JP2015114039A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2015114039A
JP2015114039A JP2013256246A JP2013256246A JP2015114039A JP 2015114039 A JP2015114039 A JP 2015114039A JP 2013256246 A JP2013256246 A JP 2013256246A JP 2013256246 A JP2013256246 A JP 2013256246A JP 2015114039 A JP2015114039 A JP 2015114039A
Authority
JP
Japan
Prior art keywords
air
refrigerant
heat exchanger
heating
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013256246A
Other languages
Japanese (ja)
Other versions
JP6120759B2 (en
Inventor
輝 森田
Teru Morita
輝 森田
健太郎 植田
Kentaro Ueda
健太郎 植田
若林 努
Tsutomu Wakabayashi
努 若林
一孝 寺尾
Kazutaka Terao
一孝 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2013256246A priority Critical patent/JP6120759B2/en
Publication of JP2015114039A publication Critical patent/JP2015114039A/en
Application granted granted Critical
Publication of JP6120759B2 publication Critical patent/JP6120759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To adopt a rational and inexpensive device configuration capable of separately adjusting temperature and humidity in a room in consideration of amenity and energy conservation by simplifying the pipe arrangement work, in an air conditioning system for regulating the temperature and the humidity in the room by combining an adsorption type humidity controller with a compression type heat pump device.SOLUTION: An air conditioning system comprises: a high-pressure side refrigerant pipeline HP2 for introducing a part of refrigerant compressed by a refrigerant compressor 60, which is condensed by an air heating part HE, to an expansion valve 30; a low-pressure side refrigerant pipeline LP2 for introducing the refrigerant expanded in the expansion valve 30 to the refrigerant compressor 60; a refrigerant heating part 54 for heating the refrigerant entering the high-pressure side refrigerant pipeline HP2; an air cooling part CE arranged in the low-pressure side refrigerant pipeline LP2 so as to form a heat exchanger for heat exchanging of the refrigerant with the air passing through a dehumidifying passage DL; and the air heating part HE arranged in the second high-pressure side refrigerant pipeline HP2 so as to form a heat exchanger for heat exchanging of the refrigerant with the air passing through a humidifying passage WL.

Description

本発明は、吸着式調湿装置と圧縮式ヒートポンプ装置とを組み合わせて室内の調温及び調湿を行う空気調和システムに関する。   The present invention relates to an air conditioning system that adjusts indoor temperature and humidity by combining an adsorption-type humidity control device and a compression heat pump device.

従来、室内の主に調温を行う空気調和システムとして、圧縮式ヒートポンプ装置を備えたものが知られている。
圧縮式ヒートポンプ装置は、ガスエンジン等で回転駆動される冷媒圧縮機で圧縮された冷媒を膨張弁へ導く高圧側冷媒管路に、当該高圧側冷媒管路を通流する冷媒を凝縮させる凝縮器を配置すると共に、膨張弁で膨張された冷媒を冷媒圧縮機へ導く低圧側冷媒管路に、当該低圧側冷媒管路を通流する冷媒を蒸発させる蒸発器を配置して構成されている。この圧縮式ヒートポンプ装置は、室外空気と冷媒とを熱交換させる室外機と室内空気と冷媒とを熱交換させる室内機とに対する冷媒の通流状態等を切り替えることにより、冷房運転と暖房運転とを切り替えることができる。即ち、冷房運転時においては、室外機を凝縮器として機能させると共に室内機を蒸発器として機能させるように、冷媒の通流方向を切り替えることで、室内空気の熱を冷媒の蒸発潜熱により回収して室外空気に放出する形態で、室内を冷房することができ、逆に、暖房運転時においては、室外機を蒸発器として機能させると共に室内機を凝縮器として機能させるように、冷媒の通流方向を切り替えることで、室外空気の熱を冷媒の蒸発潜熱により回収して室内空気へ放出する形態で、室内を暖房することができる。
このような圧縮式ヒートポンプ装置で室内の調湿を行うためには、蒸発器において室内空気又は室外空気を露点以下に冷却して当該空気に含まれる水分を凝縮させる必要がある。具体的に、冷房運転では、蒸発器として機能する室内機で室内空気を露点以下に冷却して、当該室内空気に含まれる水分を凝縮させ排出することで、室内の除湿を行うことができる。一方、暖房運転では、蒸発器として機能する室外機で室外空気を露点以下に冷却して、当該室外空気に含まれる水分を凝縮させ、当該水分を室内空気へ放出することで、室内の加湿を行うことができる。
2. Description of the Related Art Conventionally, an air conditioning system that mainly regulates the temperature in a room is known that includes a compression heat pump device.
The compression heat pump device is a condenser that condenses the refrigerant flowing through the high-pressure side refrigerant pipe into the high-pressure side refrigerant pipe that guides the refrigerant compressed by a refrigerant compressor that is rotationally driven by a gas engine or the like to the expansion valve. And an evaporator for evaporating the refrigerant flowing through the low-pressure side refrigerant pipe is arranged in the low-pressure side refrigerant pipe that guides the refrigerant expanded by the expansion valve to the refrigerant compressor. This compression heat pump device switches between a cooling operation and a heating operation by switching a refrigerant flow state to an outdoor unit that exchanges heat between outdoor air and refrigerant, and an indoor unit that exchanges heat between indoor air and refrigerant. Can be switched. That is, during cooling operation, the heat of the indoor air is recovered by the latent heat of vaporization of the refrigerant by switching the refrigerant flow direction so that the outdoor unit functions as a condenser and the indoor unit functions as an evaporator. The refrigerant can be cooled in the form of being discharged to the outdoor air, and conversely, during heating operation, the refrigerant flow is performed so that the outdoor unit functions as an evaporator and the indoor unit functions as a condenser. By switching the direction, the room can be heated in a form in which the heat of the outdoor air is recovered by the latent heat of vaporization of the refrigerant and released to the room air.
In order to control indoor humidity with such a compression heat pump device, it is necessary to cool indoor air or outdoor air below the dew point in an evaporator to condense moisture contained in the air. Specifically, in cooling operation, indoor air can be dehumidified by cooling indoor air below the dew point with an indoor unit that functions as an evaporator, condensing and discharging moisture contained in the indoor air. On the other hand, in the heating operation, the outdoor unit that functions as an evaporator cools the outdoor air below the dew point, condenses the moisture contained in the outdoor air, and releases the moisture to the indoor air. It can be carried out.

一方、室内の主に調湿を行う空気調和システムとして、吸着式調湿装置を備えたものが知られている。
吸着式調湿装置は、加熱対象空間から取り込んだ空気を加熱対象空間とは別の冷却対象空間へ供給する除湿通路と、冷却対象空間から取り込んだ空気を加熱対象空間へ供給する加湿通路とを有し、除湿通路において空気を空気冷却部による冷却を伴って再生処理後の吸着材に通過させる形態で当該吸着材の吸湿処理を行うと共に、加湿通路において空気を空気加熱部による加熱を伴って吸湿処理後の吸着材に通過させる形態で当該吸着材の再生処理を行うように構成されている。この吸着式調湿装置は、冷房運転では加熱対象空間を室外とすると共に冷却対象空間を室内とし、一方、暖房運転では加熱対象空間を室内とすると共に冷却対象空間を室外とする形態で、除湿通路及び加湿通路における空気の通流状態等を切り替えることで、室内の除湿を行う冷房運転と室内の加湿を行う暖房運転とを切り替えることができる。
On the other hand, what is equipped with an adsorption-type humidity control apparatus is known as an air conditioning system which mainly performs humidity control indoors.
The adsorption-type humidity control apparatus includes a dehumidification passage that supplies air taken from the heating target space to a cooling target space different from the heating target space, and a humidification passage that supplies air taken from the cooling target space to the heating target space. And performing a moisture absorption process on the adsorbent in a form that allows the air to pass through the regenerated adsorbent in the dehumidification passage with cooling by the air cooling section, and also involves heating the air in the humidification path with the air heating section. The adsorbent is regenerated in such a manner that it passes through the adsorbent after the moisture absorption treatment. This adsorption-type humidity control apparatus dehumidifies the heating target space outside and the cooling target space indoors in the cooling operation, and the heating target space indoors and the cooling target space outdoor in the heating operation. By switching the air flow state in the passage and the humidifying passage, it is possible to switch between a cooling operation for dehumidifying the room and a heating operation for humidifying the room.

上記のような圧縮式ヒートポンプ装置と吸着式調湿装置との両方を備えて室内の調温と調湿を行う空気調和システムが知られている(例えば特許文献1を参照。)。即ち、この空気調和システムは、除湿通路において吸着材を通過する前の空気を冷却する空気冷却部として、圧縮式ヒートポンプ装置の蒸発器(エバポレーターコイル)を配置すると共に、加湿通路において吸着材を通過する前の空気を加熱する空気加熱部として、圧縮式ヒートポンプ装置の凝縮器(コンデンサーコイル)を配置してなる。
また、一般的に、吸着式調湿装置において空気冷却部及び空気加熱部として配置される蒸発器及び凝縮器は、圧縮式ヒートポンプ装置に配置される蒸発器及び凝縮器そのものとされている。即ち、圧縮式ヒートポンプ装置は、単独で室内の調温を行うのではなく、吸着式調湿装置の除湿通路又は加湿通路において空気の調湿に加えて調温も行うように構成されている。
更に、この種の空気調和システムでは、吸着式調湿装置における調湿能力を一層高めるために、加湿通路において空気を加熱する空気加熱部として、上記凝縮器に加えて、ガスエンジンの冷却水や排ガス等に含まれる排熱により空気を加熱する排熱熱交換器を配置している。即ち、加湿通路において吸着材を通過する前の空気を排熱熱交換器及び凝縮器の両方で昇温させることで、吸着材を十分に再生して、吸着材の水分の吸着と脱離とを良好なものとし、結果、調湿能力を高めることができる。
There is known an air conditioning system that includes both the compression heat pump device and the adsorption humidity control device as described above, and performs indoor temperature control and humidity control (see, for example, Patent Document 1). That is, in this air conditioning system, an evaporator (evaporator coil) of a compression heat pump device is disposed as an air cooling unit that cools air before passing through the adsorbent in the dehumidification passage, and passes through the adsorbent in the humidification passage. A condenser (condenser coil) of a compression heat pump device is arranged as an air heating unit that heats the air before starting.
In general, an evaporator and a condenser arranged as an air cooling unit and an air heating unit in the adsorption type humidity control apparatus are an evaporator and a condenser arranged in a compression heat pump device. That is, the compression heat pump device is not configured to adjust the temperature in the room alone, but is also configured to adjust the temperature in addition to the air humidity adjustment in the dehumidification passage or the humidification passage of the adsorption type humidity control device.
Further, in this type of air conditioning system, in order to further increase the humidity control capability of the adsorption humidity control device, as an air heating unit for heating air in the humidification passage, in addition to the condenser, An exhaust heat exchanger that heats air by exhaust heat contained in exhaust gas or the like is disposed. That is, by raising the temperature of the air before passing through the adsorbent in the humidification passage in both the exhaust heat exchanger and the condenser, the adsorbent is sufficiently regenerated, and moisture adsorption and desorption of the adsorbent are performed. As a result, the humidity control ability can be enhanced.

