JP7180419B2 - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP7180419B2
JP7180419B2 JP2019015680A JP2019015680A JP7180419B2 JP 7180419 B2 JP7180419 B2 JP 7180419B2 JP 2019015680 A JP2019015680 A JP 2019015680A JP 2019015680 A JP2019015680 A JP 2019015680A JP 7180419 B2 JP7180419 B2 JP 7180419B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode layer
layer
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019015680A
Other languages
Japanese (ja)
Other versions
JP2020123538A (en
Inventor
洋 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019015680A priority Critical patent/JP7180419B2/en
Publication of JP2020123538A publication Critical patent/JP2020123538A/en
Application granted granted Critical
Publication of JP7180419B2 publication Critical patent/JP7180419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本願は全固体電池を開示する。 The present application discloses an all-solid-state battery.

特許文献1は、リチウムイオンを吸蔵放出可能な岩塩層状構造の正極活物質を備えた全固体電池を開示している。特許文献2は、正極層と固体電解質層との間に中間層を含み、該中間層は単斜晶系LiMO(但し、MはTi又はMnを示す。)を含む、全固体型電池用積層体を開示している。特許文献3は、層状正極活物質、スピネル型正極活物質、又はオリビン型正極活物質から選択された粒子状正極活物質を用い、正極層は平均粒子径が異なる2種類以上の粒子状正極活物質を含有している正極体を開示している。特許文献4は、放電時に膨張し、充電時に収縮するスピネル型結晶構造の第一活物質粉末と、放電時に収縮し、充電時に膨張する層状岩塩型結晶構造の第二活物質粉末とを、体積%で1:2~2:1で混合した正極を開示している。 Patent Literature 1 discloses an all-solid battery including a positive electrode active material having a rock salt layered structure capable of intercalating and deintercalating lithium ions. Patent document 2 includes an intermediate layer between a positive electrode layer and a solid electrolyte layer, and the intermediate layer contains monoclinic LiMO 3 (where M represents Ti or Mn) for an all-solid-state battery. A laminate is disclosed. Patent Document 3 uses a particulate positive electrode active material selected from a layered positive electrode active material, a spinel type positive electrode active material, or an olivine type positive electrode active material, and the positive electrode layer contains two or more types of particulate positive electrode active materials having different average particle sizes. Cathode bodies containing materials are disclosed. Patent Document 4 discloses a method in which a first active material powder having a spinel-type crystal structure that expands during discharge and shrinks during charge, and a second active material powder that has a layered rock salt-type crystal structure that shrinks during discharge and expands during charge are combined into It discloses cathodes mixed from 1:2 to 2:1 by %.

特開2014-146458号公報JP 2014-146458 A 特開2014-110149号公報JP 2014-110149 A 特許第5262143号公報Japanese Patent No. 5262143 特開2012-248454号公報JP 2012-248454 A

全固体電池において、正極活物質としてスピネル型結晶構造の正極活物質を用いた場合、反応ムラが大きい。これは高SoC(State of Charge)である正極活物質と低SoCである正極活物質との電位差が小さく、固体電解質層側の正極活物質が優先的に反応してしまうためである。 In an all-solid-state battery, when a positive electrode active material having a spinel crystal structure is used as the positive electrode active material, reaction unevenness is large. This is because the potential difference between the high SoC (State of Charge) positive electrode active material and the low SoC positive electrode active material is small, and the positive electrode active material on the solid electrolyte layer side reacts preferentially.

そこで、本願は反応ムラが抑制された全固体電池を提供することを課題とする。 Accordingly, an object of the present application is to provide an all-solid-state battery in which reaction unevenness is suppressed.

本発明者は、鋭意検討の結果、全固体電池の正極活物質層において、第1の正極層と該第1の正極層及び正極集電体の間に配置される第2の正極層とを備え、第1の正極層はスピネル型正極活物質よりも層状正極活物質を多く含み、第2の正極層は層状正極活物質よりもスピネル型正極活物質を多く含むことにより、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies, the present inventors have found that, in the positive electrode active material layer of an all-solid-state battery, the first positive electrode layer and the second positive electrode layer disposed between the first positive electrode layer and the positive electrode current collector are In addition, the first positive electrode layer contains more layered positive electrode active material than the spinel-type positive electrode active material, and the second positive electrode layer contains more spinel-type positive electrode active material than the layered positive electrode active material, thereby solving the above problems. I found that it can be done, and completed the present invention.

すなわち、本願は上記課題を解決するための一つの手段として、正極集電体、正極層、固体電解質層、負極層、負極集電体をこの順で備えた全固体電池において、正極層は、層状正極活物質とスピネル型正極活物質とを含み、正極層は、第1の正極層と該第1の正極層及び正極集電体の間に配置される第2の正極層とを備え、第1の正極層はスピネル型正極活物質よりも層状正極活物質を多く含み、第2の正極層は層状正極活物質よりもスピネル型正極活物質を多く含む、全固体電池を開示する。 That is, as one means for solving the above problems, the present application provides an all-solid battery comprising a positive electrode current collector, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector in this order, wherein the positive electrode layer is comprising a layered positive electrode active material and a spinel-type positive electrode active material, wherein the positive electrode layer comprises a first positive electrode layer and a second positive electrode layer disposed between the first positive electrode layer and the positive electrode current collector; An all-solid-state battery is disclosed in which the first cathode layer comprises more layered cathode active material than the spinel-type cathode active material, and the second cathode layer comprises more spinel-type cathode active material than the layered cathode active material.

本開示の全固体電池によれば、反応ムラを抑制することができる。 According to the all-solid-state battery of the present disclosure, reaction unevenness can be suppressed.

全固体電池100の概略断面図である。1 is a schematic cross-sectional view of an all-solid-state battery 100; FIG. 正極層20に着目した拡大断面図である。3 is an enlarged cross-sectional view focusing on the positive electrode layer 20. FIG. 正極層に第2の正極層のみを用いた場合である。上部に第2の正極層に着目した断面図を、下部にLNMOの電位カーブを示した。This is the case where only the second positive electrode layer is used as the positive electrode layer. A cross-sectional view focusing on the second positive electrode layer is shown in the upper part, and the potential curve of the LNMO is shown in the lower part. 正極層に第1の正極層のみを用いた場合である。上部に第1の正極層に着目した断面図を、下部にNCMの電位カーブを示した。This is the case where only the first positive electrode layer is used as the positive electrode layer. A cross-sectional view focusing on the first positive electrode layer is shown in the upper part, and the potential curve of the NCM is shown in the lower part. 正極層に本開示の正極層を用いた場合である。上部に本開示の正極層に着目した断面図を、下部に正極層の電位カーブを第1の正極層と第2の正極層とに分けて示した。This is the case where the positive electrode layer of the present disclosure is used for the positive electrode layer. The upper part shows a cross-sectional view focusing on the positive electrode layer of the present disclosure, and the lower part shows the potential curve of the positive electrode layer divided into the first positive electrode layer and the second positive electrode layer. 実施例1~5、比較例1、2の結果を示す図である。FIG. 5 is a diagram showing the results of Examples 1 to 5 and Comparative Examples 1 and 2;

[全固体電池]
本開示の全固体電池について、一実施形態である全固体電池100を参照しつつ説明する。
全固体電池100は正極集電体10、正極層20、固体電解質層30、負極層40、負極集電体50をこの順で備えている。「この順で備え」とは、各層がこの順番に配置された形態であり、各層間に他の層が配置される形態を妨げない。言い換えると、各層が直接的にこの順で配置された形態のほか、各層間に他の層が配置され、間接的にこの順で配置された形態を含む。
図1に全固体電池100の概略断面図を示した。
[All-solid battery]
An all-solid-state battery of the present disclosure will be described with reference to an all-solid-state battery 100 that is one embodiment.
The all-solid-state battery 100 includes a positive electrode current collector 10, a positive electrode layer 20, a solid electrolyte layer 30, a negative electrode layer 40, and a negative electrode current collector 50 in this order. "Provided in this order" means that each layer is arranged in this order, and does not interfere with a form in which another layer is arranged between each layer. In other words, it includes a mode in which each layer is directly arranged in this order, and a mode in which another layer is arranged between each layer and indirectly arranged in this order.
FIG. 1 shows a schematic cross-sectional view of an all-solid-state battery 100. As shown in FIG.

