JP2020080247A - Solid-state battery - Google Patents
Solid-state battery Download PDFInfo
- Publication number
- JP2020080247A JP2020080247A JP2018212993A JP2018212993A JP2020080247A JP 2020080247 A JP2020080247 A JP 2020080247A JP 2018212993 A JP2018212993 A JP 2018212993A JP 2018212993 A JP2018212993 A JP 2018212993A JP 2020080247 A JP2020080247 A JP 2020080247A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- solid electrolyte
- layer
- positive electrode
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、固体電池に関する。 The present invention relates to solid state batteries.
近年、自動車、パソコン、携帯電話等の大小さまざまな電気・電子機器の普及により、高容量、高出力の電池の需要が急速に拡大している。各種電池の中でも高いエネルギー密度・出力を示す電池への需要が高く、さらなる高性能な電池の開発が期待されている。中でも固体電池は、電解質が不燃性であるために安全性が向上する点や、より高いエネルギー密度を有する点において優れており、注目を集めている。 2. Description of the Related Art In recent years, demand for high-capacity, high-output batteries is rapidly expanding due to the spread of various electric and electronic devices such as automobiles, personal computers, and mobile phones. Among various batteries, there is a high demand for batteries showing high energy density and output, and further high performance batteries are expected to be developed. Among them, solid-state batteries are attracting attention because they are excellent in safety because they are nonflammable electrolytes and have higher energy density.
従来の固体電池においては、急速充放電を行った際や、高容量化のために電極層を厚くした場合には、充放電サイクルを繰り返した際に電極層内部で電荷移動媒体(電子 e−及びイオン Li+等)の濃度分布の偏りが生じていた。この劣化により、電池の使用に伴い電極層を厚さ方向で均一に利用することができなくなり、電荷移動媒体の伝導抵抗が増大してしまっていた。 In the conventional solid-state battery, or when performing rapid charge and discharge, when thickening the electrode layers for high capacity, the electrode layer inside the charge transfer medium in repeated charge-discharge cycles (electronic e - And the concentration distribution of ions Li + etc.) was biased. Due to this deterioration, the electrode layer cannot be used uniformly in the thickness direction as the battery is used, and the conduction resistance of the charge transfer medium is increased.
本発明は上記に鑑みてなされたものであり、活物質層内に含まれる成分の分布状態や接触状態を制御することで、高容量かつ高耐久性を示す固体電池の提供を目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a solid state battery having high capacity and high durability by controlling the distribution state and contact state of components contained in the active material layer.
(1) 本発明は、正極活物質を含有する正極電極層と、負極活物質を含有する負極電極層と、前記正極電極層および前記負極電極層の間に介在して配置される固体電解質層と、から構成される固体電池において、前記2つの電極層の少なくとも一方の電極層は、該電極層の積層方向に直交する面方向に二次元格子状に延びる固体電解質および導電助剤をさらに含有する、固体電池を提供する。 (1) The present invention relates to a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer. In the solid-state battery composed of, the at least one electrode layer of the two electrode layers further contains a solid electrolyte extending in a two-dimensional lattice shape in a plane direction orthogonal to the stacking direction of the electrode layers and a conductive additive. A solid-state battery is provided.
これにより、電極活物質を低抵抗で積層することが可能になり、また電極層中での電荷移動媒体(電子 e−及びイオン Li+等)の濃度分布の偏りを解消できるため、高容量かつ高耐久性を示す固体電池の提供が可能になる。 This makes it possible to stack the electrode active material with a low resistance, and to eliminate the bias in the concentration distribution of the charge transfer medium (electrons e − and ions Li + etc.) in the electrode layer, resulting in high capacity and high capacity. It is possible to provide a solid-state battery exhibiting high durability.
(2) (1)の発明において、前記少なくとも一方の電極層は、前記固体電解質および導電助剤が、前記積層方向と、前記積層方向に直交する2方向と、を含んで三次元格子状に配置されることが好ましい。 (2) In the invention of (1), the at least one electrode layer has a three-dimensional lattice shape in which the solid electrolyte and the conductive additive include the stacking direction and two directions orthogonal to the stacking direction. It is preferably arranged.
これにより、さらに高容量かつ高耐久性を示す固体電池の提供が可能になる。 This makes it possible to provide a solid-state battery having a higher capacity and a higher durability.
(3) (1)または(2)の発明において、前記固体電解質および導電助剤は、前記格子中で混合されて配置されていてもよい。 (3) In the invention of (1) or (2), the solid electrolyte and the conduction aid may be mixed and arranged in the lattice.
(4) (1)〜(3)の発明において、前記固体電解質および導電助剤は、前記格子中で固体電解質層と、該固体電解質層に隣接する導電助剤層と、を構成して配置されていてもよい。 (4) In the inventions of (1) to (3), the solid electrolyte and the conduction aid constitute a solid electrolyte layer and a conduction aid layer adjacent to the solid electrolyte layer in the lattice and arranged. It may have been done.
(5) (1)〜(4)の発明において、前記電極層の積層方向に直交する断面における、固体電解質部分の断面積に対する活物質部分の断面積の比が、1〜600であることが好ましい。 (5) In the inventions of (1) to (4), the ratio of the cross-sectional area of the active material portion to the cross-sectional area of the solid electrolyte portion in the cross section orthogonal to the stacking direction of the electrode layers is 1 to 600. preferable.
(6) (1)〜(5)の発明において、前記断面積の比が、4〜100であることが好ましい。 (6) In the inventions of (1) to (5), the ratio of the cross-sectional areas is preferably 4 to 100.
(7) (1)〜(6)の発明において、前記断面積の比が、6〜50であることが好ましい。 (7) In the inventions of (1) to (6), the ratio of the cross-sectional areas is preferably 6 to 50.
これにより、さらに低抵抗の電池の提供が可能になる。 This makes it possible to provide a battery having even lower resistance.
