JP2016207418A - Electrode mixture - Google Patents

Electrode mixture Download PDF

Info

Publication number
JP2016207418A
JP2016207418A JP2015086845A JP2015086845A JP2016207418A JP 2016207418 A JP2016207418 A JP 2016207418A JP 2015086845 A JP2015086845 A JP 2015086845A JP 2015086845 A JP2015086845 A JP 2015086845A JP 2016207418 A JP2016207418 A JP 2016207418A
Authority
JP
Japan
Prior art keywords
active material
particles
solid electrolyte
sulfide
based solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015086845A
Other languages
Japanese (ja)
Inventor
岩崎 正博
Masahiro Iwasaki
正博 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015086845A priority Critical patent/JP2016207418A/en
Publication of JP2016207418A publication Critical patent/JP2016207418A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode mixture capable of reducing internal resistance of a battery.SOLUTION: An electrode mixture includes: a composite active material particle formed by covering an active material particle with sulfide-based solid electrolyte; a fibrous conductive member; and a sulfide-based solid electrolyte particle whose average particle diameter is smaller than the composite active material particle.SELECTED DRAWING: Figure 6

Description

本発明は、電極合材に関する。   The present invention relates to an electrode mixture.

全固体電池の分野において、従来から、電極活物質および固体電解質材料の界面に着目し、全固体電池の性能向上を図る試みがある。
例えば、特許文献1には、リチウムイオン伝導性酸化物で表面被覆された電極活物質を含む電極合材を正極に用いた固体電池が開示されている。これは、電極活物質の表面をリチウムイオン伝導性酸化物で被覆することにより、電極活物質および硫化物系固体電解質材料の界面における高抵抗層の形成を抑制し、電池の高出力化を図ったものである。
In the field of all-solid-state batteries, there have been attempts to improve the performance of all-solid-state batteries, focusing on the interface between the electrode active material and the solid electrolyte material.
For example, Patent Document 1 discloses a solid battery using an electrode mixture containing an electrode active material whose surface is coated with a lithium ion conductive oxide as a positive electrode. This is because the surface of the electrode active material is coated with a lithium ion conductive oxide, thereby suppressing the formation of a high resistance layer at the interface between the electrode active material and the sulfide-based solid electrolyte material, thereby increasing the output of the battery. It is a thing.

特開2014−154407号公報JP, 2014-154407, A

しかし、特許文献1に開示されているような固体電解質を表面に被覆した電極活物質を含む電極合材は、電極合材中に含まれる導電材の分散性が十分でなく、当該電極合材を用いた電池の内部抵抗が高いという問題がある。
本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、電池の内部抵抗を低減することができる電極合材を提供することである。
However, the electrode mixture containing an electrode active material having a surface coated with a solid electrolyte as disclosed in Patent Document 1 has insufficient dispersibility of the conductive material contained in the electrode mixture, and the electrode mixture There is a problem that the internal resistance of the battery using the battery is high.
The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide an electrode mixture capable of reducing the internal resistance of a battery.

本発明の電極合材は、活物質粒子に硫化物系固体電解質を被覆してなる複合活物質粒子と、
繊維状の導電材と、
前記複合活物質粒子よりも平均粒径の小さい硫化物系固体電解質粒子と、を含むことを特徴とする。
The electrode mixture of the present invention comprises composite active material particles obtained by coating active material particles with a sulfide-based solid electrolyte,
A fibrous conductive material;
And sulfide-based solid electrolyte particles having an average particle size smaller than that of the composite active material particles.

本発明によれば、電池の内部抵抗を低減することができる電極合材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode compound material which can reduce the internal resistance of a battery can be provided.

本発明の電極合材のイメージ図である。It is an image figure of the electrode compound material of this invention. 複合活物質粒子の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of a composite active material particle. 実施例1の全固体リチウム二次電池の正極のSEM画像である。2 is a SEM image of a positive electrode of the all solid lithium secondary battery of Example 1. FIG. 比較例1の全固体リチウム二次電池の正極のSEM画像である。4 is a SEM image of a positive electrode of an all solid lithium secondary battery of Comparative Example 1. 比較例2の全固体リチウム二次電池の正極のSEM画像である。4 is a SEM image of a positive electrode of an all solid lithium secondary battery of Comparative Example 2. 実施例1、比較例1〜2の全固体リチウム二次電池の内部抵抗を示した図である。It is the figure which showed the internal resistance of Example 1 and the all-solid-state lithium secondary battery of Comparative Examples 1-2.

本発明の電極合材は、活物質粒子に硫化物系固体電解質を被覆してなる複合活物質粒子と、
繊維状の導電材と、
前記複合活物質粒子よりも平均粒径の小さい硫化物系固体電解質粒子と、を含むことを特徴とする。
The electrode mixture of the present invention comprises composite active material particles obtained by coating active material particles with a sulfide-based solid electrolyte,
A fibrous conductive material;
And sulfide-based solid electrolyte particles having an average particle size smaller than that of the composite active material particles.

電極の材料として、特許文献1に記載の固体電解質粒子を活物質粒子表面に被覆した複合活物質粒子を用いて電極合材を製造すると、電極合材中に含まれる導電材の分散性が不十分となり、導電材の一部が凝集する。導電材が凝集した場合、電池化した電極内で十分な電子伝導パスが形成されないため、電池の内部抵抗が大きくなるという問題がある。
固体電解質粒子を活物質粒子表面に被覆した複合活物質粒子の粒子サイズは、導電材の凝集間隙サイズに比べて十分大きいため、導電材の凝集が解かれずに、電極内に凝集した導電材が残存する。
本発明者は、電極合材中に、複合活物質粒子に含まれず、且つ、複合活物質粒子よりも平均粒径の小さい硫化物系固体電解質粒子を混ぜた構成にすることにより、硫化物系固体電解質粒子が、凝集した導電材と導電材との間、及び/又は、繊維状の導電材の間隙に入り込み、立体障害作用を起こすことで、導電材の凝集が解かれ、当該電極合材中に含まれる導電材の分散性を向上させ、従来よりも電池の内部抵抗を低減できることを見出した。
図1は、本発明の電極合材のイメージ図である。
図1に示すように、電極合材100は、導電材1と、硫化物系固体電解質粒子2と、複合活物質粒子3と、結着剤4で構成される。導電材1と導電材1との間に硫化物系固体電解質粒子2が入り込み、立体障害作用を起こすことで、導電材1の凝集が解かれ、導電材1の分散性が向上するため、従来よりも電池の内部抵抗を低減することができると推定される。
なお、本発明において、内部抵抗とは、直流抵抗、反応抵抗、及び拡散抵抗、その他の抵抗の和を意味する。
When an electrode mixture is manufactured using composite active material particles in which the solid electrolyte particles described in Patent Document 1 are coated on the surface of the active material particles as the electrode material, the dispersibility of the conductive material contained in the electrode mixture is not good. It becomes sufficient, and a part of the conductive material aggregates. When the conductive material is agglomerated, a sufficient electron conduction path is not formed in the battery electrode, which causes a problem that the internal resistance of the battery increases.
The size of the composite active material particles in which the solid electrolyte particles are coated on the surface of the active material particles is sufficiently larger than the aggregate size of the conductive material, so that the conductive material is not agglomerated and the conductive material is aggregated in the electrode. Remains.
The inventor of the present invention has a structure in which sulfide-based solid electrolyte particles that are not included in the composite active material particles and have an average particle size smaller than that of the composite active material particles are mixed in the electrode mixture. The solid electrolyte particles enter between the agglomerated conductive material and the conductive material and / or the gap between the fibrous conductive materials to cause a steric hindrance, thereby deaggregating the conductive material, and the electrode mixture It has been found that the dispersibility of the conductive material contained therein can be improved, and the internal resistance of the battery can be reduced as compared with the prior art.
FIG. 1 is an image diagram of the electrode mixture of the present invention.
As shown in FIG. 1, the electrode mixture 100 includes a conductive material 1, sulfide-based solid electrolyte particles 2, composite active material particles 3, and a binder 4. Since the sulfide-based solid electrolyte particles 2 enter between the conductive material 1 and the conductive material 1 to cause steric hindrance, the aggregation of the conductive material 1 is released and the dispersibility of the conductive material 1 is improved. It is estimated that the internal resistance of the battery can be reduced.
In the present invention, the internal resistance means the sum of direct current resistance, reaction resistance, diffusion resistance, and other resistances.