特開2009−150631号公報JP 2009-150631 A

上述したような吸着式調湿装置と圧縮式ヒートポンプ装置とを組み合わせた従来の空気調和システムでは、圧縮式ヒートポンプ装置の蒸発器及び凝縮器を吸着式調湿装置に配置するために、装置間に冷媒配管を敷設する必要があるが、それに加えて、圧縮式ヒートポンプ装置側に配置されたガスエンジンの排熱等を吸着式調湿装置側に配置された排熱熱交換器へ送る必要があるために、各装置間に温水配管を敷設する必要がある。
冷媒配管を敷設する場合については、漏洩時に内部の冷媒が蒸発を伴って外部へ流出するので特に問題はないが、温水配管を敷設する場合には、漏洩時の浸水が問題となるために、充分な漏水対策や排水対策を施す必要があり、コストアップや配管敷設作業の煩雑化につながる。
また、吸着式調湿装置に空気冷却部及び空気加熱部として配置される蒸発器及び凝縮器を、圧縮式ヒートポンプ装置に配置される蒸発器及び凝縮器に対して直列的に接続した場合には、吸着式調湿装置における調湿能力を、圧縮式ヒートポンプ装置における調温能力とは別に調整することができないので、室内の温度と湿度とを快適性や省エネ性を配慮して各別に調整することができなかった。
In the conventional air conditioning system that combines the above-described adsorption type humidity control device and the compression heat pump device, the evaporator and the condenser of the compression type heat pump device are arranged between the devices in order to arrange them in the adsorption type humidity control device. It is necessary to lay refrigerant piping, but in addition to this, it is necessary to send the exhaust heat etc. of the gas engine arranged on the compression heat pump device side to the exhaust heat exchanger arranged on the adsorption humidity controller side Therefore, it is necessary to lay hot water piping between the devices.
When laying refrigerant piping, there is no particular problem because the internal refrigerant flows out to the outside with evaporation at the time of leakage, but when laying hot water piping, inundation at the time of leakage becomes a problem, Sufficient measures for water leakage and drainage must be taken, leading to increased costs and complicated piping installation work.
In addition, when an evaporator and a condenser arranged as an air cooling unit and an air heating unit in an adsorption humidity control device are connected in series to an evaporator and a condenser arranged in a compression heat pump device, The humidity control capacity of the adsorption-type humidity control device cannot be adjusted separately from the temperature control capability of the compression heat pump device, so the indoor temperature and humidity are adjusted separately for comfort and energy saving. I couldn't.

本発明は、かかる点に着目してなされたものであり、その目的は、吸着式調湿装置と圧縮式ヒートポンプ装置とを組み合わせて室内の調温及び調湿を行う空気調和システムにおいて、配管敷設作業を簡素化し、合理的で低廉な装置構成を採用しつつ、快適性や省エネ性を配慮して室内の温度と湿度とを各別に調整する技術を提供する点にある。   The present invention has been made paying attention to such a point, and an object of the present invention is to lay pipes in an air conditioning system that adjusts indoor temperature and humidity by combining an adsorption humidity control device and a compression heat pump device. The aim is to provide a technology that adjusts the indoor temperature and humidity separately in consideration of comfort and energy saving while simplifying the work and adopting a reasonable and inexpensive device configuration.

この目的を達成するための本発明に係る空気調和システムは、
加熱対象空間から取り込んだ空気を加熱対象空間とは別の冷却対象空間へ供給する除湿通路と、前記冷却対象空間から取り込んだ空気を前記加熱対象空間へ供給する加湿通路とを有し、前記除湿通路において空気を空気冷却部による冷却を伴って再生処理後の吸着材に通過させる吸湿処理を行うと共に、前記加湿通路において空気を空気加熱部による加熱を伴って吸湿処理後の吸着材に通過させる再生処理を行う吸着式調湿装置と、
冷媒圧縮機で圧縮された冷媒を第1膨張弁に導く第1高圧側冷媒管路に、当該第1高圧側冷媒管路を通流する冷媒と前記加熱対象空間の空気との熱交換を行う凝縮部を配置すると共に、前記第1膨張弁で膨張された冷媒を前記冷媒圧縮機に導く第1低圧側冷媒管路に、当該第1低圧側冷媒管路を通流する冷媒と前記冷却対象空間の空気との熱交換を行う蒸発部を配置してなる圧縮式ヒートポンプ装置と、を備え、
前記加熱対象空間及び前記冷却対象空間の一方を室内として他方を室外として当該室内の調温及び調湿を行う空気調和システムであって、
その特徴構成は、
前記冷媒圧縮機で圧縮した冷媒の一部を取り出して前記空気加熱部で凝縮させた後に前記第1膨張弁とは別の第2膨張弁に導く第2高圧側冷媒管路と、前記第2膨張弁で膨張した冷媒を前記冷媒圧縮機に導く第2低圧側冷媒管路とを有すると共に、
前記第2高圧側冷媒管路に流入する冷媒を加熱する冷媒加熱部を備え、
前記空気冷却部が、前記第2低圧側冷媒管路に配置されて当該管路を通流する冷媒と前記除湿通路を通流する空気との熱交換を行う熱交換器で構成され、
前記空気加熱部が、前記第2高圧側冷媒管路に配置されて当該管路を通流する冷媒と前記加湿通路を通流する空気との熱交換を行う熱交換器で構成されている点にある。
In order to achieve this object, an air conditioning system according to the present invention includes:
A dehumidifying passage for supplying air taken in from the heating target space to a cooling target space different from the heating target space; and a humidifying passage for supplying air taken in from the cooling target space to the heating target space; Moisture absorption treatment is performed in which air is passed through the regenerated adsorbent with cooling by the air cooling unit in the passage, and air is passed through the moisture adsorbent after heating in the humidification passage with the air heating unit. An adsorption-type humidity control device for performing a regeneration process;
Heat exchange between the refrigerant flowing through the first high-pressure side refrigerant pipe and the air in the heating target space is performed on the first high-pressure side refrigerant pipe that guides the refrigerant compressed by the refrigerant compressor to the first expansion valve. A refrigerant that is disposed through the first low-pressure side refrigerant pipe and the cooling target is disposed in a first low-pressure side refrigerant pipe that arranges a condensing unit and guides the refrigerant expanded by the first expansion valve to the refrigerant compressor. A compression heat pump device in which an evaporation unit that performs heat exchange with air in the space is disposed, and
An air conditioning system for adjusting the temperature and humidity of the room, with one of the space to be heated and the space to be cooled being indoors and the other being outdoor.
Its feature configuration is
A second high-pressure side refrigerant pipe that leads to a second expansion valve different from the first expansion valve after taking out a part of the refrigerant compressed by the refrigerant compressor and condensing in the air heating unit; A second low-pressure side refrigerant pipe for guiding the refrigerant expanded by the expansion valve to the refrigerant compressor;
A refrigerant heating unit for heating the refrigerant flowing into the second high-pressure side refrigerant pipe;
The air cooling unit is configured by a heat exchanger that is arranged in the second low-pressure side refrigerant pipe and performs heat exchange between the refrigerant flowing through the pipe and the air flowing through the dehumidification passage,
The said air heating part is comprised in the 2nd high voltage | pressure side refrigerant | coolant pipe line, and is comprised with the heat exchanger which performs heat exchange with the refrigerant | coolant which flows through the said pipe line, and the air which flows through the said humidification channel | path. It is in.