(正極層20)
正極層20は少なくとも正極活物質を含む。正極活物質としては、層状正極活物質とスピネル型正極活物質とを含む。図2に正極層20に着目した拡大断面図を示した。
図2に示したとおり、正極層20は第1の正極層21と該第1の正極層21及び正極集電体10の間に配置される第2の正極層22とを備えている。そして、第1の正極層21はスピネル型正極活物質よりも層状正極活物質を多く含み、第2の正極層22は層状正極活物質よりもスピネル型正極活物質を多く含むことを特徴としている。
(Positive electrode layer 20)
The positive electrode layer 20 contains at least a positive electrode active material. The positive electrode active material includes a layered positive electrode active material and a spinel-type positive electrode active material. FIG. 2 shows an enlarged cross-sectional view focusing on the positive electrode layer 20 .
As shown in FIG. 2 , the cathode layer 20 comprises a first cathode layer 21 and a second cathode layer 22 interposed between the first cathode layer 21 and the cathode current collector 10 . The first positive electrode layer 21 contains more layered positive electrode active material than the spinel-type positive electrode active material, and the second positive electrode layer 22 contains more spinel-type positive electrode active material than the layered positive electrode active material. .

図2に示したとおり、正極集電体10の一方側の面に第2の正極層22が積層され、第2の正極層22の一方側の面に第1の正極層21が積層され、第1の正極層21の一方側の面に固体電解質層30が積層されている。
ただし、本開示の全固体電池において、正極層は正極集電体側から固体電解質層側に向かって第2の正極層、第1の正極層をこの順で備えていればよい。言い換えると、本開示の全固体電池において、正極層は2層以上であってもよく、正極集電体と第2の正極層の間、第2の正極層と第1の正極層との間、第1の正極層と固体電解質層との間に、他の層を備えていてもよい。
As shown in FIG. 2, the second positive electrode layer 22 is laminated on one side surface of the positive electrode current collector 10, the first positive electrode layer 21 is laminated on one side surface of the second positive electrode layer 22, A solid electrolyte layer 30 is laminated on one surface of the first positive electrode layer 21 .
However, in the all-solid-state battery of the present disclosure, the positive electrode layer may include the second positive electrode layer and the first positive electrode layer in this order from the positive electrode current collector side to the solid electrolyte layer side. In other words, in the all-solid-state battery of the present disclosure, the positive electrode layer may be two or more layers, between the positive electrode current collector and the second positive electrode layer, between the second positive electrode layer and the first positive electrode layer , another layer may be provided between the first positive electrode layer and the solid electrolyte layer.

また、上記した「第1の正極層21はスピネル型正極活物質よりも層状正極活物質を多く含み」とは、第1の正極層21は正極活物質として、重量基準でスピネル型正極活物質よりも層状正極活物質を多く含む状態を意味し、スピネル型正極活物質は含まれていなくてもよい。言い換えると、第1の正極層21は正極活物質として少なくとも層状正極活物質を含み、第1の正極層21が正極活物質としてスピネル型正極活物質及び層状正極活物質を含む場合は、重量基準でスピネル型正極活物質よりも層状正極活物質を多く含むことを意味する。好ましくは、第1の正極層21に含まれる正極活物質が層状正極活物質からなる、又は、第1の正極層21に含まれる正極活物質がスピネル型正極活物質及び層状正極活物質を含む場合は、重量比率でスピネル型正極活物質:層状正極活物質=0:10~3:7の割合で含む。 In addition, the above-mentioned "the first positive electrode layer 21 contains more layered positive electrode active material than the spinel-type positive electrode active material" means that the first positive electrode layer 21 is the positive electrode active material, and the spinel-type positive electrode active material It means a state in which the layered positive electrode active material is contained in a larger amount than the spinel type positive electrode active material, and the spinel type positive electrode active material may not be contained. In other words, the first positive electrode layer 21 contains at least the layered positive electrode active material as the positive electrode active material, and when the first positive electrode layer 21 contains the spinel-type positive electrode active material and the layered positive electrode active material as the positive electrode active material, means that the layered positive electrode active material is contained more than the spinel positive electrode active material. Preferably, the positive electrode active material contained in the first positive electrode layer 21 is a layered positive electrode active material, or the positive electrode active material contained in the first positive electrode layer 21 contains a spinel-type positive electrode active material and a layered positive electrode active material. In this case, the spinel-type positive electrode active material and the layered positive electrode active material are contained at a weight ratio of 0:10 to 3:7.

「第2の正極層22は層状正極活物質よりもスピネル型正極活物質を多く含む」とは、第2の正極層22は正極活物質として、重量基準で層状正極活物質よりもスピネル型正極活物質を多く含む状態を意味し、層状正極活物質は含まれていなくてもよい。言い換えると、第2の正極層22は正極活物質として少なくともスピネル型正極活物質を含み、第2の正極層22が正極活物質としてスピネル型正極活物質及び層状正極活物質を含む場合は、重量基準で層状正極活物質よりもスピネル型正極活物質を多く含むことを意味する。好ましくは、第2の正極層22に含まれる正極活物質がスピネル型正極活物質からなる、又は、第2の正極層22に含まれる正極活物質がスピネル型正極活物質及び層状正極活物質を含む場合は、重量比率でスピネル型正極活物質:層状正極活物質=10:0~7:3の割合で含む。 “The second cathode layer 22 contains more spinel-type cathode active material than the layered cathode active material” means that the second cathode layer 22 contains more spinel-type cathode active material than the layered cathode active material on a weight basis. It means a state in which a large amount of active material is contained, and the layered positive electrode active material may not be contained. In other words, the second positive electrode layer 22 contains at least a spinel-type positive electrode active material as the positive electrode active material. As a standard, it means that the spinel-type positive electrode active material is included more than the layered positive electrode active material. Preferably, the positive electrode active material contained in the second positive electrode layer 22 is a spinel-type positive electrode active material, or the positive electrode active material contained in the second positive electrode layer 22 is a spinel-type positive electrode active material and a layered positive electrode active material. When it is included, it is included at a weight ratio of spinel-type positive electrode active material:layered positive electrode active material=10:0 to 7:3.

層状正極活物質としては、LiCoO、LiNiO、Li1+xNiCoMn1-a-b(0.05≦x≦0.3、0.24≦a≦0.26、0.24≦b≦0.26)(本明細書において、「NCM」ということがある。)等を挙げることができる。好ましくはNCMである。
スピネル型正極活物質としては、LiMn、LiCoMnO、LiNiMn2-x(0≦x≦0.5)(本明細書において、x=0.5のものを「LNMO」ということがある。)等を挙げることができる。好ましくはLNMOである。
As the layered positive electrode active material, LiCoO 2 , LiNiO 2 , Li 1+x Ni a Co b Mn 1-ab O 2 (0.05≦x≦0.3, 0.24≦a≦0.26, 0.24≦a≦0.26, 24≦b≦0.26) (which may be referred to as “NCM” in this specification). NCM is preferred.
Examples of spinel-type positive electrode active materials include LiMn 2 O 4 , LiCoMnO 4 , and LiNi x Mn 2-x O 4 (0≦x≦0.5) (in this specification, x=0.5 is referred to as “LNMO”). There is a thing called this.) etc. can be mentioned. LNMO is preferred.

