JP2021128857A - All-solid battery negative electrode - Google Patents

All-solid battery negative electrode Download PDF

Info

Publication number
JP2021128857A
JP2021128857A JP2020022501A JP2020022501A JP2021128857A JP 2021128857 A JP2021128857 A JP 2021128857A JP 2020022501 A JP2020022501 A JP 2020022501A JP 2020022501 A JP2020022501 A JP 2020022501A JP 2021128857 A JP2021128857 A JP 2021128857A
Authority
JP
Japan
Prior art keywords
negative electrode
solid electrolyte
active material
solid
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020022501A
Other languages
Japanese (ja)
Other versions
JP7247909B2 (en
Inventor
直大 眞下
Naohiro Mashita
直大 眞下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020022501A priority Critical patent/JP7247909B2/en
Publication of JP2021128857A publication Critical patent/JP2021128857A/en
Application granted granted Critical
Publication of JP7247909B2 publication Critical patent/JP7247909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide an all-solid battery negative electrode capable of suppressing an increase in internal resistance even when Si coated with a solid electrolyte is used as a negative electrode active material.SOLUTION: An all-solid battery negative electrode includes coated particles formed by coating a negative electrode active material containing Si with a sulfide solid electrolyte, and a composite particle composed of a negative electrode active material and a sulfide solid electrolyte and containing five or more negative electrode active materials, and the aspect ratio of the composite particles is 2.0 or less, and the long side is 38.3 μm or less.SELECTED DRAWING: Figure 1

Description

本願は全固体電池用負極に関する。 The present application relates to a negative electrode for an all-solid-state battery.

固体電池の負極活物質としてSiが注目されている。Siは高理論容量を有するので、電池の高エネルギー密度化に有効であるためである。ただし、その反面、充放電に伴う体積変化が大きく、固体電解質や炭素等の導電性材料との接触が断たれ、抵抗増加を生じやすい。 Si is attracting attention as a negative electrode active material for solid-state batteries. This is because Si has a high theoretical capacity and is effective in increasing the energy density of the battery. However, on the other hand, the volume change due to charging and discharging is large, and the contact with the conductive material such as the solid electrolyte and carbon is cut off, and the resistance tends to increase.

一方で、従来から、Siを固体電解質で被覆することで充放電による体積変化を抑制することができると考えられている。例えば、特許文献1は活物質を硫化物固体電解質で被覆する技術を開示しており、さらに同文献には負極活物質としてSiや炭素材料等が列記されている。また、特許文献2、3は、Siを負極活物質として用いることを具体的に開示していないが、負極活物質を硫化物固体電解質で被覆する技術を開示している。 On the other hand, conventionally, it has been considered that the volume change due to charging and discharging can be suppressed by coating Si with a solid electrolyte. For example, Patent Document 1 discloses a technique for coating an active material with a sulfide solid electrolyte, and further, Si, a carbon material, and the like are listed as negative electrode active materials in the same document. Further, Patent Documents 2 and 3 do not specifically disclose the use of Si as the negative electrode active material, but disclose a technique for coating the negative electrode active material with a sulfide solid electrolyte.

特開2016−207418号公報Japanese Unexamined Patent Publication No. 2016-207418 特開2015−220196号公報Japanese Unexamined Patent Publication No. 2015-22016 特開2017−68929号公報JP-A-2017-68929

上記の通り、負極活物質であるSiに固体電解質を被覆することにより、体積変化を抑制することができると考えられる。一方で、固体電解質で被覆されたSiを用いた場合、被覆をしていないSiを用いた場合に比べて内部抵抗が大幅に増加する問題がある。 As described above, it is considered that the volume change can be suppressed by coating Si, which is the negative electrode active material, with a solid electrolyte. On the other hand, when Si coated with a solid electrolyte is used, there is a problem that the internal resistance is significantly increased as compared with the case where Si without coating is used.

上記実情を鑑み、本願の目的は、固体電解質で被覆されたSiを負極活物質に用いたとしても、内部抵抗の増加を抑制することができる全固体電池用負極を提供することである。 In view of the above circumstances, an object of the present application is to provide a negative electrode for an all-solid-state battery capable of suppressing an increase in internal resistance even when Si coated with a solid electrolyte is used as a negative electrode active material.

本願は上記課題を解決するための一つの手段として、Siを含む負極活物質に硫化物固体電解質を被覆してなる被覆化粒子と、負極活物質及び硫化物固体電解質から構成され、負極活物質を5粒子以上含む複合化粒子と、を含み、複合化粒子のアスペクト比が2.0以下であり、かつ、長辺が38.3μm以下である、全固体電池用負極を開示する。 As one means for solving the above problems, the present application is composed of coated particles obtained by coating a negative electrode active material containing Si with a sulfide solid electrolyte, a negative electrode active material and a sulfide solid electrolyte, and is composed of a negative electrode active material. Discloses a negative electrode for an all-solid-state battery, which comprises a composite particle containing 5 or more particles, and the composite particle has an aspect ratio of 2.0 or less and a long side of 38.3 μm or less.

本開示の全固体電池用負極によれば、固体電解質で被覆されたSiを負極活物質に用いたとしても、内部抵抗の増加を抑制することができる。 According to the negative electrode for all-solid-state batteries of the present disclosure, even if Si coated with a solid electrolyte is used as the negative electrode active material, an increase in internal resistance can be suppressed.

全固体電池用負極100の概略図である。It is the schematic of the negative electrode 100 for an all-solid-state battery. 被覆化粒子10及び複合化粒子20の一例のSEM画像である。6 is an SEM image of an example of the coated particles 10 and the composite particles 20. 全固体電池用負極の製造方法200のフローチャートである。It is a flowchart of the manufacturing method 200 of the negative electrode for an all-solid-state battery. 比較例1の複合化粒子のSEM画像である。It is an SEM image of the composite particle of Comparative Example 1. 比較例2の複合化粒子のSEM画像である。It is an SEM image of the composite particle of Comparative Example 2. 実施例1の複合化粒子のSEM画像である。It is an SEM image of the composite particle of Example 1. 実施例2の複合化粒子のSEM画像である。It is an SEM image of the composite particle of Example 2. 実施例3の複合化粒子のSEM画像である。3 is an SEM image of the composite particles of Example 3. 内部抵抗評価試験の結果である。This is the result of the internal resistance evaluation test.

本開示の全固体電池用負極は、Siを含む負極活物質に硫化物固体電解質を被覆してなる被覆化粒子と、負極活物質及び硫化物固体電解質から構成され、負極活物質を5粒子以上含む複合化粒子と、を含み、複合化粒子のアスペクト比が2.0以下であり、かつ、長辺が38.3μm以下であることを特徴としている。 The negative electrode for an all-solid-state battery of the present disclosure is composed of coated particles formed by coating a negative electrode active material containing Si with a sulfide solid electrolyte, and a negative electrode active material and a sulfide solid electrolyte, and contains 5 or more negative electrode active materials. It is characterized in that the composite particles containing the composite particles include, and the aspect ratio of the composite particles is 2.0 or less and the long side is 38.3 μm or less.

従来から、Siを含む負極活物質を固体電解質で被覆することにより、充放電によるSiの膨張収縮を抑制することができるが、固体電解質の被覆によって、電気抵抗は未被覆の負極活物質に比べて低下することが知られている。これは、固体電解質を負極活物質に被覆する際に、固体電解質の結晶性が低下し、固体電解質のLiイオン伝導度が悪化するためであると考えられていた。しかしながら、今回本発明者が鋭意検討した結果、電気抵抗の悪化は上記の理由だけでなく、負極活物質−固体電解質複合化粒子が存在するためであることを見出した。かかる複合化粒子は、固体電解質が餡のようになり、複数の負極活物質又は被覆された負極活物質が取り込まれた形態を有しており、かつ、被覆時に添加している導電助剤を殆ど含まないものであるため、電子伝導度が不足していると考えられた。そのため、かかる複合化粒子が存在することにより電極内の電子伝導パスを阻害し、電極内の電気抵抗を増加させていると推測された。 Conventionally, by coating a negative electrode active material containing Si with a solid electrolyte, expansion and contraction of Si due to charging and discharging can be suppressed, but by coating with a solid electrolyte, the electrical resistance is higher than that of an uncoated negative electrode active material. Is known to decrease. It was considered that this is because when the solid electrolyte is coated with the negative electrode active material, the crystallinity of the solid electrolyte is lowered and the Li ion conductivity of the solid electrolyte is deteriorated. However, as a result of diligent studies by the present inventor, it has been found that the deterioration of the electric resistance is not only due to the above reason but also due to the presence of the negative electrode active material-solid electrolyte composite particles. Such composite particles have a form in which the solid electrolyte becomes like bean paste and a plurality of negative electrode active materials or coated negative electrode active materials are incorporated, and the conductive auxiliary agent added at the time of coating is added. Since it contained almost no electrons, it was considered that the electron conductivity was insufficient. Therefore, it was speculated that the presence of such composite particles hindered the electron conduction path in the electrode and increased the electrical resistance in the electrode.

そこで、本発明者は複合化粒子のアスペクト比及び長径を上記のように調整することにより、複合化粒子が存在することによる内部抵抗の低下を抑制することができることを見出し、本開示の全固体電池用負極を完成させた。 Therefore, the present inventor has found that by adjusting the aspect ratio and the major axis of the composite particles as described above, it is possible to suppress a decrease in internal resistance due to the presence of the composite particles, and the all-solid state of the present disclosure. The negative electrode for the battery was completed.

[全固体電池用負極10]
以下、本開示の全固体電池用負極について、一実施形態である全固体電池用負極100を用いて説明する。図1に全固体電池用負極100の概略図を示した。
[Negative electrode 10 for all-solid-state battery]
Hereinafter, the negative electrode for an all-solid-state battery of the present disclosure will be described using the negative electrode 100 for an all-solid-state battery, which is one embodiment. FIG. 1 shows a schematic view of the negative electrode 100 for an all-solid-state battery.

図1のとおり、全固体電池用負極100は被覆化粒子10と、複合化粒子20と、第二固体電解質30と、導電助剤40とを備えている。図2に被覆化粒子10及び複合化粒子20の一例のSEM画像を示した。 As shown in FIG. 1, the negative electrode 100 for an all-solid-state battery includes coated particles 10, composite particles 20, a second solid electrolyte 30, and a conductive auxiliary agent 40. FIG. 2 shows an SEM image of an example of the coated particles 10 and the composite particles 20.

(被覆化粒子10)
被覆化粒子10はSiを含む負極活物質11に第一固体電解質12(硫化物固体電解質)が被覆されてなるものである。「被覆され」とは、負極活物質11の表面に対する第一固体電解質12の被覆率が少なくとも50%以上であることを意味する。好ましくは被覆率が70%以上であり、より好ましくは90%以上であり、さらに好ましくは100%である。Siを含む負極活物質11が第一固体電解質12に被覆されることにより、充放電による負極活物質の膨張収縮が抑制される。
(Coated particles 10)
The coated particles 10 are formed by coating the negative electrode active material 11 containing Si with the first solid electrolyte 12 (sulfide solid electrolyte). “Coated” means that the coverage of the first solid electrolyte 12 with respect to the surface of the negative electrode active material 11 is at least 50% or more. The coverage is preferably 70% or more, more preferably 90% or more, still more preferably 100%. By coating the negative electrode active material 11 containing Si with the first solid electrolyte 12, the expansion and contraction of the negative electrode active material due to charging and discharging is suppressed.

Siを含む負極活物質としては、Siを組成に含みさえすれば特に限定されないが、好ましくはSi単体である。第一固体電解質12は硫化物固体電解質である。硫化物固体電解質としては公知の硫化物固体電解質を用いることができる。例えば、LiS−P、LiS−SiS、LiI−LiS−SiS、LiI−SiS−P、LiS−P−LiI−LiBr、LiI−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−P−GeS等を挙げることができる。 The negative electrode active material containing Si is not particularly limited as long as it contains Si in the composition, but is preferably Si alone. The first solid electrolyte 12 is a sulfide solid electrolyte. As the sulfide solid electrolyte, a known sulfide solid electrolyte can be used. For example, Li 2 SP 2 S 5 , Li 2 S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Si 2 SP 2 S 5 , Li 2 SP 2 S 5- LiI-LiBr. , LiI-Li 2 S-P 2 S 5, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 2 S-P 2 include the S 5 -GeS 2, etc. Can be done.

被覆化粒子10に含まれる負極活物質11の平均粒径は特に限定されないが、600nm以上2.6μm未満であることが好ましい。ここで、「平均粒径」は、レーザー回折粒度分布測定により算出される、粒径の小さいほうからカウントして累積頻度が50%となったときの粒径である。 The average particle size of the negative electrode active material 11 contained in the coated particles 10 is not particularly limited, but is preferably 600 nm or more and less than 2.6 μm. Here, the "average particle size" is the particle size calculated by the laser diffraction particle size distribution measurement when the cumulative frequency is 50%, counting from the smallest particle size.

(複合化粒子20)
複合化粒子20は、負極活物質11及び第一固体電解質12から構成され、負極活物質を5粒子以上含むものである。また、複合化粒子20は導電助剤を実質的に含まない。「導電助剤を実質的に含ない」とは、不可避的に導電助剤が含有された場合にのみを許容するものであり、さらに複合化粒子20における導電助剤の含有量が3質量%以下であることを意味する。複合化粒子20における導電助剤の含有量は、好ましくは2質量%以下、さらに好ましくは1質量%以下である。図2の下段に、導電助剤を添加して被覆活物質(被覆化粒子10及び複合化粒子20等の混合物)を作製した際の複合化粒子合化粒子20の一例のSEM画像を示した。画像の複合化粒子20には導電助剤が存在していないことが分かる。
(Composite particle 20)
The composite particle 20 is composed of the negative electrode active material 11 and the first solid electrolyte 12, and contains 5 or more negative electrode active materials. Further, the composite particles 20 substantially do not contain a conductive auxiliary agent. "Substantially free of conductive auxiliary agent" means that only when the conductive auxiliary agent is inevitably contained is allowed, and further, the content of the conductive auxiliary agent in the composite particles 20 is 3% by mass. It means that it is as follows. The content of the conductive auxiliary agent in the composite particles 20 is preferably 2% by mass or less, more preferably 1% by mass or less. The lower part of FIG. 2 shows an SEM image of an example of the composite particle compounded particles 20 when a coating active material (a mixture of the coated particles 10 and the composite particles 20 and the like) is prepared by adding a conductive auxiliary agent. .. It can be seen that the conductive auxiliary agent is not present in the composite particles 20 of the image.

また、複合化粒子20は、短辺に対する長辺の比であるアスペクト比が2.0以下であり、かつ、長辺が38.3μm以下である。アスペクト比の下限は特に限定されないが、アスペクト比を1.1以上とすることが好ましい。複合化粒子20の長辺の下限も特に限定されないが、長辺を17.7μm以上とすることが好ましい。ここで、短辺及び長辺はフェレ径を用いる。複合化粒子20の長辺及び短辺は、電子放出型走査電子顕微鏡(FE−SEM)等によって測定することができる。全固体電池用負極100に上記の範囲に含まれる複合化粒子20のみが存在する、言い換えると、全固体電池用負極100に上記の範囲に含まれない粗大な複合化粒子が存在しないことにより、負極の内部抵抗の増加を抑制することができる。 Further, the composite particle 20 has an aspect ratio of 2.0 or less, which is the ratio of the long side to the short side, and the long side is 38.3 μm or less. The lower limit of the aspect ratio is not particularly limited, but it is preferable that the aspect ratio is 1.1 or more. The lower limit of the long side of the composite particle 20 is not particularly limited, but the long side is preferably 17.7 μm or more. Here, the ferret diameter is used for the short side and the long side. The long side and the short side of the composite particle 20 can be measured by an electron emitting scanning electron microscope (FE-SEM) or the like. The negative electrode 100 for an all-solid-state battery contains only the composite particles 20 included in the above range, in other words, the negative electrode 100 for an all-solid-state battery does not contain coarse composite particles not included in the above range. It is possible to suppress an increase in the internal resistance of the negative electrode.

被覆化粒子10及び複合化粒子20の合計の粒子数に対する複合化粒子20の粒子数の割合は特に限定されないが、1%〜20%であってもよい。 The ratio of the number of particles of the composite particles 20 to the total number of particles of the coated particles 10 and the composite particles 20 is not particularly limited, but may be 1% to 20%.

(第二固体電解質30)
第二固体電解質30は、任意成分であり、全固体電池用負極に適用可能な固体電解質であれば特に限定されない。例えば、酸化物固体電解質や硫化物固体電解質を用いることができる。好ましくは硫化物固体電解質である。酸化物固体電解質としては、例えば、ランタンジルコン酸リチウム、LiPON、Li1+XAlGe2−X(PO、Li−SiO系ガラス、Li−Al−S−O系ガラス等を挙げることができる。硫化物固体電解質としては、例えば、LiS−P、LiS−SiS、LiI−LiS−SiS、LiI−SiS−P、LiS−P−LiI−LiBr、LiI−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−P−GeS等を挙げることができる。
(Second solid electrolyte 30)
The second solid electrolyte 30 is an optional component and is not particularly limited as long as it is a solid electrolyte applicable to the negative electrode for an all-solid-state battery. For example, an oxide solid electrolyte or a sulfide solid electrolyte can be used. A sulfide solid electrolyte is preferable. Examples of the oxide solid electrolyte include lithium lanthanozylconate, LiPON, Li 1 + X Al X Ge 2-X (PO 4 ) 3 , Li-SiO glass, Li-Al-SO glass and the like. can. The sulfide solid electrolyte, for example, Li 2 S-P 2 S 5, Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI-Si 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI-LiBr, LiI -Li 2 S-P 2 S 5, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 2 S-P 2 S 5 -GeS 2 and the like can be mentioned.

ここで、全固体電池用負極100において、第一固体電解質12及び第二固体電解質30の重量の合計に対する第一固体電解質12の重量の割合が、46重量%〜100重量%の範囲内であることが好ましい。第一固体電解質12の重量の割合が100重量%である場合、第二固体電解質30が全固体電池用負極10に含まれていないことを意味する。第二固体電解質30は任意成分であるためである。なお、第一固体電解質12と第二固体電解質30とは同一の種類の固体電解質を用いてもよい。 Here, in the negative electrode 100 for an all-solid-state battery, the ratio of the weight of the first solid electrolyte 12 to the total weight of the first solid electrolyte 12 and the second solid electrolyte 30 is in the range of 46% by weight to 100% by weight. Is preferable. When the weight ratio of the first solid electrolyte 12 is 100% by weight, it means that the second solid electrolyte 30 is not contained in the negative electrode 10 for an all-solid-state battery. This is because the second solid electrolyte 30 is an optional component. The first solid electrolyte 12 and the second solid electrolyte 30 may use the same type of solid electrolyte.

(導電助剤40)
導電助剤40は、任意成分であり、全固体電池用負極に適用可能な導電助剤であれば特に限定されない。例えば、炭素材料や金属材料を挙げることができる。炭素材料としては、球状カーボン、アセチレンブラック、ケッチェンブラック、VGCF(気相法炭素繊維)、グラファイト等を挙げることができる。金属材料としてはニッケル、アルミニウム、ステンレス鋼等を挙げることができる。このような導電助剤は1種類でもよいが2種以上を用いてもよい。また、導電助剤の含有量は負極活物質の含有量に対し、1.0重量%〜2.5重量%の範囲内であることが好ましい。
(Conductive aid 40)
The conductive auxiliary agent 40 is an optional component and is not particularly limited as long as it is a conductive auxiliary agent applicable to the negative electrode for an all-solid-state battery. For example, carbon material and metal material can be mentioned. Examples of the carbon material include spherical carbon, acetylene black, Ketjen black, VGCF (gas phase carbon fiber), graphite and the like. Examples of the metal material include nickel, aluminum, stainless steel and the like. One type of such conductive auxiliary agent may be used, but two or more types may be used. The content of the conductive auxiliary agent is preferably in the range of 1.0% by weight to 2.5% by weight with respect to the content of the negative electrode active material.

(その他の任意成分)
全固体電池用負極100は、上記のほかにバインダー等の任意成分を含むことができる。バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系結着材、スチレンブタジエンゴム(SBR)等のゴム系結着材、ポリプロピレン(PP)、ポリエチレン(PE)等のオレフィン系結着材、カルボキシメチルセルロース(CMC)等のセルロース系結着材等を挙げることができる。なお、負極100におけるその他の任意成分の含有量は、内部抵抗の増加を抑制する効果を発揮することができれば特に限定されない。
(Other optional ingredients)
The negative electrode 100 for an all-solid-state battery may contain an optional component such as a binder in addition to the above. Examples of the binder include a fluorine-based binder such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), a rubber-based binder such as styrene-butadiene rubber (SBR), polypropylene (PP), and polyethylene (PE). ) And other olefin-based binders, and cellulose-based binders such as carboxymethyl cellulose (CMC). The content of other optional components in the negative electrode 100 is not particularly limited as long as it can exert the effect of suppressing an increase in internal resistance.

また、全固体電池用負極100は負極集電体を備えていてもよい。負極集電体を構成する金属としては、Cu、Ni、Cr、Au、Pt、Ag、Al、Fe、Ti、Zn、Co、ステンレス鋼等が挙げられる。特にCu、Alが好ましい。負極集電体は、その表面に、抵抗を調整するための何らかのコート層を有していてもよい。負極集電体の厚みは特に限定されるものではない。 Further, the negative electrode 100 for an all-solid-state battery may include a negative electrode current collector. Examples of the metal constituting the negative electrode current collector include Cu, Ni, Cr, Au, Pt, Ag, Al, Fe, Ti, Zn, Co, and stainless steel. Especially Cu and Al are preferable. The negative electrode current collector may have some coating layer on its surface for adjusting the resistance. The thickness of the negative electrode current collector is not particularly limited.

(形状)
全固体電池用負極100の形状は特に限定されないが、シート状であることが好ましい。この場合、全固体電池用負極100の厚みは、例えば0.1μm以上1mm以下であることが好ましく、1μm以上150μm以下であることがより好ましい。ただし、全固体電池用負極100の容量が等により、厚みは適宜設定することができる。
(shape)
The shape of the negative electrode 100 for an all-solid-state battery is not particularly limited, but it is preferably in the form of a sheet. In this case, the thickness of the negative electrode 100 for an all-solid-state battery is preferably, for example, 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 150 μm or less. However, the thickness can be appropriately set depending on the capacity of the negative electrode 100 for the all-solid-state battery and the like.

(用途)
全固体電池用負極100は全固体電池の負極として好適であり、リチウムイオン全固体電池の負極により好適である。
(Use)
The negative electrode 100 for an all-solid-state battery is suitable as a negative electrode for an all-solid-state battery, and is more suitable for a negative electrode for a lithium-ion all-solid-state battery.

[全固体電池用負極の製造方法]
本開示の全固体電池用負極の製造方法は特に限定されないが、例えば次の全固体電池用負極100の製造方法200により製造することができる。図3に全固体電池用負極100の製造方法200のフローチャートを示した。
[Manufacturing method of negative electrode for all-solid-state battery]
The method for manufacturing the negative electrode for an all-solid-state battery of the present disclosure is not particularly limited, and for example, it can be manufactured by the following manufacturing method 200 for the negative electrode 100 for an all-solid-state battery. FIG. 3 shows a flowchart of a method 200 for manufacturing the negative electrode 100 for an all-solid-state battery.

図3の通り、全固体電池用負極100の製造方法200は、被覆工程S1と、混合工程S3と、形成工程S4とを備えている。また、被覆工程S1と混合工程S3との間に、任意工程である除去工程S2を設けてもよい。 As shown in FIG. 3, the manufacturing method 200 of the negative electrode 100 for an all-solid-state battery includes a coating step S1, a mixing step S3, and a forming step S4. Further, a removal step S2, which is an optional step, may be provided between the coating step S1 and the mixing step S3.

(被覆工程S1)
被覆工程S1は、Siを含む負極活物質11を第一固体電解質12で被覆する工程である。また、この際、必要に応じて導電助剤40を添加してもよい。被覆工程S1は、例えば粒子複合化装置等を用いて公知の方法により行うことができる。装置の条件も目的に応じて適宜設定する。
(Coating step S1)
The coating step S1 is a step of coating the negative electrode active material 11 containing Si with the first solid electrolyte 12. At this time, the conductive auxiliary agent 40 may be added as needed. The coating step S1 can be performed by a known method using, for example, a particle compounding device or the like. The conditions of the device are also set as appropriate according to the purpose.

(除去工程S2)
被覆工程S1の後、混合工程S2の前に設けられ、得られた被覆活物質(被覆化粒子10、複合化粒子20等の混合物)にアスペクト比が2.0を超え、かつ、長辺が38.3μmを超える粗大な複合化粒子が存在する場合、篩により分級し、かかる粗大な複合化粒子を除去する工程である。除去工程S2は任意の工程である。篩の目開きは特に限定されないが、45μm以下であることが好ましく、32μm以下であることがより好ましく、20μm以下であることがさらに好ましい。除去工程S2では2種以上の目開きの篩を組み合わせて使用してもよい。
(Removal step S2)
After the coating step S1 and before the mixing step S2, the obtained coating active material (mixture of coated particles 10, composite particles 20, etc.) has an aspect ratio of more than 2.0 and a long side. When coarse composite particles exceeding 38.3 μm are present, the step is to classify the coarse composite particles by a sieve and remove the coarse composite particles. The removal step S2 is an arbitrary step. The mesh size of the sieve is not particularly limited, but is preferably 45 μm or less, more preferably 32 μm or less, and further preferably 20 μm or less. In the removal step S2, two or more types of open sieves may be used in combination.

(混合工程S3)
混合工程S3は被覆工程S1又は除去工程S2の後に行うものであり、これらの工程により得られた被覆活物質と任意成分である第二固体電解質30等とを混合する工程である。混合方法は特に限定されず、乾式でもよく、湿式でもよい。例えば、全固体電池用負極100を構成する材料を有機分散媒中に分散してスラリーとしてもよい。或いは、全固体電池用負極100を構成する材料を乾式で混合してもよい。これらの混合方法は公知であるのでここでは省略する。なお、複合化粒子20は混合工程S3において解砕しないことが本発明者により知見されている。
(Mixing step S3)
The mixing step S3 is performed after the coating step S1 or the removing step S2, and is a step of mixing the coating active material obtained by these steps with the second solid electrolyte 30 or the like which is an optional component. The mixing method is not particularly limited, and may be a dry type or a wet type. For example, the material constituting the negative electrode 100 for an all-solid-state battery may be dispersed in an organic dispersion medium to form a slurry. Alternatively, the materials constituting the negative electrode 100 for an all-solid-state battery may be mixed in a dry manner. Since these mixing methods are known, they are omitted here. It is known by the present inventor that the composite particles 20 are not crushed in the mixing step S3.

(形成工程S4)
形成工程S4は、混合工程S3により得られた混合物を全固体電池用負極100に形成する工程である。上記したように全固体電池用負極100を構成する材料を湿式で混合しスラリーとした場合は、当該スラリーを基材又は負極集電体に塗布し乾燥することにより、全固体電池用負極100を形成することができる。乾式で混合した場合は、混合された混合物をプレス成形することにより全固体電池用負極100を形成することができる。
(Formation step S4)
The forming step S4 is a step of forming the mixture obtained in the mixing step S3 on the negative electrode 100 for an all-solid-state battery. When the materials constituting the negative electrode 100 for an all-solid-state battery are mixed in a wet manner as described above to form a slurry, the slurry is applied to a base material or a negative electrode current collector and dried to obtain the negative electrode 100 for an all-solid-state battery. Can be formed. When mixed by a dry method, the negative electrode 100 for an all-solid-state battery can be formed by press-molding the mixed mixture.

以上のように、全固体電池用負極の製造方法200によって、全固体電池用負極100を製造することができる。ただし、全固体電池用負極100の製造方法200は本開示の全固体電池用負極の製造方法の一実施形態であり、本開示の全固体電池用負極層の製造方法はこれに限定されるものではない。 As described above, the negative electrode 100 for an all-solid-state battery can be manufactured by the method 200 for manufacturing a negative electrode for an all-solid-state battery. However, the method 200 for manufacturing the negative electrode 100 for an all-solid-state battery is an embodiment of the method for manufacturing a negative electrode for an all-solid-state battery of the present disclosure, and the method for manufacturing a negative electrode layer for an all-solid-state battery of the present disclosure is limited to this. is not it.

以下、本開示の全固体電池用負極層について、実施例を用いてさらに説明する。 Hereinafter, the negative electrode layer for an all-solid-state battery of the present disclosure will be further described with reference to Examples.

[評価用電池の作製]
以下の通り、実施例1〜3及び比較例1、2に係る評価用電池を作製した。
[Manufacturing of evaluation battery]
As follows, the evaluation batteries according to Examples 1 to 3 and Comparative Examples 1 and 2 were produced.

<比較例1>
(負極構造体の作製)
粒子複合下装置(NOB−MINI、ホソカワミクロン社製)を用いて、被覆活物質を作製した。まず、装置の処理容器内に負極活物質(Si粒子)、第一固体電解質である硫化物固体電解質(10LiI−15LiBr−75(0.75LiS−0.25P)、平均粒径0.5μm)、導電助剤(球状カーボン、比表面積93m/g)を合計30gとなるように、下記表1の割合で投入した。次に、圧縮せん断ローターの回転はね(ブレード)と処理容器内壁との間隔を1mm、圧力を100Pa、ブレード周速を26.4m/s、処理時間を12.5分間に設定し、圧縮せん断処理を行い、被覆活物質を得た。
<Comparative example 1>
(Preparation of negative electrode structure)
A coating active material was prepared using a particle composite lowering device (NOB-MINI, manufactured by Hosokawa Micron Co., Ltd.). First, the negative electrode active material (Si particles), the sulfide solid electrolyte (10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5 )), which is the first solid electrolyte, and the average particle size are placed in the processing container of the apparatus. 0.5 μm) and the conductive auxiliary agent (spherical carbon, specific surface area 93 m 2 / g) were added at the ratio shown in Table 1 below so as to have a total of 30 g. Next, the distance between the rotary splash (blade) of the compression shear rotor and the inner wall of the processing vessel is set to 1 mm, the pressure is set to 100 Pa, the blade peripheral speed is set to 26.4 m / s, and the processing time is set to 12.5 minutes. The treatment was carried out to obtain a coating active material.

得られた被覆活物質、第二固体電解質である硫化物固体電解質(10LiI−15LiBr−75(0.75LiS−0.25P)、平均粒径0.5μm)、導電助剤(VGCF)、バインダー(PVdF)を準備し、これらを重量比で負極活物質:硫化物固体電解質:導電助剤:バインダー=53:41:4:2となるように秤量し、分散媒(ヘプタン)とともに混合した。得られた混合物を超音波ホモジナイザー(UH−50、株式会社エスエムテー製)で分散することで負極スラリーを得た。 The obtained coating active material, a sulfide solid electrolyte (10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5 ), an average particle size of 0.5 μm), which is a second solid electrolyte, and a conductive auxiliary agent ( VGCF) and binder (PVdF) are prepared, and these are weighed in a weight ratio so that the negative electrode active material: sulfide solid electrolyte: conductive auxiliary agent: binder = 53: 41: 4: 2, and the dispersion medium (heptane) is used. Mixed with. The obtained mixture was dispersed with an ultrasonic homogenizer (UH-50, manufactured by SMT Co., Ltd.) to obtain a negative electrode slurry.

得られた負極スラリーを負極集電体(銅箔)上に塗工し、100℃30分間の条件で乾燥させた。その後、1cmの大きさに打ち抜くことにより、負極層及び負極集電体を有する負極構造体を得た。負極層の厚さは31μmであった。 The obtained negative electrode slurry was applied onto a negative electrode current collector (copper foil) and dried under the conditions of 100 ° C. for 30 minutes. Then, by punching to a size of 1 cm 2 , a negative electrode structure having a negative electrode layer and a negative electrode current collector was obtained. The thickness of the negative electrode layer was 31 μm.

(正極構造体の作製)
正極活物質(LiNi1/3Co1/3Mn1/3)と、硫化物固体電解質(10LiI−15LiBr−75(0.75LiS−0.25P)、平均粒径0.5μm)、導電助剤(VGCF)、バインダー(PVdF)を準備し、これらを重量比で正極活物質:硫化物固体電解質:導電助剤:バインダー=85:13:1:1となるように秤量し、分散媒(ヘプタン)とともに混合した。得られた混合物を超音波ホモジナイザー(UH−50、株式会社エスエムテー製)で分散することで正極スラリーを得た。
(Preparation of positive electrode structure)
Positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), sulfide solid electrolyte (10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5 ), average particle size 0 .5 μm), conductive auxiliary agent (VGCF), binder (PVdF) are prepared, and these are positive electrode active material: sulfide solid electrolyte: conductive auxiliary agent: binder = 85: 13: 1: 1 by weight ratio. Weighed and mixed with a dispersion medium (heptane). The obtained mixture was dispersed with an ultrasonic homogenizer (UH-50, manufactured by SMT Co., Ltd.) to obtain a positive electrode slurry.

得られた正極スラリーを正極集電体(アルミニウム箔)上に塗工し、100℃30分間の条件で乾燥させた。その後、1cmの大きさに打ち抜くことにより、正極層及び正極集電体を有する正極構造体を得た。正極層の厚さは50μmであった。 The obtained positive electrode slurry was applied onto a positive electrode current collector (aluminum foil) and dried under the conditions of 100 ° C. for 30 minutes. Then, by punching to a size of 1 cm 2 , a positive electrode structure having a positive electrode layer and a positive electrode current collector was obtained. The thickness of the positive electrode layer was 50 μm.

(評価用電池の作製)
内径断面積1cmの筒状プラスチックに、硫化物固体電解質(10LiI−15LiBr−75(0.75LiS−0.25P)、平均粒径0.5μm)を入れ、4ton/cmでプレスすることにより、固体電解質層(厚さ15μm)を得た。
得られた固体電解質層を挟むように正極構造体及び負極構造体を配置し、4ton/cmでプレスした。その後、正極側及び負極側に、それぞれステンレス棒を入れ、5MPaで拘束することにより、全固体電池(評価用電池)を得た。
(Manufacturing of evaluation battery)
A sulfide solid electrolyte (10LiI-15LiBr-75 (0.75Li 2 S-0.25P 2 S 5 ), average particle size 0.5 μm) was placed in a tubular plastic having an inner diameter and cross-sectional area of 1 cm 2 and 4 ton / cm 2 A solid electrolyte layer (thickness 15 μm) was obtained by pressing with.
The positive electrode structure and the negative electrode structure were arranged so as to sandwich the obtained solid electrolyte layer, and pressed at 4 ton / cm 2. Then, stainless steel rods were placed on the positive electrode side and the negative electrode side, respectively, and restrained at 5 MPa to obtain an all-solid-state battery (evaluation battery).

<比較例2、実施例1〜3>
比較例2、実施例1〜3に係る評価用電池は、下記の変更を行った以外は、比較例1に係る評価用電池と同様に作製した。また、表1に負極活物質(Si粒子)の平均粒径と、使用した篩の目開きと、第一固体電解質及び第二固体電解質の重量に対する第一固体電解質の重量の割合と、被覆工程に用いた負極活物質(Si粒子)、硫化物固体電解質(第一固体電解質)、及び導電助剤の秤量値とをそれぞれ示した。
<Comparative Example 2, Examples 1 to 3>
The evaluation batteries according to Comparative Examples 2 and 1 to 3 were produced in the same manner as the evaluation batteries according to Comparative Example 1 except that the following changes were made. Table 1 shows the average particle size of the negative electrode active material (Si particles), the opening of the sieve used, the ratio of the weight of the first solid electrolyte to the weight of the first solid electrolyte and the second solid electrolyte, and the coating step. The negative electrode active material (Si particles), the sulfide solid electrolyte (first solid electrolyte), and the weighed values of the conductive auxiliary agent used in the above are shown respectively.

・変更点1:比較例2において、42μmの目開きの篩を通した被覆活物質を用いて負極スラリーを作製した。実施例2において、45μm、32μmの目開きの篩を順に通した被覆活物質を用いて負極スラリーを作製した。実施例3において、45μm、20μmの目開きの篩を順に通した被覆活物質を用いて負極スラリーを作製した。
・変更点2:比較例2、実施例1〜3において、負極スラリー作製時にそれぞれの材料を重量比で負極活物質:硫化物固体電解質:導電助剤:バインダー=62:32:5:1の比率で混合した。
-Change 1: In Comparative Example 2, a negative electrode slurry was prepared using a coating active material that had passed through a sieve having a mesh opening of 42 μm. In Example 2, a negative electrode slurry was prepared using a coating active material which was sequentially passed through a sieve having a mesh size of 45 μm and 32 μm. In Example 3, a negative electrode slurry was prepared using a coating active material which was sequentially passed through a sieve having a mesh size of 45 μm and 20 μm.
-Change 2: In Comparative Example 2 and Examples 1 to 3, the negative electrode active material: sulfide solid electrolyte: conductive auxiliary agent: binder = 62: 32: 5: 1 in the negative electrode active material: sulfide solid electrolyte: conductive auxiliary agent by weight ratio of each material at the time of preparing the negative electrode slurry. Mixed in proportion.

Figure 2021128857
Figure 2021128857

[評価]
<断面観察>
実施例1〜3、比較例1、2において得られた被覆活物質(実施例2、3、比較例2については篩を通したもの)について、電解放出型走査電子顕微鏡(FE−SEM)を用いて観察した。観察の際はABR樹脂に被覆粒子を埋め込んだ後、クロクセクションポリッシャ(CP)加工により断面出しを行った。観察された複合化粒子のうち最大長辺の複合化粒子についてアスペクト比(長辺/短辺)及び長辺の長さを測定した。結果を表2、図4〜図8に示した。
[evaluation]
<Cross-section observation>
A field emission scanning electron microscope (FE-SEM) was applied to the coating active materials obtained in Examples 1 to 3 and Comparative Examples 1 and 2 (passed through a sieve for Examples 2, 3 and Comparative Example 2). Observed using. At the time of observation, after embedding the coated particles in the ABR resin, a cross section was obtained by cross-section polisher (CP) processing. Among the observed composite particles, the aspect ratio (long side / short side) and the length of the long side were measured for the composite particles having the longest side. The results are shown in Table 2, FIGS. 4 to 8.

<内部抵抗評価>
実施例1〜3、比較例1、2に係る評価用電池に対して、DC−IR法による内部抵抗評価を行った。具体的には、評価用電池のOCVを3.7Vに調整し、その後17.2mAで10秒間放電し、その間の電圧を測定した。そして当該電圧の変化から内部抵抗を求めた。比較対象として、負極活物質の被覆を行っていない電池の内部抵抗を100%とした。結果を表2、図9に示した。
<Internal resistance evaluation>
The internal resistance of the evaluation batteries according to Examples 1 to 3 and Comparative Examples 1 and 2 was evaluated by the DC-IR method. Specifically, the OCV of the evaluation battery was adjusted to 3.7V, then discharged at 17.2 mA for 10 seconds, and the voltage during that period was measured. Then, the internal resistance was obtained from the change in the voltage. For comparison, the internal resistance of the battery not coated with the negative electrode active material was set to 100%. The results are shown in Table 2 and FIG.

Figure 2021128857
Figure 2021128857

表2、図9より、粗大な複合化粒子を有さない実施例1〜3では、粗大な複合化粒子が存在する比較例1、2に比べて、電池の内部抵抗の増加が低減されていた。この結果から、複合化粒子のアスペクト比が2.0以下、長辺が38.3μmであると、電池の内部抵抗の増加を抑制できると考えられる。 From Table 2 and FIG. 9, in Examples 1 to 3 having no coarse composite particles, the increase in the internal resistance of the battery was reduced as compared with Comparative Examples 1 and 2 in which the coarse composite particles were present. rice field. From this result, it is considered that when the aspect ratio of the composite particles is 2.0 or less and the long side is 38.3 μm, the increase in the internal resistance of the battery can be suppressed.

なお、実施例1及び比較例2を比べると、篩に通していない実施例1のほうが複合粒子の長辺の長さやアスペクト比が小さい。これは、比較例2よりも実施例1のほうが第一の固体電解質の割合が小さく、いわば複合粒子を形成する糊が少ない状態であるためと考えられる。 Comparing Example 1 and Comparative Example 2, the length of the long side and the aspect ratio of the composite particles are smaller in Example 1 which has not been passed through a sieve. It is considered that this is because the ratio of the first solid electrolyte in Example 1 is smaller than that in Comparative Example 2, and the amount of glue forming the composite particles is small.

10 被覆化粒子
11 負極活物質
12 第一固体電解質
20 複合化粒子
30 第二固体電解質
40 導電助剤
100 全固体電池用負極
200 全固体電池用負極の製造方法
10 Coated particles 11 Negative electrode active material 12 First solid electrolyte 20 Composite particles 30 Second solid electrolyte 40 Conductive aid 100 Negative electrode for all-solid-state battery 200 Method for manufacturing negative electrode for all-solid-state battery

Claims (1)

Siを含む負極活物質に硫化物固体電解質を被覆してなる被覆化粒子と、
前記負極活物質及び前記硫化物固体電解質から構成され、前記負極活物質を5粒子以上含む複合化粒子と、を含み、
前記複合化粒子のアスペクト比が2.0以下であり、かつ、長辺が38.3μm以下である、
全固体電池用負極。
Coated particles formed by coating a negative electrode active material containing Si with a sulfide solid electrolyte,
Containing composite particles composed of the negative electrode active material and the sulfide solid electrolyte and containing 5 or more particles of the negative electrode active material.
The aspect ratio of the composite particles is 2.0 or less, and the long side is 38.3 μm or less.
Negative electrode for all-solid-state batteries.
JP2020022501A 2020-02-13 2020-02-13 Negative electrode for all-solid-state battery Active JP7247909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020022501A JP7247909B2 (en) 2020-02-13 2020-02-13 Negative electrode for all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020022501A JP7247909B2 (en) 2020-02-13 2020-02-13 Negative electrode for all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2021128857A true JP2021128857A (en) 2021-09-02
JP7247909B2 JP7247909B2 (en) 2023-03-29

Family

ID=77488878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020022501A Active JP7247909B2 (en) 2020-02-13 2020-02-13 Negative electrode for all-solid-state battery

Country Status (1)

Country Link
JP (1) JP7247909B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023134054A1 (en) * 2022-01-14 2023-07-20 中国科学院宁波材料技术与工程研究所 Method for relieving lithium precipitation of negative electrode during charging of all-solid-state lithium ion battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239267A (en) * 2012-05-11 2013-11-28 Toyota Industries Corp NEGATIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, NEGATIVE ELECTRODE FOR SECONDARY BATTERY, SECONDARY BATTERY, AND Si-OXIDE SOLID ELECTROLYTE COMPLEX
JP2014203545A (en) * 2013-04-01 2014-10-27 出光興産株式会社 Negative electrode mixture
JP2015220196A (en) * 2014-05-21 2015-12-07 トヨタ自動車株式会社 Method of manufacturing composite active material
JP2016207418A (en) * 2015-04-21 2016-12-08 トヨタ自動車株式会社 Electrode mixture
JP2019121499A (en) * 2017-12-28 2019-07-22 国立大学法人豊橋技術科学大学 Composite particles for lithium ion battery and method for producing the same
JP2019175554A (en) * 2018-03-26 2019-10-10 トヨタ自動車株式会社 Method for producing negative electrode mixture
JP2020021674A (en) * 2018-08-02 2020-02-06 トヨタ自動車株式会社 All-solid battery and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239267A (en) * 2012-05-11 2013-11-28 Toyota Industries Corp NEGATIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, NEGATIVE ELECTRODE FOR SECONDARY BATTERY, SECONDARY BATTERY, AND Si-OXIDE SOLID ELECTROLYTE COMPLEX
JP2014203545A (en) * 2013-04-01 2014-10-27 出光興産株式会社 Negative electrode mixture
JP2015220196A (en) * 2014-05-21 2015-12-07 トヨタ自動車株式会社 Method of manufacturing composite active material
JP2016207418A (en) * 2015-04-21 2016-12-08 トヨタ自動車株式会社 Electrode mixture
JP2019121499A (en) * 2017-12-28 2019-07-22 国立大学法人豊橋技術科学大学 Composite particles for lithium ion battery and method for producing the same
JP2019175554A (en) * 2018-03-26 2019-10-10 トヨタ自動車株式会社 Method for producing negative electrode mixture
JP2020021674A (en) * 2018-08-02 2020-02-06 トヨタ自動車株式会社 All-solid battery and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023134054A1 (en) * 2022-01-14 2023-07-20 中国科学院宁波材料技术与工程研究所 Method for relieving lithium precipitation of negative electrode during charging of all-solid-state lithium ion battery

Also Published As

Publication number Publication date
JP7247909B2 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
JP6183360B2 (en) Electrode of lithium ion secondary battery and lithium ion secondary battery using the same
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP7156095B2 (en) Method for producing positive electrode slurry, method for producing positive electrode, method for producing all-solid battery, and positive electrode and all-solid battery
JP6962298B2 (en) Positive electrode active material layer for solid-state batteries
KR20150027026A (en) Electrode for lithium ion secondary cell, method for preparing paste for said electrode and method for manufacturing said electrode
US20190296393A1 (en) Sulfide solid-state battery
JP2014093192A (en) Negative electrode of lithium ion secondary batter, method of manufacturing the same, and secondary battery manufactured by the same
JP7207265B2 (en) Method for manufacturing all-solid-state battery
US20240014367A1 (en) Powder For Electrode For Manufacturing Dry Electrode For Secondary Battery, Method For Preparing The Same, Method For Manufacturing Dry Electrode Using The Same, Dry Electrode, Secondary Battery Including The Same, Energy Storage Apparatus
JP7247909B2 (en) Negative electrode for all-solid-state battery
JP6844602B2 (en) electrode
JP2021077591A (en) All-solid battery manufacturing method and all-solid battery
US20220115691A1 (en) Method for producing all solid-state battery, and all solid-state battery
WO2022070542A1 (en) Electrode and method for producing electrode
JP7119940B2 (en) Negative electrode active material composite for all-solid-state battery
JP7207273B2 (en) Manufacturing method of negative electrode
JP7478183B2 (en) Nonaqueous electrolyte secondary battery and method of manufacturing same
EP4261934A1 (en) Negative electrode, non-aqueous electrolyte secondary battery, and method of producing negative electrode
JP7029755B2 (en) Positive electrode paste for lithium ion secondary batteries, positive electrode manufacturing method, and positive electrode
JP7276218B2 (en) Negative electrode active material and battery
US20230327081A1 (en) Negative Electrode and Non-Aqueous Electrolyte Secondary Battery
US20240038972A1 (en) Electrode material, electrode, and all-solid-state battery
US20240047656A1 (en) Electrode, all-solid-state battery, and method of producing electrode
EP4273951A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries, method for manufacturing same, and method for inspecting same, and non-aqueous electrolyte secondary battery and method for manufacturing same
JP7180066B2 (en) sulfide solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R151 Written notification of patent or utility model registration

Ref document number: 7247909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151