本特徴構成によれば、圧縮式ヒートポンプ装置に配置された冷媒圧縮機に対して、圧縮式ヒートポンプ装置において、凝縮部が配置された第1高圧側冷媒管路、第1膨張弁、及び、蒸発部が配置された第1低圧側冷媒管路からなる冷媒循環回路と、吸着式調湿装置において、空気加熱部を構成する熱交換器が配置された第2高圧側冷媒管路、第2膨張弁、及び、空気冷却部を構成する熱交換器が配置された第2低圧側冷媒管路からなる冷媒循環回路とが、並列で接続されることになる。
そして、圧縮式ヒートポンプ装置においては、冷媒圧縮機と圧縮式ヒートポンプ装置の冷媒循環回路との間で冷媒を循環させることで、蒸発部における冷媒の蒸発に伴う吸熱作用により冷却対象空間から冷媒へ熱を取り込み、一方、凝縮部における冷媒の凝縮に伴う放熱作用により冷媒から加熱対象空間へ熱を放出する形態で、室内の調温を行うことができる。
一方、吸着式調湿装置においては、冷媒圧縮機と吸着式調湿装置の冷媒循環回路との間で冷媒を循環させることで、空気冷却部を構成する熱交換器における冷媒の蒸発に伴う吸熱作用により除湿通路において吸着材を通過して吸湿処理を行う空気から冷媒へ熱を取り込み、一方、空気加熱部を構成する熱交換器における冷媒の凝縮に伴う放熱作用により冷媒から加湿通路において吸着材を通過して再生処理を行う空気へ熱を放出する形態で、室内の調湿を行うことができる。
そして、圧縮式ヒートポンプ装置と吸着式調湿装置の夫々の冷媒循環回路は、上記冷媒圧縮機に対して互いに並列的に接続されているので、夫々の冷媒循環回路における冷媒流量を各別に調整して、圧縮式ヒートポンプ装置の調温能力と吸着式調湿装置の調湿能力との夫々を各別に調整することができる。結果、圧縮ヒートポンプ装置による調温能力を低めに設定し室内と室外との温度差を小さ目にして省エネ性を確保しながら、吸着式調湿装置による調湿能力を高めに設定し室内と室外との湿度差を大き目にして快適性を確保するなどのように、室内の温度と湿度とを快適性や省エネ性を配慮して各別に調整することができる。
According to this characteristic configuration, with respect to the refrigerant compressor disposed in the compression heat pump device, in the compression heat pump device, the first high-pressure side refrigerant pipe, the first expansion valve, and the evaporation in which the condensing unit is disposed. A refrigerant circulation circuit composed of a first low-pressure side refrigerant pipe in which a part is arranged, and a second high-pressure side refrigerant pipe in which a heat exchanger constituting an air heating part is arranged in the adsorption humidity control device, a second expansion The valve and the refrigerant circulation circuit including the second low-pressure side refrigerant pipe in which the heat exchanger constituting the air cooling unit is arranged are connected in parallel.
In the compression heat pump apparatus, the refrigerant is circulated between the refrigerant compressor and the refrigerant circulation circuit of the compression heat pump apparatus, so that heat is absorbed from the cooling target space to the refrigerant by the endothermic action accompanying the evaporation of the refrigerant in the evaporation unit. On the other hand, the indoor temperature can be adjusted in a form in which heat is released from the refrigerant to the space to be heated by the heat radiation action accompanying the condensation of the refrigerant in the condenser.
On the other hand, in the adsorption type humidity control apparatus, the refrigerant absorbs heat due to the evaporation of the refrigerant in the heat exchanger constituting the air cooling unit by circulating the refrigerant between the refrigerant compressor and the refrigerant circulation circuit of the adsorption type humidity control apparatus. Heat is taken into the refrigerant from the air that passes through the adsorbent in the dehumidifying passage by the action and is subjected to moisture absorption treatment, while the adsorbent in the humidifying passage from the refrigerant by the heat dissipation action accompanying the condensation of the refrigerant in the heat exchanger constituting the air heating unit The humidity inside the room can be adjusted in such a manner that heat is released to the air passing through the regenerating process.
Since the refrigerant circulation circuits of the compression heat pump device and the adsorption humidity controller are connected in parallel to the refrigerant compressor, the refrigerant flow rate in each refrigerant circulation circuit is adjusted separately. Thus, each of the temperature control capability of the compression heat pump device and the humidity control capability of the adsorption type humidity control device can be adjusted separately. As a result, while setting the temperature control capability of the compression heat pump device to a low level and reducing the temperature difference between the room and the outside to ensure energy saving, the humidity control capability of the adsorption humidity control device is set to be high and The indoor temperature and humidity can be adjusted individually in consideration of comfort and energy saving, such as ensuring the comfort by enlarging the difference in humidity.

また、圧縮式ヒートポンプ装置側に上記冷媒加熱部を設け、その冷媒加熱部において第2高圧側冷媒管路に流入する冷媒を加熱するので、圧縮式ヒートポンプ装置と吸着式調湿装置との間には、冷媒を加熱するための熱を搬送するための温水配管を敷設する必要がなく、上記第2高圧側冷媒管路及び上記第2低圧側冷媒管路を構成する冷媒配管のみを敷設するだけでよい。
更に、このような冷媒加熱部を設けることで、第2高圧側冷媒管路から空気加熱部に一層高温の冷媒を供給し、加湿通路において吸着材を通過して再生処理を行う空気を空気加熱部により一層高温に加熱することができるので、吸着式調湿装置に高い調湿能力を発揮させることができる。
従って、本発明により、吸着式調湿装置と圧縮式ヒートポンプ装置とを組み合わせて室内の調温及び調湿を行う空気調和システムにおいて、配管敷設作業を簡素化し、合理的で低廉な装置構成を採用しつつ、快適性や省エネ性を配慮して室内の温度と湿度とを各別に調整する技術を提供することができる。
In addition, the refrigerant heating unit is provided on the compression heat pump device side, and the refrigerant heating unit heats the refrigerant flowing into the second high-pressure side refrigerant pipe. Therefore, between the compression heat pump device and the adsorption humidity controller, Does not need to lay hot water piping for conveying heat for heating the refrigerant, but only lays the refrigerant piping constituting the second high-pressure side refrigerant pipe and the second low-pressure side refrigerant pipe. It's okay.
Furthermore, by providing such a refrigerant heating section, a higher-temperature refrigerant is supplied from the second high-pressure side refrigerant pipe to the air heating section, and the air that performs the regeneration process through the adsorbent in the humidification passage is heated by air. Since it can be heated to a higher temperature by the part, the adsorption-type humidity control device can exhibit a high humidity control capability.
Therefore, according to the present invention, in an air conditioning system for controlling the temperature and humidity in a room by combining an adsorption type humidity control device and a compression heat pump device, the piping construction work is simplified and a rational and inexpensive device configuration is adopted. However, it is possible to provide a technique for individually adjusting the indoor temperature and humidity in consideration of comfort and energy saving.

本発明に係る空気調和システムの更なる特徴構成は、
前記冷媒圧縮機の駆動源がガスエンジンであり、
前記冷媒加熱部が、前記ガスエンジンの排熱との熱交換により冷媒を加熱する点にある。
A further characteristic configuration of the air conditioning system according to the present invention is as follows.
The driving source of the refrigerant compressor is a gas engine,
The refrigerant heating unit heats the refrigerant by heat exchange with exhaust heat of the gas engine.

本特徴構成によれば、圧縮式ヒートポンプ装置側に冷媒圧縮機の駆動源としてのガスエンジンが設けられているので、同じく圧縮式ヒートポンプ装置側に設けられた冷媒加熱部において、第2高圧側冷媒管路に流入する冷媒をガスエンジンの排熱との熱交換により加熱することができる。   According to this characteristic configuration, since the gas engine as the drive source of the refrigerant compressor is provided on the compression heat pump device side, the second high-pressure side refrigerant is also provided in the refrigerant heating unit similarly provided on the compression heat pump device side. The refrigerant flowing into the pipeline can be heated by heat exchange with the exhaust heat of the gas engine.

本発明に係る空気調和システムの更なる特徴構成は、
前記冷媒圧縮機から前記第2高圧側冷媒管路への冷媒の分配流量を調整可能な冷媒分配流量調整弁を備え、
前記室内の温度を目標温度に維持するように前記冷媒圧縮機の回転速度を制御する調温制御手段と、
前記室内の湿度を目標湿度に維持するように前記冷媒分配流量調整弁の開度を制御する調湿制御手段とを備えた点にある。
A further characteristic configuration of the air conditioning system according to the present invention is as follows.
A refrigerant distribution flow rate adjustment valve capable of adjusting a refrigerant distribution flow rate from the refrigerant compressor to the second high-pressure side refrigerant pipe;
Temperature control means for controlling the rotational speed of the refrigerant compressor so as to maintain the indoor temperature at the target temperature;
Humidity control means for controlling the opening of the refrigerant distribution flow rate adjustment valve so as to maintain the indoor humidity at the target humidity.

本特徴構成によれば、上記調温制御手段により冷媒圧縮機の回転速度を制御して、圧縮式ヒートポンプ装置の冷媒循環回路における冷媒循環流量を調整すれば、蒸発部における冷媒の蒸発圧力や凝縮部における冷媒の凝縮圧力を変化させて、それらの空気に対する冷却温度や加熱温度を変化させることができるので、結果、室内の温度を目標温度に維持することができる。
更に、上記調湿制御により冷媒分配流量調整弁の開度を制御して、冷媒圧縮機から第2高圧側冷媒管路への冷媒の分配流量、言い換えれば吸着式調湿装置の冷媒循環回路における冷媒循環流量を調整すれば、空気冷却部における冷媒の蒸発圧力や空気加熱部における冷媒の凝縮圧力を変化させて、それらの空気に対する冷却温度や加熱温度を変化させることができるので、結果、吸着材の吸湿及び再生程度を変化させて、室内の湿度を目標湿度に維持することができる。
According to this characteristic configuration, if the refrigerant circulation flow rate in the refrigerant circulation circuit of the compression heat pump device is adjusted by controlling the rotational speed of the refrigerant compressor by the temperature control means, the evaporation pressure and condensation of the refrigerant in the evaporation unit can be adjusted. Since the cooling pressure and heating temperature for the air can be changed by changing the condensation pressure of the refrigerant in the section, as a result, the indoor temperature can be maintained at the target temperature.
Further, the opening degree of the refrigerant distribution flow rate adjustment valve is controlled by the humidity control described above, and the refrigerant distribution flow rate from the refrigerant compressor to the second high-pressure side refrigerant pipe, in other words, in the refrigerant circulation circuit of the adsorption humidity controller By adjusting the refrigerant circulation flow rate, the refrigerant evaporating pressure in the air cooling unit and the refrigerant condensing pressure in the air heating unit can be changed to change the cooling temperature and heating temperature for those air. It is possible to maintain the indoor humidity at the target humidity by changing the moisture absorption and regeneration degree of the material.