このように正極層20が第1の正極層21と第2の正極層22とを上記した所定の順に備えられている理由は、次のとおりである。
まず、正極層に上記の第2の正極層のみを用いた場合を考える。図3上部に第2の正極層に着目した断面図を、下部にスピネル型正極活物質(LNMO)の電位カーブ(縦軸:電位、横軸:容量)を示した。これは後述の比較例1を表している。なお、図3下部において丸で示した箇所と、図3の上下部の図の関係を示す矢印は、下記を視覚的に説明するために便宜的に付したものである。以下の図4、5も同様である。
図3のとおり、LNMOは高SoCである正極活物質と低SoCである正極活物質との電位差が小さい。そのため、固体電解質層側の正極活物質が優先的に反応し続ける。その結果、固体電解質層側の正極活物質が高SoCとなり、電位が立ち上がることで上限電圧に達する。一方で、正極集電体側の正極活物質は低SoCのままである。そのため、スピネル型正極活物質のみを用いた正極層は反応ムラが大きく、十分にエネルギーを取り出せない問題がある。
The reason why the positive electrode layer 20 includes the first positive electrode layer 21 and the second positive electrode layer 22 in the above-described predetermined order is as follows.
First, consider the case where only the second positive electrode layer is used as the positive electrode layer. A cross-sectional view focusing on the second positive electrode layer is shown in the upper portion of FIG. 3, and a potential curve (vertical axis: potential, horizontal axis: capacity) of a spinel-type positive electrode active material (LNMO) is shown in the lower portion. This represents Comparative Example 1, which will be described later. 3 and the arrows indicating the relationship between the upper and lower parts of FIG. 3 are added for convenience in order to visually explain the following. The same applies to FIGS. 4 and 5 below.
As shown in FIG. 3, LNMO has a small potential difference between the high SoC positive electrode active material and the low SoC positive electrode active material. Therefore, the positive electrode active material on the solid electrolyte layer side continues to react preferentially. As a result, the positive electrode active material on the solid electrolyte layer side becomes high SoC, and the potential rises to reach the upper limit voltage. On the other hand, the positive electrode active material on the positive electrode current collector side remains low SoC. Therefore, the positive electrode layer using only the spinel-type positive electrode active material has a large reaction unevenness, and there is a problem that the energy cannot be extracted sufficiently.

次に、正極層に上記の第1の正極層のみを用いた場合を考える。図4上部に第1の正極層に着目した断面図を、下部に層状正極活物質(NCM)の電位カーブ(縦軸:電位、横軸:容量)を示した。これは後述の比較例2を表している。
図4のとおり、NCMはSoCに対する電位スロープが大きいため、厚み方向(積層方法)の充電ムラが小さい。ただし、層状正極活物質(NCM)はスピネル型正極活物質(LNMO)に比べて抵抗が大きいため、短時間の出力が不利になる問題がある。
Next, consider the case where only the first positive electrode layer is used as the positive electrode layer. A cross-sectional view focusing on the first positive electrode layer is shown in the upper portion of FIG. 4, and a potential curve (vertical axis: potential, horizontal axis: capacity) of the layered positive electrode active material (NCM) is shown in the lower portion. This represents Comparative Example 2, which will be described later.
As shown in FIG. 4, the NCM has a large potential slope with respect to the SoC, so charging unevenness in the thickness direction (lamination method) is small. However, since the layered positive electrode active material (NCM) has a higher resistance than the spinel type positive electrode active material (LNMO), there is a problem that short-term output is disadvantageous.

最後に、本開示の正極層を用いた場合を考える。図5上部に本開示の正極層に着目した断面図を、下部に正極層の電位カーブ(縦軸:電位、横軸:容量)を第1の正極層と第2の正極層とに分けて示した。なお、第1の正極層は正極活物質としてNCMを用い、第2の正極層の正極活物質としてLNMOを用いた。これは後述の実施例1~5を表している。 図5のとおり、NMCはLNMOの反応電位周辺にも容量を持ち、また、SoCに対する電位スロープが大きいため厚み方向の充電ムラが小さい。また、正極集電体側の正極活物質は固体電解質層側に比べて厚み方向のムラが小さい。そのため、このような正極層は十分な充電エネルギー密度を有することとなる。 Finally, consider the case of using the positive electrode layer of the present disclosure. The upper part of FIG. 5 shows a cross-sectional view focusing on the positive electrode layer of the present disclosure, and the lower part shows the potential curve of the positive electrode layer (vertical axis: potential, horizontal axis: capacity) divided into the first positive electrode layer and the second positive electrode layer. Indicated. NCM was used as a positive electrode active material for the first positive electrode layer, and LNMO was used as a positive electrode active material for the second positive electrode layer. This represents Examples 1 to 5 below. As shown in FIG. 5, the NMC has a capacity around the reaction potential of the LNMO and also has a large potential slope with respect to the SoC, so charging unevenness in the thickness direction is small. In addition, the positive electrode active material on the positive electrode current collector side has less unevenness in the thickness direction than that on the solid electrolyte layer side. Therefore, such a positive electrode layer will have sufficient charge energy density.

よって、正極層20によれば、第1の正極層21と第2の正極層22とを所定の順に備えることで、正極層20全体として反応ムラが小さくなり、充電エネルギー密度が向上することができる。
なお、第1の正極層21と第2の正極層22と配置順を逆にした場合では、上記の効果を奏さない。固体電解質層側では特に反応にムラが起こりやすくなるため、第1の正極層21と第2の正極層22と配置順を逆にすると、反応ムラの大きいスピネル型正極活物質が、反応ムラが起こりやすい固体電解質層側に配置されることとなり、充電エネルギー密度がさらに取得し難くなるからである。
Therefore, according to the positive electrode layer 20, by providing the first positive electrode layer 21 and the second positive electrode layer 22 in a predetermined order, the reaction unevenness of the positive electrode layer 20 as a whole can be reduced, and the charge energy density can be improved. can.
In addition, when the arrangement order of the first positive electrode layer 21 and the second positive electrode layer 22 is reversed, the above effect cannot be obtained. Since unevenness in reaction is particularly likely to occur on the solid electrolyte layer side, if the order of arrangement of the first positive electrode layer 21 and the second positive electrode layer 22 is reversed, the spinel-type positive electrode active material with large reaction unevenness will cause uneven reaction. This is because it is arranged on the solid electrolyte layer side, which is likely to occur, and it becomes more difficult to obtain the charging energy density.

また、正極層20全体に含まれる層状正極活物質及びスピネル型正極活物質の合計の重量を1としたとき、スピネル型正極活物質の重量比率xが0.7≦x<1であることが好ましい。これにより、充電エネルギー密度が向上するとともに、短時間出力の低下も抑制、すなわち、抵抗も抑制することができる。
このような重量比率は、正極断面のSEM-EDX画像から、それぞれの正極活物質粒子を判断し、その面積比を混合粒子体積比とみなし、次いで真密度から算出することができる。
Further, when the total weight of the layered positive electrode active material and the spinel-type positive electrode active material contained in the entire positive electrode layer 20 is 1, the weight ratio x of the spinel-type positive electrode active material is 0.7≦x<1. preferable. As a result, the charging energy density can be improved, and the decrease in output for a short time can be suppressed, that is, the resistance can also be suppressed.
Such a weight ratio can be calculated from the true density by judging each positive electrode active material particle from the SEM-EDX image of the cross section of the positive electrode, regarding the area ratio as the mixed particle volume ratio, and then calculating the true density.

