JP2016205642A - Low temperature reproduction desiccant air conditioner - Google Patents

Low temperature reproduction desiccant air conditioner Download PDF

Info

Publication number
JP2016205642A
JP2016205642A JP2015083812A JP2015083812A JP2016205642A JP 2016205642 A JP2016205642 A JP 2016205642A JP 2015083812 A JP2015083812 A JP 2015083812A JP 2015083812 A JP2015083812 A JP 2015083812A JP 2016205642 A JP2016205642 A JP 2016205642A
Authority
JP
Japan
Prior art keywords
outside air
path
air
desiccant rotor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015083812A
Other languages
Japanese (ja)
Other versions
JP6532270B2 (en
Inventor
鉄也 杉
Tetsuya Sugi
鉄也 杉
勝旭 左
Masaaki Zuo
勝旭 左
啓之 庄司
Hiroyuki Shoji
啓之 庄司
一樹 和田
Kazuki Wada
一樹 和田
正明 篠原
Masaaki Shinohara
正明 篠原
俊介 鈴木
Shunsuke Suzuki
俊介 鈴木
泰之 青柳
Yasuyuki Aoyanagi
泰之 青柳
一輝 吉田
Kazuteru Yoshida
一輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Kubota Corp
Takenaka Komuten Co Ltd
Kubota Kucho KK
Sinko Industries Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Kubota Corp
Takenaka Komuten Co Ltd
Kubota Kucho KK
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd, Kubota Corp, Takenaka Komuten Co Ltd, Kubota Kucho KK, Sinko Industries Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2015083812A priority Critical patent/JP6532270B2/en
Publication of JP2016205642A publication Critical patent/JP2016205642A/en
Application granted granted Critical
Publication of JP6532270B2 publication Critical patent/JP6532270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low temperature reproduction desiccant air conditioner which can control a latent heat load and a sensible heat load separately, in which accuracy of indoor temperature and humidity control is high and which does not waste energy.SOLUTION: A total heat exchanger part includes: a total heat exchanger bypass path 201 for bypassing a total heat exchanger 200; and a first path switching device for switching between an outside air path 6 which passes through the total heat exchanger 200 and the total heat exchanger bypass path 201. A latent heat control part includes: a cold/hot water coil 101 for cooling the outside air for ventilating to a desiccant rotor 102 during cooling and for heating the outside air for ventilating to the desiccant rotor 102 during heating; a desiccant rotor bypass path 150 for bypassing the desiccant rotor 102; and a second path switching device for switching between the outside air path 6 which passes through the desiccant rotor 102 and the desiccant rotor bypass path 150. A low temperature reproduction desiccant air conditioner includes enthalpy measurement means for measuring enthalpy of the outside air as a control index of the first path switching device. It also includes a return air humidity sensor for detecting humidity of return air as a control index of the second path switching device.SELECTED DRAWING: Figure 1

Description

本発明は、低温再生デシカント空調機に関し、デシカントロータの効率的な使用に係るものである。   The present invention relates to a low-temperature regenerated desiccant air conditioner and relates to efficient use of a desiccant rotor.

この種の技術としては、例えば特許文献1に記載するものがある。この低温再生デシカント空調機は、外気を室内へ給気する外気経路と、室内からの還気を排気する還気経路と、外気経路の外気の潜熱を制御する潜熱制御部と、外気経路の外気の顕熱を制御する顕熱制御部と、外気と還気との間で顕熱および潜熱を交換する全熱交換器部を備えている。   As this type of technology, for example, there is one described in Patent Document 1. This low temperature regeneration desiccant air conditioner includes an outside air path for supplying outside air to the room, a return air path for exhausting the return air from the room, a latent heat control unit for controlling the latent heat of the outside air in the outside air path, and the outside air in the outside air path. A sensible heat control unit for controlling the sensible heat of the gas and a total heat exchanger unit for exchanging sensible heat and latent heat between the outside air and the return air.

全熱交換器部は、潜熱制御部へ通気する外気経路の外気と潜熱制御部を通過した還気経路の還気との間で顕熱および潜熱を交換する全熱交換器と、全熱交換器の上流側および下流側で外気経路に連通して全熱交換器を迂回する全熱交換器バイパス経路と、全熱交換器を通る外気経路と全熱交換器バイパス経路とを切替える第1の経路切替装置を有している。潜熱制御部は、外気経路の外気から湿気を収着して還気経路側で還気により湿気を脱着させて再生するデシカントロータと、デシカントロータの上流側および下流側で外気経路に連通してデシカントロータを迂回するデシカントロータバイパス経路と、デシカントロータを通る外気経路とデシカントロータバイパス経路とを切替える第2の経路切替装置を有している。   The total heat exchanger unit is a total heat exchanger that exchanges sensible heat and latent heat between the outside air in the outside air path that vents to the latent heat control unit and the return air in the return air path that passes through the latent heat control unit. A first heat exchanger bypass path that communicates with the outside air path upstream and downstream of the heat exchanger to bypass the total heat exchanger, and an outside air path that passes through the total heat exchanger, and a first heat exchanger bypass path. It has a route switching device. The latent heat control unit communicates the desiccant rotor that sorbs moisture from the outside air in the outside air path and desorbs the moisture by return air on the return air path side, and communicates with the outside air path on the upstream side and downstream side of the desiccant rotor. A desiccant rotor bypass path that bypasses the desiccant rotor, and a second path switching device that switches between an outside air path passing through the desiccant rotor and a desiccant rotor bypass path.

また、特許文献2に記載するものは、系内へ流入する外気の潜熱を制御する潜熱制御部と外気の顕熱を制御する顕熱制御部を有し、潜熱制御部および顕熱制御部を通して外気を室内へ給気し、室内からの還気を潜熱制御部を通して排気するものである。   Moreover, what is described in Patent Document 2 includes a latent heat control unit that controls the latent heat of the outside air flowing into the system and a sensible heat control unit that controls the sensible heat of the outside air, and passes through the latent heat control unit and the sensible heat control unit. The outside air is supplied into the room, and the return air from the room is exhausted through the latent heat control unit.

潜熱制御部は、外気経路側で外気から湿気を収着して還気経路側で還気により湿気を脱着させて再生するデシカントロータと、冷房時にデシカントロータへ通気する外気を冷却し、暖房時にデシカントロータへ通気する外気を加熱する冷温水コイルと、潜熱制御部を制御する指標としての還気の湿度を検知する還気湿度センサを備えている。   The latent heat control unit cools the desiccant rotor that sorbs moisture from the outside air on the outside air path side and regenerates the moisture by desorbing the return air on the return air path side, and cools the outside air that is vented to the desiccant rotor during cooling, A cold / hot water coil for heating the outside air to be ventilated to the desiccant rotor and a return air humidity sensor for detecting the return air humidity as an index for controlling the latent heat control unit are provided.

特許第5542701号Patent No. 5542701 特許第5669587号Japanese Patent No. 5666987

特許文献1のものは、冷房モードにおいて外気のエンタルピーが設定値より高い場合は、デシカントロータを停止させてデシカントロータによる顕熱移動のロスを避け、全熱交換器により外気の熱負荷を低減して省エネルギー化を実現している。また、冷房モードにおいて外気のエンタルピーが設定値より低い場合は、デシカントロータで除湿することで、冷却機器の能力を最小とし、加熱機器による再熱のエネルギーを小さくすることを実現している。また、特許文献2の構成においては、還気湿度センサにより還気の湿度を検知して潜熱制御部を制御するので、室内の温湿度制御を実現している。   In Patent Document 1, when the enthalpy of the outside air is higher than the set value in the cooling mode, the desiccant rotor is stopped to avoid the loss of sensible heat transfer by the desiccant rotor, and the heat load of the outside air is reduced by the total heat exchanger. Energy saving. Further, when the enthalpy of the outside air is lower than the set value in the cooling mode, the desiccant rotor dehumidifies to minimize the capacity of the cooling device and reduce the energy of reheating by the heating device. Moreover, in the structure of patent document 2, since the humidity of a return air is detected by a return air humidity sensor and a latent heat control part is controlled, indoor temperature / humidity control is implement | achieved.

しかし、上記のものは、制御指標として外気のエンタルピーか、還気の湿度の何れか一方を採用しており、省エネルギー化と室内の温湿度制御の精度の向上とを同時に実現するうえで課題があった。   However, the above employs either the enthalpy of the outside air or the humidity of the return air as a control index, and there are problems in realizing energy saving and improving the accuracy of indoor temperature and humidity control at the same time. there were.