本発明によれば、高容量かつ高耐久性を示す固体電池の提供が可能になる。 According to the present invention, it is possible to provide a solid-state battery having high capacity and high durability.
以下、本発明の固体電池およびその製造方法について、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the solid-state battery and the method for manufacturing the same of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
(固体電池セル)
図1は、本発明の固体電池セル10の概要を示す図である。
本発明の固体電池セル10は層状に構成され、正極層13と、負極層11と、これらの電極層の間に介在する固体電解質層15とを有しており、さらに正極の集電を行う正極集電体14と、負極の集電を行う負極集電体12を備えている。正極集電体14および負極集電体12は、活物質に対向する側の表面に導電助剤からなる被覆層(導電助剤層14aおよび12a)を備える。これらの層は、例えば図1の下から順に、負極集電体12、導電助剤層12a、負極層11、固体電解質層15、正極層13、導電助剤層14a、正極集電体14、のように構成される。さらに、この構成を固体電池セル10として複数積層することで、高容量の固体電池100を形成する。
(Solid battery cell)
FIG. 1 is a diagram showing an outline of a solid-
The solid-
(正負電極層)
本発明の固体電池に用いられる正極層13は、正極活物質、固体電解質および導電助剤を含有する層である。正極活物質としては、電荷移動媒体を放出及び吸蔵することができる材料を適宜選択して用いればよい。さらに、可撓性を発現させる等の観点から、任意にバインダを含んでいてもよい。固体電解質、導電助剤及びバインダについては、一般に固体電池に使用されるものを用いることができる。負極層11についても、正極活物質に代えて負極活物質を含有している以外は同様の構成である。
(Positive/negative electrode layer)
The
正極層13中において、固体電解質および導電助剤からなる伝導相30は、正負極電極層の積層方向に格子状に積層配置されることで、正極層中に遍在している。またこの伝導相30は、正極層を複数に区分している。
In the
これにより、電極活物質と固体電解質および導電助剤の接触面積が増加し、電荷移動媒体の伝導抵抗が低下する。即ち、正負極電極層を厚く形成することができ、電池の高容量化が可能となる。さらに電極活物質が前記格子により区分されていることで、電荷移動媒体の移動経路が規定されるために、層中において電荷移動媒体が散在しにくくなり、電荷移動媒体濃度分布の偏りが緩和され、電池のサイクル特性、即ち耐久性が向上する。 As a result, the contact area of the electrode active material with the solid electrolyte and the conduction aid increases, and the conduction resistance of the charge transfer medium decreases. That is, the positive and negative electrode layers can be formed thick, and the capacity of the battery can be increased. Further, since the electrode active material is divided by the lattice, the movement path of the charge transfer medium is defined, so that the charge transfer medium is less likely to be scattered in the layer, and the bias of the charge transfer medium concentration distribution is alleviated. , The cycle characteristics of the battery, that is, the durability is improved.
(正極活物質)
前記正極活物質は、一般的な固体電池の正極活物質層に用いられるものと同様とすることができ、特に限定されない。例えば、リチウムイオン電池であれば、リチウムを含有する層状活物質、スピネル型活物質、オリビン型活物質等を挙げることができる。正極活物質の具体例としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、LiNipMnqCorO2(p+q+r=1)、LiNipAlqCorO2(p+q+r=1)、マンガン酸リチウム(LiMn2O4)、Li1+xMn2−x−yMyO4(x+y=2、M=Al、Mg、Co、Fe、Ni、及びZnから選ばれる少なくとも1種)で表される異種元素置換Li−Mnスピネル、リン酸金属リチウム(LiMPO4、M=Fe、Mn、Co、及びNiから選ばれる少なくとも1種)等が挙げられる。
(Cathode active material)
The positive electrode active material may be the same as that used for the positive electrode active material layer of a general solid battery, and is not particularly limited. For example, in the case of a lithium ion battery, a layered active material containing lithium, a spinel type active material, an olivine type active material and the like can be mentioned. Specific examples of the positive electrode active material include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), LiNi p Mn q Co r O 2 (p+q+r=1), and LiNi p Al q Co r O 2 (p+q+r=). 1), lithium manganate (LiMn 2 O 4 ), Li 1 +xMn 2 −x-yMyO 4 (x+y=2, M=Al, Mg, Co, Fe, Ni, and at least one selected from Zn). And a different element-substituted Li-Mn spinel, lithium metal phosphate (at least one selected from LiMPO 4 , M=Fe, Mn, Co, and Ni) and the like.
(負極活物質)
前記負極活物質としては、電荷移動媒体を吸蔵・放出可能なものであれば特に限定されるものではなく、例えば、リチウムイオン電池であれば、チタン酸リチウム(Li4Ti5O12)等のリチウム遷移金属酸化物、TiO2、Nb2O3及びWO3等の遷移金属酸化物、金属硫化物、金属窒化物、並びにグラファイト、ソフトカーボン及びハードカーボン等の炭素材料、並びに金属リチウム、金属インジウム及びリチウム合金等を挙げることができる。また、前記負極活物質は、粉末状であっても良く、薄膜状であっても良い。
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can store and release the charge transfer medium. For example, in the case of a lithium ion battery, lithium titanate (Li 4 Ti 5 O 12 ) or the like can be used. Lithium transition metal oxides, transition metal oxides such as TiO 2 , Nb 2 O 3 and WO 3 , metal sulfides, metal nitrides, and carbon materials such as graphite, soft carbon and hard carbon, and metal lithium and metal indium. And lithium alloys. The negative electrode active material may be in the form of powder or thin film.