正極層20は、上記した正極活物質に加えて、任意に固体電解質、バインダー及び導電助剤等を含ませることができる。正極層20に含まれ得る固体電解質は無機固体電解質が好ましい。有機ポリマー電解質と比較してイオン伝導度が高いためである。また、有機ポリマー電解質と比較して、耐熱性に優れるためである。好ましい無機固体電解質としては、例えば、ランタンジルコン酸リチウム、LiPON、Li1+XAlGe2-X(PO、Li-SiO系ガラス、Li-Al-S-O系ガラス等の酸化物固体電解質;LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-SiS-P、LiS-P-LiI-LiBr、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P-GeS等の硫化物固体電解質を例示することができる。特に、硫化物固体電解質が好ましく、LiS-Pを含む硫化物固体電解質がより好ましく、LiS-P-LiI-LiBrを含む硫化物固体電解質がさらに好ましい。正極層20に含まれ得るバインダーとしては、例えば、ブタジエンゴム(BR)、ブチレンゴム(IIR)、アクリレートブタジエンゴム(ABR)、ポリフッ化ビニリデン(PVdF)等が挙げられる。正極層20に含まれ得るバインダーとしては、例えば、ブタジエンゴム(BR)、ブチレンゴム(IIR)、アクリレートブタジエンゴム(ABR)、ポリフッ化ビニリデン(PVDF)等が挙げられる。正極層20に含まれ得る導電剤としてはアセチレンブラックやケッチェンブラック、気相法炭素繊維(VGCF)等の炭素材料やニッケル、アルミニウム、ステンレス鋼等の金属材料が挙げられる。 The positive electrode layer 20 can optionally contain a solid electrolyte, a binder, a conductive aid, and the like, in addition to the positive electrode active material described above. The solid electrolyte that can be contained in the positive electrode layer 20 is preferably an inorganic solid electrolyte. This is because the ionic conductivity is higher than that of organic polymer electrolytes. Moreover, it is because it is excellent in heat resistance compared with an organic polymer electrolyte. Preferred inorganic solid electrolytes include oxide solids such as lithium lanthanum zirconate, LiPON, Li 1+X Al X Ge 2-X (PO 4 ) 3 , Li—SiO glass, Li—Al—S—O glass, and the like. Electrolyte; Li 2 SP 2 S 5 , Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Si 2 SP 2 S 5 , Li 2 SP 2 S 5 —LiI—LiBr , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -GeS 2 and other sulfides A solid electrolyte can be exemplified. In particular, a sulfide solid electrolyte is preferred, a sulfide solid electrolyte containing Li 2 SP 2 S 5 is more preferred, and a sulfide solid electrolyte containing Li 2 SP 2 S 5 -LiI-LiBr is even more preferred. Examples of binders that can be contained in the positive electrode layer 20 include butadiene rubber (BR), butylene rubber (IIR), acrylate butadiene rubber (ABR), polyvinylidene fluoride (PVdF), and the like. Examples of binders that can be contained in the positive electrode layer 20 include butadiene rubber (BR), butylene rubber (IIR), acrylate butadiene rubber (ABR), polyvinylidene fluoride (PVDF), and the like. Conductive agents that can be contained in the positive electrode layer 20 include carbon materials such as acetylene black, ketjen black, and vapor grown carbon fiber (VGCF), and metal materials such as nickel, aluminum, and stainless steel.

正極層20における各成分の含有量は従来と同様とすればよい。正極層20の形状も従来と同様とすればよい。特に、全固体電池100を容易に構成できる観点から、シート状の正極層が好ましい。この場合、正極層20の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上150μm以下であることがより好ましい。第1の正極層21、第2の正極層22の厚みも適宜設定する。 The content of each component in the positive electrode layer 20 may be the same as the conventional one. The shape of the positive electrode layer 20 may also be the same as the conventional one. In particular, a sheet-shaped positive electrode layer is preferable from the viewpoint that the all-solid-state battery 100 can be easily configured. In this case, the thickness of the positive electrode layer 20 is preferably, for example, 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 150 μm or less. The thicknesses of the first positive electrode layer 21 and the second positive electrode layer 22 are also appropriately set.

(固体電解質層30)
固体電解質層30は、少なくとも固体電解質を含む。固体電解質層30には、固体電解質に加えて、任意にバインダーを含ませることができる。固体電解質は無機固体電解質が好ましい。有機ポリマー電解質と比較してイオン伝導度が高いためである。また、有機ポリマー電解質と比較して、耐熱性に優れるためである。好ましい無機固体電解質としては、例えば、ランタンジルコン酸リチウム、LiPON、Li1+XAlGe2-X(PO、Li-SiO系ガラス、Li-Al-S-O系ガラス等の酸化物固体電解質;LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-SiS-P、LiS-P-LiI-LiBr、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P-GeS等の硫化物固体電解質を例示することができる。特に、硫化物固体電解質が好ましく、LiS-Pを含む硫化物固体電解質がより好ましく、LiS-P-LiI-LiBrを含む硫化物固体電解質がさらに好ましい。バインダーは上述したバインダーと同様のものを適宜選択して用いることができる。固体電解質層30における各成分の含有量は従来と同様とすればよい。固体電解質層30の形状も従来と同様とすればよい。特に、全固体電池100を容易に構成できる観点から、シート状の固体電解質層が好ましい。この場合、固体電解質層30の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。
(Solid electrolyte layer 30)
Solid electrolyte layer 30 includes at least a solid electrolyte. The solid electrolyte layer 30 can optionally contain a binder in addition to the solid electrolyte. The solid electrolyte is preferably an inorganic solid electrolyte. This is because the ionic conductivity is higher than that of organic polymer electrolytes. Moreover, it is because it is excellent in heat resistance compared with an organic polymer electrolyte. Preferred inorganic solid electrolytes include oxide solids such as lithium lanthanum zirconate, LiPON, Li 1+X Al X Ge 2-X (PO 4 ) 3 , Li—SiO glass, Li—Al—S—O glass, and the like. Electrolyte; Li 2 SP 2 S 5 , Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Si 2 SP 2 S 5 , Li 2 SP 2 S 5 —LiI—LiBr , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -GeS 2 and other sulfides A solid electrolyte can be exemplified. In particular, a sulfide solid electrolyte is preferred, a sulfide solid electrolyte containing Li 2 SP 2 S 5 is more preferred, and a sulfide solid electrolyte containing Li 2 SP 2 S 5 -LiI-LiBr is even more preferred. Binders similar to the binders described above can be appropriately selected and used. The content of each component in the solid electrolyte layer 30 may be the same as the conventional one. The shape of the solid electrolyte layer 30 may also be the same as the conventional one. In particular, a sheet-like solid electrolyte layer is preferable from the viewpoint that the all-solid-state battery 100 can be easily constructed. In this case, the thickness of the solid electrolyte layer 30 is preferably, for example, 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less.