本発明は上記した課題を解決するものであり、潜熱負荷と顕熱負荷を別途に制御することが可能であり、室内の温湿度制御の精度が高くてエネルギーの無駄がない低温再生デシカント空調機を提供することを目的とする。   The present invention solves the above-described problems, and can separately control a latent heat load and a sensible heat load, and is a low-temperature regenerative desiccant air conditioner that has high indoor temperature and humidity control accuracy and does not waste energy. The purpose is to provide.

上記課題を解決するために、本発明の低温再生デシカント空調機は、外気を室内へ給気する外気経路と、室内からの還気を排気する還気経路と、外気経路の外気の潜熱を制御する潜熱制御部と、外気経路の外気の顕熱を制御する顕熱制御部と、外気と還気との間で顕熱および潜熱を交換する全熱交換器部を備え、全熱交換器部は、潜熱制御部へ通気する外気経路の外気と潜熱制御部を通過した還気経路の還気との間で顕熱および潜熱を交換する全熱交換器と、全熱交換器の上流側および下流側で外気経路に連通して全熱交換器を迂回する全熱交換器バイパス経路と、全熱交換器を通る外気経路と全熱交換器バイパス経路とを切替える第1の経路切替装置を有し、潜熱制御部は、外気経路の外気から湿気を収着して還気経路側で還気により湿気を脱着させて再生するデシカントロータと、冷房時にデシカントロータへ通気する外気を冷却し、暖房時デシカントロータへ通気する外気を加熱する冷温水コイルと、デシカントロータの上流側および下流側で外気経路に連通してデシカントロータを迂回するデシカントロータバイパス経路と、デシカントロータを通る外気経路とデシカントロータバイパス経路とを切替える第2の経路切替装置を有し、第1の経路切替装置の制御指標として外気のエンタルピーを測定するエンタルピー測定手段を備え、第2の経路切替装置の制御指標として還気の湿度を検知する還気湿度センサーを備えることを特徴とする。   In order to solve the above problems, a low-temperature regeneration desiccant air conditioner according to the present invention controls an outside air path for supplying outside air into a room, a return air path for exhausting return air from the room, and latent heat of outside air in the outside air path. A latent heat control unit, a sensible heat control unit for controlling the sensible heat of the outside air in the outside air path, and a total heat exchanger unit for exchanging sensible heat and latent heat between the outside air and the return air, and a total heat exchanger unit Is a total heat exchanger that exchanges sensible heat and latent heat between the outside air of the outside air path that ventilates the latent heat control unit and the return air of the return air path that has passed through the latent heat control unit, and an upstream side of the total heat exchanger and A total heat exchanger bypass path that communicates with the outside air path on the downstream side to bypass the total heat exchanger, and a first path switching device that switches between the outside air path that passes through the total heat exchanger and the total heat exchanger bypass path The latent heat control unit sorbs moisture from the outside air in the outside air path and returns the moisture by returning air on the return air path side. A desiccant rotor to be detached and regenerated, a cold / hot water coil that cools the outside air that is vented to the desiccant rotor during cooling and heats the outside air that is vented to the desiccant rotor during heating, and communicates with the outside air path upstream and downstream of the desiccant rotor. And a second path switching device that switches between the desiccant rotor bypass path that bypasses the desiccant rotor, the outside air path that passes through the desiccant rotor, and the desiccant rotor bypass path, and the enthalpy of the outside air as a control index of the first path switching device And a return air humidity sensor for detecting the humidity of the return air as a control index of the second path switching device.

本発明の低温再生デシカント空調機において、潜熱制御部は、デシカントロータへ通気する還気を加熱する還気予熱部を備えることを特徴とする。
本発明の低温再生デシカント空調機において、潜熱制御部は、デシカントロータを通過した外気を加湿する外気加湿部を備えることを特徴とする。
本発明の低温再生デシカント空調機において、潜熱制御部の下流において還気経路と外気経路を連通する還気の戻り経路を有することを特徴とする。
In the low-temperature regeneration desiccant air conditioner according to the present invention, the latent heat control unit includes a return air preheating unit that heats the return air ventilated to the desiccant rotor.
In the low-temperature regeneration desiccant air conditioner of the present invention, the latent heat control unit includes an outside air humidifying unit that humidifies outside air that has passed through the desiccant rotor.
The low-temperature regeneration desiccant air conditioner of the present invention is characterized by having a return path for return air that communicates the return air path and the outside air path downstream of the latent heat control unit.

本発明の低温再生デシカント空調機の運転方法は、室内へ給気する外気の潜熱を潜熱制御部で制御し、潜熱制御部を通過した外気の顕熱を顕熱制御部で制御し、顕熱制御部を通過した外気を室内へ給気し、室内からの還気を潜熱制御部を通して排気し、全熱交換器によって潜熱制御部へ通気する外気と潜熱制御部を通過した還気との間で顕熱および潜熱を交換し、エンタルピー測定手段により外気のエンタルピーを測定し、外気のエンタルピーを制御指標として第1の経路切替装置を操作することで、全熱交換器の上流側の外気経路と下流側の外気経路とに連通して全熱交換器を迂回する全熱交換器バイパス経路と全熱交換器を通る外気経路とを切替えるとともに、還気湿度を制御指標として第2の経路切替装置を操作することで、デシカントロータの上流側の外気経路と下流側の外気経路とに連通してデシカントロータを迂回するデシカントロータバイパス経路と、デシカントロータを通る外気経路とを切替えることを特徴とする。   The operation method of the low-temperature regeneration desiccant air conditioner of the present invention controls the latent heat of the outside air supplied into the room with the latent heat control unit, controls the sensible heat of the outside air that has passed through the latent heat control unit with the sensible heat control unit, The outside air that has passed through the control unit is supplied to the room, the return air from the room is exhausted through the latent heat control unit, and the outside air that is vented to the latent heat control unit by the total heat exchanger and the return air that has passed through the latent heat control unit The sensible heat and latent heat are exchanged with each other, the enthalpy of the outside air is measured by the enthalpy measuring means, and the first path switching device is operated using the enthalpy of the outside air as a control index. The second path switching device switches between the total heat exchanger bypass path that communicates with the downstream outside air path and bypasses the total heat exchanger and the outside air path that passes through the total heat exchanger, and uses the return air humidity as a control index. By operating the A desiccant rotor bypass path bypassing the desiccant rotor communicates with the outside air path on the upstream side of the outdoor air path and a downstream side of the rotor, and switches the outside air path through the desiccant rotor.

本発明の低温再生デシカント空調機の運転方法において、冷房時に外気のエンタルピーが設定したエンタルピーより高く、かつ還気湿度が設定した湿度より高い場合は、第1の経路切替装置を操作して全熱交換器を通る外気経路を選択するとともに、第2の経路切替装置を操作してデシカントロータを通る外気経路を選択することを特徴とする。   In the operation method of the low-temperature regeneration desiccant air conditioner of the present invention, when the enthalpy of the outside air is higher than the set enthalpy and the return air humidity is higher than the set humidity during cooling, the first path switching device is operated to operate the total heat The outside air path passing through the exchanger is selected, and the second path switching device is operated to select the outside air path passing through the desiccant rotor.

本発明の低温再生デシカント空調機の運転方法において、冷房時に外気のエンタルピーが設定したエンタルピーより低く、かつ還気湿度が設定した湿度より高い場合は、第1の経路切替装置を操作して全熱交換器バイパス経路を選択するとともに、第2の経路切替装置を操作してデシカントロータを通る外気経路を選択することを特徴とする。   In the operation method of the low-temperature regeneration desiccant air conditioner of the present invention, when the enthalpy of the outside air is lower than the set enthalpy and the return air humidity is higher than the set humidity during cooling, the first path switching device is operated to operate the total heat The exchanger bypass path is selected, and the second path switching device is operated to select the outside air path passing through the desiccant rotor.

本発明の低温再生デシカント空調機の運転方法において、暖房時は第1の経路切替装置を操作して全熱交換器を通る外気経路を選択するとともに、第2の経路切替装置を操作してデシカントロータを通る外気経路を選択することを特徴とする。   In the operation method of the low-temperature regeneration desiccant air conditioner of the present invention, during heating, the first path switching device is operated to select the outside air path passing through the total heat exchanger, and the second path switching device is operated to operate the desiccant. It is characterized by selecting an outside air path through the rotor.

以上のように本発明によれば、室内に取り入れる外気の湿度を制御することにより室内の潜熱負荷を調整することと、温度制御による顕熱負荷を調整することとを別々に処理するので、室内の温湿度制御の精度が高くなる。また、デシカントロータは還気により湿気を脱着させて再生するので、再生のための加熱源を基本的には必要とせず、エネルギーの無駄がなくなる。   As described above, according to the present invention, the adjustment of the latent heat load in the room by controlling the humidity of the outside air taken into the room and the adjustment of the sensible heat load by the temperature control are performed separately. The accuracy of temperature and humidity control is increased. Further, since the desiccant rotor is regenerated by dehumidifying it with return air, a heating source for regeneration is not basically required, and energy is not wasted.