(集電体)
正極集電体14は、前記正極層の集電を行う機能を有するものであれば特に限定されず、例えばアルミニウム、アルミニウム合金、ステンレス、ニッケル、鉄及びチタン等を挙げることができ、中でもアルミニウム、アルミニウム合金及びステンレスが好ましい。また、正極集電体14の形状としては、例えば、箔状、板状等を挙げることができる。
(Current collector)
The positive electrode
負極集電体12は、前記負極層13の集電を行う機能を有するものであれば特に限定されない。前記負極集電体12の材料としては、例えばニッケル、銅、及びステンレス等を挙げることができる。また、前記負極集電体12の形状としては、例えば、箔状、板状等を挙げることができる。
The negative electrode
(電極層の製造方法)
活物質を含んだ合剤を集電体の表面に配置することで、正負電極層を製造することができる。電極層の製造方法は、層中に固体電解質および導電助剤を導入する以外は従来と同様の方法を用いることができ、湿式法、乾式法のいずれによっても電極層を製造可能である。以下、湿式法で正極を製造する場合について説明する。
(Method for manufacturing electrode layer)
The positive and negative electrode layers can be manufactured by disposing the mixture containing the active material on the surface of the current collector. As the method for producing the electrode layer, the same method as the conventional method can be used except that the solid electrolyte and the conductive additive are introduced into the layer, and the electrode layer can be produced by either the wet method or the dry method. Hereinafter, the case of manufacturing a positive electrode by a wet method will be described.
正極層は、正極合剤と溶媒とを含む正極合剤スラリー溶液を得る工程と、正極合剤スラリー溶液を正極集電体の表面に塗工して乾燥させて該正極集電体の表面に正極合剤層を形成する工程により製造される。例えば、活物質、固体電解質、導電助剤、バインダ等の正極層を構成する材料を溶媒中に混合して分散させることで、正極合剤スラリー溶液が得られる。この場合に用いられる溶媒としては特に限定されるものではなく、正極活物質や固体電解質等の性状に応じて適宜選択すればよい。例えば、ヘプタン等の無極性溶媒が好ましい。正極合剤と溶媒との混合及び分散には、超音波分散装置、振とう機、フィルミックス(登録商標)等の各種混合・分散装置を使用できる。正極合剤スラリー溶液における固形分量は特に限定されるものではない。 The positive electrode layer includes a step of obtaining a positive electrode mixture slurry solution containing a positive electrode mixture and a solvent, and applying the positive electrode mixture slurry solution to the surface of the positive electrode current collector and drying the solution to form a positive electrode current collector surface. It is manufactured by the step of forming a positive electrode mixture layer. For example, a positive electrode mixture slurry solution can be obtained by mixing and dispersing a material forming the positive electrode layer, such as an active material, a solid electrolyte, a conductive auxiliary agent, and a binder, in a solvent. The solvent used in this case is not particularly limited and may be appropriately selected depending on the properties of the positive electrode active material, the solid electrolyte and the like. For example, a nonpolar solvent such as heptane is preferable. For mixing and dispersing the positive electrode mixture and the solvent, various mixing/dispersing devices such as an ultrasonic dispersing device, a shaker, and FILMIX (registered trademark) can be used. The solid content of the positive electrode mixture slurry solution is not particularly limited.
そうして得られた正極合剤スラリー溶液を、正極集電体の表面に塗工して乾燥させ、該正極集電体の表面に正極合剤層を形成することで、正極を得ることができる。ここで、例えば活物質を主成分とするスラリー溶液と、固体電解質および導電助剤のみからなるスラリー溶液と、を個別に調整し、正極の積層時に各溶液中の成分をパターニングしながら積層することができる。 The positive electrode mixture slurry solution thus obtained is applied to the surface of the positive electrode current collector and dried to form a positive electrode mixture layer on the surface of the positive electrode current collector, whereby a positive electrode can be obtained. it can. Here, for example, a slurry solution containing an active material as a main component and a slurry solution containing only a solid electrolyte and a conductive auxiliary agent are individually adjusted, and the components in each solution are laminated while patterning when laminating the positive electrode. You can
スラリー溶液を正極集電体の表面に塗工する手段としては特に限定されず、インクジェット法、スクリーン印刷法、CVD法、スパッタ法などを用いることができるほか、ドクターブレード等の公知の塗工手段を用いてもよい。乾燥後の正極合剤層と正極集電体との合計の厚さ(正極の厚さ)は、特に限定されるものではないが、例えばエネルギー密度や積層性の観点から、0.1μm以上1mm以下であることが好ましく、1μm以上200μm以下であることがより好ましい。また、正極は任意にプレスする過程を経て作製してもよい。正極をプレスする際の圧力は100MPa程度とすることができる。 The means for applying the slurry solution to the surface of the positive electrode current collector is not particularly limited, and an inkjet method, a screen printing method, a CVD method, a sputtering method, or the like can be used, and a known coating means such as a doctor blade. May be used. The total thickness of the dried positive electrode material mixture layer and the positive electrode current collector (thickness of the positive electrode) is not particularly limited, but is 0.1 μm or more and 1 mm or more from the viewpoint of energy density or stackability, for example. It is preferably not more than 1 μm, more preferably not less than 1 μm and not more than 200 μm. In addition, the positive electrode may be manufactured through an arbitrary pressing process. The pressure when pressing the positive electrode can be about 100 MPa.
(固体電解質層)
固体電解質層15は、正極層13および負極層11の間に積層される層であり、少なくとも固体電解質材料を含有する層である。固体電解質層15に含まれる固体電解質材料を介して、正極活物質および負極活物質の間の電荷移動媒体伝導を行うことができる。
(Solid electrolyte layer)
The
固体電解質材料としては、電荷移動媒体伝導性を有するものであれば特に限定されるものではないが、例えば、硫化物固体電解質材料、酸化物固体電解質材料、窒化物固体電解質材料、ハロゲン化物固体電解質材料等を挙げることができ、中でも、硫化物固体電解質材料を用いることが好ましい。酸化物固体電解質材料に比べて、電荷移動媒体伝導性が高いからである。 The solid electrolyte material is not particularly limited as long as it has charge transfer medium conductivity, for example, sulfide solid electrolyte material, oxide solid electrolyte material, nitride solid electrolyte material, halide solid electrolyte Examples of the material include a sulfide solid electrolyte material. This is because the conductivity of the charge transfer medium is higher than that of the oxide solid electrolyte material.