(負極層40)
負極層40は、少なくとも負極活物質を含む。負極層40には、負極活物質に加えて、任意に固体電解質、バインダー及び導電剤等を含ませることができる。負極活物質は公知の負極活物質を用いればよい。例えば、リチウムイオン電池を構成する場合は、負極活物質としてSiやSi合金や酸化ケイ素等のシリコン系活物質;グラファイトやハードカーボン等の炭素系活物質;チタン酸リチウム等の各種酸化物系活物質;金属リチウムやリチウム合金等を用いることができる。負極層40に含まれ得る固体電解質は無機固体電解質が好ましい。有機ポリマー電解質と比較してイオン伝導度が高いためである。また、有機ポリマー電解質と比較して、耐熱性に優れるためである。好ましい無機固体電解質としては、例えば、ランタンジルコン酸リチウム、LiPON、Li1+XAlGe2-X(PO、Li-SiO系ガラス、Li-Al-S-O系ガラス等の酸化物固体電解質;LiS-P、LiS-SiS、LiI-LiS-SiS、LiI-SiS-P、LiS-P-LiI-LiBr、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P-GeS等の硫化物固体電解質を例示することができる。特に、硫化物固体電解質が好ましく、LiS-Pを含む硫化物固体電解質がより好ましく、LiS-P-LiI-LiBrを含む硫化物固体電解質がさらに好ましい。負極層40に含まれ得るバインダーとしては、例えば、ブタジエンゴム(BR)、ブチレンゴム(IIR)、アクリレートブタジエンゴム(ABR)、ポリフッ化ビニリデン(PVDF)等が挙げられる。負極層40に含まれ得る導電剤としてはアセチレンブラックやケッチェンブラック、気相法炭素繊維(VGCF)等の炭素材料やニッケル、アルミニウム、ステンレス鋼等の金属材料が挙げられる。負極層40における各成分の含有量は従来と同様とすればよい。負極層40の形状も従来と同様とすればよい。特に、全固体電池100を容易に構成できる観点から、シート状の負極合材層が好ましい。この場合、負極層40の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上150μm以下であることがより好ましい。ただし、負極の容量が正極の容量よりも大きくなるように、負極層40の大きさ(面積や厚み)を決定することが好ましい。
(Negative electrode layer 40)
The negative electrode layer 40 contains at least a negative electrode active material. In addition to the negative electrode active material, the negative electrode layer 40 can optionally contain a solid electrolyte, a binder, a conductive agent, and the like. A known negative electrode active material may be used as the negative electrode active material. For example, when constructing a lithium ion battery, silicon-based active materials such as Si, Si alloys and silicon oxides as negative electrode active materials; carbon-based active materials such as graphite and hard carbon; various oxide-based active materials such as lithium titanate. Substance: metal lithium, lithium alloy, or the like can be used. The solid electrolyte that can be contained in the negative electrode layer 40 is preferably an inorganic solid electrolyte. This is because the ionic conductivity is higher than that of organic polymer electrolytes. Moreover, it is because it is excellent in heat resistance compared with an organic polymer electrolyte. Preferred inorganic solid electrolytes include oxide solids such as lithium lanthanum zirconate, LiPON, Li 1+X Al X Ge 2-X (PO 4 ) 3 , Li—SiO glass, Li—Al—S—O glass, and the like. Electrolyte; Li 2 SP 2 S 5 , Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Si 2 SP 2 S 5 , Li 2 SP 2 S 5 —LiI—LiBr , LiI-Li 2 SP 2 S 5 , LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -GeS 2 and other sulfides A solid electrolyte can be exemplified. In particular, a sulfide solid electrolyte is preferred, a sulfide solid electrolyte containing Li 2 SP 2 S 5 is more preferred, and a sulfide solid electrolyte containing Li 2 SP 2 S 5 -LiI-LiBr is even more preferred. Examples of binders that can be contained in the negative electrode layer 40 include butadiene rubber (BR), butylene rubber (IIR), acrylate butadiene rubber (ABR), polyvinylidene fluoride (PVDF), and the like. Conductive agents that can be contained in the negative electrode layer 40 include carbon materials such as acetylene black, ketjen black, and vapor grown carbon fiber (VGCF), and metal materials such as nickel, aluminum, and stainless steel. The content of each component in the negative electrode layer 40 may be the same as the conventional one. The shape of the negative electrode layer 40 may also be the same as the conventional one. In particular, a sheet-like negative electrode mixture layer is preferable from the viewpoint that the all-solid-state battery 100 can be easily configured. In this case, the thickness of the negative electrode layer 40 is preferably, for example, 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 150 μm or less. However, it is preferable to determine the size (area and thickness) of the negative electrode layer 40 so that the capacity of the negative electrode is larger than the capacity of the positive electrode.

(正極集電体10、負極集電体50)
正極集電体10及び負極集電体50は、金属箔や金属メッシュ等により構成すればよい。特に金属箔が好ましい。正極集電体10及び負極集電体50を構成する金属としては、Cu、Ni、Cr、Au、Pt、Ag、Al、Fe、Ti、Zn、Co、ステンレス鋼等が挙げられる。特にCu、Alが好ましい。正極集電体10及び負極集電体50は、その表面に、抵抗を調整するための何らかのコート層を有していてもよい。正極集電体10及び負極集電体50の各々の厚みは特に限定されるものではない。例えば0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。
(Positive electrode current collector 10, negative electrode current collector 50)
The positive electrode current collector 10 and the negative electrode current collector 50 may be made of metal foil, metal mesh, or the like. Metal foil is particularly preferred. Examples of metals forming the positive electrode current collector 10 and the negative electrode current collector 50 include Cu, Ni, Cr, Au, Pt, Ag, Al, Fe, Ti, Zn, Co, and stainless steel. Cu and Al are particularly preferred. The positive electrode current collector 10 and the negative electrode current collector 50 may have some kind of coating layer on their surfaces for adjusting resistance. The thickness of each of the positive electrode current collector 10 and the negative electrode current collector 50 is not particularly limited. For example, it is preferably 0.1 μm or more and 1 mm or less, more preferably 1 μm or more and 100 μm or less.

以上より、全固体電池100を用いて、本開示の全固体電池について説明した。本開示の全固体電池によれば、反応ムラを抑制することができる。 As described above, the all-solid-state battery of the present disclosure has been described using the all-solid-state battery 100 . According to the all-solid-state battery of the present disclosure, reaction unevenness can be suppressed.

本開示の全固体電池は公知の方法により製造することができる。例えば、別々に作製した正極層、固体電解質層、負極層を積層して、プレスすることで作製することができる。正極集電体又は負極集電体は、これらの積層前に正極層又は負極層に配置されていてもよく、これらの積層後に配置してもよい。正極層は、基材又は正極集電体に第2の正極層を構成する成分を有するスラリーを塗布し、乾燥させ、さらに第1の正極層を構成する成分を有するスラリーを塗布し、乾燥させ、これらをプレスすることにより作製することができる。 The all-solid-state battery of the present disclosure can be manufactured by a known method. For example, it can be produced by stacking separately produced positive electrode layer, solid electrolyte layer, and negative electrode layer and pressing them. The positive electrode current collector or the negative electrode current collector may be arranged in the positive electrode layer or the negative electrode layer before lamination thereof, or may be arranged after lamination thereof. The positive electrode layer is formed by coating a base material or a positive electrode current collector with a slurry containing a component that constitutes the second positive electrode layer and drying it, and further applying a slurry containing a component that constitutes the first positive electrode layer and drying it. , can be produced by pressing them.

以下、本開示の全固体電池について、実施例を用いてさらに説明する。
なお、以下に記載の非極性溶媒はヘプタン若しくは酪酸ブチル、又はこれらの混合物である。
Hereinafter, the all-solid-state battery of the present disclosure will be further described using examples.
The nonpolar solvent described below is heptane, butyl butyrate, or a mixture thereof.

[全固体電池の作製]
<実施例1>
(正極の作製)
活物質(LNMO)及び硫化物固体電解質(LiI-LiO-LiS-P)を重量比率が85:15となるように秤量した。また、活物質100部に対してバインダー(PVDF)が1.5部、導電助材(VGCF)が3.0部となるように秤量した。そして、非極性溶媒を用いて、秤量したこれらの固形分率が63wt%となるように混合し、超音波ホモジナイザーを用いて1分間に亘って混練することにより、正極層用スラリー1を作製した。作製した正極層用スラリー1をアルミニウム箔(正極集電体)に塗工し、加熱乾燥した。
[Fabrication of all-solid-state battery]
<Example 1>
(Preparation of positive electrode)
An active material (LNMO) and a sulfide solid electrolyte (LiI-- Li.sub.2O -- Li.sub.2SP.sub.2S.sub.5 ) were weighed in a weight ratio of 85:15 . Further, 1.5 parts of the binder (PVDF) and 3.0 parts of the conductive additive (VGCF) were weighed with respect to 100 parts of the active material. Then, using a non-polar solvent, they were mixed so that the weighed solid content rate was 63 wt %, and kneaded for 1 minute using an ultrasonic homogenizer to prepare a positive electrode layer slurry 1. . The produced positive electrode layer slurry 1 was applied to an aluminum foil (positive electrode current collector) and dried by heating.