本発明に係る空気調和システムの更なる特徴構成は、
前記空気冷却部及び前記空気加熱部として機能する熱交換器として、前記吸着材を空気側表面に設けた第1吸着熱交換器及び第2吸着熱交換器を備え、
前記第1吸着熱交換器を前記空気冷却部として機能させた状態で前記第1吸着熱交換器が配置された第1通路を前記除湿通路とすると共に、前記第2吸着熱交換器を前記空気加熱部として機能させた状態で前記第2吸着熱交換器が配置された第2通路を前記加湿通路とする第1状態と、前記第1吸着熱交換器を前記空気加熱部として機能させた状態で前記第1通路を前記加湿通路とすると共に、前記第2吸着熱交換器を前記空気冷却部として機能させた状態で前記第2通路を前記除湿通路とする第2状態との間で、前記吸着式調湿装置における冷媒と空気との通流状態を所定時間間隔で切り替えて、前記吸着材に対する前記吸湿処理と前記再生処理とを行う吸湿再生切替手段を備えた点にある。
A further characteristic configuration of the air conditioning system according to the present invention is as follows.
The heat exchanger functioning as the air cooling unit and the air heating unit includes a first adsorption heat exchanger and a second adsorption heat exchanger in which the adsorbent is provided on the air side surface,
The first passage in which the first adsorption heat exchanger is disposed in a state where the first adsorption heat exchanger functions as the air cooling unit is used as the dehumidification passage, and the second adsorption heat exchanger is used as the air. A first state where the humidifying passage is the second passage where the second adsorption heat exchanger is arranged in a state where the second adsorption heat exchanger is functioned as a heating unit, and a state where the first adsorption heat exchanger is functioned as the air heating unit In the second state in which the first passage is used as the humidification passage, and the second passage is used as the dehumidification passage in a state where the second adsorption heat exchanger functions as the air cooling unit, The present invention is characterized in that it includes moisture absorption regeneration switching means for switching the flow state of the refrigerant and air in the adsorption humidity control device at predetermined time intervals to perform the moisture absorption process and the regeneration process for the adsorbent.

本特徴構成によれば、空気冷却部又は空気加熱部として機能する第1吸着熱交換器及び第2吸着熱交換器において、その空気側表面に設けた吸着材に直接冷熱又は温熱を伝達させることができ、吸着材に対する吸湿又は再生を十分に行って、吸着式調湿装置の調湿能力を向上させることができる。
即ち、上記第1状態と上記第2状態との間で吸着式調湿装置における冷媒と空気との通流状態を所定時間間隔で切り替えることで、第1吸着熱交換器及び第2吸着熱交換器の夫々が配置された第1通路及び第2通路の夫々が、除湿通路と加湿通路の間で切り替わり、同時に、第1吸着熱交換器及び第2吸着熱交換器の夫々が空気冷却部と空気加熱部の間で切り替わることになる。それにより第1吸着熱交換器及び第2吸着熱交換器の夫々の空気側表面に設けられた夫々の吸着材に対して、当該夫々の熱交換器の内部を通流する冷媒の蒸発又は凝縮により直接的に冷熱と温熱が交互に伝達されることになり、同時に、除湿通路の空気と加湿通路の空気とが交互に接触しながら通過することになるので、夫々の吸着材の吸湿と再生とが十分に行われることになる。
According to this characteristic configuration, in the first adsorption heat exchanger and the second adsorption heat exchanger functioning as an air cooling unit or an air heating unit, cold heat or heat is directly transmitted to the adsorbent provided on the air-side surface. Thus, it is possible to sufficiently absorb moisture or regenerate the adsorbent material and improve the humidity control capability of the adsorption humidity control apparatus.
That is, the first adsorption heat exchanger and the second adsorption heat exchange are switched between the first state and the second state by switching the flow state of the refrigerant and air in the adsorption humidity controller at predetermined time intervals. Each of the first passage and the second passage in which each of the devices is disposed is switched between the dehumidification passage and the humidification passage, and at the same time, each of the first adsorption heat exchanger and the second adsorption heat exchanger is an air cooling section. It will switch between air heating parts. As a result, evaporation or condensation of the refrigerant flowing through the interior of the respective heat exchangers with respect to the respective adsorbents provided on the air-side surfaces of the first adsorption heat exchanger and the second adsorption heat exchanger. As a result, cold air and hot air are transmitted alternately alternately, and at the same time, air in the dehumidifying passage and air in the humidifying passage pass through alternately contacting each other, so that each adsorbent absorbs and regenerates moisture. And will be done sufficiently.

本発明に係る空気調和システムの更なる特徴構成は、
冷房運転と暖房運転とを切り替える冷暖房切替手段を備え、
前記冷暖房切替手段が、冷房運転時においては、室外を前記加熱対象空間とすると共に室内を前記冷却対象空間とし、暖房運転時においては、室内を前記加熱対象空間とすると共に室外を前記冷却対象空間とするように、前記吸着式調湿装置における冷媒と空気の通流状態並びに前記圧縮式ヒートポンプ装置における冷媒の通流状態を切り替える点にある。
A further characteristic configuration of the air conditioning system according to the present invention is as follows.
Air-conditioning switching means for switching between air-conditioning operation and heating operation is provided,
When the cooling / heating switching means is in a cooling operation, the outside is set as the heating target space and the room is set as the cooling target space, and during the heating operation, the room is set as the heating target space and the outside is set as the cooling target space. As described above, the refrigerant and air flow state in the adsorption humidity control device and the refrigerant flow state in the compression heat pump device are switched.

本特徴構成によれば、上記冷暖房切替手段を備えることにより、室内に対して圧縮式ヒートポンプ装置による冷房と吸着式調湿装置による除湿とを行う冷房運転と、圧縮式ヒートポンプ装置による暖房と吸着式調湿装置による加湿とを行う暖房運転とを、切り替えて実行することができる。
即ち、圧縮式ヒートポンプ装置における冷房運転時では、冷却対象空間を室内とするべく、室内に設けられた室内機が蒸発部として機能し、一方、加熱対象空間を室外とするべく、室外に設けられた室外機が凝縮部として機能するように、冷媒の通流状態が切り替えられる。従って、蒸発部として機能する室内機における冷媒の蒸発に伴う吸熱作用により室内から冷媒へ熱を取り込み、凝縮部として機能する室外機における冷媒の凝縮に伴う放熱作用により冷媒から室外へ熱を放出する形態で、室内の冷房を行うことができる。
また、圧縮式ヒートポンプ装置における暖房運転時では、加熱対象空間を室内とするべく、室内に設けられた室内機が凝縮部として機能し、一方、冷却対象空間を室外とするべく、室外に設けられた室外機が蒸発部として機能するように、冷媒の通流状態が切り替えられる。従って、蒸発部として機能する室外機における冷媒の蒸発に伴う吸熱作用により室外から冷媒へ熱を取り込み、凝縮部として機能する室内機における冷媒の凝縮に伴う放熱作用により冷媒から室内へ熱を放出する形態で、室内の暖房を行うことができる。
According to this characteristic configuration, by providing the cooling / heating switching means, the cooling operation for performing cooling by the compression heat pump device and dehumidification by the adsorption humidity control device for the room, and heating and adsorption by the compression heat pump device are performed. The heating operation for performing humidification by the humidity controller can be switched and executed.
That is, during the cooling operation in the compression heat pump apparatus, the indoor unit provided in the room functions as an evaporation unit so that the space to be cooled is indoors, while the indoor unit provided in the room is provided outside in order to make the space to be heated outdoor. The refrigerant flow state is switched so that the outdoor unit functions as a condensing unit. Therefore, heat is absorbed into the refrigerant from the room by the endothermic effect accompanying the evaporation of the refrigerant in the indoor unit functioning as the evaporation unit, and the heat is released from the refrigerant to the outside by the heat dissipation effect due to the condensation of the refrigerant in the outdoor unit functioning as the condensing unit. In the form, indoor cooling can be performed.
Further, during the heating operation in the compression heat pump device, the indoor unit provided in the room functions as a condensing unit so that the space to be heated is indoors, while the indoor unit provided in the room is provided outdoors so that the space to be cooled is outdoor. The refrigerant flow state is switched so that the outdoor unit functions as an evaporator. Therefore, heat is taken into the refrigerant from the outside by the endothermic effect accompanying the evaporation of the refrigerant in the outdoor unit functioning as the evaporation unit, and the heat is released from the refrigerant to the room by the heat radiation effect due to the condensation of the refrigerant in the indoor unit functioning as the condensing unit. In the form, indoor heating can be performed.

一方、吸着式調湿装置における冷房運転では、冷却対象空間を室内とし加熱対象空間を室外とするべく、室外から取り込んだ空気を室内へ供給する通路が除湿通路として機能すると共に当該通路に配置された熱交換器が空気冷却部として機能し、一方、室内から取り込んだ空気を室外へ供給する通路が加湿通路として機能すると共に当該通路に配置された熱交換器が空気加熱部として機能するように、各通路における空気の通流状態及び各熱交換器における冷媒の通流状態が切り替えられる。従って、室内に対して除湿通路を通過して吸着材に水分が吸着された空気が供給され、室外に対して加湿通路を通過して吸着材から水分が放出された空気が供給される形態で、室内の除湿を行うことができる。
また、吸着式調湿装置における暖房運転では、加熱対象空間を室内とし冷却対象空間を室外とするべく、室外から取り込んだ空気を室内へ供給する通路が加湿通路として機能すると共に当該通路に配置された熱交換器が空気加熱部として機能し、一方、室内から取り込んだ空気を室外へ供給する通路が除湿通路として機能すると共に当該通路に配置された熱交換器が空気冷却部として機能するように、各通路における空気の通流状態及び各熱交換器における冷媒の通流状態が切り替えられる。従って、室内に対して加湿通路を通過して吸着材から水分が放出された空気が供給され、室外に対して除湿通路を通過して吸着材に水分が吸着された空気が供給される形態で、室内の加湿を行うことができる。
On the other hand, in the cooling operation of the adsorption humidity control apparatus, a passage for supplying air taken from the outside to the room functions as a dehumidification passage and is disposed in the passage so that the space to be cooled is indoors and the space to be heated is outdoor. The heat exchanger functions as an air cooling unit, while the passage for supplying the air taken in from the room to the outside functions as a humidifying passage and the heat exchanger disposed in the passage functions as an air heating unit. The air flow state in each passage and the refrigerant flow state in each heat exchanger are switched. Therefore, air in which moisture is adsorbed by the adsorbent through the dehumidification passage is supplied to the room, and air from which moisture is released from the adsorbent is supplied to the outside through the humidification passage. , Indoor dehumidification can be performed.
Further, in the heating operation of the adsorption humidity control apparatus, a passage for supplying air taken from the outside to the room functions as a humidifying passage and is disposed in the passage so that the heating target space is indoors and the cooling target space is outdoor. The heat exchanger functions as an air heating unit, while the passage for supplying the air taken from the room to the outside functions as a dehumidification passage and the heat exchanger disposed in the passage functions as an air cooling unit. The air flow state in each passage and the refrigerant flow state in each heat exchanger are switched. Therefore, air in which moisture is released from the adsorbent through the humidification passage is supplied to the room, and air in which moisture is adsorbed to the adsorbent is supplied to the outside through the dehumidification passage. , Indoor humidification can be performed.