(1)複合活物質粒子
複合活物質粒子は、活物質粒子に硫化物系固体電解質を被覆してなるものである。
本発明において、複合活物質粒子は、活物質粒子と硫化物系固体電解質との間に酸化物系固体電解質が介在する形態を含む。活物質粒子と硫化物系固体電解質との間に酸化物系固体電解質を介在させることにより、活物質粒子と硫化物系固体電解質との接触による反応劣化を抑制することができる。
また、本発明において、「被覆」とは、活物質粒子の表面又は後述する複合粒子の表面の40%以上を覆うことをいう。
複合活物質粒子の平均粒径は、特に限定されないが、0.1μm以上であることが好ましい。また、複合活物質粒子の平均粒径は、特に限定されないが、30μm以下であることが好ましい。
電極合材中の複合活物質粒子の含有量は、例えば、10〜99質量%の範囲内であることが好ましい。
(1) Composite Active Material Particles Composite active material particles are obtained by coating active material particles with a sulfide-based solid electrolyte.
In the present invention, the composite active material particles include a form in which an oxide solid electrolyte is interposed between the active material particles and the sulfide solid electrolyte. By interposing an oxide-based solid electrolyte between the active material particles and the sulfide-based solid electrolyte, reaction deterioration due to contact between the active material particles and the sulfide-based solid electrolyte can be suppressed.
In the present invention, “coating” means covering 40% or more of the surface of the active material particles or the surface of the composite particles described later.
The average particle size of the composite active material particles is not particularly limited, but is preferably 0.1 μm or more. The average particle size of the composite active material particles is not particularly limited, but is preferably 30 μm or less.
The content of the composite active material particles in the electrode mixture is preferably in the range of 10 to 99% by mass, for example.

図2は、本発明に用いる複合活物質粒子の一例を示す断面模式図である。なお、図2は、あくまで、ある実施形態における材料の被覆の態様を定性的に説明するための図であり、実際の固体電解質の粒径や固体電解質の被覆状態、固体電解質層の厚さ等を必ずしも定量的に反映した図ではない。
図2に示すように、複合活物質粒子3は、活物質粒子11の表面の全部を酸化物系固体電解質層12により被覆してなる複合粒子、及び当該複合粒子の表面の全部をさらに被覆する硫化物系固体電解質層13を含有する。
FIG. 2 is a schematic cross-sectional view showing an example of composite active material particles used in the present invention. In addition, FIG. 2 is a figure for qualitatively explaining the coating mode of the material in a certain embodiment to the last, the particle size of the actual solid electrolyte, the coating state of the solid electrolyte, the thickness of the solid electrolyte layer, etc. Is not necessarily a figure that quantitatively reflects.
As shown in FIG. 2, the composite active material particles 3 further cover the entire surface of the active material particles 11 with the oxide solid electrolyte layer 12 and the entire surface of the composite particles. Contains a sulfide-based solid electrolyte layer 13.

(1−1)活物質粒子
活物質粒子は、電極活物質として働くもの、具体的には、リチウムイオン等のイオンを吸蔵及び/又は放出できるものであれば、特に限定されない。
活物質粒子としては、LiCoO、LiNiO、LiCo1/3Ni1/3Mn1/3、LiVO、LiCrO等の層状活物質、LiMn、Li1+xMn2−x−y(MがAl、Mg、Co、Fe、Ni、Znから選ばれる一種以上)で表される組成の異種元素置換Li−Mnスピネル、LiNiMn等のスピネル型活物質、LiTi12等のチタン酸リチウム、LiMPO(MがFe、Mn、Co、Ni)等のオリビン型活物質、Li12等のNASICON型活物質、三価バナジウム(V)、酸化モリブデン(MoO)等の遷移金属酸化物、硫化チタン(TiS)等の遷移金属硫化物、メソカーボンマイクロビーズ(MCMB)、グラファイト、高配向性熱分解グラファイト(HOPG)、ハードカーボン、ソフトカーボン等の炭素材料、LiCoN等のリチウムコバルト窒化物、LiSi等のリチウムシリコン酸化物、リチウム金属(Li)、LiM(MがSn、Si、Al、Ge、Sb、P等)等のリチウム合金、In、Al、Si、Sn等の金属、MgM(MがSn、Ge、Sb)、NSb(NがIn、Cu、Mn)等のリチウム貯蔵性金属間化合物とそれらの誘導体等が挙げられる。これら活物質粒子の中でも、正極活物質粒子としては、特に、LiNi1/3Co1/3Mn1/3を用いることが好ましく、負極活物質粒子としては、グラファイト、高配向性熱分解グラファイト(HOPG)、ハードカーボン、ソフトカーボン等の炭素材料を用いることが好ましい。
ここで、正極活物質と負極活物質には明確な区別はなく、2種類の化合物の充放電電位を比較して貴な電位を示すものを正極に、卑な電位を示すものを負極に用いて任意の電圧の電池を構成することができる。
(1-1) Active Material Particles The active material particles are not particularly limited as long as they function as electrode active materials, specifically, can absorb and / or release ions such as lithium ions.
As the active material particles, layered active materials such as LiCoO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiVO 2 , LiCrO 2 , LiMn 2 O 4 , Li 1 + x Mn 2−x− y M y O 4 different element substituted Li-Mn spinel composition represented by (M is Al, Mg, Co, Fe, Ni, one or more selected from Zn), spinel-type activity, such as Li 2 NiMn 3 O 8 Material, lithium titanate such as Li 4 Ti 5 O 12 , olivine type active material such as LiMPO 4 (M is Fe, Mn, Co, Ni), NASICON type active material such as Li 3 V 2 P 3 O 12 , three valence vanadium (V 2 O 5), transition metal oxides such as molybdenum oxide (MoO 3), transition metal sulfides such as titanium sulfide (TiS 2), meso-carbon microbeads (MCM ), Graphite, highly oriented pyrolytic graphite (HOPG), hard carbon, carbon materials such as soft carbon, lithium-cobalt nitride such LiCoN, lithium silicon oxide such as Li x Si y O z, lithium metal (Li) LiM (M is Sn, Si, Al, Ge, Sb, P, etc.), lithium alloys such as In, Al, Si, Sn, etc., Mg x M (M is Sn, Ge, Sb), N y Sb Examples thereof include lithium-storable intermetallic compounds such as (N is In, Cu, Mn) and derivatives thereof. Among these active material particles, it is particularly preferable to use LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material particles, and graphite, high orientation pyrolysis as the negative electrode active material particles. It is preferable to use a carbon material such as graphite (HOPG), hard carbon, or soft carbon.
Here, there is no clear distinction between the positive electrode active material and the negative electrode active material, and the charge / discharge potentials of two kinds of compounds are compared with each other and a positive potential is used as a positive electrode, and a negative potential is used as a negative electrode. Thus, a battery having an arbitrary voltage can be configured.