硫化物固体電解質材料としては、例えばリチウムイオン電池であれば、Li2S−P2S5、Li2S−P2S5−LiI等が挙げられる。なお、上記「Li2S−P2S5」の記載は、Li2SおよびP2S5を含む原料組成物を用いてなる硫化物固体電解質材料を意味し、他の記載についても同様である。
Examples of the sulfide solid electrolyte material include Li 2 S-P 2 S 5 and Li 2 S-P 2 S 5 -LiI in the case of a lithium ion battery. Incidentally, the
一方、酸化物固体電解質材料としては、例えばリチウムイオン電池であれば、NASICON型酸化物、ガーネット型酸化物、ペロブスカイト型酸化物等を挙げることができる。NASICON型酸化物としては、例えば、Li、Al、Ti、PおよびOを含有する酸化物(例えばLi1.5Al0.5Ti1.5(PO4)3)を挙げることができる。ガーネット型酸化物としては、例えば、Li、La、ZrおよびOを含有する酸化物(例えばLi7La3Zr2O12)を挙げることができる。ペロブスカイト型酸化物としては、例えば、Li、La、TiおよびOを含有する酸化物(例えばLiLaTiO3)を挙げることができる。 On the other hand, examples of the oxide solid electrolyte material include NASICON-type oxides, garnet-type oxides, and perovskite-type oxides in the case of lithium ion batteries. Examples of NASICON-type oxides include oxides containing Li, Al, Ti, P, and O (for example, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 ). Examples of garnet-type oxides include oxides containing Li, La, Zr, and O (for example, Li 7 La 3 Zr 2 O 12 ). Examples of perovskite oxides include oxides containing Li, La, Ti, and O (for example, LiLaTiO 3 ).
(固体電解質層の製造方法)
固体電解質層15は、例えば、固体電解質をプレスする等の過程を経て作製することができる。或いは、溶媒に固体電解質等を分散して調整した固体電解質スラリー溶液を基材或いは電極の表面に塗布する過程を経て固体電解質層を作製することもできる。この場合に用いられる溶媒としては、特に限定されるものではなく、バインダや固体電解質の性状に応じて適宜選択すればよい。固体電解質層の厚さは、電池の構成によって大きく異なるが、例えば、0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。
(Method for producing solid electrolyte layer)
The
(固体電池の製造方法)
本発明の固体電池セル10は、上記の正極層と、固体電解質層と、負極層と、集電体層と、を図1に示すような順序となるように積層することで製造される。なお、これらを積層した後は、任意にプレスして一体化してもよい。さらに、この構成を固体電池セルとして複数積層することで一体とし、高出力の固体電池100を形成することができる。固体電池100を、再度任意にプレスして一体化してもよい。
(Method of manufacturing solid state battery)
The
以下、本発明に係る実施形態の例について、図を用いて詳細に説明する。 Hereinafter, examples of embodiments according to the present invention will be described in detail with reference to the drawings.
図2は、本発明の第1実施形態に係る固体電池セルの構成を示す図である。
図2に示すように、本発明の第1実施形態に係る正負極電極層中において、固体電解質および導電助剤は、正負極電極層の積層方向に格子状に積層配置される。これにより、電極活物質と固体電解質および導電助剤の接触面積が増加し、電荷移動媒体の伝導抵抗が低下する。即ち、正負極電極層を厚く形成することができ、電池の高容量化が可能となる。
FIG. 2 is a diagram showing a configuration of the solid-state battery cell according to the first embodiment of the present invention.
As shown in FIG. 2, in the positive and negative electrode layers according to the first embodiment of the present invention, the solid electrolyte and the conductive auxiliary agent are laminated and arranged in a grid shape in the laminating direction of the positive and negative electrode layers. As a result, the contact area of the electrode active material with the solid electrolyte and the conduction aid increases, and the conduction resistance of the charge transfer medium decreases. That is, the positive and negative electrode layers can be formed thick and the capacity of the battery can be increased.
さらに電極活物質が前記格子により区分されていることで、電荷移動媒体の移動経路が規定されるために、層中において電荷移動媒体が散在しにくくなり、電荷移動媒体濃度分布の偏りが緩和され、電池のサイクル特性、即ち耐久性が向上する。 Furthermore, since the electrode active material is divided by the lattice, the movement path of the charge transfer medium is defined, so that the charge transfer medium is less likely to be scattered in the layer, and the bias in the charge transfer medium concentration distribution is alleviated. , The cycle characteristics of the battery, that is, the durability is improved.
図3は、本発明の第2実施形態に係る固体電池セルの構成を示す図である。
図3に示すように、本発明の第2実施形態は、第1実施形態において、前記正負極電極層と、固体電解質および導電助剤からなる層と、が、正負極電極層を積層する方向に交互に積層されて構成される。これにより、上記の効果がより大きく発揮され、さらに高容量・高耐久化できる。
FIG. 3 is a diagram showing a configuration of a solid-state battery cell according to the second embodiment of the present invention.
As shown in FIG. 3, the second embodiment of the present invention is the same as the first embodiment, except that the positive and negative electrode layers and the layer composed of the solid electrolyte and the conductive additive are laminated in the positive and negative electrode layers. Are alternately laminated. As a result, the above-mentioned effects are exerted more greatly, and higher capacity and higher durability can be achieved.
以下、本発明の正極活物質について、実施例を用いて詳細に説明する。 Hereinafter, the positive electrode active material of the present invention will be described in detail with reference to Examples.