本発明の実施形態に係る空気調和システムにおける冷房運転時の第1状態を示す概略構成図The schematic block diagram which shows the 1st state at the time of the cooling operation in the air conditioning system which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和システムにおける冷房運転時の第2状態を示す概略構成図The schematic block diagram which shows the 2nd state at the time of the cooling operation in the air conditioning system which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和システムにおける暖房運転時の第1状態を示す概略構成図The schematic block diagram which shows the 1st state at the time of the heating operation in the air conditioning system which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和システムにおける暖房運転時の第2状態を示す概略構成図The schematic block diagram which shows the 2nd state at the time of the heating operation in the air conditioning system which concerns on embodiment of this invention. 本発明の実施形態に係る空気調和システムが備える吸着熱交換器の(a)平面図及び(b)斜視図The (a) top view and (b) perspective view of an adsorption heat exchanger with which the air harmony system concerning an embodiment of the present invention is provided

本発明の実施形態に係る空気調和システムについて、図1〜図5に基づいて説明する。
先ず、空気調和システムの基本構成について説明する。
本実施形態の空気調和システムは、図1に示すように、室内Rの湿度調整(本願において「調湿」と呼ぶ場合がある。)を行うための吸着式調湿装置1と、室内Rの温度調整(本願において「調温」と呼ぶ場合がある。)を行うための圧縮式ヒートポンプ装置5と、コンピュータからなり所定のプログラムを実行することで各種手段として機能する制御装置90を備える。
また、この空気調和システムは、制御装置90が機能する冷暖房切替手段92により、室内Rを冷却及び除湿する冷房運転(図1及び図2参照)と室内Rを加熱及び加湿する暖房運転(図3及び図4参照)とを択一的に実行可能に構成されている。
即ち、詳細については後述するが、冷房運転時においては、図1及び図2に示すように、室外Oが加熱対象空間HAとされると共に、室内Rが冷却対象空間CAとされて、冷却対象空間としての室内Rに対する圧縮式ヒートポンプ装置5による冷却と吸着式調湿装置1による除湿とが行われる。一方、暖房運転時においては、図3及び図4に示すように、室内Rが加熱対象空間HAとされると共に室外Oが冷却対象空間CAとされて、加熱対象空間としての室内Rに対する圧縮式ヒートポンプ装置5による加熱と吸着式調湿装置1による加湿とが行われることになる。
以下、吸着式調湿装置1及び圧縮式ヒートポンプ装置5の詳細構成について順に説明する。
The air conditioning system which concerns on embodiment of this invention is demonstrated based on FIGS.
First, the basic configuration of the air conditioning system will be described.
As shown in FIG. 1, the air conditioning system of the present embodiment includes an adsorption-type humidity control device 1 for adjusting the humidity of the room R (sometimes referred to as “humidity control” in the present application), the room R A compression heat pump device 5 for performing temperature adjustment (sometimes referred to as “temperature control” in the present application) and a control device 90 configured by a computer and functioning as various means by executing predetermined programs.
Further, in this air conditioning system, a cooling operation for cooling and dehumidifying the room R (see FIGS. 1 and 2) and a heating operation for heating and humidifying the room R (FIG. 3) by the cooling / heating switching means 92 that the control device 90 functions. And (see FIG. 4).
That is, although details will be described later, during the cooling operation, as shown in FIGS. 1 and 2, the outdoor O is set as the heating target space HA, and the room R is set as the cooling target space CA. Cooling of the room R as a space by the compression heat pump device 5 and dehumidification by the adsorption humidity controller 1 are performed. On the other hand, during the heating operation, as shown in FIGS. 3 and 4, the room R is set as the heating target space HA and the outdoor O is set as the cooling target space CA, and the compression type for the room R as the heating target space is performed. Heating by the heat pump device 5 and humidification by the adsorption humidity controller 1 are performed.
Hereinafter, the detailed configurations of the adsorption humidity control device 1 and the compression heat pump device 5 will be described in order.

〔吸着式調湿装置〕
図1〜図4に示す吸着式調湿装置1は、吸着材10aの吸湿と再生とを交互に行うことにより、室外O(例えば屋外)から室内Rに供給される給気SAを除湿又は加湿する形態で室内Rの調湿を行う所謂デシカント空調装置として構成されている。
具体的に、かかる吸着式調湿装置1は、加熱対象空間HAから取り込んだ空気を冷却対象空間CAへ供給する除湿通路DLと、冷却対象空間CAから取り込んだ空気を加熱対象空間HAへ供給する加湿通路WLとを有する。
そして、除湿通路DLにおいて空気を熱交換器で構成される空気冷却部CEによる冷却を伴って再生処理後の吸着材10aに通過させる形態で当該吸着材10aの吸湿処理を行うと共に、加湿通路WLにおいて空気を熱交換器で構成される空気加熱部HEによる加熱を伴って吸湿処理後の吸着材10aに通過させる形態で当該吸着材10aの再生処理を行うように構成されている。尚、吸着材10aは、ゼオライト、シリカゲル、活性炭等の公知の通気性吸湿体が使用されており、水分を多い空気を、冷却を伴って通過させることにより、その空気から水分を吸着する吸湿処理が行われ、逆に、水分が少ない空気を、加熱を伴って通過させることにより、その空気に水分を脱離する再生処理が行われる。
[Adsorption type humidity controller]
The adsorptive humidity control apparatus 1 shown in FIGS. 1 to 4 dehumidifies or humidifies the supply air SA supplied from the outdoor O (for example, outdoors) to the room R by alternately performing moisture absorption and regeneration of the adsorbent 10a. It is comprised as what is called a desiccant air conditioner which adjusts the humidity of the room | chamber interior R in the form which carries out.
Specifically, the adsorption-type humidity control apparatus 1 supplies the dehumidifying passage DL that supplies the air taken in from the heating target space HA to the cooling target space CA, and supplies the air taken in from the cooling target space CA to the heating target space HA. And a humidifying passage WL.
Then, in the dehumidifying passage DL, air is passed through the adsorbent 10a after the regeneration process with cooling by the air cooling unit CE configured by a heat exchanger, and the moisture absorbing passage WL is subjected to moisture absorption processing of the adsorbent 10a. In this embodiment, the adsorbent 10a is regenerated in such a manner that air is passed through the adsorbent 10a after the moisture absorption process with heating by the air heating unit HE constituted by a heat exchanger. The adsorbent 10a is made of a known air-permeable hygroscopic material such as zeolite, silica gel, activated carbon, etc., and absorbs moisture from the air by passing air with a lot of water with cooling. On the contrary, a regenerating process for desorbing moisture to the air is performed by passing air with low moisture with heating.

この吸着式調湿装置1では、後述する圧縮式ヒートポンプ装置5に設けられた冷媒圧縮機60に対して、空気加熱部HEを構成する熱交換器が配置された第2高圧側冷媒管路HP2、第2膨張弁30、及び、空気冷却部CEを構成する熱交換器が配置された第2低圧側冷媒管路LP2からなる冷媒循環回路が形成されている。
そして、冷媒圧縮機60と吸着式調湿装置1の冷媒循環回路との間で冷媒を循環させることで、空気冷却部CEによる冷却を伴う吸湿処理と、空気加熱部HEによる加熱を伴う再生処理とが行われる。
即ち、空気冷却部CEでは、それを構成する熱交換器における冷媒の蒸発に伴う吸熱作用により、空気冷却部CEが配置される除湿通路DLにおいて吸着材10aを通過して吸湿処理を行う空気から冷媒へ熱を取り込む形態で、空気冷却部CEによる冷却を伴う吸湿処理が行われる。一方、空気加熱部HEでは、それを構成する熱交換器における冷媒の凝縮に伴う放熱作用により、冷媒から空気加熱部HEが配置される加湿通路WLにおいて吸着材10aを通過して再生処理を行う空気へ熱を放出する形態で、空気加熱部HEによる加熱を伴う再生処理が行われる。
In this adsorption type humidity control apparatus 1, a second high-pressure side refrigerant pipe HP <b> 2 in which a heat exchanger constituting the air heating unit HE is arranged with respect to the refrigerant compressor 60 provided in the compression heat pump apparatus 5 described later. A refrigerant circulation circuit including the second expansion valve 30 and the second low-pressure side refrigerant pipe LP2 in which the heat exchanger constituting the air cooling unit CE is disposed is formed.
And a refrigerant | coolant is circulated between the refrigerant | coolant compressor 60 and the refrigerant | coolant circulation circuit of the adsorption-type humidity control apparatus 1, and the moisture absorption process with cooling by the air cooling part CE and the regeneration process with the heating by the air heating part HE are carried out. And done.
That is, in the air cooling unit CE, the heat absorption action accompanying the evaporation of the refrigerant in the heat exchanger constituting the air cooling unit CE passes through the adsorbent 10a in the dehumidifying passage DL in which the air cooling unit CE is disposed, and the moisture is absorbed. A moisture absorption process involving cooling by the air cooling unit CE is performed in a form of taking heat into the refrigerant. On the other hand, in the air heating unit HE, the heat is released due to the condensation of the refrigerant in the heat exchanger constituting the air heating unit HE, and the regeneration process is performed by passing the adsorbent 10a from the refrigerant in the humidification passage WL where the air heating unit HE is arranged. A regeneration process involving heating by the air heating unit HE is performed in a form that releases heat to the air.

