを拡大して示した。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。明細書全体にわたって類似の部分については同一の図面符号を付し、重複する説明を省略する。層、膜、領域、板などの部分が他の部分の「上」にあるとするとき、これは他の部分の「直ぐ上」にある場合だけでなく、その間にまた他の部分がある場合も含む。逆に、ある部分が他の部分の「直ぐ上」にあるとするときには、その間に他の部分がないことを意味する。 In the drawings, the thickness is shown enlarged to clearly represent the various layers and regions. The dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios. Similar parts are denoted by the same reference numerals throughout the specification, and redundant description is omitted. When a layer, membrane, region, plate, etc. is “on top” of another part, this is not just “on top” of the other part, but also another part in between Including. Conversely, when a certain part is “just above” another part, it means that there is no other part between them.
本発明の一実施形態は、導電性粉末と、ガラスフリットと、有機バインダー、多官能性(メタ)アクリレート化合物および溶媒を含む有機ビヒクルと、を含む電極形成用組成物を提供する。 One embodiment of the present invention provides an electrode-forming composition comprising a conductive powder, glass frit, and an organic vehicle comprising an organic binder, a polyfunctional (meth) acrylate compound and a solvent.
以下、本発明を詳しく説明する。 The present invention will be described in detail below.
本発明の一実施形態である電極形成用組成物は、導電性粉末を含む。 The composition for electrode formation which is one Embodiment of this invention contains electroconductive powder.
電極形成用組成物は、導電性粉末として金属粉末を使用することができる。金属粉末は、銀(Ag)、金(Au)、パラジウム(Pd)、白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、オスミウム(Os)、イリジウム(Ir)、レニウム(Re)、チタニウム(Ti)、ニオビウム(Nb)、タンタル(Ta)、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)、モリブデン(Mo)、バナジウム(V)、亜鉛(Zn)、マグネシウム(Mg)、イットリウム(Y)、コバルト(Co)、ジルコニウム(Zr)、鉄(Fe)、タングステン(W)、錫(Sn)、クロム(Cr)、マンガン(Mn)等を含むことができる。これらのうち、導電性粉末の金属粉末としては、銀(Ag)が好ましい。 The electrode forming composition can use metal powder as the conductive powder. The metal powder is silver (Ag), gold (Au), palladium (Pd), platinum (Pt), ruthenium (Ru), rhodium (Rh), osmium (Os), iridium (Ir), rhenium (Re), titanium. (Ti), Niobium (Nb), Tantalum (Ta), Aluminum (Al), Copper (Cu), Nickel (Ni), Molybdenum (Mo), Vanadium (V), Zinc (Zn), Magnesium (Mg), Yttrium (Y), cobalt (Co), zirconium (Zr), iron (Fe), tungsten (W), tin (Sn), chromium (Cr), manganese (Mn), and the like can be included. Of these, silver (Ag) is preferable as the metal powder of the conductive powder.
導電性粉末は、ナノサイズまたはマイクロサイズの粒径を有する粉末であってよいが、例えば、数十〜数百ナノメートルの大きさの導電性粉末、数〜数十マイクロメートルの導電性粉末であってもよく、2つ以上の互いに異なるサイズを有する導電性粉末を混合して使用してもよい。 The conductive powder may be a powder having a nano-size or micro-size particle size, for example, a conductive powder having a size of several tens to several hundreds of nanometers, a conductive powder having a size of several tens to several tens of micrometers. Two or more conductive powders having different sizes may be mixed and used.
導電性粉末は、粒子の形状が球状、板状、または無定形の形状を有することができる。導電性粉末の平均粒径(D50)(体積換算)は、好ましくは0.1μm〜10μmであり、より好ましくは0.5μm〜5μmである。平均粒径は、イソプロピルアルコール(IPA)に導電性粉末を超音波で常温(24℃〜25℃)で3分間分散させた後、CILAS社製の1064LDモデルを用いて測定したものである。導電性粉末の平均粒径が前記範囲内であれば、接触抵抗と線抵抗が低くなる効果を有することができる。 The conductive powder can have a spherical shape, a plate shape, or an amorphous shape. The average particle diameter (D50) (volume conversion) of the conductive powder is preferably 0.1 μm to 10 μm, more preferably 0.5 μm to 5 μm. The average particle diameter is measured using a 1064LD model manufactured by CILAS after dispersing conductive powder in isopropyl alcohol (IPA) at room temperature (24 ° C. to 25 ° C.) for 3 minutes. If the average particle diameter of the conductive powder is within the above range, the contact resistance and the line resistance can be reduced.
導電性粉末は、電極形成用組成物の総量100重量%に対して60〜95重量%で含まれるのが好ましい。導電性粉末が前記範囲で含有されることで、抵抗の増加によって変換効率が低くなるのを防止することができ、有機ビヒクル量の相対的な減少でペースト化が困難になるのを防止することができる。導電性粉末は、より好ましくは電極形成用組成物の総量100重量%に対して70〜90重量%で含まれる。 The conductive powder is preferably contained at 60 to 95% by weight with respect to 100% by weight of the total amount of the electrode forming composition. By containing the conductive powder in the above range, it is possible to prevent the conversion efficiency from being lowered due to the increase in resistance, and to prevent the paste from becoming difficult due to the relative decrease in the amount of the organic vehicle. Can do. More preferably, the conductive powder is contained in an amount of 70 to 90% by weight based on 100% by weight of the total amount of the electrode forming composition.