本発明における活物質粒子は、活物質の単結晶粒子であってもよいし、複数の活物質単結晶が結晶面レベルで結合した多結晶の活物質粒子であってもよい。
本発明における活物質粒子の平均粒径は、目的とする複合活物質粒子の平均粒径未満であれば、特に限定されない。活物質粒子の平均粒径は、0.1〜30μmであることが好ましい。なお、活物質粒子が、複数の活物質結晶が結合した多結晶の活物質粒子である場合には、活物質粒子の平均粒径とは、多結晶の活物質粒子の平均粒径のことを指すものとする。
本発明における粒子の平均粒径は、常法により算出される。粒子の平均粒径の算出方法の例は以下の通りである。まず、適切な倍率(例えば、5万〜100万倍)の透過型電子顕微鏡(Transmission Electron Microscope;以下、TEMと称する。)画像又は走査型電子顕微鏡(Scanning Electron Microscope;以下、SEMと称する。)画像において、ある1つの粒子について、当該粒子を球状と見なした際の粒径を算出する。このようなTEM観察又はSEM観察による粒径の算出を、同じ種類の200〜300個の粒子について行い、これらの粒子の平均を平均粒径とする。
The active material particles in the present invention may be single crystal particles of the active material, or may be polycrystalline active material particles in which a plurality of active material single crystals are bonded at the crystal plane level.
The average particle diameter of the active material particles in the present invention is not particularly limited as long as it is less than the average particle diameter of the target composite active material particles. The average particle diameter of the active material particles is preferably 0.1 to 30 μm. When the active material particles are polycrystalline active material particles in which a plurality of active material crystals are combined, the average particle size of the active material particles is the average particle size of the polycrystalline active material particles. Shall point to.
The average particle diameter of the particles in the present invention is calculated by a conventional method. An example of a method for calculating the average particle size of the particles is as follows. First, a transmission electron microscope (hereinafter referred to as TEM) with an appropriate magnification (for example, 50,000 to 1,000,000 times), an image or a scanning electron microscope (hereinafter referred to as SEM). In the image, for a certain particle, the particle diameter when the particle is regarded as spherical is calculated. Calculation of the particle size by such TEM observation or SEM observation is performed for 200 to 300 particles of the same type, and the average of these particles is taken as the average particle size.

(1−2)複合粒子
本発明における複合粒子は、活物質粒子に酸化物系固体電解質を被覆してなるものである。
本発明における酸化物系固体電解質は、酸素元素(O)を含有し、且つ、活物質粒子の表面を被覆できる程度に、活物質粒子と化学的親和性があるものであれば、特に限定されない。
酸化物系固体電解質としては、例えば、一般式LiAO(ただし、Aは、B、C、Al、Si、P、S、Ti、Zr、Nb、Mo、Ta、又は、Wであり、x及びyは正の整数である。)で表されるものを挙げることができる。具体的には、LiBO、LiBO、LiCO、LiAlO、LiSiO、LiSiO、LiPO、LiSO、LiTiO、LiTi12、LiTi、LiZrO、LiNbO、LiMoO、LiWO等を挙げることができる。また、LiO−B−P、LiO−SiO、LiO−B、LiO−B−ZnO等も挙げることができる。これら酸化物系固体電解質の中でも、特に、LiNbOを用いることが好ましい。
活物質粒子を被覆する酸化物系固体電解質層の厚さは、活物質粒子と硫化物系固体電解質とが反応を生じない程度の厚さであることが好ましく、例えば、0.1〜100nmの範囲内であることが好ましく、1〜20nmの範囲内であることがより好ましい。
酸化物系固体電解質層は、活物質粒子の表面の40%以上を覆っていればよいが、活物質粒子の表面のより多くの面積を覆っていることが好ましく、活物質粒子の表面の全てを覆っていることがより好ましい。具体的には、被覆率が70%以上であることが好ましく、90%以上であることがより好ましい。
活物質粒子の表面に酸化物系固体電解質層を形成する方法としては、例えば、転動流動コーティング法(ゾルゲル法)、メカノフュージョン法、化学気相成長(CVD)法および物理気相成長(PVD)法等を挙げることができる。なお、酸化物系固体電解質層の厚さの測定方法としては、例えば、TEM等を挙げることができ、酸化物系固体電解質層の被覆率の測定方法としては、例えば、TEMおよびX線光電子分光(XPS)等を挙げることができる。
(1-2) Composite Particles The composite particles in the present invention are obtained by coating active material particles with an oxide-based solid electrolyte.
The oxide-based solid electrolyte in the present invention is not particularly limited as long as it contains oxygen element (O) and has a chemical affinity with the active material particles to the extent that the surface of the active material particles can be coated. .
Examples of the oxide-based solid electrolyte include a general formula Li x AO y (where A is B, C, Al, Si, P, S, Ti, Zr, Nb, Mo, Ta, or W, x and y are positive integers.). Specifically, Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , LiAlO 2 , Li 4 SiO 4 , Li 2 SiO 3 , Li 3 PO 4 , Li 2 SO 4 , Li 2 TiO 3 , Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , Li 2 ZrO 3 , LiNbO 3 , Li 2 MoO 4 , Li 2 WO 4 and the like can be mentioned. Further, Li 2 O-B 2 O 3 -P 2 O 5, Li 2 O-SiO 2, Li 2 O-B 2 O 3, Li 2 O-B 2 O 3 -ZnO or the like can also be mentioned. Among these oxide-based solid electrolytes, it is particularly preferable to use LiNbO 3 .
The thickness of the oxide-based solid electrolyte layer covering the active material particles is preferably a thickness that does not cause a reaction between the active material particles and the sulfide-based solid electrolyte, for example, 0.1 to 100 nm. It is preferably within the range, and more preferably within the range of 1 to 20 nm.
The oxide-based solid electrolyte layer only needs to cover 40% or more of the surface of the active material particles, but preferably covers a larger area of the surface of the active material particles. It is more preferable to cover. Specifically, the coverage is preferably 70% or more, and more preferably 90% or more.
Examples of the method for forming the oxide-based solid electrolyte layer on the surface of the active material particles include a rolling fluidized coating method (sol-gel method), a mechano-fusion method, a chemical vapor deposition (CVD) method, and a physical vapor deposition (PVD). ) Law. Examples of the method for measuring the thickness of the oxide-based solid electrolyte layer include TEM. Examples of the method for measuring the coverage of the oxide-based solid electrolyte layer include TEM and X-ray photoelectron spectroscopy. (XPS) and the like.