上述の製造方法により製造したリチウム遷移金属複合酸化物を正極活物質として、以下の手順で評価用電池を作製した。 Using the lithium-transition metal composite oxide manufactured by the above manufacturing method as a positive electrode active material, a battery for evaluation was manufactured by the following procedure.
(正極の作製)
正極活物質、アセチレンブラック、およびポリフッ化ビニリデン(PVDF)、固体電解質をN―メチル―2―ピロリドン(NMP)に分散させて正極合剤スラリーを調製した。また、正極用固体電解質、アセチレンブラック、およびポリフッ化ビニリデン(PVDF)をN―メチル―2―ピロリドン(NMP)に分散させて正極用固体電解質スラリーを調整した。
得られた正極合剤を、スクリーン印刷用版を用い、集電体としてのSUSまたはアルミニウム箔に塗布し、乾燥した。次に、固体電解質スラリーを、先に塗工した正極合剤塗工シート上に、スクリーン印刷版で塗工した。これを乾燥後にロールプレス機で圧縮成形し、所定のサイズに裁断することにより、正極を作製した。
(Preparation of positive electrode)
A positive electrode active material, acetylene black, polyvinylidene fluoride (PVDF), and a solid electrolyte were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a positive electrode mixture slurry. A solid electrolyte for positive electrode, acetylene black, and polyvinylidene fluoride (PVDF) were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a solid electrolyte slurry for positive electrode.
The obtained positive electrode mixture was applied to SUS or aluminum foil as a current collector using a screen printing plate and dried. Next, the solid electrolyte slurry was coated on the positive electrode mixture coating sheet previously coated with a screen printing plate. After this was dried, it was compression-molded by a roll press machine and cut into a predetermined size to prepare a positive electrode.
(負極の作製)
負極活物質、およびPVDFをNMPに分散させて負極合剤スラリーを調製した。さらに、負極用固体電解質、アセチレンブラック、およびポリフッ化ビニリデン(PVDF)をN―メチル―2―ピロリドン(NMP)に分散させて負極用固体電解質スラリーを調整した。
スクリーン印刷用版を用い、負極合剤を集電体としてのSUSまたはCu箔に塗布し、乾燥した。次に、負極用固体電解質スラリーを、先に塗工した負極合剤塗工シート上に、スクリーン印刷版で塗工した。得られた負極シートを乾燥後ロールプレス機で圧縮成形し、負極を作製した。
(Preparation of negative electrode)
The negative electrode active material and PVDF were dispersed in NMP to prepare a negative electrode mixture slurry. Further, the solid electrolyte for negative electrode, acetylene black, and polyvinylidene fluoride (PVDF) were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a solid electrolyte slurry for negative electrode.
Using a screen printing plate, the negative electrode mixture was applied to SUS or Cu foil as a current collector and dried. Next, the solid electrolyte slurry for negative electrode was coated on the negative electrode mixture coating sheet previously coated with a screen printing plate. After drying the obtained negative electrode sheet, it was compression-molded by a roll press machine to prepare a negative electrode.
(固体電解質層の作製)
固体電解質、ポリフッ化ビニリデン(PVDF)をN―メチル―2―ピロリドン(NMP)に分散させて固体電解質スラリーを調整した。得られた固体電解質スラリーを、負極合剤と負極用固体電解質を塗布した電極シートに塗布し、乾燥後ロールプレス機で圧縮成形した後、所定のサイズに裁断することにより、負極+固体電荷質シートを作製した。
(Preparation of solid electrolyte layer)
A solid electrolyte, polyvinylidene fluoride (PVDF) was dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a solid electrolyte slurry. The obtained solid electrolyte slurry is applied to an electrode sheet coated with a negative electrode mixture and a solid electrolyte for a negative electrode, dried and compression-molded by a roll press machine, and then cut into a predetermined size to obtain a negative electrode + solid charge A sheet was prepared.
(評価用電池の作製)
正極および負極の集電体に各々リード電極を取り付けた後、正極と固体電解質+負極を積層し、袋状のラミネートパックにそれらを収納した。その後、アルゴン雰囲気下でラミネートパック内に封止した。こうして得られた電池を恒温槽に入れ微弱電流でエージングを行った。
(Preparation of evaluation battery)
After attaching the lead electrodes to the current collectors of the positive electrode and the negative electrode, respectively, the positive electrode and the solid electrolyte+negative electrode were laminated and housed in a bag-shaped laminate pack. Then, it was sealed in a laminate pack under an argon atmosphere. The battery thus obtained was placed in a thermostat and aged with a weak current.
上記の手法により作製された種々の電極構成条件の評価用電池に対して、容量および抵抗値の測定を行い、電極構成と容量および抵抗値の関係について評価した。また、下記の方法で充放電サイクル試験を行い、耐久性(性能維持率)を評価した。 The capacities and resistance values of the batteries for evaluation under various electrode constitution conditions produced by the above method were measured, and the relationship between the electrode constitution and the capacities and resistance values was evaluated. In addition, a charge/discharge cycle test was performed by the following method to evaluate durability (performance maintenance rate).