本発明の一実施形態である電極形成用組成物は、ガラスフリットを含む。 The composition for electrode formation which is one Embodiment of this invention contains a glass frit.
ガラスフリット(glass frit)は、電極形成用組成物の焼成工程中に反射防止膜をエッチング(etching)し、導電性粉末粒子を溶融させて抵抗が低くなるようにエミッタ領域に導電性粉末の金属結晶粒子を生成させ、導電性粉末とウエハとの間の接着力を向上させ、焼結時に軟化して焼成温度をより下げる効果を誘導する。 Glass frit is a conductive powder metal in the emitter region that etches the antireflective coating during the firing process of the electrode-forming composition to melt the conductive powder particles and lower the resistance. Crystal particles are generated, the adhesive force between the conductive powder and the wafer is improved, and the effect of lowering the firing temperature by softening during sintering is induced.
太陽電池の効率を増加させるために太陽電池の面積を増加させると、太陽電池の接触抵抗が高くなり得るので、pn接合(pn junction)に対する被害を最小化すると同時に、直列抵抗を最小化させなければならない。また、多様な面抵抗のウエハの増加によって焼成温度の変動幅が大きくなるので、広い焼成温度でも熱安定性を十分に確保可能なガラスフリットを使用することが好ましい。 Increasing the area of the solar cell to increase the efficiency of the solar cell can increase the contact resistance of the solar cell, so the damage to the pn junction must be minimized while at the same time minimizing the series resistance. I must. In addition, since the variation range of the firing temperature is increased by increasing the number of wafers having various sheet resistances, it is preferable to use a glass frit that can sufficiently ensure thermal stability even at a wide firing temperature.
ガラスフリットは、通常、電極形成用組成物に使用される有鉛ガラスフリットおよび無鉛ガラスフリットのうちのいずれか1つ以上が使用できる。 As the glass frit, any one or more of a leaded glass frit and a lead-free glass frit usually used in an electrode forming composition can be used.
ガラスフリットは、好ましくは、ビスマス系ガラスフリット、鉛系ガラスフリットおよびこれらの混合物からなる群より選択される。 The glass frit is preferably selected from the group consisting of bismuth-based glass frit, lead-based glass frit and mixtures thereof.
ガラスフリットは、鉛(Pb)、テルリウム(Te)、ビスマス(Bi)、リチウム(Li)、リン(P)、ゲルマニウム(Ge)、ガリウム(Ga)、セリウム(Ce)、鉄(Fe)、ケイ素(Si)、亜鉛(Zn)、タングステン(W)、マグネシウム(Mg)、セシウム(Cs)、ストロンチウム(Sr)、モリブデン(Mo)、チタニウム(Ti)、錫(Sn)、インジウム(In)、バナジウム(V)、バリウム(Ba)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、カリウム(K)、砒素(As)、コバルト(Co)、ジルコニウム(Zr)、マンガン(Mn)およびアルミニウム(Al)から選択される1種以上の元素を含むことができる。 Glass frit consists of lead (Pb), tellurium (Te), bismuth (Bi), lithium (Li), phosphorus (P), germanium (Ge), gallium (Ga), cerium (Ce), iron (Fe), silicon (Si), zinc (Zn), tungsten (W), magnesium (Mg), cesium (Cs), strontium (Sr), molybdenum (Mo), titanium (Ti), tin (Sn), indium (In), vanadium (V), barium (Ba), nickel (Ni), copper (Cu), sodium (Na), potassium (K), arsenic (As), cobalt (Co), zirconium (Zr), manganese (Mn) and aluminum One or more elements selected from (Al) can be included.
ビスマス系ガラスフリットは、ビスマス(Bi)−テルリウム(Te)ガラスフリットであるのが好ましい。 The bismuth-based glass frit is preferably a bismuth (Bi) -tellurium (Te) glass frit.
ビスマス(Bi)−テルリウム(Te)ガラスフリットは、好ましくは、酸化物換算でテルリウム20〜80モル%およびビスマス20〜80モル%を含む。ビスマス(Bi)−テルリウム(Te)ガラスフリットの各成分が前記範囲の含有量であれば、優れた太陽電池の変換効率(efficiency)および電極パターンの付着強度(adhesion strength)を同時に確保可能である。 The bismuth (Bi) -tellurium (Te) glass frit preferably contains 20-80 mol% tellurium and 20-80 mol% bismuth in terms of oxide. If each component of the bismuth (Bi) -tellurium (Te) glass frit is within the above range, it is possible to simultaneously ensure excellent conversion efficiency (efficiency) of the solar cell and adhesion strength (adhesion strength) of the electrode pattern. .
ガラスフリットは、通常の方法を用いて、前述した元素の酸化物から由来するものであってよい。例えば、前記元素の酸化物を特定組成で混合して製造した混合物を溶融した後、クエンチング(quenching)してから、再び粉砕して得ることができる。前記混合工程は、ボールミル(ball mill)またはプラネタリーミル(planetary mill)を用いて実施できる。前記溶融工程は、700℃〜1300℃の条件で実施可能であり、前記クエンチング工程は、常温(24℃〜25℃)で実施可能である。前記粉砕工程は、ディスクミル(disk mill)、プラネタリーミルなどによって実施できるが、これに限定されるものではない。 The glass frit may be derived from the oxides of the elements described above using conventional methods. For example, it can be obtained by melting a mixture prepared by mixing oxides of the above elements with a specific composition, quenching, and then grinding again. The mixing process may be performed using a ball mill or a planetary mill. The melting step can be performed at 700 ° C. to 1300 ° C., and the quenching step can be performed at room temperature (24 ° C. to 25 ° C.). The pulverization process may be performed by a disk mill, a planetary mill, or the like, but is not limited thereto.