次に、活物質(NCM)及び硫化物固体電解質(LiI-LiO-LiS-P)を重量比率が75:25となるように秤量した。また、活物質100部に対してバインダー(PVDF)が1.5部、導電助材(VGCF)が3.0部となるように秤量した。そして、非極性溶媒を用いて、秤量したこれらの固形分率が63wt%となるように混合し、超音波ホモジナイザーを用いて1分間に亘って混練することにより、正極層用スラリー2を作製した。作製した正極用スラリー2を上記で乾燥させた正極合材層上に塗工し、加熱乾燥させた。
そして、得られた積層体を25℃、線圧1ton/cmでプレスして、正極集電体、正極層を積層した正極を得た。
Next, the active material (NCM) and the sulfide solid electrolyte (LiI-- Li.sub.2O -- Li.sub.2SP.sub.2S.sub.5 ) were weighed so that the weight ratio was 75:25 . Further, 1.5 parts of the binder (PVDF) and 3.0 parts of the conductive additive (VGCF) were weighed with respect to 100 parts of the active material. Then, using a non-polar solvent, they were mixed so that the weighed solid content was 63 wt %, and kneaded for 1 minute using an ultrasonic homogenizer to prepare a positive electrode layer slurry 2. . The prepared positive electrode slurry 2 was applied onto the dried positive electrode mixture layer and dried by heating.
Then, the obtained laminate was pressed at 25° C. and a linear pressure of 1 ton/cm to obtain a positive electrode in which the positive electrode current collector and the positive electrode layer were laminated.

SEM-EDX装置(日立ハイテクノロジーズ製)を用いて取得した正極断面のSEM-EDX画像から、Ni、Mn若しくはNi、Mn、Coを含む粒子をそれぞれ判別し、その面積比を混合粒子体積比とみなした。そして、LNMO及びNCMの真密度から、LNMOの混合粒子重量比率(LNMO比率)を算出した。結果を表1に示した。 From the SEM-EDX image of the cross section of the positive electrode obtained using a SEM-EDX apparatus (manufactured by Hitachi High-Technologies), particles containing Ni, Mn or Ni, Mn, Co are each discriminated, and the area ratio is the mixed particle volume ratio. considered. Then, the mixed particle weight ratio (LNMO ratio) of LNMO was calculated from the true densities of LNMO and NCM. Table 1 shows the results.

(負極の作製)
活物質(チタン酸リチウム:LTO)及び硫化物固体電解質(LiI-LiO-LiS-P)を重量比率が58:42となるように秤量した。また、活物質100部に対してバインダー(PVDF)が1.5部、導電助材(VGCF)が5.0部となるように秤量した。そして、非極性溶媒を用いて、秤量したこれらの固形分率が63wt%となるように混合し、超音波ホモジナイザーを用いて1分間に亘って混練することにより、負極層用スラリー1を作製した。作製した負極層用スラリー1をNi箔(負極集電体)に塗工し、加熱乾燥した。そして、得られた積層体を25℃、線圧1ton/cmでプレスして、負極集電体、負極層を積層した負極を得た。
なお、塗工の際に、正負極の容量比が1:1となるように調整した。
(Preparation of negative electrode)
An active material (lithium titanate: LTO) and a sulfide solid electrolyte (LiI-- Li.sub.2O -- Li.sub.2SP.sub.2S.sub.5 ) were weighed at a weight ratio of 58:42 . Also, 1.5 parts of the binder (PVDF) and 5.0 parts of the conductive additive (VGCF) were weighed with respect to 100 parts of the active material. Then, a non-polar solvent was used to mix the weighed solids so that the solid content was 63 wt %, and kneaded for 1 minute using an ultrasonic homogenizer to prepare negative electrode layer slurry 1. . The prepared negative electrode layer slurry 1 was applied to a Ni foil (negative electrode current collector) and dried by heating. Then, the obtained laminate was pressed at 25° C. and a linear pressure of 1 ton/cm to obtain a negative electrode in which a negative electrode current collector and a negative electrode layer were laminated.
The coating was adjusted so that the positive/negative electrode capacity ratio was 1:1.

(全固体電池の作製)
固体電解質層(LiI-LiO-LiS-P)を挟んで正極及び負極が対向するように積層した後、線圧5tonでプレスすることにより、実施例1に係る全固体電池を得た。
(Fabrication of all-solid-state battery)
After laminating so that the positive electrode and the negative electrode face each other with a solid electrolyte layer (LiI—Li 2 O—Li 2 SP 2 S 5 ) interposed therebetween, the all solid state according to Example 1 is obtained by pressing at a linear pressure of 5 tons. got a battery.

<実施例2~5>
正極のLNMOの混合粒子重量比が表1の値となるように、二層塗工を調整して正極層を作製した以外は、実施例1に係る全固体電池の作製方法と同様に作製し、実施例2~5に係る全固体電池を得た。
<Examples 2 to 5>
The positive electrode layer was prepared by adjusting the two-layer coating so that the mixed particle weight ratio of LNMO in the positive electrode was the value shown in Table 1. , all-solid-state batteries according to Examples 2 to 5 were obtained.

<比較例1>
正極層を上記第1の正極スラリーのみを用いて作製した以外は、実施例1に係る全固体電池の作製方法と同様に作製し、比較例1に係る全固体電池を得た。
<Comparative Example 1>
An all-solid-state battery according to Comparative Example 1 was obtained in the same manner as the all-solid-state battery according to Example 1, except that the positive electrode layer was made using only the first positive electrode slurry.

<比較例2>
正極層を上記第2の正極スラリーのみを用いて作製した以外は、実施例1に係る全固体電池の作製方法と同様に作製し、比較例2に係る全固体電池を得た。
<Comparative Example 2>
An all-solid-state battery according to Comparative Example 2 was obtained in the same manner as the all-solid-state battery according to Example 1, except that the positive electrode layer was made using only the second positive electrode slurry.

<比較例3>
(正極の作製)
活物質(LNMO)とバインダー(PVDF)と導電助材(VGCF)とを、活物質100部に対してバインダーが1.5部、導電助材が3.0部となるように秤量した。そして、非極性溶媒を用いて、秤量したこれらの固形分率が63wt%となるように混合し、超音波ホモジナイザーを用いて1分間に亘って混練することにより、正極層用スラリー3を作製した。作製した正極層用スラリー3をアルミニウム箔(正極集電体)に塗工し、加熱乾燥した。
得られた積層体を空隙が20vol%となるようにプレスし、正極集電体、正極層を積層した正極を得た。
<Comparative Example 3>
(Preparation of positive electrode)
The active material (LNMO), the binder (PVDF), and the conductive aid (VGCF) were weighed so that the binder was 1.5 parts and the conductive aid was 3.0 parts with respect to 100 parts of the active material. Then, using a non-polar solvent, they were mixed so that the weighed solid content rate was 63 wt %, and kneaded for 1 minute using an ultrasonic homogenizer to prepare a positive electrode layer slurry 3. . The produced positive electrode layer slurry 3 was applied to an aluminum foil (positive electrode current collector) and dried by heating.
The laminate thus obtained was pressed so that the voids were 20 vol % to obtain a positive electrode in which the positive electrode current collector and the positive electrode layer were laminated.