(充放電サイクル試験)
上記の評価用電池(実施例)および、従来の電極を用いた評価用電池(比較例)に対し、60℃の温度条件下で充放電サイクル試験を行った。充放電サイクル試験は、電流密度2.0mA/cm2の定電流で充電上限電圧4.2Vまで充電を行い、次いで電流密度20mA/cm2の定電流で放電下限電圧2.7Vまで放電を行う充放電を1サイクルとし、このサイクルを合計1000サイクル行うものとした。そして、サイクルごとに放電容量を測定し、(1000サイクル目の放電容量/1サイクル目の放電容量)×100という式を用いて性能維持率を算出した。
なお従来の電極を用いた評価用電池としては、各電極層中で固体電解質および導電助剤と活物質の構成は制御されておらず、均一に混合されているものを用いた。電極は、活物質、導電助剤、バインダ、固体電解質をスラリー化したのち混合し、その後塗工することで作製した。
(Charge/discharge cycle test)
A charge/discharge cycle test was performed on the above-mentioned evaluation battery (Example) and evaluation battery using a conventional electrode (Comparative Example) under a temperature condition of 60°C. In the charge/discharge cycle test, charging is performed up to a charging upper limit voltage of 4.2V with a constant current of a current density of 2.0 mA/cm 2 , and then discharging is performed up to a discharging lower limit voltage of 2.7V with a constant current of a current density of 20 mA/cm 2. Charging/discharging was 1 cycle, and this cycle was performed 1000 times in total. Then, the discharge capacity was measured for each cycle, and the performance retention rate was calculated using the formula (discharge capacity at 1000th cycle/discharge capacity at 1st cycle)×100.
As a conventional battery for evaluation using an electrode, a structure in which the solid electrolyte, the conductive additive and the active material were not controlled in each electrode layer and was uniformly mixed was used. The electrode was produced by slurrying an active material, a conductive auxiliary agent, a binder, and a solid electrolyte, mixing them, and then applying them.
図4は、本発明の実施形態に係る電極の、正極層の水平方向の断面における活物質部分と固体電解質部分の面積比に対する、比抵抗および比容量を示すグラフである。
正極層の水平方向の断面において、活物質部分の断面積をA、固体電解質部分の断面積をSEとすると、その面積比A/SEは1〜600であることが好ましく、より好ましくは4〜100、さらに好ましくは6〜50である。この範囲において、低抵抗かつ高容量の電極を提供できる。
FIG. 4 is a graph showing the specific resistance and the specific capacity of the electrode according to the embodiment of the present invention with respect to the area ratio of the active material portion and the solid electrolyte portion in the horizontal cross section of the positive electrode layer.
In the horizontal cross section of the positive electrode layer, when the cross-sectional area of the active material portion is A and the cross-sectional area of the solid electrolyte portion is SE, the area ratio A/SE is preferably 1 to 600, more preferably 4 to 100, more preferably 6 to 50. In this range, an electrode having low resistance and high capacity can be provided.
図5は、本発明の実施形態に係る電極の、正極層の水平方向の断面における固体電解質部分と導電助剤部分の面積比に対する、比抵抗および比容量を示すグラフである。
さらに、正極層の水平方向の断面において、導電助剤部分の断面積をCとすると、SE/Cは1〜50000であることが好ましく、より好ましくは10〜10000、さらに好ましくは50〜1000である。この範囲において、より低抵抗な電極を提供できる。
FIG. 5 is a graph showing the specific resistance and the specific capacity of the electrode according to the embodiment of the present invention with respect to the area ratio of the solid electrolyte portion and the conductive auxiliary agent portion in the horizontal cross section of the positive electrode layer.
Further, in the horizontal cross section of the positive electrode layer, SE/C is preferably 1 to 50,000, more preferably 10 to 10,000, and still more preferably 50 to 1,000, where C is the cross-sectional area of the conductive additive. is there. In this range, a lower resistance electrode can be provided.
図6は、本発明の実施形態に係る電極の、電極層の厚さ比に対する、比抵抗および比容量を示すグラフである。
本発明の電極は、電極活物質と固体電解質および導電助剤が均一に混合されている従来の電極と比べ、電極層の厚さ比に対する比抵抗が小さい。固体電解質および導電助剤からなる層の存在により、抵抗値が大幅に低下しているものと推定される。対して比容量については体積比に等しいため、両電極間において差は見られない。従って、容量を維持したまま、低抵抗の電極が実現し、即ち、抵抗を維持したまま、高容量の電極が実現する。
FIG. 6 is a graph showing the specific resistance and the specific capacitance of the electrode according to the embodiment of the present invention with respect to the thickness ratio of the electrode layer.
The electrode of the present invention has a smaller specific resistance with respect to the thickness ratio of the electrode layer, as compared with the conventional electrode in which the electrode active material, the solid electrolyte and the conductive additive are uniformly mixed. It is presumed that the resistance value is significantly reduced due to the presence of the layer composed of the solid electrolyte and the conductive additive. On the other hand, since the specific capacity is equal to the volume ratio, there is no difference between both electrodes. Therefore, an electrode having a low resistance is realized while maintaining the capacity, that is, an electrode having a high capacity is realized while maintaining the resistance.
図7は、本発明の実施形態に係る電極の比抵抗および比容量の変化について、充放電サイクル試験を行った結果を示すグラフである。
本発明の電極は、電極活物質と固体電解質および導電助剤が均一に混合されている従来の電極と比べ、1000サイクル経過後の容量および抵抗値がいずれも優れていた。電極活物質が前記格子により区分されていることで、電荷移動媒体の移動経路が規定されるために、電荷移動媒体濃度分布の偏りが緩和され、電池のサイクル特性が向上した。
FIG. 7 is a graph showing the results of a charge/discharge cycle test for changes in the specific resistance and the specific capacity of the electrode according to the embodiment of the present invention.
The electrode of the present invention was excellent in both capacity and resistance after 1000 cycles, as compared with the conventional electrode in which the electrode active material, the solid electrolyte and the conductive additive were uniformly mixed. By dividing the electrode active material by the grid, the movement path of the charge transfer medium is defined, so that the bias of the charge transfer medium concentration distribution is alleviated and the cycle characteristics of the battery are improved.