詳細には、吸着式調湿装置1には、空気冷却部CE及び空気加熱部HEとして機能する熱交換器としては、図5も参照して、吸着材10aを空気側表面に設けた第1吸着熱交換器11及び第2吸着熱交換器12が設けられている。
かかる吸着熱交換器11,12は、複数回折り返しながら蛇行し内部に冷媒が通流する伝熱管10cと、その外表面において当該伝熱管10cに対して垂直に配置された複数のフィン10bとからなるフィンチューブ熱交換器で構成されており、更に、それら伝熱管10c及びフィン10bの外表面には、吸着材10aが、所定の厚みでコーティングされている。
そして、このような吸着熱交換器11,12を利用することで、伝熱管10cを通流する冷媒から吸着材10aに対して冷熱又は温熱が直接伝達させることができる。よって、複数のフィン10bの隙間を通流する空気と外表面に設けられた吸着材10aとの間で水分の授受が良好に行われることになるので、吸着材10aに対する吸湿又は再生を十分に行って、吸着式調湿装置1の調湿能力を向上させることができる。
また、これら第1吸着熱交換器11及び第2吸着熱交換器12は、冷媒が通流する管路、即ち伝熱管10cにおいて、冷媒を膨張させる第2膨張弁30を介して直列的に接続されている。
Specifically, in the adsorption-type humidity control apparatus 1, as a heat exchanger that functions as the air cooling unit CE and the air heating unit HE, a first example in which an adsorbent 10 a is provided on the air side surface with reference to FIG. 5. An adsorption heat exchanger 11 and a second adsorption heat exchanger 12 are provided.
The adsorption heat exchangers 11 and 12 are composed of a heat transfer tube 10c meandering while being bent back and forth and a refrigerant flowing through the inside, and a plurality of fins 10b arranged on the outer surface thereof perpendicular to the heat transfer tube 10c. Further, the adsorbent 10a is coated with a predetermined thickness on the outer surfaces of the heat transfer tubes 10c and the fins 10b.
And by using such adsorption heat exchangers 11 and 12, cold heat or warm heat can be directly transmitted from the refrigerant flowing through the heat transfer tube 10c to the adsorbent 10a. Therefore, since moisture is exchanged favorably between the air flowing through the gaps between the plurality of fins 10b and the adsorbent 10a provided on the outer surface, moisture absorption or regeneration with respect to the adsorbent 10a is sufficiently performed. It is possible to improve the humidity control capability of the adsorption type humidity control apparatus 1.
The first adsorption heat exchanger 11 and the second adsorption heat exchanger 12 are connected in series via a second expansion valve 30 that expands the refrigerant in a pipe line through which the refrigerant flows, that is, the heat transfer pipe 10c. Has been.

室外Oに開口する室外空気通路21及び排気通路22と、室内Rに開口する室内空気通路23及び給気通路24が設けられており、排気通路22には、空気を排気EAとして室外O側に送出するファン25が設けられ、給気通路24には、空気を給気SAとして室内R側に送出するファン26が設けられている。
室外空気通路21と給気通路24とは、後述するダンパ15の開閉により第1通路13i,13o及び第2通路14i,14oの何れかを介して連通することになる。よって、室外Oから室外空気通路21に取り込まれた室外空気OAが給気SAとして給気通路24を介して室内Rに排出されることになる。
一方、室内空気通路23と排気通路22とについても、後述するダンパ15の開閉により第1通路13i,13o及び第2通路14i,14oの何れかを介して連通することになる。よって、室内Rから室内空気通路23に取り込まれた室内空気RAが排気EAとして排気通路22を介して室外Oに排出されることになる。
An outdoor air passage 21 and an exhaust passage 22 that open to the outdoor O, and an indoor air passage 23 and an air supply passage 24 that open to the room R are provided. In the exhaust passage 22, air is supplied to the outdoor O side as exhaust EA. A fan 25 for sending out is provided, and a fan 26 for sending air to the room R side as air supply SA is provided in the air supply passage 24.
The outdoor air passage 21 and the air supply passage 24 communicate with each other through one of the first passages 13i and 13o and the second passages 14i and 14o by opening and closing a damper 15 described later. Accordingly, the outdoor air OA taken into the outdoor air passage 21 from the outdoor O is discharged into the room R through the air supply passage 24 as the air supply SA.
On the other hand, the indoor air passage 23 and the exhaust passage 22 also communicate with each other through one of the first passages 13i and 13o and the second passages 14i and 14o by opening and closing a damper 15 described later. Therefore, the room air RA taken from the room R into the room air passage 23 is exhausted to the outdoor O through the exhaust passage 22 as the exhaust EA.

第1通路13i,13oは、室外空気通路21と室内空気通路23との夫々に対して各別に接続された一対の第1入口通路13iと、排気通路22と給気通路24との夫々に対して各別に接続された一対の第1出口通路13oとを含む通路として構成されている。そして、これら一対の第1入口通路13iと一対の第1出口通路13oとの夫々に空気の通流を断続可能なダンパ15が配置されており、また、これら一対の第1入口通路13iと一対の第1出口通路13oとの間に形成された空間に上述した第1吸着熱交換器11が配置されている。
一方、第2通路14i,14oは、室外空気通路21と室内空気通路23との夫々に対して各別に接続された一対の第2入口通路14iと、排気通路22と給気通路24との夫々に対して各別に接続された一対の第2出口通路14oとを含む通路として構成されている。そして、これら一対の第2入口通路14iと一対の第2出口通路14oとの夫々に空気の通流を断続可能なダンパ15が配置されており、また、これら一対の第2入口通路14iと一対の第2出口通路14oとの間に形成された空間に上述した第2吸着熱交換器12が配置されている。
The first passages 13i and 13o are connected to the pair of first inlet passages 13i and the exhaust passage 22 and the air supply passage 24 respectively connected to the outdoor air passage 21 and the indoor air passage 23. And a pair of first outlet passages 13o connected to each other. A damper 15 capable of interrupting air flow is disposed in each of the pair of first inlet passages 13i and the pair of first outlet passages 13o, and the pair of first inlet passages 13i and a pair The first adsorption heat exchanger 11 described above is disposed in a space formed between the first outlet passage 13o.
On the other hand, the second passages 14i and 14o are respectively a pair of second inlet passages 14i connected to the outdoor air passage 21 and the indoor air passage 23, respectively, an exhaust passage 22 and an air supply passage 24. And a pair of second outlet passages 14o connected to each other. A damper 15 capable of interrupting the air flow is disposed in each of the pair of second inlet passages 14i and the pair of second outlet passages 14o, and the pair of second inlet passages 14i and the pair of second inlet passages 14i. The second adsorption heat exchanger 12 described above is disposed in a space formed between the second outlet passage 14o.

そして、これら複数のダンパ15の開閉状態を切り替えて、これら通路13i,13o,14i,14oにおける空気の通流状態を断続させることで、第1吸着熱交換器11及び第2吸着熱交換器12に対する空気の通流状態を、図1及び図4に示す空気の通流状態と、図2及び図3に示す空気の通流状態との間で切り替えることができる。
即ち、図1及び図4に示す空気の通流状態では、室外Oから室外空気通路21に取り込んだ室外空気OAが第1通路13i,13oに配置された第1吸着熱交換器11を通過した後に給気SAとして給気通路24を介して室内Rに供給され、一方、室内Rから室内空気通路23に取り込んだ室内空気RAが第2吸着熱交換器12を通過した後に排気EAとして排気通路22を介して室外Oに排出される。そして、冷房運転(図1)においては、この空気の通路が除湿通路DLとなり、暖房運転(図4)においては、この空気の通路が加湿通路WLとなる。
一方、図2及び図3に示す空気の通流状態では、室外Oから室外空気通路21に取り込んだ室外空気OAが第2通路14i,14oに配置された第2吸着熱交換器12を通過した後に給気SAとして給気通路24を介して室内Rに供給され、一方、室内Rから室内空気通路23に取り込んだ室内空気RAが第1吸着熱交換器11を通過した後に排気EAとして排気通路22を介して室外Oに排出される。そして、冷房運転(図2)においては、この空気の通路が加湿通路WLとなり、暖房運転(図3)においては、この空気の通路が除湿通路DLとなる。
尚、冷房運転及び暖房運転において、図1及び図3に示すように、第1通路13i,13oを除湿通路DLとすると共に第2通路14i,14oを加湿通路WLとする状態を第1状態と呼び、図2及び図4に示すように、第1通路13i,13oを加湿通路WLとすると共に第2通路14i,14oを除湿通路DLとする状態を第2状態と呼ぶ。
Then, the first adsorption heat exchanger 11 and the second adsorption heat exchanger 12 are switched by switching the open / closed states of the plurality of dampers 15 to intermittently pass the air flow in the passages 13i, 13o, 14i, 14o. Can be switched between the air flow state shown in FIGS. 1 and 4 and the air flow state shown in FIGS. 2 and 3.
That is, in the air flow state shown in FIGS. 1 and 4, the outdoor air OA taken into the outdoor air passage 21 from the outdoor O has passed through the first adsorption heat exchanger 11 disposed in the first passages 13i and 13o. The air supply SA is supplied to the room R via the air supply passage 24 later, while the room air RA taken into the room air passage 23 from the room R passes through the second adsorption heat exchanger 12 and then the exhaust air passage as exhaust EA. It is discharged to the outdoor O through 22. In the cooling operation (FIG. 1), this air passage becomes the dehumidification passage DL, and in the heating operation (FIG. 4), this air passage becomes the humidification passage WL.
On the other hand, in the air flow state shown in FIGS. 2 and 3, the outdoor air OA taken into the outdoor air passage 21 from the outdoor O has passed through the second adsorption heat exchanger 12 disposed in the second passages 14i and 14o. The indoor air RA that is supplied to the room R later as the supply air SA through the air supply passage 24, while the indoor air RA taken into the indoor air passage 23 from the room R passes through the first adsorption heat exchanger 11 and is then used as the exhaust EA. It is discharged to the outdoor O through 22. In the cooling operation (FIG. 2), this air passage becomes the humidification passage WL, and in the heating operation (FIG. 3), this air passage becomes the dehumidification passage DL.
In the cooling operation and the heating operation, as shown in FIGS. 1 and 3, the state where the first passages 13i, 13o are the dehumidification passage DL and the second passages 14i, 14o are the humidification passage WL is referred to as the first state. As shown in FIGS. 2 and 4, the state where the first passages 13i, 13o are the humidification passage WL and the second passages 14i, 14o are the dehumidification passage DL is called a second state.