(1−3)硫化物系固体電解質
本発明に用いられる硫化物系固体電解質としては、硫黄元素(S)を含有し、且つ、上述した活物質粒子表面又は複合粒子表面を被覆できる程度に、活物質粒子又は複合粒子と化学的親和性がありイオン伝導性を有するものであれば、特に限定されない。
活物質粒子の表面又は複合粒子の表面を被覆する硫化物系固体電解質層の厚さは、例えば、0.1〜100nmの範囲内であることが好ましく、1〜20nmの範囲内であることがより好ましい。
硫化物系固体電解質層は、活物質粒子の表面又は複合粒子の表面の40%以上を覆っていればよいが、より多くの面積を被覆していることが好ましく、活物質粒子の表面又は複合粒子の表面の全てを覆っていることがより好ましい。具体的には、被覆率が70%以上であることが好ましく、90%以上であることがより好ましい。硫化物系固体電解質の被覆状態は、TEM、SEM等によって定性的に確認することができる。
活物質粒子の表面又は複合粒子の表面に硫化物系固体電解質層を形成する方法としては、乾式混練装置(例えば、ホソカワミクロン社製、商品名:NOB−MINI等)を用いて、活物質粒子又は複合粒子と、硫化物系固体電解質を混練処理する方法等が挙げられる。なお、混練に用いる硫化物系固体電解質の形状は、特に限定されないが、粒子形状であることが好ましい。
本発明の電極合材が全固体リチウム電池に用いられる場合、上記硫化物系固体電解質として、例えば、LiS−SiS系、LiS−P系、LiS−P系、LiS−GeS系、LiS−B系、LiPO−P系、及び、LiSiO−LiS−SiS系等が挙げられる。具体的には、10LiI−15LiBr−75(0.75LiS−0.25P)が好ましい。
また、硫化物系固体電解質は、硫化物ガラスであっても良く、その硫化物ガラスを熱処理して得られる結晶化硫化物ガラスであっても良い。
電極合材に含まれる硫化物系固体電解質粒子としては、上述した複合活物質粒子に含まれる硫化物系固体電解質と同様のものを用いることができる。
電極合材に含まれる硫化物系固体電解質粒子の平均粒径は、上記複合活物質粒子の平均粒径よりも小さければ特に限定されないが、導電材の分散性を向上させる観点から、導電材の繊維の間隙の大きさ以下(例えば、2μm以下)であることが好ましい。また、硫化物系固体電解質粒子の平均粒径は、0.1μm以上であることが好ましい。
(1-3) Sulfide-based solid electrolyte As a sulfide-based solid electrolyte used in the present invention, it contains sulfur element (S) and can cover the active material particle surface or the composite particle surface described above. There is no particular limitation as long as it has chemical affinity with the active material particles or composite particles and has ion conductivity.
The thickness of the sulfide solid electrolyte layer covering the surface of the active material particles or the surface of the composite particles is preferably in the range of 0.1 to 100 nm, for example, and preferably in the range of 1 to 20 nm. More preferred.
The sulfide-based solid electrolyte layer only needs to cover 40% or more of the surface of the active material particles or the surface of the composite particles, but preferably covers a larger area. More preferably, it covers the entire surface of the particles. Specifically, the coverage is preferably 70% or more, and more preferably 90% or more. The covering state of the sulfide-based solid electrolyte can be qualitatively confirmed by TEM, SEM or the like.
As a method for forming a sulfide-based solid electrolyte layer on the surface of the active material particles or the surface of the composite particles, a dry kneading apparatus (for example, product name: NOB-MINI, manufactured by Hosokawa Micron Corporation) is used. Examples thereof include a method of kneading the composite particles and the sulfide-based solid electrolyte. The shape of the sulfide-based solid electrolyte used for kneading is not particularly limited, but is preferably a particle shape.
When the electrode mixture of the present invention is used for an all-solid lithium battery, examples of the sulfide-based solid electrolyte include Li 2 S—SiS 2 , Li 2 S—P 2 S 3 , and Li 2 S—P 2. S 5 based, Li 2 S-GeS 2 system, Li 2 S-B 2 S 3 system, Li 3 PO 4 -P 2 S 5 system, and, like Li 4 SiO 4 -Li 2 S- SiS 2 system and the like It is done. Specifically, 10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5) are preferred.
The sulfide-based solid electrolyte may be sulfide glass, or may be crystallized sulfide glass obtained by heat-treating the sulfide glass.
As the sulfide-based solid electrolyte particles contained in the electrode mixture, those similar to the sulfide-based solid electrolyte contained in the composite active material particles described above can be used.
The average particle size of the sulfide-based solid electrolyte particles contained in the electrode mixture is not particularly limited as long as it is smaller than the average particle size of the composite active material particles, but from the viewpoint of improving the dispersibility of the conductive material, It is preferable that it is not more than the size of the fiber gap (for example, not more than 2 μm). The average particle size of the sulfide-based solid electrolyte particles is preferably 0.1 μm or more.

(2)導電材
導電材は、繊維状であり、且つ、電極の電子伝導性を向上させることができるものであれば特に限定されない。
導電材としては、例えば、カーボンファイバー、カーボンナノチューブ等を挙げることができる。
電極合材における導電材の含有割合は、導電材の種類によって異なるものであるが、通常1〜30質量%の範囲内である。
(2) Conductive material The conductive material is not particularly limited as long as it is fibrous and can improve the electron conductivity of the electrode.
Examples of the conductive material include carbon fiber and carbon nanotube.
Although the content rate of the electrically conductive material in an electrode compound material changes with kinds of electrically conductive material, it is in the range of 1-30 mass% normally.

(3)その他
本発明の電極合材は、必要に応じて結着剤を含有する。結着剤としては、例えばポリビニリデンフロライド(PVdF)、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体等のフッ素樹脂、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)等のゴム性状樹脂等を挙げることができる。また、ゴム性状樹脂としては、特に限定されないが、水素添加したブタジエンゴムや、水素添加したブタジエンゴムの末端に官能基を導入したものを好適に用いることができる。これらをそれぞれ単独で用いてもよいし、二種以上を混合して用いてもよい。
また、電極合材中の結着剤の含有量は、正極活物質等を固定化できる程度の量であれば良く、より少ないことが好ましい。結着剤の含有割合は、通常1〜10質量%の範囲内である。
電極合材の製造方法は、原料として用いる硫化物系固体電解質が粒子形状であれば、特に限定されない。例えば、複合活物質粒子、導電材、硫化物系固体電解質粒子を任意の割合で混合することにより製造することができる。
混合方法は、特に限定されず、湿式混合、乾式混合のどちらでもよい。
湿式混合の場合、例えば、複合活物質粒子、導電材、硫化物系固体電解質粒子、結着剤、分散媒を混合してスラリーを作製し、乾燥させる方法等が挙げられる。分散媒としては、酪酸ブチル、酢酸ブチル、ジブチルエーテル、ヘプタン等が挙げられる。
乾式混合の場合、複合活物質粒子、導電材、硫化物系固体電解質粒子、結着剤を、乳鉢等を用いて混合する方法等が挙げられる。
(3) Others The electrode mixture of the present invention contains a binder as necessary. Examples of the binder include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, and propylene hexafluoride / vinylidene fluoride. Examples thereof include fluorine resins such as copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers, and rubber-like resins such as butadiene rubber (BR) and styrene butadiene rubber (SBR). Further, the rubber-like resin is not particularly limited, but hydrogenated butadiene rubber and those having a functional group introduced at the end of the hydrogenated butadiene rubber can be suitably used. These may be used alone or in combination of two or more.
Further, the content of the binder in the electrode mixture may be an amount that can fix the positive electrode active material or the like, and is preferably smaller. The content rate of a binder is in the range of 1-10 mass% normally.
The method for producing the electrode mixture is not particularly limited as long as the sulfide-based solid electrolyte used as a raw material is in a particle shape. For example, it can be produced by mixing composite active material particles, conductive material, and sulfide-based solid electrolyte particles in an arbitrary ratio.
The mixing method is not particularly limited, and may be either wet mixing or dry mixing.
In the case of wet mixing, for example, a method of preparing a slurry by mixing composite active material particles, a conductive material, sulfide-based solid electrolyte particles, a binder, and a dispersion medium, and drying the slurry can be used. Examples of the dispersion medium include butyl butyrate, butyl acetate, dibutyl ether, heptane and the like.
In the case of dry mixing, a method of mixing the composite active material particles, the conductive material, the sulfide-based solid electrolyte particles, and the binder using a mortar or the like can be mentioned.

本発明により提供される電極合材は、電極活物質層(正極活物質層、負極活物質層)として使用することができ、全固体電池の電極活物質層に用いられることが好ましい。電子伝導性が良好で、充放電容量が大きい電極活物質層を得ることができるからである。
電極活物質層の形成方法としては、例えば、電極合材を圧縮成形する方法等を挙げることができる。例えば、本発明の正極用の電極合材と負極用の電極合材とを、固体電解質層を介して積層することで、全固体電池を作製することができる。
電極合材により形成される電極活物質層には、集電体を設けることができる。集電体としては、所望の電子伝導性を有していれば、その構造や形状、材料に特に限定はないが、材料としては、例えば、金、銀、パラジウム、銅、ニッケル等が挙げられる。
また、本発明により提供される電極合材は、使用する材料(電極活物質、固体電解質等)に応じて、リチウム二次電池以外の幅広い種類の電池に使用することが可能である。
The electrode mixture provided by the present invention can be used as an electrode active material layer (positive electrode active material layer, negative electrode active material layer), and is preferably used for an electrode active material layer of an all-solid battery. This is because an electrode active material layer having good electron conductivity and a large charge / discharge capacity can be obtained.
Examples of the method for forming the electrode active material layer include a method of compression molding an electrode mixture. For example, an all-solid battery can be produced by laminating the electrode mixture for positive electrode and the electrode mixture for negative electrode of the present invention via a solid electrolyte layer.
A current collector can be provided in the electrode active material layer formed of the electrode mixture. The current collector is not particularly limited in its structure, shape, and material as long as it has desired electronic conductivity. Examples of the material include gold, silver, palladium, copper, and nickel. .
Moreover, the electrode mixture provided by the present invention can be used for a wide variety of batteries other than lithium secondary batteries, depending on the materials used (electrode active material, solid electrolyte, etc.).

(実施例1)
まず、LiNi1/3Co1/3Mn1/3粒子(活物質粒子)を、LiNbO(酸化物系固体電解質)により被覆した複合粒子(平均粒径6μm)を準備した。
次に、複合粒子20g、10LiI−15LiBr−75(0.75LiS−0.25P)粒子(硫化物系固体電解質、平均粒径:0.8μm)2.4gを乾式混練装置(ホソカワミクロン社製、商品名:NOB−MINI)に投入し、ブレード−壁間隔が1mm、周速が18.5m/sの条件下で、10分間混練処理を行い、複合活物質粒子(平均粒径6.4μm)を製造した。
正極活物質として上記複合活物質粒子22.4gを、硫化物系固体電解質として10LiI−15LiBr−75(0.75LiS−0.25P)粒子(平均粒径:0.8μm)0.8gを、導電材として気相成長炭素繊維(VGCF)0.3gを、結着剤としてPVdF0.15gを、それぞれ準備した。これら正極活物質、硫化物系固体電解質、導電材、及び結着剤を、正極活物質:硫化物系固体電解質:導電材:結着剤=94.7質量%:3.4質量%:1.3質量%:0.6質量%となるように調整し、酪酸ブチルを13g加えて超音波ホモジナイザーで2分間湿式混合し、電極合材を調製した。
Example 1
First, composite particles (average particle size 6 μm) in which LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles (active material particles) were coated with LiNbO 3 (oxide-based solid electrolyte) were prepared.
Next, 20 g of composite particles, 2.4 g of 10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5 ) particles (sulfide-based solid electrolyte, average particle size: 0.8 μm) are dry kneaded ( The composite active material particles (average particle diameter) were added to Hosokawa Micron Co., Ltd., trade name: NOB-MINI), and kneaded for 10 minutes under conditions of a blade-wall spacing of 1 mm and a peripheral speed of 18.5 m / s. 6.4 μm) was produced.
22.4 g of the composite active material particles as a positive electrode active material, 10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5 ) particles (average particle size: 0.8 μm) as a sulfide solid electrolyte 0 0.8 g, vapor-grown carbon fiber (VGCF) 0.3 g as a conductive material, and PVdF 0.15 g as a binder were prepared. These positive electrode active material, sulfide-based solid electrolyte, conductive material, and binder are used as positive electrode active material: sulfide-based solid electrolyte: conductive material: binder = 94.7% by mass: 3.4% by mass: 1. .3% by mass: adjusted to 0.6% by mass, 13 g of butyl butyrate was added, and wet mixed with an ultrasonic homogenizer for 2 minutes to prepare an electrode mixture.