ガラスフリットは、平均粒径(D50)(体積換算)が0.1μm〜10μmのものが使用可能である。また、ガラスフリットは、好ましくは、電極形成用組成物の総量100重量%に対して0.5〜20重量%で含まれる。ガラスフリットが前記範囲内で含有されることで、電極の電気的特性を阻害しない範囲で電極パターンの付着強度(adhesion strength)を向上させることができる。なお、平均粒径(D50)は、溶媒にガラスフリットを超音波で、常温(24℃〜25℃)で3分間分散させた後、CILAS社製の1064LDモデルを用いて測定したものである。 A glass frit having an average particle diameter (D50) (volume conversion) of 0.1 μm to 10 μm can be used. The glass frit is preferably contained in an amount of 0.5 to 20% by weight based on 100% by weight of the total amount of the electrode forming composition. When the glass frit is contained within the above range, the adhesion strength of the electrode pattern can be improved within a range that does not hinder the electrical characteristics of the electrode. The average particle diameter (D50) is measured using a 1064LD model manufactured by CILAS after dispersing glass frit in a solvent for 3 minutes at room temperature (24 ° C. to 25 ° C.).
ガラスフリットの形状は、球状でも無定形状(non−shape)でも構わない。一実施形態において、転移温度が異なる2種のガラスフリットを使用してもよい。例えば、転移温度が200℃以上350℃以下の第1ガラスフリットと、転移温度が350℃超過550℃以下の第2ガラスフリットを、1:0.2〜1:1の重量比で混合して使用することができる。 The shape of the glass frit may be spherical or non-shaped. In one embodiment, two glass frits with different transition temperatures may be used. For example, a first glass frit having a transition temperature of 200 ° C. or more and 350 ° C. or less and a second glass frit having a transition temperature exceeding 350 ° C. and not more than 550 ° C. are mixed at a weight ratio of 1: 0.2 to 1: 1. Can be used.
本発明の一実施形態である電極形成用組成物は、有機ビヒクルを含む。 The composition for electrode formation which is one Embodiment of this invention contains an organic vehicle.
有機ビヒクルは、電極形成用組成物の無機成分と機械的混合を通じて、電極形成用組成物に印刷に適した粘度および流変学的特性を付与する。有機ビヒクルは、有機バインダー、多官能性(メタ)アクリレート化合物および溶媒を含む。 The organic vehicle imparts viscosity and rheological properties suitable for printing to the electrode forming composition through mechanical mixing with the inorganic components of the electrode forming composition. The organic vehicle includes an organic binder, a polyfunctional (meth) acrylate compound and a solvent.
有機バインダーは、アクリレート系またはセルロース系樹脂などを使用することができ、エチルセルロースが一般的に使用される樹脂である。また、エチルヒドロキシエチルセルロース、ニトロセルロース、エチルセルロースとフェノール系樹脂との混合物、アルキド樹脂、フェノール系樹脂、アクリル酸エステル系樹脂、キシレン系樹脂、ポリブテン系樹脂、ポリエステル系樹脂、尿素系樹脂、メラミン系樹脂、酢酸ビニル系樹脂、木材ロジン(rosin)またはアルコールのポリメタクリレート等も使用することができる。 As the organic binder, an acrylate-based or cellulose-based resin can be used, and ethyl cellulose is a resin that is generally used. Also, ethyl hydroxyethyl cellulose, nitrocellulose, mixture of ethyl cellulose and phenol resin, alkyd resin, phenol resin, acrylate resin, xylene resin, polybutene resin, polyester resin, urea resin, melamine resin Vinyl acetate resin, wood rosin, alcohol polymethacrylate, and the like can also be used.
有機バインダーの重量平均分子量(Mw)は、好ましくは30,000〜200,000g/molであり、より好ましくは40,000〜150,000g/molである。重量平均分子量(Mw)が前記範囲内である場合、印刷性の面で優れた効果を有することができるため好ましい。なお、有機バインダーの重量平均分子量は、ゲル浸透クロマトグラフィ(GPC)を用いて測定した値である。 The weight average molecular weight (Mw) of the organic binder is preferably 30,000 to 200,000 g / mol, and more preferably 40,000 to 150,000 g / mol. When the weight average molecular weight (Mw) is within the above range, it is preferable because an excellent effect can be obtained in terms of printability. The weight average molecular weight of the organic binder is a value measured using gel permeation chromatography (GPC).
多官能性(メタ)アクリレート化合物は、2つ以上のアクリレート基またはメタクリレート基を有する化合物を意味する。つまり、単官能性(メタ)アクリレート化合物は、本発明では排除される。 A polyfunctional (meth) acrylate compound means a compound having two or more acrylate groups or methacrylate groups. That is, monofunctional (meth) acrylate compounds are excluded in the present invention.