外気のエンタルピーを制御指標として第1の経路切替装置を操作して、全熱交換器を迂回する全熱交換器バイパス経路と全熱交換器を通る外気経路とを切替えるとともに、還気湿度を制御指標として第2の経路切替装置を操作して、デシカントロータを迂回するデシカントロータバイパス経路と、デシカントロータを通る外気経路とを切替えることで、全熱交換器とデシカントロータを使い分けて冷却機器や加熱機器の能力を無駄なく使用する運転が実現できる。   Using the enthalpy of outside air as a control index, the first path switching device is operated to switch between the total heat exchanger bypass path that bypasses the total heat exchanger and the outside air path that passes through the total heat exchanger, and also controls the return air humidity By operating the second path switching device as an index and switching between the desiccant rotor bypass path that bypasses the desiccant rotor and the outside air path that passes through the desiccant rotor, the total heat exchanger and the desiccant rotor are used separately for cooling equipment and heating. Operation that uses the equipment's capabilities without waste can be realized.

冷房時に外気のエンタルピーが設定したエンタルピーより低く、かつ還気湿度が設定した湿度より高い場合は、第1の経路切替装置を操作して全熱交換器バイパス経路を選択するとともに、第2の経路切替装置を操作してデシカントロータを通る外気経路を選択する。この操作により、デシカントロータで除湿して冷却機器の能力を最小とし、加熱機器による再熱のエネルギーを小さくすることができる。   When the enthalpy of the outside air during cooling is lower than the set enthalpy and the return air humidity is higher than the set humidity, the first path switching device is operated to select the total heat exchanger bypass path, and the second path Operate the switching device to select the outside air path through the desiccant rotor. By this operation, the capacity of the cooling device can be minimized by dehumidifying with the desiccant rotor, and the energy of reheating by the heating device can be reduced.

本発明の実施の形態における空気調和機の構成を示し、冷房時の外気のエンタルピーが設定値より高く、還気湿度が設定値より高いピーク時の運転状態を示す模式図The schematic diagram which shows the structure of the air conditioner in embodiment of this invention, shows the driving | running state at the peak time when the enthalpy of the outside air at the time of air conditioning is higher than a setting value, and return air humidity is higher than a setting value 同実施の形態における冷房時の外気のエンタルピーが設定値より低く、還気湿度が設定値より高い中間期の運転状態を示す模式図The schematic diagram which shows the driving | running state of the interim period in which the enthalpy of the external air at the time of air_conditioning | cooling in the same embodiment is lower than a setting value, and return air humidity is higher than a setting value 同実施の形態における冬期の運転状態を示す模式図Schematic showing the winter driving state in the same embodiment 同実施の形態における冷房のピーク時の空気線図Airline diagram at the peak of cooling in the same embodiment 同実施の形態における中間期の空気線図Air diagram of the interim period in the same embodiment 同実施の形態における冬期の暖房時の空気線図Airline diagram during heating in winter in the same embodiment

以下、本発明の実施の形態を図面に基づいて説明する。
(実施の形態1)
図1、図2、図3において、低温再生デシカント空調機は、ケーシング1に外気口2、給気口3、還気口4、排気口5を有しており、ここでは外気口2から給気口3までの通気路を外気経路6とし、還気口4から排気口5までの通気路を還気経路7として説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
1, 2, and 3, the low-temperature regeneration desiccant air conditioner has an outside air port 2, an air supply port 3, a return air port 4, and an exhaust port 5 in the casing 1. The ventilation path from the air inlet 3 to the air outlet 6 will be described as the outside air path 6, and the air passage from the return air outlet 4 to the exhaust outlet 5 will be described as the return air path 7.

外気経路6には上流側から下流側へ順次に、プレフィルタ8、全熱交換器200、外気ファン9、潜熱制御部10、プレフィルタ11、中性能フィルタ121、顕熱制御部12、給気ファン13を介装している。給気口3には給気ダクト14が接続している。   In the outside air path 6, the prefilter 8, the total heat exchanger 200, the outside air fan 9, the latent heat control unit 10, the prefilter 11, the medium performance filter 121, the sensible heat control unit 12, the air supply are sequentially provided from the upstream side to the downstream side. A fan 13 is interposed. An air supply duct 14 is connected to the air supply port 3.

還気経路7には上流側から下流側へ順次に、プレフィルタ16、潜熱制御部10、全熱交換器200、排気ファン17を介装しており、還気口4に接続した還気ダクト18には還気温度センサ19および還気湿度センサ20を介装している。潜熱制御部10の外気経路6における下流側には、還気経路7と外気経路6とを連通する還気の戻り経路21と、還気の戻り経路21に設けた還気ダンパ22を有している。   In the return air path 7, a pre-filter 16, a latent heat control unit 10, a total heat exchanger 200, and an exhaust fan 17 are interposed in order from the upstream side to the downstream side, and a return air duct connected to the return air port 4. 18 is provided with a return air temperature sensor 19 and a return air humidity sensor 20. On the downstream side of the outside air path 6 of the latent heat control unit 10, there is a return air return path 21 that connects the return air path 7 and the outside air path 6, and a return air damper 22 provided in the return air return path 21. ing.

全熱交換器200は外気経路6のプレフィルタ8を通過した外気と、還気経路7の潜熱制御部10を通過した還気との間で熱と水分を交換するものであり、全熱交換器200としては回転型、静止型があるが、何れの形態であってもよい。   The total heat exchanger 200 exchanges heat and moisture between the outside air that has passed through the pre-filter 8 in the outside air path 6 and the return air that has passed through the latent heat control unit 10 in the return air path 7. The vessel 200 includes a rotary type and a stationary type, but may be any form.

外気経路6には全熱交換器バイパス経路201が設けてあり、全熱交換器バイパス経路201は全熱交換器200の上流側および下流側で外気経路6に連通して全熱交換器200を迂回する経路をなす。   A total heat exchanger bypass path 201 is provided in the outside air path 6, and the total heat exchanger bypass path 201 communicates with the outside air path 6 on the upstream side and the downstream side of the total heat exchanger 200 to connect the total heat exchanger 200. Make a detour route.

全熱交換器200を通る外気経路6と全熱交換器バイパス経路201とを切替える第1の経路切替装置として、第1および第2の全熱交換器通気制御用ダンパ202、203を設けている。   First and second total heat exchanger ventilation control dampers 202 and 203 are provided as a first path switching device that switches between the outside air path 6 passing through the total heat exchanger 200 and the total heat exchanger bypass path 201. .

第1の全熱交換器通気制御用ダンパ202は全熱交換器バイパス経路201に介装してあり、第2の全熱交換器通気制御用ダンパ203は全熱交換器200の上流側で、かつ全熱交換器バイパス経路201の分岐点より下流側の外気経路6に介装している。   The first total heat exchanger ventilation control damper 202 is interposed in the total heat exchanger bypass path 201, and the second total heat exchanger ventilation control damper 203 is upstream of the total heat exchanger 200. And it is interposed in the outdoor air path 6 downstream from the branch point of the total heat exchanger bypass path 201.

潜熱制御部10は、外気経路6に上流側から下流側へ順次に冷温水コイル101、デシカントロータ102、気化式加湿器103を介装し、還気経路7に上流側から下流側へ順次に温水コイル104、デシカントロータ102を介装している。   The latent heat control unit 10 includes a cold / hot water coil 101, a desiccant rotor 102, and a vaporizing humidifier 103 in the outside air path 6 sequentially from the upstream side to the downstream side, and sequentially enters the return air path 7 from the upstream side to the downstream side. A hot water coil 104 and a desiccant rotor 102 are interposed.

デシカントロータ102は、冷房モードでは外気経路6に対応する処理側で外気から湿気を収着し、還気経路7に対応する再生側で還気により湿気を脱着させて再生するものであり、暖房モードでは還気経路7に対応する処理側で還気から湿気を収着し、外気経路6に対応する再生側で外気により湿気を脱着させて再生するものである。   In the cooling mode, the desiccant rotor 102 sorbs moisture from the outside air on the processing side corresponding to the outside air path 6 and regenerates the moisture by desorbing the return air on the regeneration side corresponding to the return air path 7. In the mode, moisture is sorbed from the return air on the processing side corresponding to the return air path 7, and the moisture is desorbed and regenerated by the outside air on the regeneration side corresponding to the outside air path 6.