(負極の作製)
活物質(LTO)とバインダー(PVDF)と導電助材(VGCF)とを、活物質100部に対してバインダーが1.5部、導電助材が5.0部となるように秤量した。そして、非極性溶媒を用いて、秤量したこれらの固形分率が63wt%となるように混合し、超音波ホモジナイザーを用いて1分間に亘って混練することにより、負極層用スラリー2を作製した。作製した負極層用スラリー2をNi箔(負極集電体)に塗工し、加熱乾燥した。そして、得られた積層体を25℃、線圧1ton/cmでプレスして、負極集電体、負極層を積層した負極を得た。
(Preparation of negative electrode)
The active material (LTO), the binder (PVDF), and the conductive aid (VGCF) were weighed so that the binder was 1.5 parts and the conductive aid was 5.0 parts with respect to 100 parts of the active material. Then, a non-polar solvent was used to mix the weighed solids so that the solid content was 63 wt %, and kneaded for 1 minute using an ultrasonic homogenizer to prepare negative electrode layer slurry 2 . . The prepared negative electrode layer slurry 2 was applied to a Ni foil (negative electrode current collector) and dried by heating. Then, the obtained laminate was pressed at 25° C. and a linear pressure of 1 ton/cm to obtain a negative electrode in which a negative electrode current collector and a negative electrode layer were laminated.

(液系電池の作製)
ポリマー製(ポリプロピレン又はポリカーボネート)のセパレータを挟んで正極及び負極が対向するように積層した後、電解液(1.0M LiPF、EC(エチレンカーボネート):DMC(ジメチルカーボネート)=1:1)を注入し、封止することで比較例3に係る電池を得た。
(Production of liquid-based battery)
After laminating so that the positive electrode and the negative electrode face each other with a separator made of polymer (polypropylene or polycarbonate) sandwiched therebetween, an electrolytic solution (1.0 M LiPF 6 , EC (ethylene carbonate):DMC (dimethyl carbonate) = 1:1) is added. A battery according to Comparative Example 3 was obtained by injecting and sealing.

<比較例4>
以下により作製した正極を用いた以外は、比較例3の電池の作製方法と同様の方法で作製し、比較例4に係る電池を得た。
<Comparative Example 4>
A battery according to Comparative Example 4 was obtained by manufacturing in the same manner as the method for manufacturing the battery of Comparative Example 3, except that a positive electrode manufactured as follows was used.

(正極の作製)
活物質(LNMO)とバインダー(PVDF)と導電助材(VGCF)とを、活物質100部に対してバインダーが1.5部、導電助材が3.0部となるように秤量した。そして、非極性溶媒を用いて、秤量したこれらの固形分率が63wt%となるように混合し、超音波ホモジナイザーを用いて1分間に亘って混練することにより、正極層用スラリー3を作製した。作製した正極層用スラリー3をアルミニウム箔(正極集電体)に塗工し、加熱乾燥した。
(Preparation of positive electrode)
The active material (LNMO), the binder (PVDF), and the conductive aid (VGCF) were weighed so that the binder was 1.5 parts and the conductive aid was 3.0 parts with respect to 100 parts of the active material. Then, using a non-polar solvent, they were mixed so that the weighed solid content rate was 63 wt %, and kneaded for 1 minute using an ultrasonic homogenizer to prepare a positive electrode layer slurry 3. . The produced positive electrode layer slurry 3 was applied to an aluminum foil (positive electrode current collector) and dried by heating.

活物質(NCM)とバインダー(PVDF)と導電助材(VGCF)とを、活物質100部に対してバインダーが1.5部、導電助材が3.0部となるように秤量した。そして、非極性溶媒を用いて、秤量したこれらの固形分率が63wt%となるように混合し、超音波ホモジナイザーを用いて1分間に亘って混練することにより、正極層用スラリー4を作製した。作製した正極層用スラリー4を上記で乾燥させた正極合材層上に塗工し、加熱乾燥させた。
得られた積層体を空隙が20vol%となるようにプレスし、正極集電体、正極層を積層した正極を得た。
The active material (NCM), the binder (PVDF), and the conductive additive (VGCF) were weighed so that the binder was 1.5 parts and the conductive additive was 3.0 parts with respect to 100 parts of the active material. Then, using a non-polar solvent, they were mixed so that the weighed solid content rate was 63 wt %, and kneaded for 1 minute using an ultrasonic homogenizer to prepare a positive electrode layer slurry 4. . The prepared positive electrode layer slurry 4 was applied onto the dried positive electrode mixture layer and dried by heating.
The laminate thus obtained was pressed so that the voids were 20 vol % to obtain a positive electrode in which the positive electrode current collector and the positive electrode layer were laminated.

LNMOの混合粒子重量比率を算出方法は、上記と同様である。結果を表1に示した。 The method for calculating the mixed particle weight ratio of LNMO is the same as described above. Table 1 shows the results.

[評価]
25℃の恒温槽内で、上記により作製した電池を3.5Vまで1/10CでCCCV充電(1/500 Cut)を行い、それぞれの電池の充電容量を得た。また、重量当たりの容量と平均電圧の積から充電エネルギー密度を算出した。
次に、電池をSoC50%に調整し、10sec定電力放電を行い、1.5Vカットまでの10sec放電出力値を得た。なお、10sec定電力放電は、それぞれの電池に合わせて条件を設定した。
[evaluation]
In a constant temperature bath at 25° C., the batteries prepared as described above were CCCV charged (1/500 Cut) to 3.5 V at 1/10 C to obtain the charge capacity of each battery. Also, the charge energy density was calculated from the product of the capacity per weight and the average voltage.
Next, the battery was adjusted to 50% SoC and subjected to 10 sec constant power discharge to obtain a 10 sec discharge output value up to 1.5 V cut. The conditions for the 10 sec constant power discharge were set according to each battery.

これらの結果を表1に示した。なお、実施例1~5、比較例1~2の結果については、比較例1の充電エネルギー密度及び10sec放電出力値をそれぞれ1.00とし、これに対する比率で表している。また、比較例3~4の結果については、比較例3の充電エネルギー密度及び10sec放電出力値をそれぞれ1.00とし、これに対する比率で表している。
また、実施例1~5、比較例1~2のLNMO比率と充電エネルギー密度比率又は10sec放電出力値比率との関係について、図6に示した。
These results are shown in Table 1. The results of Examples 1 to 5 and Comparative Examples 1 and 2 are expressed as ratios to the charge energy density and 10-sec discharge output value of Comparative Example 1, which are both 1.00. Further, the results of Comparative Examples 3 and 4 are expressed as a ratio to the charge energy density and 10-sec discharge output value of Comparative Example 3, which are each assumed to be 1.00.
Further, FIG. 6 shows the relationship between the LNMO ratio and the charge energy density ratio or the 10 sec discharge output value ratio in Examples 1 to 5 and Comparative Examples 1 and 2.

Figure 0007180419000001
Figure 0007180419000001

表1、図6より、実施例1~5の充電エネルギー密度は比較例1、2よりも高いことが分かった。充電エネルギー密度は反応ムラを表すパラメータともいえる。よって、NMCを正極活物質として含む第1の正極層と、LNMOを正極活物質として含む第2の正極層とを備える正極層を用いることで、反応ムラが抑制されることが分かった。 From Table 1 and FIG. 6, it was found that the charging energy densities of Examples 1-5 were higher than those of Comparative Examples 1 and 2. The charging energy density can also be said to be a parameter representing reaction unevenness. Therefore, it was found that reaction unevenness was suppressed by using a positive electrode layer including a first positive electrode layer containing NMC as a positive electrode active material and a second positive electrode layer containing LNMO as a positive electrode active material.

ここで、実施例1~5、比較例1、2の充電エネルギー密度の結果についてさらに検討する。LNMO比率が1~0.7において充電エネルギー密度が向上する理由は、反応ムラが抑制され、理論値に近い容量が得られるようになるためであると考えられる。一方で、LNMO比率が0.7~0において減少する理由は、平均電位の低いNMCの比率が増加するからである。 Here, the charging energy density results of Examples 1 to 5 and Comparative Examples 1 and 2 are further examined. The reason why the charging energy density is improved when the LNMO ratio is 1 to 0.7 is considered to be that reaction unevenness is suppressed and a capacity close to the theoretical value can be obtained. On the other hand, the reason why the LNMO ratio decreases from 0.7 to 0 is that the ratio of NMC with a low average potential increases.