(比較例1)
まず、LiNi1/3Co1/3Mn1/3粒子(活物質粒子)を、LiNbO(酸化物系固体電解質)により被覆した複合粒子(平均粒径6μm)を準備した。
次に、正極活物質として上記複合粒子20gを、硫化物系固体電解質として10LiI−15LiBr−75(0.75LiS−0.25P)粒子(平均粒径:0.8μm)3.2gを、導電材として気相成長炭素繊維(VGCF)0.3gを、結着剤としてPVdF0.15gを、それぞれ準備した。これら正極活物質、硫化物系固体電解質、導電材、及び結着剤を、正極活物質:硫化物系固体電解質:導電材:結着剤=84.6質量%:13.5質量%:1.3質量%:0.6質量%となるように調整し、酪酸ブチルを13g加えて超音波ホモジナイザーで2分間湿式混合し、電極合材を調製した。
(Comparative Example 1)
First, composite particles (average particle size 6 μm) in which LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles (active material particles) were coated with LiNbO 3 (oxide-based solid electrolyte) were prepared.
Next, 20 g of the composite particles as a positive electrode active material and 10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5 ) particles (average particle diameter: 0.8 μm) as a sulfide-based solid electrolyte. 2 g, 0.3 g of vapor grown carbon fiber (VGCF) as a conductive material and 0.15 g of PVdF as a binder were prepared. These positive electrode active material, sulfide-based solid electrolyte, conductive material, and binder are used as positive electrode active material: sulfide-based solid electrolyte: conductive material: binder = 84.6% by mass: 13.5% by mass: 1. .3% by mass: adjusted to 0.6% by mass, 13 g of butyl butyrate was added, and wet mixed with an ultrasonic homogenizer for 2 minutes to prepare an electrode mixture.

(比較例2)
まず、LiNi1/3Co1/3Mn1/3粒子(活物質粒子)を、LiNbO(酸化物系固体電解質)により被覆した複合粒子(平均粒径6μm)を準備した。
次に、複合粒子20g、10LiI−15LiBr−75(0.75LiS−0.25P)粒子(硫化物系固体電解質、平均粒径:0.8μm)3.2gを乾式混練装置(ホソカワミクロン社製、商品名:NOB−MINI)に投入し、ブレード−壁間隔が1mm、周速が18.5m/sの条件下で、10分間混練処理を行い、複合活物質粒子(平均粒径6.4μm)を製造した。
正極活物質として上記複合活物質粒子23.2gを、導電材として気相成長炭素繊維(VGCF)0.3gを、結着剤としてPVdF0.15gを、それぞれ準備した。これら正極活物質、導電材、及び結着剤を、正極活物質:導電材:結着剤=98.1質量%:1.3質量%:0.6質量%となるように調整し、酪酸ブチルを13g加えて超音波ホモジナイザーで2分間湿式混合し、電極合材を調製した。
(Comparative Example 2)
First, composite particles (average particle size 6 μm) in which LiNi 1/3 Co 1/3 Mn 1/3 O 2 particles (active material particles) were coated with LiNbO 3 (oxide-based solid electrolyte) were prepared.
Next, 20 g of composite particles, 10 LiI-15LiBr-75 (0.75 Li 2 S-0.25 P 2 S 5 ) particles (sulfide-based solid electrolyte, average particle size: 0.8 μm) 3.2 g of dry kneading apparatus ( The composite active material particles (average particle diameter) were added to Hosokawa Micron Co., Ltd., trade name: NOB-MINI), and kneaded for 10 minutes under conditions of a blade-wall spacing of 1 mm and a peripheral speed of 18.5 m / s. 6.4 μm) was produced.
23.2 g of the composite active material particles as a positive electrode active material, 0.3 g of vapor grown carbon fiber (VGCF) as a conductive material, and 0.15 g of PVdF as a binder were prepared. These positive electrode active material, conductive material, and binder were adjusted so that positive electrode active material: conductive material: binder = 98.1% by mass: 1.3% by mass: 0.6% by mass, butyric acid 13 g of butyl was added and wet mixed with an ultrasonic homogenizer for 2 minutes to prepare an electrode mixture.

[電池作製]
以下、上記実施例1及び比較例1〜2の各電極合材を正極合材としてそれぞれ用いて、全固体リチウム二次電池を製造した。
セパレータ層(固体電解質層)の原料として、硫化物系固体電解質である10LiI−15LiBr−75(0.75LiS−0.25P)粒子を準備した。
負極活物質として天然黒鉛を、硫化物系固体電解質として10LiI−15LiBr−75(0.75LiS−0.25P)粒子を、結着剤としてPVdFを、それぞれ準備した。これら負極活物質、硫化物系固体電解質、及び結着剤を、負極活物質:硫化物系固体電解質:結着剤=64.1質量%:34.7質量%:1.2質量%となるように混合し、負極合材を調製した。
まず、セパレータ層として10LiI−15LiBr−75(0.75LiS−0.25P)粒子の圧粉体を形成した。次に、当該圧粉体の一方の面に正極合材を、他方の面に負極合材を、それぞれ配置し、プレス圧6ton/cm(≒588MPa)、プレス時間1分間で平面プレスし、積層体を得た。このとき得られた積層体において、正極合材層の厚さは39μmであり、負極合材層の厚さは53μmであり、セパレータ層の厚さは30μmであった。当該積層体を、積層方向に2Nの圧力で拘束することにより、全固体リチウム二次電池を製造した。
以下、実施例1及び比較例1〜2の各電極活物質を原料とする全固体リチウム二次電池を、それぞれ実施例1及び比較例1〜2の全固体リチウム二次電池と称する。
[Battery fabrication]
Hereafter, the all-solid lithium secondary battery was manufactured using each electrode mixture of the said Example 1 and Comparative Examples 1-2 as a positive electrode mixture, respectively.
As a raw material for the separator layer (solid electrolyte layer), 10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5 ) particles, which are sulfide-based solid electrolytes, were prepared.
Natural graphite was prepared as a negative electrode active material, 10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5 ) particles were prepared as a sulfide-based solid electrolyte, and PVdF was prepared as a binder. These negative electrode active material, sulfide-based solid electrolyte, and binder become negative electrode active material: sulfide-based solid electrolyte: binder = 64.1% by mass: 34.7% by mass: 1.2% by mass. In this way, a negative electrode mixture was prepared.
First, a green compact of 10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5 ) particles was formed as a separator layer. Next, a positive electrode mixture is disposed on one surface of the green compact, and a negative electrode mixture is disposed on the other surface, and plane pressing is performed with a pressing pressure of 6 ton / cm 2 (≈588 MPa) and a pressing time of 1 minute. A laminate was obtained. In the laminate obtained at this time, the thickness of the positive electrode mixture layer was 39 μm, the thickness of the negative electrode mixture layer was 53 μm, and the thickness of the separator layer was 30 μm. The laminated body was constrained with a pressure of 2N in the laminating direction to produce an all solid lithium secondary battery.
Hereinafter, the all solid lithium secondary batteries using the electrode active materials of Example 1 and Comparative Examples 1 and 2 as raw materials are referred to as the all solid lithium secondary batteries of Example 1 and Comparative Examples 1 and 2, respectively.

[電極合材の観察]
実施例1及び比較例1〜2の全固体リチウム二次電池の正極表面を走査型電子顕微鏡(SEM)で観察した。5000倍で撮影したSEM画像をそれぞれ図3〜5に示す。
図3に示すように実施例1の正極では、複合活物質粒子よりも平均粒径の小さい硫化物系固体電解質粒子が導電材の繊維の間隙に入り込み、立体障害作用を起こすことで、導電材の繊維1本1本が分離し、導電材の分散ができていることがわかる。
一方、図4〜5に示すように比較例1〜2の正極では、導電材が凝集してしまい、導電材の繊維1本1本が分離して分散していることを確認することができないことがわかる。
[Observation of electrode mixture]
The positive electrode surface of the all-solid-state lithium secondary battery of Example 1 and Comparative Examples 1-2 was observed with a scanning electron microscope (SEM). SEM images taken at a magnification of 5000 are shown in FIGS.
As shown in FIG. 3, in the positive electrode of Example 1, the sulfide-based solid electrolyte particles having an average particle size smaller than that of the composite active material particles enter the gaps between the fibers of the conductive material, thereby causing a steric hindrance action. It can be seen that each of the fibers is separated and the conductive material is dispersed.
On the other hand, as shown in FIGS. 4 to 5, in the positive electrodes of Comparative Examples 1 and 2, the conductive material is agglomerated, and it cannot be confirmed that each fiber of the conductive material is separated and dispersed. I understand that.

[全固体リチウム二次電池の内部抵抗測定]
実施例1及び比較例1〜2の全固体リチウム二次電池について、10s−DCIR法により内部抵抗を測定した。測定方法の詳細は以下の通りである。
OCV電位 3.66V
電流密度 16.1mA/cm
放電10秒後の過電圧と電流値から、オームの法則により内部抵抗を算出した。
実施例1及び比較例1〜2の全固体リチウム二次電池の内部抵抗を図6に示す。
[Internal resistance measurement of all-solid lithium secondary battery]
For the all solid lithium secondary batteries of Example 1 and Comparative Examples 1 and 2, the internal resistance was measured by the 10 s-DCIR method. Details of the measurement method are as follows.
OCV potential 3.66V
Current density 16.1 mA / cm 2
From the overvoltage and current value 10 seconds after the discharge, the internal resistance was calculated according to Ohm's law.
FIG. 6 shows the internal resistance of the all-solid lithium secondary batteries of Example 1 and Comparative Examples 1-2.

図6は、実施例1及び比較例1〜2の全固体リチウム二次電池の内部抵抗を示すグラフである。
実施例1及び比較例1〜2の全固体リチウム二次電池の内部抵抗は、実施例1が27Ω/cm、比較例1が29Ω/cm、比較例2が42Ω/cmであった。
図6に示すように、実施例1の全固体リチウム二次電池は、複合活物質粒子よりも平均粒径の小さい硫化物系固体電解質を混合していない比較例2の全固体リチウム二次電池よりも内部抵抗が36%小さい。また、実施例1の全固体リチウム二次電池は、複合粒子を電極合材の原料に用いた比較例1の全固体リチウム二次電池よりも内部抵抗が7%小さい。したがって、本発明の電極合材は、従来の電極合材よりも電池の内部抵抗を下げる働きがあることがわかる。
FIG. 6 is a graph showing the internal resistance of the all-solid lithium secondary batteries of Example 1 and Comparative Examples 1-2.
The internal resistance of the all-solid-state lithium secondary batteries of Example 1 and Comparative Examples 1 and 2, Example 1 is 27 Ohms / cm 2, Comparative Example 1 is 29Ω / cm 2, Comparative Example 2 was 42Ω / cm 2 .
As shown in FIG. 6, the all-solid lithium secondary battery of Example 1 is the all-solid lithium secondary battery of Comparative Example 2 in which the sulfide-based solid electrolyte having a smaller average particle size than the composite active material particles is not mixed. The internal resistance is 36% smaller than that. Further, the all-solid lithium secondary battery of Example 1 has an internal resistance of 7% smaller than that of the all-solid lithium secondary battery of Comparative Example 1 in which the composite particles are used as the raw material for the electrode mixture. Therefore, it can be seen that the electrode mixture of the present invention has a function of lowering the internal resistance of the battery than the conventional electrode mixture.

1 導電材
2 硫化物系固体電解質粒子
3 複合活物質粒子
4 結着剤
11 活物質粒子
12 酸化物系固体電解質層
13 硫化物系固体電解質層
100 電極合材
DESCRIPTION OF SYMBOLS 1 Conductive material 2 Sulfide type solid electrolyte particle 3 Composite active material particle 4 Binder 11 Active material particle 12 Oxide type solid electrolyte layer 13 Sulfide type solid electrolyte layer 100 Electrode mixture

Claims (1)

活物質粒子に硫化物系固体電解質を被覆してなる複合活物質粒子と、
繊維状の導電材と、
前記複合活物質粒子よりも平均粒径の小さい硫化物系固体電解質粒子と、を含むことを特徴とする電極合材。
Composite active material particles obtained by coating active material particles with a sulfide-based solid electrolyte;
A fibrous conductive material;
An electrode mixture comprising sulfide-based solid electrolyte particles having an average particle size smaller than that of the composite active material particles.
JP2015086845A 2015-04-21 2015-04-21 Electrode mixture Pending JP2016207418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015086845A JP2016207418A (en) 2015-04-21 2015-04-21 Electrode mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015086845A JP2016207418A (en) 2015-04-21 2015-04-21 Electrode mixture

Publications (1)

Publication Number Publication Date
JP2016207418A true JP2016207418A (en) 2016-12-08

Family

ID=57490251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015086845A Pending JP2016207418A (en) 2015-04-21 2015-04-21 Electrode mixture

Country Status (1)

Country Link
JP (1) JP2016207418A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018156940A (en) * 2017-03-16 2018-10-04 太平洋セメント株式会社 Solid electrolyte for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
JP2018185929A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Composite particle
RU2713231C1 (en) * 2018-08-02 2020-02-04 Тойота Дзидося Кабусики Кайся Completely solid-state battery and method of manufacturing completely solid-state battery
JP2020080247A (en) * 2018-11-13 2020-05-28 本田技研工業株式会社 Solid-state battery
US10714743B2 (en) 2017-03-06 2020-07-14 Lg Chem, Ltd. Method for manufacturing electrode including polymer electrolyte and electrode obtained thereby
CN113036084A (en) * 2019-12-25 2021-06-25 丰田自动车株式会社 All-solid-state battery and method for manufacturing all-solid-state battery
JP2021128857A (en) * 2020-02-13 2021-09-02 トヨタ自動車株式会社 All-solid battery negative electrode
WO2021182561A1 (en) 2020-03-13 2021-09-16 マクセルホールディングス株式会社 Electrode for all-solid battery, and all-solid battery
CN113728463A (en) * 2019-05-08 2021-11-30 株式会社Lg新能源 Method of manufacturing positive electrode for all-solid battery and positive electrode for all-solid battery manufactured using the same
WO2022138886A1 (en) * 2020-12-24 2022-06-30 マクセル株式会社 All-solid-state battery electrode and all-solid-state battery
WO2023033405A1 (en) * 2021-08-31 2023-03-09 주식회사 엘지에너지솔루션 Electrode for all-solid-state battery
WO2023171063A1 (en) * 2022-03-10 2023-09-14 パナソニックIpマネジメント株式会社 All-solid-state battery and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022074A (en) * 2012-07-12 2014-02-03 Toyota Motor Corp Manufacturing method of coated active material
JP2015005398A (en) * 2013-06-20 2015-01-08 トヨタ自動車株式会社 Positive electrode for all-solid lithium ion battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022074A (en) * 2012-07-12 2014-02-03 Toyota Motor Corp Manufacturing method of coated active material
JP2015005398A (en) * 2013-06-20 2015-01-08 トヨタ自動車株式会社 Positive electrode for all-solid lithium ion battery