デシカントロータの収着材としては、ゼオライト、塩化リチウム、シリカゲルなどの乾燥剤や高分子収着材を用いるのがよく、本実施の形態では、低温再生での吸湿性が高い高分子収着材からなる。   As the desiccant rotor sorbent, it is preferable to use a desiccant such as zeolite, lithium chloride, or silica gel, or a polymer sorbent. In this embodiment, the polymer sorbent is highly hygroscopic during low-temperature regeneration. Consists of.

冷房モードでは、冷温水コイル101がデシカントロータ102へ通気する外気を冷却する外気予冷部として作用し、温水コイル104がデシカントロータ102へ通気する還気を加熱する還気予熱部として作用する。   In the cooling mode, the cold / hot water coil 101 functions as an external air precooling unit that cools the outside air that flows to the desiccant rotor 102, and the hot water coil 104 functions as a return air preheating unit that heats the return air that flows to the desiccant rotor 102.

暖房モードでは、冷温水コイル101がデシカントロータ102へ通気する外気を加熱する外気予熱部として作用し、気化式加湿器103がデシカントロータ102を通過した外気を加湿する外気加湿部として作用する。   In the heating mode, the cold / hot water coil 101 acts as an outside air preheating part that heats the outside air that flows to the desiccant rotor 102, and the vaporizing humidifier 103 acts as an outside air humidifying part that humidifies the outside air that has passed through the desiccant rotor 102.

外気経路6にはデシカントロータバイパス経路150が設けてあり、デシカントロータバイパス経路150は冷温水コイル101より下流側で、かつデシカントロータ102の上流側で外気経路6に連通するとともに、デシカントロータ102の下流側で外気経路6に連通してデシカントロータ102を迂回する経路をなす。   The outside air path 6 is provided with a desiccant rotor bypass path 150. The desiccant rotor bypass path 150 communicates with the outside air path 6 on the downstream side of the cold / hot water coil 101 and on the upstream side of the desiccant rotor 102. A path that communicates with the outside air path 6 on the downstream side and bypasses the desiccant rotor 102 is formed.

デシカントロータ102を通る外気経路6とデシカントロータバイパス経路150とを切替える第2の経路切替装置として、第1および第2のデシカントロータ通気制御用ダンパ151、152を設けている。   First and second desiccant rotor ventilation control dampers 151 and 152 are provided as second path switching devices for switching between the outside air path 6 passing through the desiccant rotor 102 and the desiccant rotor bypass path 150.

第1のデシカントロータ通気制御用ダンパ151はデシカントロータバイパス経路150に介装してあり、第2のデシカントロータ通気制御用ダンパ152はデシカントロータ102の上流側で、かつデシカントロータバイパス経路150の分岐点より下流側の外気経路6に介装している。   The first desiccant rotor ventilation control damper 151 is interposed in the desiccant rotor bypass path 150, and the second desiccant rotor ventilation control damper 152 is upstream of the desiccant rotor 102 and a branch of the desiccant rotor bypass path 150. It is interposed in the outside air path 6 downstream from the point.

顕熱制御部12は、外気経路6に上流側から下流側へ順次に冷水コイル122、温水コイル123を介装している。
還気温度センサ19は顕熱制御部10を制御する指標としての還気の温度を検知し、還気の温度に基づいて冷水コイル122、温水コイル123の各バルブ124、125を開閉制御もしくは開度制御する。
The sensible heat control unit 12 interposes the cold water coil 122 and the hot water coil 123 sequentially in the outside air path 6 from the upstream side to the downstream side.
The return air temperature sensor 19 detects the temperature of the return air as an index for controlling the sensible heat control unit 10, and controls the opening or closing of the valves 124 and 125 of the cold water coil 122 and the hot water coil 123 based on the return air temperature. Control the degree.

還気湿度センサ20は潜熱制御部12を制御する指標としての還気の湿度を検知し、還気の湿度に基づいて第2の経路切替装置の第1および第2のデシカントロータ通気制御用ダンパ151、152を開閉制御し、デシカントロータ102の運転の起動、停止もしくは回転数を制御し、冷温水コイル101、気化式加湿器103、温水コイル104の各バルブ107、108、109を開閉制御もしくは開度制御する。   The return air humidity sensor 20 detects the humidity of the return air as an index for controlling the latent heat control unit 12, and the first and second desiccant rotor ventilation control dampers of the second path switching device based on the humidity of the return air. 151, 152 is controlled to open / close, the operation of the desiccant rotor 102 is started, stopped, or the number of rotations is controlled, and the valves 107, 108, 109 of the cold / hot water coil 101, the vaporizing humidifier 103, and the hot water coil 104 are controlled to open / close. Control the opening.

第1の経路切替装置の制御指標として外気のエンタルピーを測定するエンタルピー測定手段は、本実施の形態では外気の温度を測定する外気温度センサ301と外気の湿度を測定する外気湿度センサ302からなる。   In this embodiment, the enthalpy measuring means for measuring the enthalpy of the outside air as a control index of the first path switching device includes an outside air temperature sensor 301 for measuring the temperature of the outside air and an outside air humidity sensor 302 for measuring the humidity of the outside air.

外気温度センサ301と外気湿度センサ302はそれぞれ、第1の全熱交換器通気制御用ダンパ202、第2の全熱交換器通気制御用ダンパ203に接続している。
第1の全熱交換器通気制御用ダンパ202、第2の全熱交換器通気制御用ダンパ203の制御部は、外気温度センサ301と外気湿度センサ302の測定値を受けて外気のエンタルピーを算出するとともに、予め設定したエンタルピーと比較して開閉動作を制御する。
The outside air temperature sensor 301 and the outside air humidity sensor 302 are connected to the first total heat exchanger ventilation control damper 202 and the second total heat exchanger ventilation control damper 203, respectively.
The control units of the first total heat exchanger aeration control damper 202 and the second total heat exchanger aeration control damper 203 receive the measured values of the outside air temperature sensor 301 and the outside air humidity sensor 302 and calculate the enthalpy of the outside air. In addition, the opening / closing operation is controlled in comparison with a preset enthalpy.

上述した本実施の形態においては、プレフィルタ8、11と中性能フィルタ121および外気ファン9は必ずしも必要ではなく、必要に応じて設置するものであり、温水コイル104は冷房モードの基本的な運転においては不要であるが、冷温水コイル101の予冷による除湿能力が不足する時にデシカントロータ102へ通気する還気を加熱する還気予熱部として作用し、デシカントロータ102を加熱再生して除湿能力を確保するバックアップ機能を果すものである。   In the present embodiment described above, the pre-filters 8 and 11, the medium-performance filter 121, and the outside air fan 9 are not necessarily required and are installed as necessary, and the hot water coil 104 is basically operated in the cooling mode. However, when the dehumidifying capacity due to the pre-cooling of the cold / hot water coil 101 is insufficient, it acts as a return air preheating unit that heats the return air that is vented to the desiccant rotor 102, and the desiccant rotor 102 is heated and regenerated to increase the dehumidifying capacity. It performs the backup function to ensure.

以下、上記した構成における作用を説明する。本実施の形態の低温再生デシカント空調機の基本的な作用は以下のものである。すなわち、還気の戻り経路21を通して還気が合流する還気混合前に、外気経路6を流れる外気の潜熱(湿度)を潜熱制御部10で制御し、還気混合後に還気を含む外気の顕熱(温度)を顕熱制御部12で制御して室内へ給気し、室内からの還気を潜熱制御部10を通して排気する。
つまり、潜熱制御部10において室内に取り入れる外気の湿度制御を行うことで室内の潜熱負荷を処理し、顕熱制御部12において外気と還気の混合空気の温度制御を行うことで室内の顕熱負荷を処理する。このように、室内の潜熱負荷と顕熱負荷を別々に処理することで室内の温湿度制御の精度が高くなり、エネルギーの無駄がなくなる。
Hereinafter, the operation of the above-described configuration will be described. The basic operation of the low temperature regeneration desiccant air conditioner of the present embodiment is as follows. That is, the latent heat (humidity) of the outside air flowing through the outside air path 6 is controlled by the latent heat control unit 10 before the return air mixing through which the return air merges through the return air return path 21, and the outside air including the return air after the return air mixing The sensible heat (temperature) is controlled by the sensible heat control unit 12 to supply air into the room, and the return air from the room is exhausted through the latent heat control unit 10.
That is, the latent heat control unit 10 controls the humidity of the outside air taken into the room to process the latent heat load in the room, and the sensible heat control unit 12 controls the temperature of the mixed air of the outside air and the return air to thereby sensible heat in the room. Handle the load. In this way, by separately processing the indoor latent heat load and the sensible heat load, the accuracy of indoor temperature and humidity control is increased, and energy is not wasted.