次に10sec放電出力値の結果について検討する。NCMの抵抗はLNMOの抵抗に比べて高いため、NMCの含有比率が増加すると短時間出力が低下すると考えられる。
実施例1~3では10sec放電出力値はそれほど低下していないが、LNMO比率が0.7未満となると、急激に10sec放電出力値が低下している。このことから、LNMO比率が0.7未満になるとNCMの性質が強く現れ始めると考えられる。これは、LNMO比率が0.7未満になると充電エネルギー密度が低下し始めたこととも一致する。
よって、充電エネルギー密度を向上させるとともに、短時間出力の低下を抑制するためには、LNMO比率が0.7以上1未満であることが良いことがわかる。
Next, the results of the 10 sec discharge output value will be examined. Since the resistance of the NCM is higher than that of the LNMO, it is considered that the output decreases for a short time as the NMC content increases.
In Examples 1 to 3, the 10-sec discharge output value did not decrease so much, but when the LNMO ratio was less than 0.7, the 10-sec discharge output value decreased sharply. From this, it is considered that when the LNMO ratio is less than 0.7, the properties of NCM begin to appear strongly. This is also consistent with the charge energy density beginning to decrease when the LNMO ratio becomes less than 0.7.
Therefore, it can be seen that the LNMO ratio is preferably 0.7 or more and less than 1 in order to improve the charge energy density and suppress the decrease in short-time output.

なお、表1の比較例3、4によれば、液系電池においてLNMO比率を0.8にしたとしても、それほど強く効果が表れないことが分かった。これは、比較例3、4は液系電池を用いたため、電解液では対イオンの拡散律速によっても反応ムラが現れ、正極を2層化することによる効果が限定的になったためであると考えられる。実施例1~5、比較例1、2のように、固体電解質を用いる場合、Liイオン輸送率が1となり、電解質内の拡散の影響が小さいため、上記の効果が得られたと推察できる。 In addition, according to Comparative Examples 3 and 4 in Table 1, even if the LNMO ratio was set to 0.8 in the liquid-based battery, it was found that the effect was not so strong. This is thought to be because, in Comparative Examples 3 and 4, liquid-based batteries were used, and in the electrolytic solution, reaction unevenness appeared due to diffusion rate control of counter ions, and the effect of forming two layers of the positive electrode was limited. be done. As in Examples 1 to 5 and Comparative Examples 1 and 2, when a solid electrolyte is used, the Li ion transport rate is 1, and the influence of diffusion in the electrolyte is small, so it can be inferred that the above effects were obtained.

10 正極集電体
20 正極層
21 第1の正極層
22 第2の正極層
30 固体電解質層
40 負極層
50 負極集電体
100 全固体電池
10 positive electrode current collector 20 positive electrode layer 21 first positive electrode layer 22 second positive electrode layer 30 solid electrolyte layer 40 negative electrode layer 50 negative electrode current collector 100 all-solid battery

Claims (1)

正極集電体、正極層、固体電解質層、負極層、負極集電体をこの順で備えた全固体電池において、
前記正極層は、層状正極活物質とスピネル型正極活物質とを含み、
前記正極層は、第1の正極層と該第1の正極層及び前記正極集電体の間に配置される第2の正極層とを備え、
前記第1の正極層は前記スピネル型正極活物質よりも前記層状正極活物質を多く含み、
前記第2の正極層は前記層状正極活物質よりも前記スピネル型正極活物質を多く含み、
前記正極層全体に含まれる前記層状正極活物質及び前記スピネル型正極活物質の合計の重量を1としたとき、前記スピネル型正極活物質の重量比率xが0.7≦x<1である、
全固体電池。
In an all-solid battery comprising a positive electrode current collector, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector in this order,
The positive electrode layer includes a layered positive electrode active material and a spinel-type positive electrode active material,
The positive electrode layer includes a first positive electrode layer and a second positive electrode layer disposed between the first positive electrode layer and the positive electrode current collector,
The first positive electrode layer contains more of the layered positive electrode active material than the spinel-type positive electrode active material,
The second positive electrode layer contains more spinel-type positive electrode active material than the layered positive electrode active material,
When the total weight of the layered positive electrode active material and the spinel-type positive electrode active material contained in the entire positive electrode layer is 1, the weight ratio x of the spinel-type positive electrode active material is 0.7 ≤ x < 1.
All-solid battery.
JP2019015680A 2019-01-31 2019-01-31 All-solid battery Active JP7180419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015680A JP7180419B2 (en) 2019-01-31 2019-01-31 All-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015680A JP7180419B2 (en) 2019-01-31 2019-01-31 All-solid battery

Publications (2)

Publication Number Publication Date
JP2020123538A JP2020123538A (en) 2020-08-13
JP7180419B2 true JP7180419B2 (en) 2022-11-30

Family

ID=71992916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015680A Active JP7180419B2 (en) 2019-01-31 2019-01-31 All-solid battery

Country Status (1)

Country Link
JP (1) JP7180419B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022098753A (en) * 2020-12-22 2022-07-04 トヨタ自動車株式会社 All-solid battery
WO2023223065A1 (en) * 2022-05-19 2023-11-23 日産自動車株式会社 Secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026676A (en) 2004-07-21 2007-02-01 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2010015942A (en) 2008-07-07 2010-01-21 Sumitomo Electric Ind Ltd Positive electrode member and lithium battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167618A (en) * 1995-12-19 1997-06-24 Fuji Photo Film Co Ltd Nonaqueous secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007026676A (en) 2004-07-21 2007-02-01 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2010015942A (en) 2008-07-07 2010-01-21 Sumitomo Electric Ind Ltd Positive electrode member and lithium battery

Also Published As

Publication number Publication date
JP2020123538A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
JP6782461B2 (en) Negative electrode active material for non-aqueous electrolyte secondary batteries
JP7254875B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same
CN110943248B (en) Lithium secondary battery
JP6090247B2 (en) Positive electrode active material and lithium ion secondary battery
US20090123851A1 (en) Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
KR102564315B1 (en) Production method of electrode for all-solid-state batteries and production method of all-solid-state battery
JP2016018735A (en) Composite active material, and method for manufacturing the same
KR20190101807A (en) Negative electrode for lithium secondary battery, method of manufacturing the same and lithium secondary battery comprising the same
JP5761098B2 (en) Active material and lithium ion secondary battery using the same
CN111758179B (en) Positive electrode, electrode group and nonaqueous electrolyte battery
JP7345263B2 (en) Manufacturing method for all-solid-state lithium secondary battery
JP2015128055A (en) Active material of lithium ion secondary battery and lithium ion secondary battery using the same
JP7180419B2 (en) All-solid battery
JP6536515B2 (en) Lithium ion battery and method of manufacturing lithium ion battery
JP7313536B2 (en) High-nickel electrode sheet with reduced reactivity with moisture and method for producing the same
JP2013246900A (en) Secondary battery
JP2022547501A (en) Method for manufacturing secondary battery
JP7018376B2 (en) Solid state battery
JP2018055808A (en) Lithium ion secondary battery and positive electrode active material for the lithium ion secondary battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
US20160308193A1 (en) Nonaqueous electrolyte secondary battery
WO2023026482A1 (en) Electrode, battery, and battery pack
JP6963866B2 (en) Negative electrode for all-solid-state battery and all-solid-state battery
JP2010010093A (en) Manufacturing method of secondary battery electrode group and secondary battery
JP5472743B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221031

R151 Written notification of patent or utility model registration

Ref document number: 7180419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151