図8は、本発明の変形例1における正極活物質を示す概略図である。
本発明において正極活物質は、層状岩塩型構造を有するコア粒子の周囲に、電位絶縁層が被覆しており、さらに前記電位絶縁層を固体電解質および導電助剤層が被覆しているものであることが好ましい。これにより、活物質の劣化を抑制しつつ、伝導抵抗を低下させることができる。前記電位絶縁層を構成する物質としては特に限定されず、例えばLiNbO3など、活物質表面を絶縁しつつ、電荷移動媒体を伝導する層を形成すればよい。また前記固体電解質としては、固体電解質層15や、伝導相30を構成する固体電解質と異なる物質を用いてもよく、例えばLiPS4、LLZ、LLZ−Al、LLZ−Gaなどを用いることができる。
FIG. 8 is a schematic diagram showing a positive electrode active material in
In the present invention, the positive electrode active material is one in which a core particle having a layered rock salt structure is coated with a potential insulating layer, and the potential insulating layer is further coated with a solid electrolyte and a conductive auxiliary agent layer. Preferably. This makes it possible to reduce the conduction resistance while suppressing the deterioration of the active material. The material forming the potential insulating layer is not particularly limited, and a layer that conducts the charge transfer medium may be formed while insulating the surface of the active material, such as LiNbO 3 . As the solid electrolyte, a substance different from the
図9は、本発明の変形例1における正極層の鉛直方向断面の一部を示す概略図である。
伝導相30により区分された正極層の1区分中では、活物質の粒子間の空隙が、さらに固体電解質および導電助剤の粒子にて埋められていることが好ましい。これにより、さらに伝導抵抗が低下する。
FIG. 9 is a schematic view showing a part of a vertical cross section of the positive electrode layer according to
In one section of the positive electrode layer divided by the
以上、本発明の実施形態の例について説明した。本実施形態によれば、以下の効果が奏される。 The example of the embodiment of the present invention has been described above. According to this embodiment, the following effects are exhibited.
本実施形態では、本発明は、正極活物質を含有する正極電極層と、負極活物質を含有する負極電極層と、前記正極電極層および前記負極電極層の間に介在して配置される固体電解質層と、から構成される固体電池において、前記2つの電極層の少なくとも一方の電極層は、該電極層の積層方向に直交する面方向に二次元格子状に延びる固体電解質および導電助剤をさらに含有する構造とした。
これにより、電極活物質を低抵抗で積層することが可能になり、また電極層中での電荷移動媒体の濃度分布の偏りを解消できるため、高容量かつ高耐久性を示す固体電池の提供が可能になる。
In the present embodiment, the present invention provides a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, and a solid disposed between the positive electrode layer and the negative electrode layer. In a solid-state battery including an electrolyte layer, at least one of the two electrode layers has a solid electrolyte and a conductive additive that extend in a two-dimensional lattice shape in a plane direction orthogonal to the stacking direction of the electrode layers. The structure further contains.
As a result, it becomes possible to stack the electrode active material with low resistance, and it is possible to eliminate the bias in the concentration distribution of the charge transfer medium in the electrode layer, so that it is possible to provide a solid battery having high capacity and high durability. It will be possible.
本実施形態において、前記少なくとも一方の電極層は、前記固体電解質および導電助剤が、前記積層方向と、前記積層方向に直交する2方向と、を含んで三次元格子状に配置される構造とした。
これにより、上記の効果がより大きく発揮され、さらに高容量かつ高耐久性を示す固体電池の提供が可能になる。
In this embodiment, the at least one electrode layer has a structure in which the solid electrolyte and the conductive additive are arranged in a three-dimensional lattice shape including the stacking direction and two directions orthogonal to the stacking direction. did.
This makes it possible to provide the solid-state battery exhibiting the above-mentioned effects to a greater extent and having a higher capacity and a higher durability.
本実施形態において、前記固体電解質および導電助剤は、前記格子中で混合されて配置されていてもよいし、前記格子中で固体電解質層と、該固体電解質層に隣接する導電助剤層と、を構成して配置されていてもよい。 In the present embodiment, the solid electrolyte and the conductive auxiliary agent may be arranged in a mixed state in the lattice, a solid electrolyte layer in the lattice, and a conductive auxiliary agent layer adjacent to the solid electrolyte layer. , May be configured and arranged.
本実施形態において、前記電極層の積層方向に直交する断面における、固体電解質部分の断面積に対する活物質部分の断面積の比を、1〜600、より好ましくは4〜100、さらに好ましくは6〜50とした。
これにより、さらに低抵抗の電池の提供が可能になる。
In the present embodiment, the ratio of the cross-sectional area of the active material portion to the cross-sectional area of the solid electrolyte portion in the cross section orthogonal to the stacking direction of the electrode layers is 1 to 600, more preferably 4 to 100, further preferably 6 to It was set to 50.
This makes it possible to provide a battery having even lower resistance.
1 …正極活物質
2 …絶縁体被覆層
3 …固体電解質および導電助剤
10 …固体電池セル
11 …負極層
12 …負極層集電体
12a …導電助剤層
13 …正極層
14 …正極層集電体
14a …導電助剤層
15 …固体電解質層
30 …固体電解質および導電助剤相
100 …積層電池
DESCRIPTION OF
Claims (7)
負極活物質を含有する負極電極層と、
前記正極電極層および前記負極電極層の間に介在して配置される固体電解質層と、から構成される固体電池において、
前記2つの電極層の少なくとも一方の電極層は、
該電極層の積層方向に直交する面方向に二次元格子状に延びる固体電解質および導電助剤をさらに含有する、固体電池。 A positive electrode layer containing a positive electrode active material,
A negative electrode layer containing a negative electrode active material,
In a solid battery composed of a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer,
At least one electrode layer of the two electrode layers is
A solid-state battery further containing a solid electrolyte extending in a two-dimensional lattice shape in a plane direction orthogonal to the stacking direction of the electrode layers and a conductive additive.
前記固体電解質および導電助剤が、
前記積層方向と、前記積層方向に直交する2方向と、を含んで三次元格子状に配置される、請求項1に記載の固体電池。 The at least one electrode layer,
The solid electrolyte and the conduction aid,
The solid-state battery according to claim 1, wherein the solid-state battery is arranged in a three-dimensional lattice pattern including the stacking direction and two directions orthogonal to the stacking direction.