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714743B2 (en) 2017-03-06 2020-07-14 Lg Chem, Ltd. Method for manufacturing electrode including polymer electrolyte and electrode obtained thereby
JP2018156941A (en) * 2017-03-16 2018-10-04 太平洋セメント株式会社 Electrode active material for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
JP2019204800A (en) * 2017-03-16 2019-11-28 太平洋セメント株式会社 Solid electrolyte for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
JP2019212637A (en) * 2017-03-16 2019-12-12 太平洋セメント株式会社 Electrode active material for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
JP7061100B2 (en) 2017-03-16 2022-04-27 太平洋セメント株式会社 Solid electrolytes for all-solid-state secondary batteries, their manufacturing methods, and all-solid-state secondary batteries
JP7061101B2 (en) 2017-03-16 2022-04-27 太平洋セメント株式会社 Electrode active material for all-solid-state secondary battery, its manufacturing method, and all-solid-state secondary battery
JP2018156940A (en) * 2017-03-16 2018-10-04 太平洋セメント株式会社 Solid electrolyte for all-solid secondary battery, manufacturing method thereof, and all-solid secondary battery
JP2018185929A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Composite particle
KR20200015384A (en) 2018-08-02 2020-02-12 도요타 지도샤(주) All solid state battery and method for producing all solid state battery
RU2713231C1 (en) * 2018-08-02 2020-02-04 Тойота Дзидося Кабусики Кайся Completely solid-state battery and method of manufacturing completely solid-state battery
EP3605664A1 (en) 2018-08-02 2020-02-05 Toyota Jidosha Kabushiki Kaisha All solid state battery and method for producing all solid state battery
KR102312174B1 (en) * 2018-08-02 2021-10-13 도요타 지도샤(주) All solid state battery and method for producing all solid state battery
US11251464B2 (en) 2018-08-02 2022-02-15 Toyota Jidosha Kabushiki Kaisha All solid state battery and method for producing all solid state battery
JP2020080247A (en) * 2018-11-13 2020-05-28 本田技研工業株式会社 Solid-state battery
JP7018376B2 (en) 2018-11-13 2022-02-10 本田技研工業株式会社 Solid state battery
EP3916852A4 (en) * 2019-05-08 2022-04-27 LG Energy Solution, Ltd. Method of manufacturing positive electrode for all-solid-state battery, and positive electrode for all-solid-state battery manufactured by using same
CN113728463B (en) * 2019-05-08 2024-04-05 株式会社Lg新能源 Method for manufacturing positive electrode of all-solid battery and positive electrode of all-solid battery manufactured by using the method
JP7265023B2 (en) 2019-05-08 2023-04-25 エルジー エナジー ソリューション リミテッド Method for manufacturing positive electrode for all-solid-state battery and positive electrode for all-solid-state battery manufactured by the method
CN113728463A (en) * 2019-05-08 2021-11-30 株式会社Lg新能源 Method of manufacturing positive electrode for all-solid battery and positive electrode for all-solid battery manufactured using the same
JP2022521178A (en) * 2019-05-08 2022-04-06 エルジー エナジー ソリューション リミテッド Manufacturing method of positive electrode of all-solid-state battery and positive electrode of all-solid-state battery manufactured by this method
JP7156263B2 (en) 2019-12-25 2022-10-19 トヨタ自動車株式会社 ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY
JP2021103656A (en) * 2019-12-25 2021-07-15 トヨタ自動車株式会社 All-solid battery and manufacturing method thereof
KR20210082365A (en) 2019-12-25 2021-07-05 도요타 지도샤(주) All solid state battery and method for producing all solid state battery
CN113036084A (en) * 2019-12-25 2021-06-25 丰田自动车株式会社 All-solid-state battery and method for manufacturing all-solid-state battery
KR20240045188A (en) 2019-12-25 2024-04-05 도요타 지도샤(주) All solid state battery and method for producing all solid state battery
JP2021128857A (en) * 2020-02-13 2021-09-02 トヨタ自動車株式会社 All-solid battery negative electrode
JP7247909B2 (en) 2020-02-13 2023-03-29 トヨタ自動車株式会社 Negative electrode for all-solid-state battery
WO2021182561A1 (en) 2020-03-13 2021-09-16 マクセルホールディングス株式会社 Electrode for all-solid battery, and all-solid battery
WO2022138886A1 (en) * 2020-12-24 2022-06-30 マクセル株式会社 All-solid-state battery electrode and all-solid-state battery
WO2023033405A1 (en) * 2021-08-31 2023-03-09 주식회사 엘지에너지솔루션 Electrode for all-solid-state battery
WO2023171063A1 (en) * 2022-03-10 2023-09-14 パナソニックIpマネジメント株式会社 All-solid-state battery and method for producing same

Similar Documents

Publication Publication Date Title
JP2016207418A (en) Electrode mixture
JP6724571B2 (en) Solid battery
JP5979138B2 (en) Electrode body, all-solid battery, and method for producing coated active material
JP6962287B2 (en) All-solid-state battery and its manufacturing method
JP6384404B2 (en) Composite active material powder manufacturing apparatus and composite active material powder manufacturing method
JP6377997B2 (en) Positive electrode composite material and sulfide all solid state battery using the same
JP2014137869A (en) All-solid-state battery and manufacturing method therefor
JP7096197B2 (en) Coated positive electrode active material and all-solid-state battery
US10249880B2 (en) Method for manufacturing current collector and method for manufacturing solid battery
WO2013132592A1 (en) Solid sulfide battery system and method for controlling solid sulfide battery
JP6421809B2 (en) Sulfide all-solid battery manufacturing method and sulfide all-solid battery
JP7420949B2 (en) Cathode materials and batteries
CN116259823A (en) All-solid-state battery including cathode active material layer with increased thickness and method of manufacturing the same
JP7188224B2 (en) All-solid battery
JP7067445B2 (en) Sulfide solid state battery
JP2017098181A (en) All-solid-state battery
JP7386060B2 (en) All solid state battery
JP2020087658A (en) Method for manufacturing all-solid secondary battery
KR102564747B1 (en) Negative electrode active material layer for all solid state rechargeable battery, the method of preparing the same and all solid state rechargeable battery including the same
WO2023238582A1 (en) Coated active material, electrode material, and battery
WO2024195636A1 (en) Positive electrode for all-solid-state secondary batteries, and all-solid-state secondary battery
WO2023281910A1 (en) Battery and method for producing same
KR20240053354A (en) Negative electrode active material layer for all solid state rechargeable battery and all solid state rechargeable battery including the same
JP2022133628A (en) All-solid battery
JP2022139566A (en) All-solid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190122