本発明において、多官能性(メタ)アクリレート化合物は、ジ(メタ)アクリレート化合物、トリ(メタ)アクリレート化合物、テトラ(メタ)アクリレート化合物およびこれらの混合物からなる群より選択されるのが好ましい。 In the present invention, the polyfunctional (meth) acrylate compound is preferably selected from the group consisting of di (meth) acrylate compounds, tri (meth) acrylate compounds, tetra (meth) acrylate compounds, and mixtures thereof.
さらには、多官能性(メタ)アクリレート化合物は、トリメチロールプロパントリ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートおよびこれらの混合物からなる群より選択されるのがより好ましい。 Furthermore, the polyfunctional (meth) acrylate compounds are trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, butanediol di More selected from the group consisting of (meth) acrylate, hexanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate and mixtures thereof. preferable.
多官能性(メタ)アクリレート化合物は、好ましくは200〜500、より好ましくは250〜400、さらに好ましくは250〜360の分子量を有する。分子量が前記範囲内であれば、良好な連続印刷性を確保し、シリーズ抵抗(Rs)の増加を最小化することにより、効率を向上させることができる。 The polyfunctional (meth) acrylate compound preferably has a molecular weight of 200 to 500, more preferably 250 to 400, and still more preferably 250 to 360. If the molecular weight is within the above range, the efficiency can be improved by ensuring good continuous printability and minimizing the increase in series resistance (Rs).
多官能性(メタ)アクリレート化合物は、200℃〜400℃で熱処理された後にも熱硬化されずに膜に残存することができる。つまり、多官能性(メタ)アクリレート化合物は、熱処理によって熱硬化されずに膜内に残存することにより、多官能性基が基板とパターンとの接着性を向上させる役割を果たすことができる。 The polyfunctional (meth) acrylate compound can remain in the film without being thermally cured even after heat treatment at 200 ° C. to 400 ° C. That is, the polyfunctional (meth) acrylate compound remains in the film without being thermally cured by heat treatment, so that the polyfunctional group can play a role of improving the adhesion between the substrate and the pattern.
すなわち、多官能性(メタ)アクリレート化合物は、前記電極形成用組成物を200〜400℃で熱処理した後に生成された膜に残存するものである。 That is, a polyfunctional (meth) acrylate compound remains in the film | membrane produced | generated after heat-processing the said composition for electrode formation at 200-400 degreeC.
多官能性(メタ)アクリレート化合物は、電極形成用組成物100重量%に対して、好ましくは0.15〜2重量%、より好ましくは0.2〜2重量%で含まれる。前記範囲で、電極形成用組成物の連続印刷性を向上させることができ、電極パターンと基板との付着力を向上させることができる。 The polyfunctional (meth) acrylate compound is contained in an amount of preferably 0.15 to 2% by weight, more preferably 0.2 to 2% by weight with respect to 100% by weight of the electrode forming composition. In the said range, the continuous printability of the composition for electrode formation can be improved, and the adhesive force of an electrode pattern and a board | substrate can be improved.
溶媒としては、例えば、ヘキサン、トルエン、テキサノール(texanol)(登録商標)(2,2,4−トリメチルペンタン−1,3−ジオールモノイソブチラート)、メチルセロソルブ(methyl cellosolve)、エチルセロソルブ、シクロヘキサノン、ブチルセロソルブ、脂肪族アルコール(aliphatic alcohol)、ブチルカルビトール(ジエチレングリコールモノブチルエーテル)、ジブチルカルビトール(ジエチレングリコールジブチルエーテル)、ブチルカルビトールアセテート(ジエチレングリコールモノブチルエーテルアセテート)、プロピレングリコールモノメチルエーテル、へキシレングリコール、テルピネオール(terpineol)、メチルエチルケトン、ベンジルアルコール、ガンマブチロラクトン、乳酸エチルなどを単独または2種以上混合して使用することができる。 Examples of the solvent include hexane, toluene, texanol (registered trademark) (2,2,4-trimethylpentane-1,3-diol monoisobutyrate), methyl cellosolve, ethyl cellosolve, and cyclohexanone. , Butyl cellosolve, aliphatic alcohol, butyl carbitol (diethylene glycol monobutyl ether), dibutyl carbitol (diethylene glycol dibutyl ether), butyl carbitol acetate (diethylene glycol monobutyl ether acetate), propylene glycol monomethyl ether, hexylene glycol, terpineol (Terpineol), methyl ethyl ketone, benzyl alcohol, Gamma butyrolactone, ethyl lactate and the like can be used alone or in combination of two or more.
有機ビヒクルの含有量は、電極形成用組成物の総量100重量%に対して、好ましくは1〜30重量%、より好ましくは5〜15重量%で含まれる。前記範囲であれば、電極パターンと基板との付着強度を向上させることができ、優れた連続印刷性を確保することができる。 The content of the organic vehicle is preferably 1 to 30% by weight and more preferably 5 to 15% by weight with respect to 100% by weight of the total amount of the electrode forming composition. If it is the said range, the adhesive strength of an electrode pattern and a board | substrate can be improved and the outstanding continuous printability can be ensured.
電極形成用組成物は、上述した構成要素のほか、流動特性、工程特性および安定性を向上させるために、必要に応じて通常の添加剤をさらに含むことができる。添加剤は、表面処理剤、分散剤、揺変剤、可塑剤、粘度安定化剤、消泡剤、顔料、紫外線安定剤、酸化防止剤、カップリング剤などを単独または2種以上混合して使用することができる。 In addition to the above-described constituent elements, the electrode-forming composition may further contain a conventional additive as necessary in order to improve flow characteristics, process characteristics, and stability. Additives include surface treatment agents, dispersants, thixotropic agents, plasticizers, viscosity stabilizers, antifoaming agents, pigments, UV stabilizers, antioxidants, coupling agents, etc., alone or in combination. Can be used.
添加剤は、電極形成用組成物の総量100重量%に対して、0.1〜5重量%で含まれてもよいが、必要に応じて含有量を変更することができる。添加剤の含有量は、電極形成用組成物の印刷特性、分散性および保存安定性を考慮して選択可能である。 Although an additive may be contained at 0.1 to 5% by weight with respect to 100% by weight of the total amount of the electrode forming composition, the content can be changed as necessary. The content of the additive can be selected in consideration of the printing characteristics, dispersibility, and storage stability of the electrode forming composition.
本発明の他の実施形態によれば、前記電極形成用組成物を用いて形成される電極が提供される。 According to other embodiment of this invention, the electrode formed using the said composition for electrode formation is provided.
電極は、電極形成用組成物の塗布、パターニングおよび焼成により、ウエハの表面に一定のパターンで形成可能である。前記電極形成用組成物の塗布は、スクリーンプリンティング、グラビアオフセット工法、ロータリースクリーンプリンティング工法またはリフトオフ法などの多様な方法が使用できるが、これに限定されるものではない。塗布した電極形成用組成物は、一定のパターンを有し、10μm〜40μmの厚さを有することが好ましい。 The electrode can be formed in a certain pattern on the surface of the wafer by applying, patterning and baking the electrode forming composition. The electrode forming composition can be applied by various methods such as screen printing, gravure offset method, rotary screen printing method, lift-off method, but is not limited thereto. The applied electrode forming composition preferably has a certain pattern and a thickness of 10 μm to 40 μm.
パターニングした電極形成用組成物の焼成工程は、下記太陽電池の製作工程で詳しく説明する。 The baking process of the patterned electrode forming composition will be described in detail in the following solar cell manufacturing process.
また本発明の他の実施形態によれば、前記電極を含む太陽電池が提供される。図1を参照して本発明の一実施形態に係る太陽電池を説明する。図1は、本発明の一実施形態に係る太陽電池の構造を簡略に示した概略図である。なお、矢印である符号300は、光の入射方向を示す。 Moreover, according to other embodiment of this invention, the solar cell containing the said electrode is provided. A solar cell according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view schematically showing the structure of a solar cell according to an embodiment of the present invention. In addition, the code | symbol 300 which is an arrow shows the incident direction of light.
図1を参照すれば、p層(またはn層)101およびエミッタとしてのn層(またはp層)102を含む基板100上に、電極形成用組成物を印刷し焼成して、後面電極210および前面電極230を形成することができる。例えば、電極形成用組成物を基板100の後面に印刷塗布した後、約200℃〜400℃の温度で、約10〜60秒程度熱処理して、後面電極のための事前準備段階を行うことができる。このとき、熱処理後の電極形成用組成物には、多官能性(メタ)アクリレート化合物が熱硬化されずに残存する。 Referring to FIG. 1, an electrode-forming composition is printed and fired on a substrate 100 including a p-layer (or n-layer) 101 and an n-layer (or p-layer) 102 as an emitter, and a rear electrode 210 and A front electrode 230 can be formed. For example, the electrode forming composition may be printed on the rear surface of the substrate 100 and then heat-treated at a temperature of about 200 ° C. to 400 ° C. for about 10 to 60 seconds to perform a preliminary preparation step for the rear electrode. it can. At this time, the polyfunctional (meth) acrylate compound remains in the electrode-forming composition after the heat treatment without being thermally cured.
また、基板100の前面に電極形成用組成物を印刷した後、乾燥して、前面電極のための事前準備段階を行うことができる。以降、400℃〜980℃、好ましくは700℃〜980℃で、約30秒〜210秒焼成する焼成過程を行って、前面電極および後面電極を形成することができる。 In addition, the electrode forming composition may be printed on the front surface of the substrate 100 and then dried to perform a preliminary preparation step for the front electrode. Thereafter, a front electrode and a rear electrode can be formed by performing a baking process of baking at 400 ° C. to 980 ° C., preferably 700 ° C. to 980 ° C. for about 30 seconds to 210 seconds.
以下、実施例を通じて、本発明をより具体的に説明するが、これらの実施例は単に説明の目的のためのものであって、本発明を制限するものと解釈されてはならない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, these examples are merely for the purpose of explanation and should not be construed as limiting the present invention.
実施例1〜7および比較例1〜11
有機バインダー(エチルセルロース、Dow chemical company、STD4)(Mw=50,000g/mol)とテキサノール(登録商標)(Eastman)とを60℃で十分に溶解した後、平均粒径(体積換算)が2.0μmの球状の銀粉末(Dowa Hightech Co.LTD AG−5−11F)、平均粒径が1.0μm(体積換算)であり、Bi−Te系無鉛ガラス粉末(ABT−1、旭硝子株式会社製)、(メタ)アクリレート化合物、分散剤(BYK−chemie、BYK−102)および揺変剤(Elementis Co.、Thixatrol ST)を投入してミキシング後、3本ロールミルで混合分散させて、電極形成用組成物を製造した。
Examples 1-7 and Comparative Examples 1-11
After sufficiently dissolving an organic binder (ethyl cellulose, Dow chemical company, STD4) (Mw = 50,000 g / mol) and Texanol (registered trademark) (Eastman) at 60 ° C., the average particle size (volume conversion) is 2. 0 μm spherical silver powder (Dowa Hightech Co. LTD AG-5-11F), average particle size is 1.0 μm (volume conversion), Bi-Te lead-free glass powder (ABT-1, manufactured by Asahi Glass Co., Ltd.) , (Meth) acrylate compound, dispersing agent (BYK-chemie, BYK-102) and thixotropic agent (Elementis Co., Thixatrol ST), mixing and dispersing with a three-roll mill, and composition for electrode formation The thing was manufactured.
Bi−Te系無鉛ガラス粉末は、旭硝子株式会社製、ABT−1を用いた。 ABT-1 manufactured by Asahi Glass Co., Ltd. was used as the Bi-Te lead-free glass powder.
(メタ)アクリレート化合物としては、Miwon Specialty Chemical社の下記化合物を使用した。 As the (meth) acrylate compound, the following compound of Miwon Specialty Chemical was used.
(A)単官能アクリレート化合物のフェノール(EO)4アクリレート(Phenol(EO)4Acrylate)(Miramer M4144、分子量:324)、
(B)二官能アクリレート化合物のポリエチレングリコ−ル200ジアクリレート(Polyethylene glycol 200 Diacrylate)(Miramer M282、分子量:308)、
(C)三官能アクリレート化合物のペンタエリスリトールトリアクリレート(Pentaerythritol triacrylate)(Miramer M340、分子量:298)、
(D)四官能アクリレート化合物のペンタエリスリトールテトラアクリレート(Pentaerythritol Tetraacrylate)(Miramer M420、分子量:352)および
(E)三官能アクリレート化合物のトリメチロールプロパン(EO)15(Trimethylolpropane(EO)15)(Miramer M3150、分子量:956)を使用した。
(A) Phenol (EO) 4 acrylate (Miramer M4144, molecular weight: 324) of monofunctional acrylate compound,
(B) Polyethylene glycol 200 diacrylate of a bifunctional acrylate compound (Miramer M282, molecular weight: 308),
(C) Pentaerythritol triacrylate of a trifunctional acrylate compound (Miramer M340, molecular weight: 298),
(D) tetrafunctional acrylate compound pentaerythritol tetraacrylate (Miramer M420, molecular weight: 352) and (E) trifunctional acrylate compound trimethylolpropane (EO) 15 (Trimethylolpropane (EO) 15) (Miramer M , Molecular weight: 956).
使用した各成分の含有量(重量%)を下記表1に記載した。 The content (% by weight) of each component used is shown in Table 1 below.
電極パターンの印刷性の評価
実施例1〜7および比較例1〜11により製造した電極形成用組成物をウエハの上に前面印刷した後、印刷された電極のLine Broken数を肉眼で数えて、下記基準により評価した。その結果を下記表2に記載した。なお、印刷された電極のラインが断線となったものを、Line Brokenと判断した。
Evaluation of Printability of Electrode Pattern After front-printing the electrode-forming composition produced in Examples 1 to 7 and Comparative Examples 1 to 11 on the wafer, the number of line brokens of the printed electrodes was counted with the naked eye, Evaluation was made according to the following criteria. The results are shown in Table 2 below. In addition, what the line of the printed electrode was disconnected was judged as Line Broken.
5A:0個、4A:0個を超えて3個未満、3A:3個以上6個未満、2A:6個以上12個未満、1A:12個以上15個未満、および0A:15個以上。 5A: 0, 4A: More than 0 and less than 3, 3A: 3 or more and less than 6, 2A: 6 or more and less than 12, 1A: 12 or more and less than 15, and 0A: 15 or more.
電極パターンの付着力の評価
400meshスクリーンで5cm×5cmサイズで正四角形となるように、ウエハの上に実施例1〜7および比較例1〜11により製造した電極形成用組成物を前面印刷して、300〜400℃の間で乾燥してサンプルを製作した。格子付着性の評価(ASTMD3359)に基づいてcrosscut knifeで100個の格子模様を作って、金属付着力専用テープ(3M、#610)を付けてから外し、取れた格子数を下記基準により換算して結果値を区分した。その結果を下記表2に記載した。
Evaluation of Adhesiveness of Electrode Pattern The electrode-forming compositions produced in Examples 1-7 and Comparative Examples 1-11 were printed on the front surface of the wafer so as to form a regular square with a size of 5 cm × 5 cm on a 400 mesh screen. The sample was produced by drying between 300-400 ° C. Based on the evaluation of grid adhesion (ASTM D3359), make 100 grid patterns with cross knife, attach and remove the metal adhesion tape (3M, # 610), and convert the number of grids taken according to the following criteria. The result values were divided. The results are shown in Table 2 below.
5B:0%、4B:0%を超えて5%未満、3B:5%以上15%未満、2B:15%以上35%未満、1B:35%以上65%未満、および0B:65%以上。 5B: 0%, 4B: more than 0% and less than 5%, 3B: 5% or more and less than 15%, 2B: 15% or more and less than 35%, 1B: 35% or more and less than 65%, and 0B: 65% or more.