(冷房ピーク時)
図1および図4において、冷房モードの外気のエンタルピーが設定値のエンタルピーより高く、還気の湿度が高い場合の冷房のピーク時の運転について説明する。
(At peak cooling)
1 and 4, the operation at the peak time of cooling when the enthalpy of the outside air in the cooling mode is higher than the enthalpy of the set value and the return air humidity is high will be described.

第1の全熱交換器通気制御用ダンパ202、第2の全熱交換器通気制御用ダンパ203の制御部は、外気温度センサ301と外気湿度センサ302の測定値を受けて外気のエンタルピーを算出する。   The control units of the first total heat exchanger aeration control damper 202 and the second total heat exchanger aeration control damper 203 receive the measured values of the outside air temperature sensor 301 and the outside air humidity sensor 302 and calculate the enthalpy of the outside air. To do.

制御部は、算出した外気のエンタルピーと予め設定した設定値のエンタルピーとを比較してダンパの開閉動作を制御する。
外気OAのエンタルピーが設定値のエンタルピーより高い場合には、第1の全熱交換器通気制御用ダンパ202を閉操作し、第2の全熱交換器通気制御用ダンパ203を開操作する。
The control unit controls the opening / closing operation of the damper by comparing the calculated enthalpy of the outside air with the preset enthalpy of the set value.
When the enthalpy of the outside air OA is higher than the enthalpy of the set value, the first total heat exchanger aeration control damper 202 is closed and the second total heat exchanger aeration control damper 203 is opened.

第1のデシカントロータ通気制御用ダンパ151、第2のデシカントロータ通気制御用ダンパ152の制御部は、還気湿度センサ20の測定値と予め設定した還気湿度とを比較してダンパの開閉動作を制御する。   The control units of the first desiccant rotor ventilation control damper 151 and the second desiccant rotor ventilation control damper 152 compare the measured value of the return air humidity sensor 20 with a preset return air humidity to open and close the damper. To control.

還気RAの湿度が設定値の湿度より高い場合には、第1のデシカントロータ通気制御用ダンパ151を閉操作し、第2のデシカントロータ通気制御用ダンパ152を開操作する。   When the humidity of the return air RA is higher than the set humidity, the first desiccant rotor ventilation control damper 151 is closed and the second desiccant rotor ventilation control damper 152 is opened.

この冷房のピーク時においては、外気OAを全熱交換器200および冷温水コイル101で冷却し、潜熱制御部10を通過した外気OAに還気RAの戻り経路21を通して還気RAを混合し、還気混合後の外気OAを顕熱制御部12へ通気させて冷水コイル122により冷却し、顕熱(温度)を制御して顕熱負荷を処理し、顕熱制御部12を通過した給気SAを室内へ送気することで、全熱交換器200により外気の熱負荷を低減して省エネルギー化を実現でき、デシカントロータ102で除湿することで、冷温水コイル101の能力を最小にした運転が実現できる。   At the peak of cooling, the outside air OA is cooled by the total heat exchanger 200 and the cold / hot water coil 101, and the return air RA is mixed with the outside air OA that has passed through the latent heat control unit 10 through the return path 21 of the return air RA. The outside air OA after the return air mixture is passed through the sensible heat control unit 12 and cooled by the cold water coil 122, the sensible heat is processed by controlling the sensible heat (temperature), and the supply air that has passed through the sensible heat control unit 12 By supplying the SA into the room, the total heat exchanger 200 can reduce the heat load of the outside air to save energy, and the desiccant rotor 102 dehumidifies the operation to minimize the capacity of the cold / hot water coil 101. Can be realized.

すなわち、外気OAを全熱交換器200で冷却して減温、減湿した後に、冷温水コイル101により冷却し、その乾球温度および絶対湿度を低減させる。予冷した外気OAはデシカントロータ102の外気経路側を通過し、外気OAの湿気をデシカントロータ102が収着して除湿し、その絶対湿度を低減させて潜熱(湿度)を制御する。デシカントロータ102は還気経路側で還気RAにより湿気を脱着させて再生する。このため、還気RAのエネルギーをデシカントロータ102の再生エネルギーとして有効に利用でき、デシカントロータ102を別途の熱源による加熱を要することなく再生でき、省エネが図られる。   That is, the outside air OA is cooled by the total heat exchanger 200 to reduce the temperature and humidity, and then cooled by the cold / hot water coil 101 to reduce the dry bulb temperature and absolute humidity. The pre-cooled outside air OA passes through the outside air path side of the desiccant rotor 102, the desiccant rotor 102 sorbs and dehumidifies the humidity of the outside air OA, and the absolute humidity is reduced to control latent heat (humidity). The desiccant rotor 102 regenerates the moisture by desorbing the return air RA on the return air path side. For this reason, the energy of the return air RA can be effectively used as the regeneration energy of the desiccant rotor 102, and the desiccant rotor 102 can be regenerated without requiring heating by a separate heat source, thereby saving energy.

潜熱制御部10および顕熱制御部12は還気湿度センサ20で検知する還気RAの湿度および還気温度センサ19で検知する還気RAの温度を指標として制御する。
すなわち、還気湿度センサ20は潜熱制御部10を制御する指標としての還気RAの湿度を検知し、還気RAの湿度に基づいて冷温水コイル101のバルブ107を開閉制御もしくは開度制御して冷水の流量を制御して除湿量を制御し、室内へ供給する空気の絶対湿度を制御する。
The latent heat control unit 10 and the sensible heat control unit 12 control the humidity of the return air RA detected by the return air humidity sensor 20 and the temperature of the return air RA detected by the return air temperature sensor 19 as indexes.
That is, the return air humidity sensor 20 detects the humidity of the return air RA as an index for controlling the latent heat control unit 10, and controls opening / closing or opening of the valve 107 of the cold / hot water coil 101 based on the humidity of the return air RA. The amount of dehumidification is controlled by controlling the flow rate of cold water, and the absolute humidity of the air supplied to the room is controlled.

還気温度センサ19は顕熱制御部12を制御する指標としての還気RAの温度を検知し、還気RAの温度に基づいて冷水コイル122のバルブ124を開閉制御もしく開度制御して冷水の流量を制御し、室内へ供給する空気の温度を制御する。
このように、全熱交換器200と冷温水コイル101とデシカントロータ102を併用することで、冷温水コイル101の消費エネルギーを低減しつつ、乾球温度および絶対湿度を低減させた外気OAをデシカントロータ102に通気させることができる。
The return air temperature sensor 19 detects the temperature of the return air RA as an index for controlling the sensible heat control unit 12 and controls the opening / closing or opening of the valve 124 of the cold water coil 122 based on the temperature of the return air RA. The flow rate of cold water is controlled, and the temperature of air supplied to the room is controlled.
Thus, the combined use of the total heat exchanger 200, the cold / hot water coil 101, and the desiccant rotor 102 reduces the energy consumed by the cold / hot water coil 101, while reducing the dry air temperature and the absolute humidity OA to the desiccant. The rotor 102 can be vented.

(中間期)
図2および図5において、冷房モードの外気OAのエンタルピーが設定値のエンタルピーより低く、還気RAの湿度が高い場合について説明する。
(Interim period)
2 and 5, the case where the enthalpy of the outside air OA in the cooling mode is lower than the set value enthalpy and the humidity of the return air RA is high will be described.

外気OAのエンタルピーが設定値のエンタルピーより低い場合には、第1の全熱交換器通気制御用ダンパ202を開操作し、第2の全熱交換器通気制御用ダンパ203を閉操作する。   When the enthalpy of the outside air OA is lower than the enthalpy of the set value, the first total heat exchanger ventilation control damper 202 is opened, and the second total heat exchanger ventilation control damper 203 is closed.

還気RAの湿度が設定値の湿度より高い場合には、第1のデシカントロータ通気制御用ダンパ151を閉操作し、第2のデシカントロータ通気制御用ダンパ152を開操作する。   When the humidity of the return air RA is higher than the set humidity, the first desiccant rotor ventilation control damper 151 is closed and the second desiccant rotor ventilation control damper 152 is opened.

この中間期の冷房モードにおいては、デシカントロータ102で除湿することで、冷温水コイル101の能力を最小にした運転が実現できる。
すなわち、デシカントロータ102へ通気する外気OAを冷温水コイル101により冷却し、その乾球温度および絶対湿度を低減させる。予冷した外気OAはデシカントロータ102の外気経路側を通過し、外気OAの湿気をデシカントロータ102が収着して除湿し、その絶対湿度を低減させて潜熱(湿度)を制御する。デシカントロータ102は還気経路側で還気RAにより湿気を脱着させて再生する。このため、還気RAのエネルギーをデシカントロータ102の再生エネルギーとして有効に利用でき、デシカントロータ102を別途の熱源による加熱を要することなく再生でき、省エネが図られる。
In the cooling mode in the intermediate period, by performing dehumidification with the desiccant rotor 102, an operation with the capability of the cold / hot water coil 101 minimized can be realized.
That is, the outside air OA ventilated to the desiccant rotor 102 is cooled by the cold / hot water coil 101, and the dry bulb temperature and absolute humidity are reduced. The pre-cooled outside air OA passes through the outside air path side of the desiccant rotor 102, the desiccant rotor 102 sorbs and dehumidifies the humidity of the outside air OA, and the absolute humidity is reduced to control latent heat (humidity). The desiccant rotor 102 regenerates the moisture by desorbing the return air RA on the return air path side. For this reason, the energy of the return air RA can be effectively used as the regeneration energy of the desiccant rotor 102, and the desiccant rotor 102 can be regenerated without requiring heating by a separate heat source, thereby saving energy.

そして、潜熱制御部10を通過した外気OAに還気の戻り経路21を通して還気RAを混合し、還気混合後の外気OAを顕熱制御部12へ通気させて冷水コイル122により冷却し、顕熱(温度)を制御して顕熱負荷を処理し、顕熱制御部12を通過した給気SAを室内へ送気する。   Then, the return air RA is mixed with the outside air OA that has passed through the latent heat control unit 10 through the return path 21 of the return air, and the outside air OA after the return air mixing is ventilated to the sensible heat control unit 12 and cooled by the cold water coil 122, The sensible heat (temperature) is controlled to process the sensible heat load, and the supply air SA that has passed through the sensible heat control unit 12 is sent into the room.

潜熱制御部10および顕熱制御部12は還気湿度センサ20で検知する還気RAの湿度および還気温度センサ19で検知する還気RAの温度を指標として制御する。
すなわち、還気湿度センサ20は潜熱制御部10を制御する指標としての還気RAの湿度を検知し、還気RAの湿度に基づいて冷温水コイル101のバルブ107を開閉制御もしくは開度制御して冷水の流量を制御して除湿量を制御し、還気RAの湿度に基づいてデシカントロータ102の運転の起動、停止もしくは回転数を制御し、室内へ供給する空気の絶対湿度を制御する。
The latent heat control unit 10 and the sensible heat control unit 12 control the humidity of the return air RA detected by the return air humidity sensor 20 and the temperature of the return air RA detected by the return air temperature sensor 19 as indexes.
That is, the return air humidity sensor 20 detects the humidity of the return air RA as an index for controlling the latent heat control unit 10, and controls opening / closing or opening of the valve 107 of the cold / hot water coil 101 based on the humidity of the return air RA. Thus, the flow rate of the cold water is controlled to control the dehumidification amount, the operation of the desiccant rotor 102 is started, stopped or rotated based on the humidity of the return air RA, and the absolute humidity of the air supplied to the room is controlled.

還気温度センサ19は顕熱制御部12を制御する指標としての還気RAの温度を検知し、還気RAの温度に基づいて冷水コイル122のバルブ124を開閉制御もしくは開度制御して冷水の流量を制御し、室内へ供給する空気の温度を制御する。   The return air temperature sensor 19 detects the temperature of the return air RA as an index for controlling the sensible heat control unit 12, and controls the valve 124 of the chilled water coil 122 to open / close or control the opening degree based on the temperature of the return air RA. The flow rate of the air is controlled, and the temperature of the air supplied to the room is controlled.

そして、冷水コイル122と温水コイル123により除湿冷却と再熱制御を行う。還気湿度センサ20で検出する還気RAの相対湿度が設定値+10%の範囲内になったらデシカントロータ102および冷温水コイル101の運転を再開する。この運転制御により、デシカントロータ102におけるエネルギーロスを低減できる。
このように、デシカントロータ102と冷温水コイル101を使用することで、高温低湿の室内条件を過冷却なしで実現できる。
冷温水コイル101の予冷による除湿能力が不足する時には、還気RAを温水コイル104で加熱してデシカントロータ102へ通気することでデシカントロータ102を加熱再生して除湿能力を確保する。
Then, the cold water coil 122 and the hot water coil 123 perform dehumidification cooling and reheat control. When the relative humidity of the return air RA detected by the return air humidity sensor 20 falls within the set value + 10%, the operation of the desiccant rotor 102 and the cold / hot water coil 101 is resumed. By this operation control, energy loss in the desiccant rotor 102 can be reduced.
Thus, by using the desiccant rotor 102 and the cold / hot water coil 101, the indoor conditions of high temperature and low humidity can be realized without supercooling.
When the dehumidifying capacity due to the pre-cooling of the cold / hot water coil 101 is insufficient, the desiccant rotor 102 is heated and regenerated by heating the return air RA with the hot water coil 104 and ventilating the desiccant rotor 102 to ensure the dehumidifying capacity.

(暖房モード)
図3および図6において暖房モードの運転について説明する。暖房モードにおいては、第1の全熱交換器通気制御用ダンパ202を閉操作し、第2の全熱交換器通気制御用ダンパ203を開操作し、第1のデシカントロータ通気制御用ダンパ151を閉操作し、第2のデシカントロータ通気制御用ダンパ152を開操作する。
(Heating mode)
The operation in the heating mode will be described with reference to FIGS. In the heating mode, the first total heat exchanger ventilation control damper 202 is closed, the second total heat exchanger ventilation control damper 203 is opened, and the first desiccant rotor ventilation control damper 151 is opened. The closing operation is performed, and the second desiccant rotor ventilation control damper 152 is opened.

この暖房モードでは、冷温水コイル101でデシカントロータ102を再生することで、還気RAより吸収した水分を給気側で加湿に使用することができる。
すなわち、デシカントロータ102へ通気する外気OAを冷温水コイル101により加熱する。予熱した外気OAはデシカントロータ102の外気経路側を通過し、外気OAでデシカントロータ102から湿気を脱着させて再生し、外気OAを加湿する。デシカントロータ102は還気経路側で還気RAから湿気を収着する。このように、室内からの水分を外気OAに移行させることで、加湿に必要な水の使用量を低減させることができる。
In this heating mode, by regenerating the desiccant rotor 102 with the cold / hot water coil 101, the moisture absorbed from the return air RA can be used for humidification on the air supply side.
That is, the outside air OA that is ventilated to the desiccant rotor 102 is heated by the cold / hot water coil 101. The preheated outside air OA passes through the outside air path side of the desiccant rotor 102, is regenerated by desorbing moisture from the desiccant rotor 102 with the outside air OA, and humidifies the outside air OA. The desiccant rotor 102 sorbs moisture from the return air RA on the return air path side. Thus, the amount of water used for humidification can be reduced by transferring the moisture from the room to the outside air OA.

そして、潜熱制御部10を通過した外気OAに還気の戻り経路21を通して還気RAを混合し、還気混合後の外気OAを顕熱制御部12へ通気させて温水コイル123により加熱し、顕熱(温度)を制御して顕熱負荷を処理し、顕熱制御部12を通過した給気SAを室内へ送気する。   Then, the return air RA is mixed with the outside air OA that has passed through the latent heat control unit 10 through the return path 21 of the return air, the outside air OA after the return air mixing is passed through the sensible heat control unit 12 and heated by the hot water coil 123, The sensible heat (temperature) is controlled to process the sensible heat load, and the supply air SA that has passed through the sensible heat control unit 12 is sent into the room.

潜熱制御部10および顕熱制御部12は還気湿度センサ20で検知する還気RAの湿度および還気温度センサ19で検知する還気RAの温度を指標として制御する。
すなわち、還気湿度センサ20は潜熱制御部10を制御する指標としての還気RAの湿度を検知し、還気RAの湿度に基づいて冷温水コイル101のバルブ107を開閉制御もしく開度制御して温水の流量の制御により加熱を調整し、デシカントロータ102における加湿量を制御するとともに、還気RAの湿度に基づいてデシカントロータ102の運転の起動、停止もしくは回転数を制御し、室内へ供給する空気の絶対湿度を制御する。加湿が不足する場合には、気化式加湿器103により外気OAを加湿する。
The latent heat control unit 10 and the sensible heat control unit 12 control the humidity of the return air RA detected by the return air humidity sensor 20 and the temperature of the return air RA detected by the return air temperature sensor 19 as indexes.
That is, the return air humidity sensor 20 detects the humidity of the return air RA as an index for controlling the latent heat control unit 10, and controls the opening / closing or opening degree of the valve 107 of the cold / hot water coil 101 based on the humidity of the return air RA. Then, the heating is adjusted by controlling the flow rate of the hot water, the amount of humidification in the desiccant rotor 102 is controlled, and the operation of the desiccant rotor 102 is started, stopped, or the number of revolutions is controlled based on the humidity of the return air RA. Control the absolute humidity of the supplied air. When humidification is insufficient, the outside air OA is humidified by the vaporizing humidifier 103.

還気温度センサ19は顕熱制御部12を制御する指標としての還気RAの温度を検知し、還気RAの温度に基づいて温水コイル123のバルブ125を開閉制御もしくは開度制御して温水の流量を制御し、室内へ供給する空気の温度を制御する。   The return air temperature sensor 19 detects the temperature of the return air RA as an index for controlling the sensible heat control unit 12, and controls the valve 125 of the hot water coil 123 to open / close or open based on the temperature of the return air RA. The flow rate of the air is controlled, and the temperature of the air supplied to the room is controlled.

上述した実施の形態では、室内負荷を処理するのに必要な風量を確保するために還気の戻り経路21を設けて、外気OAと還気RAを混合するようにしていたが、外気風量だけで室内顕熱負荷を賄える場合や別途空調機を設けたりする場合は、還気の戻り経路21を設けない構成であってもよい。   In the above-described embodiment, the return air return path 21 is provided in order to secure the air volume necessary for processing the indoor load, and the outside air OA and the return air RA are mixed. In the case where the indoor sensible heat load can be covered or a separate air conditioner is provided, the return air return path 21 may not be provided.

上述した実施の形態では、還気温度センサ19、還気湿度センサ20は、還気ダクト18に設けられていたが、ケーシング1内の還気経路7や、被管理空間の室内に設けてもよい。   In the embodiment described above, the return air temperature sensor 19 and the return air humidity sensor 20 are provided in the return air duct 18, but may be provided in the return air path 7 in the casing 1 or in the room of the managed space. Good.

1 ケーシング
2 外気口
3 給気口
4 還気口
5 排気口
6 外気経路
7 還気経路
8 プレフィルタ
9 外気ファン
10 潜熱制御部
11 プレフィルタ
12 顕熱制御部
13 給気ファン
14 給気ダクト
16 プレフィルタ
17 排気ファン
18 還気ダクト
19 還気温度センサ
20 還気湿度センサ
21 還気の戻り経路
22 還気ダンパ
101 冷温水コイル
102 デシカントロータ
103 気化式加湿器
104 温水コイル
107、108、109、124、125 バルブ
121 中性能フィルタ
122 冷水コイル
123 温水コイル
150 デシカントロータバイパス経路
151 第1のデシカントロータ通気制御用ダンパ
152 第2のデシカントロータ通気制御用ダンパ
200 全熱交換器
201 全熱交換器バイパス経路
202 第1の全熱交換器通気制御用ダンパ
203 第2の全熱交換器通気制御用ダンパ
301 外気温度センサ
302 外気湿度センサ
DESCRIPTION OF SYMBOLS 1 Casing 2 Outside air port 3 Air supply port 4 Return air port 5 Exhaust port 6 Outside air path 7 Return air path 8 Prefilter 9 Outside air fan 10 Latent heat control part 11 Prefilter 12 Sensible heat control part 13 Supply air fan 14 Supply air duct 16 Pre-filter 17 Exhaust fan 18 Return air duct 19 Return air temperature sensor 20 Return air humidity sensor 21 Return air return path 22 Return air damper 101 Cold / hot water coil 102 Desiccant rotor 103 Evaporative humidifier 104 Hot water coils 107, 108, 109, 124, 125 Valve 121 Medium performance filter 122 Cold water coil 123 Hot water coil 150 Desiccant rotor bypass path 151 First desiccant rotor ventilation control damper 152 Second desiccant rotor ventilation control damper 200 Total heat exchanger 201 Total heat exchanger bypass Path 202 first total heat exchange Ventilation control damper 203 Second total heat exchanger ventilation control damper 301 Outside temperature sensor 302 Outside air humidity sensor

Claims (8)

外気を室内へ給気する外気経路と、室内からの還気を排気する還気経路と、外気経路の外気の潜熱を制御する潜熱制御部と、外気経路の外気の顕熱を制御する顕熱制御部と、外気と還気との間で顕熱および潜熱を交換する全熱交換器部を備え、
全熱交換器部は、潜熱制御部へ通気する外気経路の外気と潜熱制御部を通過した還気経路の還気との間で顕熱および潜熱を交換する全熱交換器と、全熱交換器の上流側および下流側で外気経路に連通して全熱交換器を迂回する全熱交換器バイパス経路と、全熱交換器を通る外気経路と全熱交換器バイパス経路とを切替える第1の経路切替装置を有し、
潜熱制御部は、外気経路の外気から湿気を収着して還気経路側で還気により湿気を脱着させて再生するデシカントロータと、冷房時にデシカントロータへ通気する外気を冷却し、暖房時デシカントロータへ通気する外気を加熱する冷温水コイルと、デシカントロータの上流側および下流側で外気経路に連通してデシカントロータを迂回するデシカントロータバイパス経路と、デシカントロータを通る外気経路とデシカントロータバイパス経路とを切替える第2の経路切替装置を有し、
第1の経路切替装置の制御指標として外気のエンタルピーを測定するエンタルピー測定手段を備え、
第2の経路切替装置の制御指標として還気の湿度を検知する還気湿度センサーを備えることを特徴とする低温再生デシカント空調機。
An outside air path for supplying outside air to the room, a return air path for exhausting the return air from the room, a latent heat control unit for controlling the latent heat of the outside air in the outside air path, and a sensible heat for controlling the sensible heat of the outside air in the outside air path A control unit and a total heat exchanger unit that exchanges sensible heat and latent heat between outside air and return air,
The total heat exchanger unit is a total heat exchanger that exchanges sensible heat and latent heat between the outside air in the outside air path that vents to the latent heat control unit and the return air in the return air path that passes through the latent heat control unit. A first heat exchanger bypass path that communicates with the outside air path upstream and downstream of the heat exchanger to bypass the total heat exchanger, and an outside air path that passes through the total heat exchanger, and a first heat exchanger bypass path. Having a route switching device,
The latent heat control unit cools the desiccant rotor that sorbs moisture from the outside air in the outside air path and desorbs the moisture by return air on the return air path side, and cools the outside air that is vented to the desiccant rotor during cooling. A cold / hot water coil that heats the outside air that is vented to the rotor, a desiccant rotor bypass path that communicates with the outside air path upstream and downstream of the desiccant rotor and bypasses the desiccant rotor, and an outside air path and a desiccant rotor bypass path that passes through the desiccant rotor A second path switching device that switches between
An enthalpy measuring means for measuring the enthalpy of outside air as a control index of the first path switching device;
A low-temperature regeneration desiccant air conditioner comprising a return air humidity sensor for detecting the return air humidity as a control index of the second path switching device.
潜熱制御部は、デシカントロータへ通気する還気を加熱する還気予熱部を備えることを特徴とする請求項1に記載の低温再生デシカント空調機。   The low-temperature regeneration desiccant air conditioner according to claim 1, wherein the latent heat control unit includes a return air preheating unit that heats the return air that flows to the desiccant rotor. 潜熱制御部は、デシカントロータを通過した外気を加湿する外気加湿部を備えることを特徴とする請求項1または2に記載の低温再生デシカント空調機。   The low-temperature regeneration desiccant air conditioner according to claim 1 or 2, wherein the latent heat control unit includes an outside air humidifying unit that humidifies outside air that has passed through the desiccant rotor. 潜熱制御部の下流において還気経路と外気経路を連通する還気の戻り経路を有することを特徴とする請求項1から3の何れか1項に記載の低温再生デシカント空調機。   The low-temperature regeneration desiccant air conditioner according to any one of claims 1 to 3, further comprising a return air return path communicating with the return air path and the outside air path downstream of the latent heat control unit. 室内へ給気する外気の潜熱を潜熱制御部で制御し、潜熱制御部を通過した外気の顕熱を顕熱制御部で制御し、顕熱制御部を通過した外気を室内へ給気し、室内からの還気を潜熱制御部を通して排気し、全熱交換器によって潜熱制御部へ通気する外気と潜熱制御部を通過した還気との間で顕熱および潜熱を交換し、エンタルピー測定手段により外気のエンタルピーを測定し、外気のエンタルピーを制御指標として第1の経路切替装置を操作することで、全熱交換器の上流側の外気経路と下流側の外気経路とに連通して全熱交換器を迂回する全熱交換器バイパス経路と全熱交換器を通る外気経路とを切替えるとともに、還気湿度を制御指標として第2の経路切替装置を操作することで、デシカントロータの上流側の外気経路と下流側の外気経路とに連通してデシカントロータを迂回するデシカントロータバイパス経路と、デシカントロータを通る外気経路とを切替えることを特徴とする低温再生デシカント空調機の運転方法。   The latent heat of the outside air supplied into the room is controlled by the latent heat control unit, the sensible heat of the outside air that has passed through the latent heat control unit is controlled by the sensible heat control unit, and the outside air that has passed through the sensible heat control unit is supplied into the room, The return air from the room is exhausted through the latent heat control unit, and the sensible heat and latent heat are exchanged between the outside air that is vented to the latent heat control unit by the total heat exchanger and the return air that has passed through the latent heat control unit. By measuring the enthalpy of the outside air and operating the first path switching device using the enthalpy of the outside air as a control index, total heat exchange is established between the outside air path on the upstream side of the total heat exchanger and the outside air path on the downstream side. Switching between the total heat exchanger bypass path that bypasses the heat exchanger and the outside air path that passes through the total heat exchanger, and operating the second path switching device using the return air humidity as a control index, thereby allowing the outside air upstream of the desiccant rotor to operate. Path and downstream outside air path Low temperature desiccant air conditioner method operation and switches the desiccant rotor bypass path bypassing the desiccant rotor communicates, and outside air path through the desiccant rotor. 冷房時に外気のエンタルピーが設定したエンタルピーより高く、かつ還気湿度が設定した湿度より高い場合は、第1の経路切替装置を操作して全熱交換器を通る外気経路を選択するとともに、第2の経路切替装置を操作してデシカントロータを通る外気経路を選択することを特徴とする請求項5に記載の低温再生デシカント空調機の運転方法。   When the enthalpy of the outside air is higher than the set enthalpy during cooling and the return air humidity is higher than the set humidity, the first path switching device is operated to select the outside air path through the total heat exchanger, and the second The operating method of the low-temperature regeneration desiccant air conditioner according to claim 5, wherein an outside air path passing through the desiccant rotor is selected by operating the path switching device. 冷房時に外気のエンタルピーが設定したエンタルピーより低く、かつ還気湿度が設定した湿度より高い場合は、第1の経路切替装置を操作して全熱交換器バイパス経路を選択するとともに、第2の経路切替装置を操作してデシカントロータを通る外気経路を選択することを特徴とする請求項5に記載の低温再生デシカント空調機の運転方法。   When the enthalpy of the outside air during cooling is lower than the set enthalpy and the return air humidity is higher than the set humidity, the first path switching device is operated to select the total heat exchanger bypass path, and the second path The operating method of the low-temperature regeneration desiccant air conditioner according to claim 5, wherein the switching device is operated to select an outside air path passing through the desiccant rotor. 暖房時は第1の経路切替装置を操作して全熱交換器を通る外気経路を選択するとともに、第2の経路切替装置を操作してデシカントロータを通る外気経路を選択することを特徴とする請求項5に記載の低温再生デシカント空調機の運転方法。   During heating, the first path switching device is operated to select the outside air path passing through the total heat exchanger, and the second path switching device is operated to select the outside air path passing through the desiccant rotor. The operating method of the low-temperature regeneration desiccant air conditioner according to claim 5.
JP2015083812A 2015-04-16 2015-04-16 Low temperature regeneration desiccant air conditioner Active JP6532270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015083812A JP6532270B2 (en) 2015-04-16 2015-04-16 Low temperature regeneration desiccant air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015083812A JP6532270B2 (en) 2015-04-16 2015-04-16 Low temperature regeneration desiccant air conditioner

Publications (2)

Publication Number Publication Date
JP2016205642A true JP2016205642A (en) 2016-12-08
JP6532270B2 JP6532270B2 (en) 2019-06-19

Family

ID=57489360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015083812A Active JP6532270B2 (en) 2015-04-16 2015-04-16 Low temperature regeneration desiccant air conditioner

Country Status (1)

Country Link
JP (1) JP6532270B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045124A (en) * 2017-09-07 2019-03-22 株式会社竹中工務店 Desiccant air conditioner
CN109945329A (en) * 2019-04-26 2019-06-28 国药集团重庆医药设计院有限公司 Low temperature isolator air-conditioning system for the production of medicine enterprise
JP2020514653A (en) * 2016-12-28 2020-05-21 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Dehumidifying / evaporative cooling type 100% outdoor air conditioning system and control method thereof
JP2021514073A (en) * 2018-02-15 2021-06-03 イー インク コーポレイション Installation of vias for a narrow frame electro-optical display backplane with reduced capacitive coupling between the T-wire and the pixel electrodes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118581A (en) * 1991-09-21 1993-05-14 Ebara Corp Air-conditioning machine
JP2007024377A (en) * 2005-07-14 2007-02-01 Osaka Gas Co Ltd Air conditioner
US20100300123A1 (en) * 2009-06-01 2010-12-02 Air-Tech Engineering Co., Ltd. Hybrid desiccant dehumidifying apparatus and control method thereof
JP2014097437A (en) * 2012-11-13 2014-05-29 Seibu Giken Co Ltd Glove box
JP5542701B2 (en) * 2011-01-11 2014-07-09 株式会社竹中工務店 Low temperature regeneration desiccant air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118581A (en) * 1991-09-21 1993-05-14 Ebara Corp Air-conditioning machine
JP2007024377A (en) * 2005-07-14 2007-02-01 Osaka Gas Co Ltd Air conditioner
US20100300123A1 (en) * 2009-06-01 2010-12-02 Air-Tech Engineering Co., Ltd. Hybrid desiccant dehumidifying apparatus and control method thereof
JP5542701B2 (en) * 2011-01-11 2014-07-09 株式会社竹中工務店 Low temperature regeneration desiccant air conditioner
JP2014097437A (en) * 2012-11-13 2014-05-29 Seibu Giken Co Ltd Glove box

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514653A (en) * 2016-12-28 2020-05-21 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Dehumidifying / evaporative cooling type 100% outdoor air conditioning system and control method thereof
JP7036495B2 (en) 2016-12-28 2022-03-15 アイユーシーエフ-エイチワイユー(インダストリー-ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Dehumidifying / evaporative cooling 100% outdoor air conditioning system and its control method
JP2019045124A (en) * 2017-09-07 2019-03-22 株式会社竹中工務店 Desiccant air conditioner
JP2021514073A (en) * 2018-02-15 2021-06-03 イー インク コーポレイション Installation of vias for a narrow frame electro-optical display backplane with reduced capacitive coupling between the T-wire and the pixel electrodes
CN109945329A (en) * 2019-04-26 2019-06-28 国药集团重庆医药设计院有限公司 Low temperature isolator air-conditioning system for the production of medicine enterprise

Also Published As

Publication number Publication date
JP6532270B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP5669587B2 (en) Low temperature regeneration desiccant air conditioner and operation method
JP5542701B2 (en) Low temperature regeneration desiccant air conditioner
US20120085112A1 (en) Heat pump humidifier and dehumidifier system and method
JP3992051B2 (en) Air conditioning system
JP6178174B2 (en) Desiccant air conditioner and desiccant air conditioner
KR101528640B1 (en) Controlling Method Of Hybrid Desiccant Dehumidification Apparatus
WO2017183689A1 (en) Outside-air treatment system, and device and method for controlling outside-air treatment system
JP6532270B2 (en) Low temperature regeneration desiccant air conditioner
JP2001263764A (en) Humidity regulating system
JP6898138B2 (en) Desiccant type humidity control device and its control method
JP6584307B2 (en) Humidity control device
CN105805868A (en) Regenerative and recuperative dehumidifying heat pump system and running method thereof
JP5063745B2 (en) Air conditioner
JP5332534B2 (en) Air conditioner
JP7129281B2 (en) Desiccant air conditioner
KR102257513B1 (en) Outdoor air conditioning system including dehumidification system and control method thereof
JP6960282B2 (en) Desiccant air conditioner
JP6452368B2 (en) Fuel cell equipment type air conditioning system
JP6489753B2 (en) Air conditioning system
JP5714946B2 (en) Air conditioning system
JP5822653B2 (en) Desiccant air conditioner
JP2015114039A (en) Air conditioning system
JP6188438B2 (en) Air conditioner and operation method thereof
JP2023175408A (en) Desiccant air-conditioning system
JP6376900B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190521

R150 Certificate of patent or registration of utility model

Ref document number: 6532270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250