第1吸着熱交換器11の第2膨張弁30とは反対側の端部に接続された冷媒管路32と、第2吸着熱交換器12の第2膨張弁30とは反対側の端部に接続された冷媒管路33とは、夫々、4方切換弁31に接続されている。
また、この4方切換弁31には、圧縮式ヒートポンプ装置5の冷媒圧縮機60の二次側(吐出側)に接続された冷媒管路67と、同冷媒圧縮機60の一次側(吸込側)に接続された冷媒管路68とが接続されている。
よって、この4方切換弁31の状態を切り替えることで、第1吸着熱交換器11及び第2吸着熱交換器12に対する冷媒の通流状態を、図1及び図3に示す状態と、図2及び図4に示す状態との間で切り替えることができる。
The refrigerant pipe 32 connected to the end of the first adsorption heat exchanger 11 opposite to the second expansion valve 30 and the end of the second adsorption heat exchanger 12 opposite to the second expansion valve 30. Are connected to the four-way switching valve 31 respectively.
The four-way switching valve 31 includes a refrigerant pipe 67 connected to the secondary side (discharge side) of the refrigerant compressor 60 of the compression heat pump device 5 and a primary side (suction side) of the refrigerant compressor 60. ) Is connected to the refrigerant pipe 68 connected to the above.
Therefore, by switching the state of the four-way switching valve 31, the refrigerant flow state with respect to the first adsorption heat exchanger 11 and the second adsorption heat exchanger 12 is changed to the state shown in FIGS. And the state shown in FIG.

即ち、図1及び図3に示す冷媒の通流状態(以下、この状態を「第1状態」と呼ぶ。)では、冷媒圧縮機60で圧縮された冷媒が、冷媒管路67、4方切換弁31、冷媒管路33、第2吸着熱交換器12、第2膨張弁30、第1吸着熱交換器11、冷媒管路32、4方切換弁31、及び、冷媒管路68を記載の順に通過した後に、冷媒圧縮機60に戻される形態で、吸着式調湿装置1の冷媒循環路において冷媒が循環することになる。そして、この第1状態では、第2吸着熱交換器12が配置された冷媒管路33が、冷媒圧縮機60で圧縮された高圧の冷媒が通流する第2高圧側冷媒管路HP2となり、第1吸着熱交換器11が配置された冷媒管路32が、第2膨張弁30で膨張された低圧の冷媒が通流する第2低圧側冷媒管路LP2となる。従って、この第1状態では、第1吸着熱交換器11が低圧環境下で冷媒液を蒸発させる蒸発器として機能して外表面を通流する空気を冷却する空気冷却部CEとして機能し、一方、第2吸着熱交換器12が高圧環境下で冷媒蒸気を凝縮させる凝縮器として機能して外表面を通流する空気を加熱する空気加熱部HEとして機能する。即ち、第1吸着熱交換器11では、第2膨張弁30で膨張された低圧の冷媒液が蒸発することにより吸熱作用を奏し、外表面を通流する空気から冷媒へ熱を取り込む形態で、外表面を通流する空気を冷却することができる。一方、第2吸着熱交換器12では、冷媒圧縮機60で圧縮された高圧の冷媒蒸気が凝縮することにより放熱作用を奏し、外表面を通流する空気へ冷媒の熱を放出することから、外表面を通流する空気を加熱することができる。   That is, in the refrigerant flow state shown in FIGS. 1 and 3 (hereinafter, this state is referred to as “first state”), the refrigerant compressed by the refrigerant compressor 60 is changed to the refrigerant pipe 67 and the four-way switching. The valve 31, the refrigerant pipe 33, the second adsorption heat exchanger 12, the second expansion valve 30, the first adsorption heat exchanger 11, the refrigerant pipe 32, the four-way switching valve 31, and the refrigerant pipe 68 are described. The refrigerant circulates in the refrigerant circulation path of the adsorption humidity control apparatus 1 in such a form that it passes back in order and is returned to the refrigerant compressor 60. In this first state, the refrigerant line 33 in which the second adsorption heat exchanger 12 is arranged becomes the second high-pressure side refrigerant line HP2 through which the high-pressure refrigerant compressed by the refrigerant compressor 60 flows, The refrigerant line 32 in which the first adsorption heat exchanger 11 is arranged becomes a second low-pressure side refrigerant line LP2 through which the low-pressure refrigerant expanded by the second expansion valve 30 flows. Therefore, in this first state, the first adsorption heat exchanger 11 functions as an evaporator that evaporates the refrigerant liquid in a low pressure environment and functions as an air cooling unit CE that cools the air flowing through the outer surface, The second adsorption heat exchanger 12 functions as a condenser that condenses the refrigerant vapor in a high-pressure environment and functions as an air heating unit HE that heats air flowing through the outer surface. That is, in the first adsorption heat exchanger 11, the low-pressure refrigerant liquid expanded by the second expansion valve 30 has an endothermic effect by evaporating, and takes heat from the air flowing through the outer surface into the refrigerant. Air flowing through the outer surface can be cooled. On the other hand, in the second adsorption heat exchanger 12, the high-pressure refrigerant vapor compressed by the refrigerant compressor 60 condenses to exert a heat radiation action, and releases the heat of the refrigerant to the air flowing through the outer surface. Air flowing through the outer surface can be heated.

一方、図2及び図4に示す冷媒の通流状態(以下、この状態を「第2状態」と呼ぶ。)では、冷媒圧縮機60で圧縮された冷媒が、冷媒管路67、4方切換弁31、冷媒管路32、第1吸着熱交換器11、第2膨張弁30、第2吸着熱交換器12、冷媒管路33、4方切換弁31、及び、冷媒管路68を記載の順に通過した後に、冷媒圧縮機60に戻される形態で、吸着式調湿装置1の冷媒循環路において冷媒が循環することになる。そして、この第2状態では、第1吸着熱交換器11が配置された冷媒管路32が、冷媒圧縮機60で圧縮された高圧の冷媒が通流する第2高圧側冷媒管路HP2となり、第2吸着熱交換器12が配置された冷媒管路33が、第2膨張弁30で膨張された低圧の冷媒が通流する第2低圧側冷媒管路LPとなる。従って、この第2状態では、第1吸着熱交換器11が高圧環境下で冷媒蒸気を凝縮させる凝縮器として機能して外表面を通流する空気を加熱する空気加熱部HEとして機能し、一方、第2吸着熱交換器12が低圧環境下で冷媒液を蒸発させる蒸発器として機能して外表面を通流する空気を冷却する空気冷却部CEとして機能する。即ち、第1吸着熱交換器11では、冷媒圧縮機60で圧縮された高圧の冷媒蒸気が凝縮することにより放熱作用を奏し、外表面を通流する空気へ冷媒の熱を放出することから、外表面を通流する空気を加熱することができる。一方、第2吸着熱交換器12では、第2膨張弁30で膨張された低圧の冷媒液が蒸発することにより吸熱作用を奏し、外表面を通流する空気から冷媒へ熱を取り込む形態で、外表面を通流する空気を冷却することができる。
そして、制御装置90が機能する吸湿再生切替手段91は、吸着式調湿装置1における空気と冷媒との通流状態を第1状態と第2状態との間で所定時間間隔(例えば10分間隔)で切り替えることで、除湿通路DLにおいて空気を空気冷却部CEによる冷却を伴って再生処理後の吸着材10aに通過させる吸湿処理を行うと共に、加湿通路WLにおいて空気を空気加熱部HEによる加熱を伴って吸湿処理後の吸着材10aに通過させる再生処理を行うように構成されている。
On the other hand, in the refrigerant flow state shown in FIGS. 2 and 4 (hereinafter, this state is referred to as “second state”), the refrigerant compressed by the refrigerant compressor 60 is changed to the refrigerant pipe 67 and the four-way switching. The valve 31, the refrigerant pipe 32, the first adsorption heat exchanger 11, the second expansion valve 30, the second adsorption heat exchanger 12, the refrigerant pipe 33, the four-way switching valve 31, and the refrigerant pipe 68 are described. The refrigerant circulates in the refrigerant circulation path of the adsorption humidity control apparatus 1 in such a form that it passes back in order and is returned to the refrigerant compressor 60. In this second state, the refrigerant line 32 where the first adsorption heat exchanger 11 is arranged becomes the second high-pressure side refrigerant line HP2 through which the high-pressure refrigerant compressed by the refrigerant compressor 60 flows, The refrigerant line 33 in which the second adsorption heat exchanger 12 is arranged becomes a second low-pressure side refrigerant line LP through which the low-pressure refrigerant expanded by the second expansion valve 30 flows. Therefore, in this second state, the first adsorption heat exchanger 11 functions as a condenser that condenses the refrigerant vapor in a high pressure environment and functions as an air heating unit HE that heats air flowing through the outer surface, The second adsorption heat exchanger 12 functions as an evaporator that evaporates the refrigerant liquid in a low-pressure environment, and functions as an air cooling unit CE that cools the air flowing through the outer surface. That is, in the first adsorption heat exchanger 11, the high-pressure refrigerant vapor compressed by the refrigerant compressor 60 condenses to release heat, and releases the heat of the refrigerant to the air flowing through the outer surface. Air flowing through the outer surface can be heated. On the other hand, in the second adsorption heat exchanger 12, the low-pressure refrigerant liquid expanded by the second expansion valve 30 has an endothermic effect by evaporating, and takes heat from the air flowing through the outer surface into the refrigerant. Air flowing through the outer surface can be cooled.
And the moisture absorption regeneration switching means 91 in which the control device 90 functions changes the flow state of the air and the refrigerant in the adsorption humidity controller 1 between a first state and a second state at a predetermined time interval (for example, every 10 minutes). ) In the dehumidification passage DL is subjected to a moisture absorption process for passing the air to the adsorbent 10a after the regeneration process with cooling by the air cooling section CE, and the air is heated by the air heating section HE in the humidification path WL. Along with this, it is configured to perform a regeneration process that passes through the adsorbent 10a after the moisture absorption process.