7. The solid state battery according to claim 1, wherein a ratio of a cross sectional area of the active material portion to a cross sectional area of the solid electrolyte portion is 6 to 50 in a cross section orthogonal to the stacking direction of the electrode layers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018212993A JP7018376B2 (en) | 2018-11-13 | 2018-11-13 | Solid state battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018212993A JP7018376B2 (en) | 2018-11-13 | 2018-11-13 | Solid state battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020080247A true JP2020080247A (en) | 2020-05-28 |
JP7018376B2 JP7018376B2 (en) | 2022-02-10 |
Family
ID=70801939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018212993A Active JP7018376B2 (en) | 2018-11-13 | 2018-11-13 | Solid state battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7018376B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114530628A (en) * | 2022-01-25 | 2022-05-24 | 复旦大学 | Film all-solid-state battery |
KR20220095689A (en) * | 2020-12-30 | 2022-07-07 | 한국세라믹기술원 | Electrode for all-solid-sate battery and method of preparing the same |
WO2024150890A1 (en) * | 2023-01-11 | 2024-07-18 | 울산과학기술원 | Electrode structure having vertical active layer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005011660A (en) * | 2003-06-18 | 2005-01-13 | Nissan Motor Co Ltd | Secondary battery electrode, manufacturing method of the same, and secondary battery using the same |
JP2012234720A (en) * | 2011-05-02 | 2012-11-29 | Ngk Insulators Ltd | Solid electrolyte separator, secondary battery unit, and secondary battery assembly |
WO2013121642A1 (en) * | 2012-02-17 | 2013-08-22 | ソニー株式会社 | Secondary cell, method for manufacturing secondary cell, electrode for secondary cell, and electronic device |
JP2015069795A (en) * | 2013-09-27 | 2015-04-13 | トヨタ自動車株式会社 | Positive electrode active material layer |
JP2016207418A (en) * | 2015-04-21 | 2016-12-08 | トヨタ自動車株式会社 | Electrode mixture |
JP2017016794A (en) * | 2015-06-29 | 2017-01-19 | トヨタ自動車株式会社 | Cathode mixture and all-solid lithium battery |
-
2018
- 2018-11-13 JP JP2018212993A patent/JP7018376B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005011660A (en) * | 2003-06-18 | 2005-01-13 | Nissan Motor Co Ltd | Secondary battery electrode, manufacturing method of the same, and secondary battery using the same |
JP2012234720A (en) * | 2011-05-02 | 2012-11-29 | Ngk Insulators Ltd | Solid electrolyte separator, secondary battery unit, and secondary battery assembly |
WO2013121642A1 (en) * | 2012-02-17 | 2013-08-22 | ソニー株式会社 | Secondary cell, method for manufacturing secondary cell, electrode for secondary cell, and electronic device |
JP2015069795A (en) * | 2013-09-27 | 2015-04-13 | トヨタ自動車株式会社 | Positive electrode active material layer |
JP2016207418A (en) * | 2015-04-21 | 2016-12-08 | トヨタ自動車株式会社 | Electrode mixture |
JP2017016794A (en) * | 2015-06-29 | 2017-01-19 | トヨタ自動車株式会社 | Cathode mixture and all-solid lithium battery |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220095689A (en) * | 2020-12-30 | 2022-07-07 | 한국세라믹기술원 | Electrode for all-solid-sate battery and method of preparing the same |
KR102561483B1 (en) * | 2020-12-30 | 2023-07-31 | 한국세라믹기술원 | Electrode for all-solid-sate battery and method of preparing the same |
CN114530628A (en) * | 2022-01-25 | 2022-05-24 | 复旦大学 | Film all-solid-state battery |
WO2024150890A1 (en) * | 2023-01-11 | 2024-07-18 | 울산과학기술원 | Electrode structure having vertical active layer |
Also Published As
Publication number | Publication date |
---|---|
JP7018376B2 (en) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023011777A (en) | Ion-conducting battery containing solid electrolyte material | |
CN110943248B (en) | Lithium secondary battery | |
JP5929748B2 (en) | Manufacturing method of all solid state battery | |
CN112189266B (en) | Electrochemical cell with improved ionic conductivity | |
JP2014127272A (en) | Method for manufacturing electrode for all solid state battery | |
KR20200134688A (en) | High energy density all-solid state battery and process for preparing thereof | |
JP2018174070A (en) | Lithium ion secondary battery | |
JP7018376B2 (en) | Solid state battery | |
CN110265629B (en) | Negative electrode and lithium ion secondary battery | |
CN114270569A (en) | Method of manufacturing lithium metal unit cell of all-solid-state battery and unit cell manufactured by the method | |
JP6946694B2 (en) | Lithium ion secondary battery | |
JP5494572B2 (en) | All solid state battery and manufacturing method thereof | |
JP7156263B2 (en) | ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY | |
JP7180419B2 (en) | All-solid battery | |
WO2020129775A1 (en) | Lithium secondary battery | |
JP2007242348A (en) | Lithium-ion secondary battery | |
JP2012138290A (en) | Lithium secondary battery system and method for controlling the lithium secondary battery system | |
JP6709991B2 (en) | Lithium ion secondary battery | |
JP7149355B2 (en) | Electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2019169346A (en) | Lithium ion secondary battery | |
JP7135840B2 (en) | Positive electrode and lithium ion secondary battery | |
JP7111005B2 (en) | Negative electrode for all-solid-state lithium-ion secondary battery | |
KR20190042671A (en) | Electrode materials for lithium ion batteries | |
JP2011175904A (en) | All solid lithium ion secondary battery | |
JP2017111890A (en) | Composite electrolyte for lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210914 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220118 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220131 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7018376 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |