JP7067445B2 - Sulfide solid state battery - Google Patents

Sulfide solid state battery Download PDF

Info

Publication number
JP7067445B2
JP7067445B2 JP2018228264A JP2018228264A JP7067445B2 JP 7067445 B2 JP7067445 B2 JP 7067445B2 JP 2018228264 A JP2018228264 A JP 2018228264A JP 2018228264 A JP2018228264 A JP 2018228264A JP 7067445 B2 JP7067445 B2 JP 7067445B2
Authority
JP
Japan
Prior art keywords
positive electrode
sulfide solid
active material
mixture layer
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018228264A
Other languages
Japanese (ja)
Other versions
JP2020092000A (en
Inventor
洋平 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018228264A priority Critical patent/JP7067445B2/en
Publication of JP2020092000A publication Critical patent/JP2020092000A/en
Application granted granted Critical
Publication of JP7067445B2 publication Critical patent/JP7067445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本願は硫化物固体電池を開示するものである。 The present application discloses a sulfide solid state battery.

固体電池の分野において、活物質の表面を被覆することで、活物質と固体電解質との反応を抑制し、電池性能を高める試みが行われている。 In the field of solid-state batteries, attempts have been made to suppress the reaction between the active material and the solid electrolyte by covering the surface of the active material to improve the battery performance.

特許文献1には、LiNbOを被覆した正極活物質が開示されおり、これにより硫化物固体電解質と正極活物質との界面反応を抑制し、良好な電池特性を得ることができることが記載されている。
特許文献2には、LiWOを被覆した活物質が開示されており、これにより界面抵抗の増加を抑制可能であることが記載されている。
Patent Document 1 discloses a positive electrode active material coated with LiNbO 3 , which describes that the interface reaction between the sulfide solid electrolyte and the positive electrode active material can be suppressed and good battery characteristics can be obtained. There is.
Patent Document 2 discloses an active material coated with Li 2 WO 4 , and describes that it is possible to suppress an increase in interfacial resistance.

特開2017-59534号公報JP-A-2017-59534 特許5472492号公報Japanese Patent No. 5472492

LiNbOは4.3V以上の高電位下において硫化物固体電解質と反応し劣化する問題がある。そのため、LiNbOを被覆した活物質では、4.3V以上の高電位下において活物質の界面抵抗が増加し、容量が低下する虞がある。
特許文献2によれば、LiWOで被覆した活物質を用いると、作動電位が4.1Vであっても耐久試験において抵抗増加率が低いことが分かっている。しかしながら、4.1V以上のさらに高電位における抵抗増加率については検討されていない。
LiNbO 3 has a problem of reacting with a sulfide solid electrolyte and deteriorating under a high potential of 4.3 V or higher. Therefore, in the active material coated with LiNbO 3 , the interfacial resistance of the active material may increase and the capacity may decrease under a high potential of 4.3 V or higher.
According to Patent Document 2, it is known that when an active material coated with Li 2 WO 4 is used, the resistance increase rate is low in the durability test even when the operating potential is 4.1 V. However, the rate of increase in resistance at higher potentials of 4.1 V or higher has not been investigated.

そこで、本願では高電位においても抵抗増加及び容量維持率の低減を抑制可能な硫化物固体電池を提供することを課題とする。 Therefore, it is an object of the present application to provide a sulfide solid-state battery capable of suppressing an increase in resistance and a decrease in capacity retention rate even at a high potential.

本願は上記課題を解決する一つの手段として、正極合材層と、負極合材層と、正極合材層及び負極合材層の間に配置された硫化物固体電解質層とを備えた硫化物固体電池において、正極合材層はLiWOで被覆された正極活物質を備え、正極合材層の作動電位が少なくとも4.1V~4.5Vの間であることを特徴とする、硫化物固体電池を開示する。 In the present application, as one means for solving the above problems, a sulfide having a positive electrode mixture layer, a negative electrode mixture layer, and a sulfide solid electrolyte layer arranged between the positive electrode mixture layer and the negative electrode mixture layer is provided. In a solid-state battery, the positive electrode mixture layer comprises a positive electrode active material coated with Li 2 WO 4 , and the operating potential of the positive electrode mixture layer is at least between 4.1 V and 4.5 V. Disclose a solid-state battery.

本開示の硫化物固体電池によれば、高電位であっても抵抗増加及び容量維持率の低減を抑制することができる。 According to the sulfide solid-state battery of the present disclosure, it is possible to suppress an increase in resistance and a decrease in capacity retention rate even at a high potential.

硫化物固体電池100の概略断面図である。It is a schematic sectional drawing of a sulfide solid-state battery 100. 正極活物質11の概略断面図である。It is the schematic sectional drawing of the positive electrode active material 11.

なお、数値A及びBについて「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。 Regarding the numerical values A and B, the notation "A to B" means "A or more and B or less". When a unit is attached only to the numerical value B in such a notation, the unit shall be applied to the numerical value A as well.

[硫化物固体電池]
本開示の硫化物固体電池について、一実施形態である硫化物固体電池100(以下において、「硫化物固体電池100」ということがある。)を用いて詳しく説明する。
[Sulfide solid-state battery]
The sulfide solid-state battery of the present disclosure will be described in detail with reference to the sulfide solid-state battery 100 (hereinafter, may be referred to as “sulfide solid-state battery 100”) which is an embodiment.

図1に硫化物固体電池100の概略断面図を示した。硫化物固体電池100は正極合材層10と、負極合材層20と、正極合材層10及び負極合材層20の間に配置された硫化物固体電解質層30とを備えており、図1に示されているとおり、正極合材層10、硫化物固体電解質層30、負極合材層20の順に積層されている。また、図1に示した通り、硫化物固体電池100は、正極合材層10の硫化物固体電解質層30側とは反対側の面に正極集電体40が積層されており、負極合材層20の硫化物固体電解質層30側とは反対側の面に負極集電体50が積層されていることが好ましい。 FIG. 1 shows a schematic cross-sectional view of the sulfide solid-state battery 100. The sulfide solid-state battery 100 includes a positive electrode mixture layer 10, a negative electrode mixture layer 20, and a sulfide solid electrolyte layer 30 arranged between the positive electrode mixture layer 10 and the negative electrode mixture layer 20. As shown in 1, the positive electrode mixture layer 10, the sulfide solid electrolyte layer 30, and the negative electrode mixture layer 20 are laminated in this order. Further, as shown in FIG. 1, in the sulfide solid-state battery 100, the positive electrode current collector 40 is laminated on the surface of the positive electrode mixture layer 10 opposite to the sulfide solid electrolyte layer 30 side, and the negative electrode mixture is used. It is preferable that the negative electrode current collector 50 is laminated on the surface of the layer 20 opposite to the sulfide solid electrolyte layer 30 side.

正極合材層10はLiWOで被覆された正極活物質11を備える。好ましくは、正極合材層10は上記正極活物質11と硫化物固体電解質とを備える。また、正極合材層10は必要に応じて導電材やバインダーを備えていてもよい。 The positive electrode mixture layer 10 includes a positive electrode active material 11 coated with Li 2 WO 4 . Preferably, the positive electrode mixture layer 10 includes the positive electrode active material 11 and a sulfide solid electrolyte. Further, the positive electrode mixture layer 10 may be provided with a conductive material or a binder, if necessary.

正極活物質11は正極活物質材料11aと該正極活物質材料を被覆する被覆層11b(LiWO)とからなる。図2に正極活物質11の概略断面図を示した。 The positive electrode active material 11 is composed of a positive electrode active material 11a and a coating layer 11b (Li 2 WO 4 ) covering the positive electrode active material. FIG. 2 shows a schematic cross-sectional view of the positive electrode active material 11.

正極活物質材料11aとしては、特に限定されないが、酸化物活物質を挙げることができる。具体的には、LiCoO、LiMnO、LiNiO、LiVO、LiNi1/3Co1/3Mn1/3等の岩塩層状型活物質、LiMn、Li(Ni0.5Mn1.5)O等のスピネル型活物質等を挙げることができる。 The positive electrode active material 11a is not particularly limited, and examples thereof include an oxide active material. Specifically, rock salt layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , Li (Ni 0.5 ). Mn 1.5 ) Spinel-type active substances such as O4 can be mentioned.

被覆層11bは上記したとおり、LiWOからなる。被覆層11bにLiWOを用いた理由は、リチウムイオン伝導性を有し、かつ、4.1V以上、好ましくは4.3V以上の高電位において長期間保存したとしても抵抗増加が抑制されるためである。
例えば、特許文献1に記載されているLiNbOで被覆した正極活物質を用いた場合、4.3V以上の高電位において、LiNbOと硫化物固体電解質とが反応する確率が高くなる。具体的な反応形式は酸化還元反応であり、LiNbOが還元され、酸素が脱離すると考えられている(反対に、硫化物固体電解質は酸化され、酸素が付加すると考えられている)。このような反応が起こると、LiNbOからなる被覆層は劣化するため、長期間保存により正極活物質の表面抵抗が増加し、電池の容量維持率も低下する。
一方で、LiWOはW-Oの結合がLiNbOにおけるNi-Oの結合よりも強いため、酸素が脱離し難い。そのため、4.1V以上、好ましくは4.3V以上の高電位において長期間保存したとしても抵抗増加が抑制される。よって、LiWOからなる被覆層11bを有することにより、容量維持率の低下が抑制され、電池の耐久性が向上する。
なお、当然であるが、活物質材料11aを被覆層11bで被覆することにより、活物質材料11aと硫化物固体電解質との反応を抑制することができる。
As described above, the coating layer 11b is made of Li 2 WO 4 . The reason why Li 2 WO 4 is used for the coating layer 11b is that it has lithium ion conductivity and the increase in resistance is suppressed even if it is stored at a high potential of 4.1 V or more, preferably 4.3 V or more for a long period of time. Because.
For example, when the positive electrode active material coated with LiNbO 3 described in Patent Document 1 is used, the probability that LiNbO 3 reacts with the sulfide solid electrolyte at a high potential of 4.3 V or higher is high. The specific reaction form is a redox reaction, in which LiNbO 3 is reduced and oxygen is desorbed (conversely, the sulfide solid electrolyte is considered to be oxidized and oxygen is added). When such a reaction occurs, the coating layer made of LiNbO 3 deteriorates, so that the surface resistance of the positive electrode active material increases due to long-term storage, and the capacity retention rate of the battery also decreases.
On the other hand, in Li 2 WO 4 , the W—O bond is stronger than the Ni—O bond in LiNbO 3 , so oxygen is difficult to desorb. Therefore, the increase in resistance is suppressed even when stored at a high potential of 4.1 V or higher, preferably 4.3 V or higher for a long period of time. Therefore, by having the coating layer 11b made of Li 2 WO 4 , the decrease in the capacity retention rate is suppressed, and the durability of the battery is improved.
As a matter of course, by coating the active material material 11a with the coating layer 11b, the reaction between the active material material 11a and the sulfide solid electrolyte can be suppressed.

正極活物質材料11aに対する被覆層11bの被覆率は70%以上100%以下であることが好ましく、90%以上100%以下であることがより好ましい。被覆率が高いほど、正極活物質材料11aと硫化物固体電解質とが直接接する面積が減少するため、電池の耐久性が向上する。
ここで、被覆率はXPS分析を用いて算出することができる。例えば、下記式を用いて算出することができる。
The coverage of the coating layer 11b with respect to the positive electrode active material 11a is preferably 70% or more and 100% or less, and more preferably 90% or more and 100% or less. The higher the coverage, the smaller the area in which the positive electrode active material 11a and the sulfide solid electrolyte are in direct contact with each other, and thus the durability of the battery is improved.
Here, the coverage can be calculated using XPS analysis. For example, it can be calculated using the following formula.

被覆率=(W/(W+M))×100
W:XPS分析で定量したタングステンの元素量
M:XPS分析で定量した正極活物質材料に含有される遷移金属元素の元素量
Coverage = (W / (W + M)) x 100
W: Elemental amount of tungsten quantified by XPS analysis M: Elemental amount of transition metal element contained in the positive electrode active material material quantified by XPS analysis

被覆層11bの厚みは特に限定されず、正極活物質材料11aと硫化物固体電解質との反応を抑制できる厚さであればよい。例えば、1nm~500nmであることが好ましく、2nm~100nmであることがより好ましく、3nm~50nmであることがさらに好ましい。被覆層11bの厚みが1nm未満であると、正極活物質材料11aと硫化物固体電解質が反応する虞がある。被覆層11bの厚みが500nmを超えると、リチウムイオン伝導性が低下する虞がある。
なお、被覆層11bの厚みは、透過型電子顕微鏡(TEM)による観察で決定することができる。
The thickness of the coating layer 11b is not particularly limited as long as it can suppress the reaction between the positive electrode active material 11a and the sulfide solid electrolyte. For example, it is preferably 1 nm to 500 nm, more preferably 2 nm to 100 nm, and even more preferably 3 nm to 50 nm. If the thickness of the coating layer 11b is less than 1 nm, the positive electrode active material 11a may react with the sulfide solid electrolyte. If the thickness of the coating layer 11b exceeds 500 nm, the lithium ion conductivity may decrease.
The thickness of the coating layer 11b can be determined by observation with a transmission electron microscope (TEM).

正極活物質11の平均粒子径は、特に限定されないが、0.1μm以上50μm以下であることが好ましい。平均粒子径はレーザー回折・散乱法により取得した体積基準の粒度分布における積算値50%での粒子径であるメディアン径である。 The average particle size of the positive electrode active material 11 is not particularly limited, but is preferably 0.1 μm or more and 50 μm or less. The average particle diameter is the median diameter which is the particle diameter at an integrated value of 50% in the volume-based particle size distribution acquired by the laser diffraction / scattering method.

このような正極活物質11を作製する方法は、公知の方法によって作製することができる。例えば、スパッタリング法により正極活物質材料11aに被覆層11bを被覆させることができる。 The method for producing such a positive electrode active material 11 can be produced by a known method. For example, the positive electrode active material 11a can be coated with the coating layer 11b by a sputtering method.

正極合材層10に含むことができる硫化物固体電解質は、後述の硫化物固体電解質層に含むことができる硫化物固体電解質を用いることができる。正極合材層10に含むことができる導電材としては、特に限定されないが、アセチレンブラックやケッチェンブラック、気相成長炭素繊維(VGCF)等の炭素材料を用いることができる。正極合材層10に含むことができるバインダーとしては、特に限定されないが、ポリフッ化ビニリデン(PVDF)や、ブチレンゴム(BR)、スチレンブタジエンゴム(SBR)等の公知のバインダーを用いることができる。 As the sulfide solid electrolyte that can be contained in the positive electrode mixture layer 10, a sulfide solid electrolyte that can be contained in the sulfide solid electrolyte layer described later can be used. The conductive material that can be contained in the positive electrode mixture layer 10 is not particularly limited, but a carbon material such as acetylene black, Ketjen black, or vapor phase grown carbon fiber (VGCF) can be used. The binder that can be contained in the positive electrode mixture layer 10 is not particularly limited, but known binders such as polyvinylidene fluoride (PVDF), butylene rubber (BR), and styrene-butadiene rubber (SBR) can be used.

正極合材層10における正極活物質11の含有量は特に限定されないが、10重量%~99重量%であることが好ましい。正極合材層10の厚みも特に限定されないが、0.1μm~1000μmであることが好ましい。 The content of the positive electrode active material 11 in the positive electrode mixture layer 10 is not particularly limited, but is preferably 10% by weight to 99% by weight. The thickness of the positive electrode mixture layer 10 is also not particularly limited, but is preferably 0.1 μm to 1000 μm.

負極合材層20は、負極活物質と硫化物固体電解質とを備えており、必要に応じて導電材やバインダーを含むことができる。負極活物質としては、硫化物固体電池に用いることができる負極活物質であれば特に限定されない。例えば、金属、炭素材等が挙げられる。金属としては、Li、Sn、Si、Al、等の金属を用いることができる。炭素材としては、天然または人工黒鉛等を用いることができる。硫化物固体電解質としては、後述の硫化物固体電解質層に含むことができる硫化物固体電解質を用いることができる。導電材及びバインダーは正極合材層10に用いることできる導電材及びバインダーを採用することができる。負極合材層20における負極活物質の含有量は特に限定されないが、10重量%~99重量%であることが好ましい。負極合材層20の厚みも特に限定されないが、0.1μm~1000μmであることが好ましい。 The negative electrode mixture layer 20 includes a negative electrode active material and a sulfide solid electrolyte, and may contain a conductive material and a binder, if necessary. The negative electrode active material is not particularly limited as long as it is a negative electrode active material that can be used in a sulfide solid-state battery. For example, metal, carbon material and the like can be mentioned. As the metal, a metal such as Li, Sn, Si, Al, etc. can be used. As the carbon material, natural or artificial graphite or the like can be used. As the sulfide solid electrolyte, a sulfide solid electrolyte that can be contained in the sulfide solid electrolyte layer described later can be used. As the conductive material and the binder, the conductive material and the binder that can be used for the positive electrode mixture layer 10 can be adopted. The content of the negative electrode active material in the negative electrode mixture layer 20 is not particularly limited, but is preferably 10% by weight to 99% by weight. The thickness of the negative electrode mixture layer 20 is also not particularly limited, but is preferably 0.1 μm to 1000 μm.

硫化物固体電解質層30は、少なくとも硫化物固体電解質を備える。必要に応じてバインダーを備えていてもよい。硫化物固体電解質としては公知の硫化物固体電解質を用いることができ、例えばLiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P、LiPS等を挙げることができる。バインダーとしては、上記したバインダーを挙げることができる。硫化物固体電解質層30の厚みは特に限定されないが、0.1μm~1000μmであることが好ましい。 The sulfide solid electrolyte layer 30 comprises at least a sulfide solid electrolyte. A binder may be provided if necessary. As the sulfide solid electrolyte, a known sulfide solid electrolyte can be used, for example, Li 2S-SiS 2 , LiI-Li 2 S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI -Li 2 . Examples thereof include SP 2 O 5 , LiI-Li 3 PO 4 -P 2 O 5 , Li 2 SP 2 S 5 , Li 3 PS 4 . Examples of the binder include the above-mentioned binders. The thickness of the sulfide solid electrolyte layer 30 is not particularly limited, but is preferably 0.1 μm to 1000 μm.

正極集電体40は、硫化物固体電池に用いることができる公知の正極集電材を採用することができる。例えば、SUS、アルミニウム、ニッケル、鉄、カーボン等である。負極集電体50も、硫化物固体電池に用いることができる公知の負極集電材を採用することができる。例えば、SUS、銅、ニッケル、カーボン等である。 As the positive electrode current collector 40, a known positive electrode current collector that can be used for a sulfide solid-state battery can be adopted. For example, SUS, aluminum, nickel, iron, carbon and the like. As the negative electrode current collector 50, a known negative electrode current collector that can be used for a sulfide solid-state battery can also be adopted. For example, SUS, copper, nickel, carbon and the like.

このような硫化物固体電池100の製造方法は特に限定されず、目的の電池の構成に応じて適宜最適な方法を採用することができる。 The method for manufacturing such a sulfide solid-state battery 100 is not particularly limited, and an optimal method can be appropriately adopted according to the configuration of the target battery.

硫化物固体電池100は、正極合材層10の作動電位が少なくとも4.1V~4.5Vの間であることを特徴としている。上記したように、正極合材層10に含まれる正極活物質11は、LiWOからなる被覆層11bを備えているため、正極合材層の作動電位が4.1V~4.5V、好ましくは4.3V~4.5Vであっても、抵抗増加が抑制され、かつ、容量維持率の低下も抑制される。
なお、発明者によれば、正極合材層10の作動電位が4.5Vを超えたとしても、上記の効果を奏するものと推測されている。
The sulfide solid-state battery 100 is characterized in that the operating potential of the positive electrode mixture layer 10 is at least between 4.1 V and 4.5 V. As described above, since the positive electrode active material 11 contained in the positive electrode mixture layer 10 includes the coating layer 11b made of Li 2 WO 4 , the operating potential of the positive electrode mixture layer is 4.1 V to 4.5 V. Even if it is preferably 4.3 V to 4.5 V, the increase in resistance is suppressed and the decrease in the capacity retention rate is also suppressed.
According to the inventor, it is presumed that the above effect is obtained even if the operating potential of the positive electrode mixture layer 10 exceeds 4.5 V.

以下、本開示の硫化物固体電池について、実施例を用いてさらに説明する。 Hereinafter, the sulfide solid-state battery of the present disclosure will be further described with reference to Examples.

[正極活物質の作製]
バレルスパッタを用いて、正極活物質材料(LiNi1/3Co1/3Mn1/3)30gの粉末に厚さ10nmの被覆層を形成させた。被覆層の材料は表1のとおりである。そして、被覆層を形成した正極活物質材料を表1の温度で焼成して、正極活物質を作製した。正極活物質における被覆層の被覆率は70%であった。
[Preparation of positive electrode active material]
Using barrel sputtering, a coating layer having a thickness of 10 nm was formed on a powder of 30 g of the positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ). The material of the coating layer is as shown in Table 1. Then, the positive electrode active material on which the coating layer was formed was fired at the temperatures shown in Table 1 to prepare a positive electrode active material. The coverage of the coating layer in the positive electrode active material was 70%.

[硫化物固体電池の作製]
上記により作製した正極活物質と硫化物固体電解質(LiS-P)とを体積比で50:50の割合で混合し、1tonの力でプレスして正極合材層(20mg)を作製した。
負極活物質(天然黒鉛)と硫化物固体電解質(LiS-P)とを体積比で50:50の割合で混合し、1tonの力でプレスして負極合材層(20mg)を作製した。
硫化物固体電解質(LiS-P)を1tonの力でプレスして固体電解質層(50mg)を作製した。
[Manufacturing of sulfide solid-state battery]
The positive electrode active material prepared as described above and the sulfide solid electrolyte (Li 2 SP 2 S 5 ) are mixed at a volume ratio of 50:50 and pressed with a force of 1 ton to form a positive electrode mixture layer (20 mg). Was produced.
Negative electrode active material (natural graphite) and sulfide solid electrolyte (Li 2 SP 2 S 5 ) are mixed at a volume ratio of 50:50 and pressed with a force of 1 ton to form a negative electrode mixture layer (20 mg). Was produced.
A sulfide solid electrolyte (Li 2 SP 2 S 5 ) was pressed with a force of 1 ton to prepare a solid electrolyte layer (50 mg).

正極集電体、正極合材層、硫化物固体電解質層、負極合材層、負極集電体の順に積層し、全体に6Nの拘束力を掛けて、硫化物固体電池を作製した。 A positive electrode current collector, a positive electrode mixture layer, a sulfide solid electrolyte layer, a negative electrode mixture layer, and a negative electrode current collector were laminated in this order, and a binding force of 6N was applied to the whole to prepare a sulfide solid state battery.

[耐久特性の評価]
上記により作製した硫化物固体電池を3.5V-4.1V(vsC)、25℃にて0.1Cで充放電を行った。次いで、SOC(States of Charge)を60%に設定して、2mAの電流を10s放電し、抵抗を見積もった。その後、表1のとおり正極合材層の電位を4.1V、4.3V、4.5V(vsLi)に調整し、60℃にて200時間の保存試験を行った。そして、保存試験後の抵抗及び容量を測定し、容量維持率及び抵抗増加率を算出した。結果を表1にまとめた。
[Evaluation of durability characteristics]
The sulfide solid-state battery produced as described above was charged and discharged at 3.5 V-4.1 V (vsC) and at 25 ° C. at 0.1 C. Next, the SOC (Systems of Charge) was set to 60%, a current of 2 mA was discharged for 10 s, and the resistance was estimated. Then, as shown in Table 1, the potential of the positive electrode mixture layer was adjusted to 4.1 V, 4.3 V, and 4.5 V (vsLi), and a storage test was conducted at 60 ° C. for 200 hours. Then, the resistance and the capacity after the storage test were measured, and the capacity retention rate and the resistance increase rate were calculated. The results are summarized in Table 1.

Figure 0007067445000001
Figure 0007067445000001

表1より、LiWOで被覆されている正極活物質を用いた実施例1~3では、保存試験時の正極合材層の電位が4.1~4.5Vであっても、抵抗増加率の上昇が抑えられており、容量維持率の低減も抑制されていた。
一方で、LiNbOで被覆されている正極活物質を用いた比較例1~3に関し、保存時の正極合材層の電位が4.1Vの比較例3では抵抗増加率の上昇及び容量維持率の低下が抑制されているが、4.3Vの比較例2では実施例2に比べて抵抗増加率が高く、4.5Vの比較例3では実施例1に比べて抵抗増加率が高く、また容量維持率が低い結果であった。比較例3では特に抵抗増加率の上昇が顕著であった。
また、LiPOで被覆されている正極活物質を用いた比較例4~6に関し、保存時の正極合材層の電位が4.1Vの比較例6では抵抗増加率の上昇及び容量維持率の低下が抑制されているが、4.3Vの比較例5では実施例2に比べて容量維持率が低下しており、4.5Vの比較例3では実施例1に比べて容量維持率が大きく低下していた。
以上のことから、LiWOで被覆されている正極活物質を用いることにより、4.1V~4.5Vの高電位であっても、抵抗増加率の上昇及び容量維持率の低下が抑制されることが分かった。また、電位が4.3V~4.5Vである場合は、LiWOで正極材料を被覆することにより、その他の被覆材料を用いた場合に比べて、抵抗増加率の上昇及び容量維持率の低下の両方が抑制されることも分かった。
From Table 1, in Examples 1 to 3 using the positive electrode active material coated with Li 2 WO 4 , even if the potential of the positive electrode mixture layer at the time of the storage test is 4.1 to 4.5 V, the resistance The increase in the rate of increase was suppressed, and the decrease in the capacity retention rate was also suppressed.
On the other hand, with respect to Comparative Examples 1 to 3 using the positive electrode active material coated with LiNbO 3 , in Comparative Example 3 in which the potential of the positive electrode mixture layer at the time of storage was 4.1 V, the resistance increase rate and the capacity retention rate increased. However, in Comparative Example 2 of 4.3 V, the resistance increase rate is higher than that of Example 2, and in Comparative Example 3 of 4.5 V, the resistance increase rate is higher than that of Example 1. The result was that the capacity retention rate was low. In Comparative Example 3, the increase in the resistance increase rate was particularly remarkable.
Further, with respect to Comparative Examples 4 to 6 using the positive electrode active material coated with Li 3 PO 4 , in Comparative Example 6 in which the potential of the positive electrode mixture layer at the time of storage was 4.1 V, the resistance increase rate was increased and the capacity was maintained. Although the decrease in the rate is suppressed, the capacity retention rate is lower in Comparative Example 5 of 4.3 V than in Example 2, and in Comparative Example 3 of 4.5 V, the capacity retention rate is higher than that of Example 1. Was greatly reduced.
From the above, by using the positive electrode active material coated with Li 2 WO 4 , the increase in resistance increase rate and the decrease in capacity retention rate are suppressed even at a high potential of 4.1 V to 4.5 V. It turned out to be done. When the potential is 4.3V to 4.5V, by coating the positive electrode material with Li 2 WO 4 , the resistance increase rate increases and the capacity retention rate increases as compared with the case where other coating materials are used. It was also found that both of the declines were suppressed.

10 正極合材層
11 正極活物質
11a 正極活物質材料
11b 被覆層
20 負極合材層
30 硫化物固体電解質層
40 正極集電体
50 負極集電体
100 硫化物固体電池
10 Positive electrode mixture layer 11 Positive electrode active material 11a Positive electrode active material 11b Coating layer 20 Negative electrode mixture layer 30 Sulfurized solid electrolyte layer 40 Positive electrode current collector 50 Negative electrode current collector 100 Sulfurized solid battery

Claims (1)

正極合材層と、負極合材層と、前記正極合材層及び前記負極合材層の間に配置された硫化物固体電解質層とを備えた硫化物固体電池において、
前記正極合材層はLiWOで被覆された正極活物質を備え、
前記正極合材層の電位が少なくとも4.3V~4.5Vの間であることを特徴とする、
硫化物固体電池。
In a sulfide solid-state battery including a positive electrode mixture layer, a negative electrode mixture layer, and a sulfide solid electrolyte layer arranged between the positive electrode mixture layer and the negative electrode mixture layer.
The positive electrode mixture layer comprises a positive electrode active material coated with Li 2 WO 4 .
The potential of the positive electrode mixture layer is at least between 4.3V and 4.5V.
Sulfide solid state battery.
JP2018228264A 2018-12-05 2018-12-05 Sulfide solid state battery Active JP7067445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228264A JP7067445B2 (en) 2018-12-05 2018-12-05 Sulfide solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228264A JP7067445B2 (en) 2018-12-05 2018-12-05 Sulfide solid state battery

Publications (2)

Publication Number Publication Date
JP2020092000A JP2020092000A (en) 2020-06-11
JP7067445B2 true JP7067445B2 (en) 2022-05-16

Family

ID=71013035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228264A Active JP7067445B2 (en) 2018-12-05 2018-12-05 Sulfide solid state battery

Country Status (1)

Country Link
JP (1) JP7067445B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008012A1 (en) * 2021-07-27 2023-02-02 株式会社Gsユアサ Power storage element and power storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105048A1 (en) 2011-02-04 2012-08-09 トヨタ自動車株式会社 Coated active material, battery, and method for producing coated active material
JP2014157666A (en) 2013-02-14 2014-08-28 Toyota Motor Corp Lithium battery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105048A1 (en) 2011-02-04 2012-08-09 トヨタ自動車株式会社 Coated active material, battery, and method for producing coated active material
JP2014157666A (en) 2013-02-14 2014-08-28 Toyota Motor Corp Lithium battery system

Also Published As

Publication number Publication date
JP2020092000A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP7063653B2 (en) All-solid-state secondary battery
KR101876826B1 (en) Cathode composite and all solid lithium secondary battery comprising the same
JP6878292B2 (en) Anode material for lithium-ion batteries and their manufacturing method and usage method
WO2022019099A1 (en) Positive pole material and battery
JP2017220339A (en) Solid-state battery
JP6939722B2 (en) All solid state battery
JP7321769B2 (en) All-solid lithium secondary battery
JP2016170973A (en) Active material composite particle and lithium battery
JP7096197B2 (en) Coated positive electrode active material and all-solid-state battery
JP2015065029A (en) All-solid battery
JPWO2020174868A1 (en) Positive electrode material and battery
JP2023524057A (en) All-solid secondary battery
JP2017126552A (en) Method for manufacturing sulfide all-solid battery, and sulfide all-solid battery
JP7420949B2 (en) Cathode materials and batteries
WO2021241417A1 (en) Positive electrode active material, positive electrode material, battery, and method for preparing positive electrode active material
WO2021220927A1 (en) Positive electrode material, and battery
JP2018185929A (en) Composite particle
JP2018055808A (en) Lithium ion secondary battery and positive electrode active material for the lithium ion secondary battery
JP7067445B2 (en) Sulfide solid state battery
US20230275203A1 (en) All-solid-state battery having protective layer comprising metal sulfide and method for manufacturing the same
CN113381017A (en) All-solid-state secondary battery
JP6274192B2 (en) Positive electrode active material, all solid state battery, and method for producing all solid state battery
JP2012048838A (en) Active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of active material for nonaqueous electrolyte secondary battery
WO2013024739A1 (en) Active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method for active material for non-aqueous electrolyte secondary battery
JP6973310B2 (en) All solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220411

R151 Written notification of patent or utility model registration

Ref document number: 7067445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151