表2を参照すれば、実施例1〜7の電極形成用組成物で製造された電極パターンに対する比較例1、2、3、5、7および9の電極形成用組成物で製造された電極パターンは、付着力が良くなく、比較例4、6、8、10および11の場合、付着力は良好であるが、印刷性の不足によりRs上昇を招いて、効率に逆効果を与えると予想される。これに対し、実施例1〜7の電極形成用組成物で製造された電極パターンは、付着力に優れながらも十分な印刷性を確保して効率向上に寄与すると判断される。 Referring to Table 2, the electrode patterns manufactured with the electrode forming compositions of Comparative Examples 1, 2, 3, 5, 7 and 9 with respect to the electrode patterns manufactured with the electrode forming compositions of Examples 1-7. The adhesive force is not good, and in Comparative Examples 4, 6, 8, 10 and 11, the adhesive force is good, but it is expected that Rs will increase due to insufficient printability and adversely affect the efficiency. The On the other hand, it is judged that the electrode pattern manufactured with the composition for electrode formation of Examples 1-7 ensures sufficient printability, but contributes to efficiency improvement, although it is excellent in adhesive force.
太陽電池の電気的効率の評価
ウエハ(ボロンがドーピングされたpタイプのウエハ)の前面にテクスチャリング(texturing)した後、POCl3でn+層を形成し、その上に窒化ケイ素(SiNx:H)を反射防止膜として形成させたMulticrystallineウエハ)の前面に、実施例1〜7および比較例1〜11により製造した電極形成用組成物を、それぞれ一定のパターンでスクリーン印刷し、赤外線乾燥炉を用いて300〜400℃の温度で乾燥させた。以降、ウエハの後面にアルミニウムペーストを印刷した後、同様な方法で乾燥した。前記過程で形成したセルを、ベルト型焼成炉を用いて400〜900℃の温度で30秒から50秒間焼成を行って、テスト用セルを製作した。
Evaluation of electrical efficiency of solar cell After texturing the front surface of a wafer (a p-type wafer doped with boron), an n + layer is formed with POCl 3 and silicon nitride (SiNx: H) is formed thereon. The electrode forming compositions produced in Examples 1 to 7 and Comparative Examples 1 to 11 were screen-printed in a predetermined pattern on the front surface of a multicrystalline line wafer formed with an antireflection film, and an infrared drying furnace was used. And dried at a temperature of 300 to 400 ° C. Thereafter, an aluminum paste was printed on the rear surface of the wafer and then dried in the same manner. The cell formed in the above process was baked at a temperature of 400 to 900 ° C. for 30 seconds to 50 seconds using a belt-type baking furnace to manufacture a test cell.
製作したテスト用セルの電気的特性(短絡電流(Isc(A))、曲線因子(fill factor)および効率)を、太陽電池効率測定装備(Pasan社、CT−801)を用いて測定した。その結果を下記表3に記載した。 The electrical characteristics (short circuit current (Isc (A)), fill factor and efficiency) of the manufactured test cell were measured using a solar cell efficiency measurement equipment (Pasan, CT-801). The results are shown in Table 3 below.
表3を参照すれば、実施例1〜7の電極形成用組成物を用いて製造された太陽電池は、比較例1〜11による電極形成用組成物を用いて製造された太陽電池に比べて、FFと効率が全て良好な値を示した。 Referring to Table 3, the solar cells manufactured using the electrode forming compositions of Examples 1 to 7 are compared to the solar cells manufactured using the electrode forming compositions of Comparative Examples 1 to 11. , FF and efficiency all showed good values.
本発明の単なる変形や変更は、この分野における通常の知識を有する者によって容易に実施可能であり、このような変形や変更は全て本発明の領域に含まれるものと見なされる。 Only variations and modifications of the present invention can be readily implemented by those having ordinary knowledge in the art, and all such variations and modifications are considered to be within the scope of the present invention.
100 基板、
101 p層(またはn層)、
102 n層(またはp層)、
210 後面電極、
230 前面電極、
300 光。
100 substrates,
101 p layer (or n layer),
102 n layer (or p layer),
210 rear electrode,
230 Front electrode,
300 light.
Claims (13)
ガラスフリットと、
有機バインダー、多官能性(メタ)アクリレート化合物および溶媒を含む有機ビヒクルと、を含む電極形成用組成物であって、
前記多官能性(メタ)アクリレート化合物は、200〜500の分子量を有し、前記電極形成用組成物100重量%に対して、0.15〜2重量%で含まれる、電極形成用組成物。 Conductive powder;
Glass frit,
An organic binder containing an organic binder, a polyfunctional (meth) acrylate compound and a solvent, and an electrode forming composition comprising:
The polyfunctional (meth) acrylate compound has a molecular weight of 200 to 500, and is contained at 0.15 to 2% by weight with respect to 100% by weight of the electrode forming composition.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150059696 | 2015-04-28 | ||
KR10-2015-0059696 | 2015-04-28 | ||
KR1020160022005A KR101976661B1 (en) | 2015-04-28 | 2016-02-24 | Composition forforming electrode, electrode manufactured using the same and solar cell |
KR10-2016-0022005 | 2016-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016210962A true JP2016210962A (en) | 2016-12-15 |
Family
ID=57529758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016048853A Pending JP2016210962A (en) | 2015-04-28 | 2016-03-11 | Electrode forming composition, electrode manufactured using the same, and solar cell |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2016210962A (en) |
KR (1) | KR101976661B1 (en) |
CN (1) | CN106098139B (en) |
TW (1) | TWI598887B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180063750A (en) * | 2016-12-02 | 2018-06-12 | 삼성에스디아이 주식회사 | Method for manufacturing finger electrode for solar cell |
KR20190073210A (en) * | 2017-12-18 | 2019-06-26 | 삼성에스디아이 주식회사 | Composition for forming solar cell electrode and electrode prepared using the same |
KR102220531B1 (en) * | 2018-04-23 | 2021-02-24 | 삼성에스디아이 주식회사 | Composition for forming electrode, electrode manufactured using the same and solar cell |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69910335T2 (en) * | 1998-12-11 | 2004-07-01 | E.I. Du Pont De Nemours And Co., Wilmington | Composition for a photosensitive conductive tape containing silver and the tape treated therewith |
KR100996235B1 (en) * | 2004-06-01 | 2010-11-25 | 주식회사 동진쎄미켐 | Pb free Ag paste composition for PDP address electrode |
KR20120008135A (en) * | 2010-07-16 | 2012-01-30 | 주식회사 동진쎄미켐 | Thermosetting electrode paste composition for low temperature firing containing adherence-enhancing agent |
JP5559509B2 (en) * | 2009-10-28 | 2014-07-23 | 昭栄化学工業株式会社 | Conductive paste for solar cell electrode formation |
KR101309813B1 (en) * | 2010-12-10 | 2013-09-23 | 제일모직주식회사 | Composition for forming electrode and electrode produced thereby |
CN102956283B (en) * | 2012-10-25 | 2016-08-03 | 上海玻纳电子科技有限公司 | A kind of new and effective crystal silicon solar batteries unleaded silver slurry and preparation and application thereof |
DE102014014322B4 (en) * | 2014-10-01 | 2017-11-23 | Ferro Gmbh | Tellurate-Fügeglas with processing temperatures ≦ 400 ° C. |
-
2016
- 2016-02-24 KR KR1020160022005A patent/KR101976661B1/en active IP Right Grant
- 2016-03-11 JP JP2016048853A patent/JP2016210962A/en active Pending
- 2016-03-31 CN CN201610197376.5A patent/CN106098139B/en active Active
- 2016-04-08 TW TW105110974A patent/TWI598887B/en active
Also Published As
Publication number | Publication date |
---|---|
KR101976661B1 (en) | 2019-05-09 |
CN106098139B (en) | 2018-06-22 |
CN106098139A (en) | 2016-11-09 |
KR20160128203A (en) | 2016-11-07 |
TW201638968A (en) | 2016-11-01 |
TWI598887B (en) | 2017-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6396335B2 (en) | Composition for forming solar cell electrode and electrode manufactured using the same | |
JP6392354B2 (en) | Composition for forming solar cell electrode and electrode produced thereby | |
JP2016538708A (en) | Composition for forming solar cell electrode and electrode produced thereby | |
JP6605800B2 (en) | Composition for forming solar cell electrode and electrode produced thereby | |
CN106816484B (en) | Method of forming electrode, electrode manufactured thereby, and solar cell | |
TWI651289B (en) | Composition for solar cell electrode and electrode fabricated using the same | |
CN113380439A (en) | Composition for forming solar cell electrode and solar cell electrode formed therefrom | |
JP2016210962A (en) | Electrode forming composition, electrode manufactured using the same, and solar cell | |
KR101835499B1 (en) | Composition for forming electrode, electrode manufactured using the same and solar cell | |
KR102171405B1 (en) | Composition for forming solar cell electrode and electrode prepared using the same | |
KR101940170B1 (en) | Composition forforming electrode, electrode manufactured using the same and solar cell | |
CN111354803B (en) | Method for forming solar cell electrode and solar cell | |
KR102316662B1 (en) | Method for forming solar cell electrode, solar cell electrode manufactured therefrom and solar cell | |
CN113450941A (en) | Composition for forming solar cell electrode and solar cell electrode formed therefrom | |
US9966480B2 (en) | Electrode composition, electrode manufactured using the same, and solar cell | |
KR101835921B1 (en) | Composition for forming solar cell electrode and electrode prepared using the same | |
KR101582374B1 (en) | Composition for forming solar cell electrode and electrode prepared using the same | |
KR101974839B1 (en) | Composition for forming electrode, electrode manufactured using the same and solar cell | |
JP6804255B2 (en) | Electrode forming composition and electrodes and solar cells manufactured using the composition | |
KR20220006374A (en) | Composition for forming solar cell electrode and solar cell electrode prepared using the same | |
KR20200015318A (en) | Composition for forming electrode for solar cell including aluminum oxide layer, electrode prepared using the same and solar cell comprising electrode prepared using the same | |
KR20200075682A (en) | Composition for forming dsw based solar cell electrode and dsw based solar cell electrode prepared using the same | |
KR20200094555A (en) | Method for forming solar cell electrode, solar cell electrode manufactured therefrom and solar cell | |
KR20170025892A (en) | Composition forforming electrode, electrode manufactured using the same and solar cell | |
KR20200068499A (en) | Composition for forming solar cell electrode and solar cell electrode prepared using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200623 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20201117 |