具体的に、吸湿再生切替手段91は、吸着式調湿装置1における空気と冷媒との通流状態を、図1及び図3に示す第1状態に切り換えることで、第1吸着熱交換器11を空気冷却部CEとして機能させた状態で第1吸着熱交換器11が配置された第1通路13i,13oを除湿通路DLとすると共に、第2吸着熱交換器12を空気加熱部HEとして機能させた状態で第2吸着熱交換器12が配置された第2通路14i,14oを加湿通路WLとする。すると、除湿通路DLでは、第1吸着熱交換器11が空気冷却部CEとして機能して、その外表面に設けられた吸着材10a並びにその吸着材10aに接触しながら通過する空気(冷房運転時には室外空気OA及び給気SA,暖房運転時には室内空気RA及び排気EA)が冷却されるので、その空気に含まれる水分が吸着材10aに吸着されて、第1吸着熱交換器11の吸着材10aの吸湿処理が行われることになる。一方、加湿通路WLでは、第2吸着熱交換器12が空気加熱部HEとして機能して、その外表面に設けられた吸着材10a並びにその吸着材10aに接触しながら通過する空気(冷房運転時には室内空気RA及び排気EA、暖房運転時には室外空気OA及び給気SA)が加熱されるので、その空気に対して吸着材10aの水分が放出されて、第2吸着熱交換器12の吸着材10aの再生が行われることになる。
そして、制御装置90が機能する冷暖房切替手段92により、冷房運転時においては加熱対象空間HAを室外Oとすると共に冷却対象空間CAを室内Rとし、暖房運転時においては加熱対象空間HAを室内Rとすると共に冷却対象空間CAを室外Oとするように、吸着式調湿装置1における冷媒と空気の通流状態が切り替えられることから、室内Rに対して、図1に示す冷房運転時には、第1吸着熱交換器11の吸着材10aにより水分が吸着された低湿の空気を給気SAとして供給する形態で除湿が行われ、図3に示す暖房運転時には、第2吸着熱交換器12の吸着材10aにより水分が放出された高湿の空気を給気SAとして供給する形態で加湿が行われることになる。
Specifically, the moisture absorption regeneration switching unit 91 switches the flow state of the air and the refrigerant in the adsorption humidity control device 1 to the first state shown in FIGS. 1 and 3, so that the first adsorption heat exchanger 11. The first passages 13i and 13o in which the first adsorption heat exchanger 11 is disposed in the state where the air-cooling portion CE functions as the dehumidification passage DL, and the second adsorption heat exchanger 12 functions as the air heating portion HE. The 2nd channel | paths 14i and 14o by which the 2nd adsorption heat exchanger 12 is arrange | positioned in the made state are made into the humidification channel | path WL. Then, in the dehumidifying passage DL, the first adsorption heat exchanger 11 functions as the air cooling unit CE, and the adsorbent 10a provided on the outer surface thereof and the air passing while contacting the adsorbent 10a (during cooling operation) Since the outdoor air OA and the supply air SA, and the indoor air RA and the exhaust gas EA during the heating operation are cooled, the moisture contained in the air is adsorbed by the adsorbent 10a and the adsorbent 10a of the first adsorption heat exchanger 11 is absorbed. The moisture absorption process is performed. On the other hand, in the humidification passage WL, the second adsorption heat exchanger 12 functions as the air heating unit HE and the adsorbent 10a provided on the outer surface thereof and the air passing through the adsorbent 10a in contact with the adsorbent 10a (during cooling operation) The indoor air RA and the exhaust air EA, and the outdoor air OA and the supply air SA during the heating operation are heated, so that the moisture of the adsorbent 10a is released to the air and the adsorbent 10a of the second adsorption heat exchanger 12 is released. Will be played.
Then, by the cooling / heating switching means 92 functioning by the control device 90, the heating target space HA is set to the outdoor O and the cooling target space CA is set to the room R during the cooling operation, and the heating target space HA is set to the room R during the heating operation. In addition, since the flow state of the refrigerant and air in the adsorption humidity controller 1 is switched so that the space CA to be cooled is the outdoor O, the cooling operation shown in FIG. The dehumidification is performed in a form in which low-humidity air in which moisture is adsorbed by the adsorbent 10a of the first adsorption heat exchanger 11 is supplied as the supply air SA, and the adsorption of the second adsorption heat exchanger 12 during the heating operation shown in FIG. Humidification is performed in a form in which high-humidity air from which moisture has been released by the material 10a is supplied as the supply air SA.

一方、吸湿再生切替手段91は、吸着式調湿装置1における空気と冷媒との通流状態を、図2及び図4に示す第2状態に切り換えることで、第1吸着熱交換器11を空気加熱部HEとして機能させた状態で第1吸着熱交換器11が配置された第1通路13i,13oを加湿通路WLとすると共に、第2吸着熱交換器12を空気冷却部CEとして機能させた状態で第2吸着熱交換器12が配置された第2通路14i,14oを除湿通路DLとする。すると、除湿通路DLでは、第2吸着熱交換器12が空気冷却部CEとして機能して、その外表面に設けられた吸着材10a並びにその吸着材10aに接触しながら通過する空気(冷房運転時には室外空気OA及び給気SA,暖房運転時には室内空気RA及び排気EA)が冷却されるので、その空気に含まれる水分が吸着材10aに吸着されて、第2吸着熱交換器12の吸着材10aの吸湿処理が行われることになる。一方、加湿通路WLでは、第1吸着熱交換器11が空気加熱部HEとして機能して、その外表面に設けられた吸着材10a並びにその吸着材10aに接触しながら通過する空気(冷房運転時には室内空気RA及び排気EA、暖房運転時には室外空気OA及び給気SA)が加熱されるので、その空気に対して吸着材10aの水分が放出されて、第1吸着熱交換器11の吸着材10aの再生が行われることになる。
そして、制御装置90が機能する冷暖房切替手段92により、冷房運転時においては加熱対象空間HAを室外Oとすると共に冷却対象空間CAを室内Rとし、暖房運転時においては加熱対象空間HAを室内Rとすると共に冷却対象空間CAを室外Oとするように、吸着式調湿装置1における冷媒と空気の通流状態が切り替えられることから、室内Rに対して、図2に示す冷房運転時には、第2吸着熱交換器12の吸着材10aにより水分が吸着された低湿の空気を給気SAとして供給する形態で除湿が行われ、図4に示す暖房運転時には、第1吸着熱交換器11の吸着材10aにより水分が放出された高湿の空気を給気SAとして供給する形態で加湿が行われることになる。
On the other hand, the moisture absorption regeneration switching means 91 switches the first adsorption heat exchanger 11 to the air by switching the flow state of the air and the refrigerant in the adsorption humidity controller 1 to the second state shown in FIGS. The first passages 13i and 13o in which the first adsorption heat exchanger 11 is disposed in the state of functioning as the heating unit HE are used as the humidification passage WL, and the second adsorption heat exchanger 12 is functioned as the air cooling unit CE. In this state, the second passages 14i and 14o in which the second adsorption heat exchanger 12 is disposed are defined as a dehumidification passage DL. Then, in the dehumidification passage DL, the second adsorption heat exchanger 12 functions as the air cooling unit CE, and the air passing through the adsorbent 10a provided on the outer surface and the adsorbent 10a (during cooling operation) Since the outdoor air OA and the supply air SA, and the indoor air RA and the exhaust EA during the heating operation are cooled, the moisture contained in the air is adsorbed by the adsorbent 10a, and the adsorbent 10a of the second adsorption heat exchanger 12 is absorbed. The moisture absorption process is performed. On the other hand, in the humidification passage WL, the first adsorption heat exchanger 11 functions as the air heating unit HE, and the air passing through the adsorbent 10a provided on the outer surface and the adsorbent 10a (during cooling operation) The indoor air RA and the exhaust air EA, and the outdoor air OA and the supply air SA during the heating operation are heated, so that moisture of the adsorbent 10a is released to the air, and the adsorbent 10a of the first adsorption heat exchanger 11 is released. Will be played.
Then, by the cooling / heating switching means 92 functioning by the control device 90, the heating target space HA is set to the outdoor O and the cooling target space CA is set to the room R during the cooling operation, and the heating target space HA is set to the room R during the heating operation. 2 and the flow state of the refrigerant and the air in the adsorption humidity controller 1 is switched so that the cooling target space CA is the outdoor O. Therefore, when the cooling operation shown in FIG. The dehumidification is performed in such a form that low-humidity air, in which moisture is adsorbed by the adsorbent 10a of the two-adsorption heat exchanger 12, is supplied as the supply air SA. During the heating operation shown in FIG. Humidification is performed in a form in which high-humidity air from which moisture has been released by the material 10a is supplied as the supply air SA.

また、冷媒圧縮機60の二次側に接続された冷媒管路67には、当該冷媒管路67を通流する冷媒の流量を調整可能な冷媒分配流量調整弁35が設けられている。
即ち、この冷媒分配流量調整弁35の開度を調整すれば、冷媒圧縮機60から第2高圧側冷媒管路HP2への冷媒の分配流量、言い換えれば吸着式調湿装置1において空気冷却部CE及び空気加熱部HEを含む冷媒循環回路における冷媒循環流量が調整可能となる。
更に、室内空気通路23には、室内Rから室内空気通路23に取り込まれた室内空気RAの温度及び相対湿度を計測する温湿度計測器40が設けられており、給気通路24には、当該給気通路24から室内Rに供給される給気SAの温度及び相対湿度を計測する温湿度計測器41が設けられている。
そして、制御装置90は、室内Rの絶対湿度を所定の目標湿度に維持するように冷媒分配流量調整弁35の開度を制御する調湿制御手段93として機能する。
具体的に、調湿制御手段93は、温湿度計測器40により計測された室内空気RAの温度及び相対湿度から当該室内空気RAの絶対湿度を逐次算出すると共に、温湿度計測器41により計測された給気SAの温度及び相対湿度から当該給気SAの絶対湿度を逐次算出する。尚、この絶対湿度の算出は、空気湿り線図や所定の近似式等を利用して行うことができる。
そして、調湿制御手段93は、このように算出した室内空気RAの絶対湿度を室内Rの絶対湿度として認識し、その室内空気RAの絶対湿度が所定の目標湿度に維持されるように冷媒分配流量調整弁35の開度を調整して、吸着式調湿装置1の運転・停止並びに運転時における調湿能力の調整を行う。
The refrigerant pipe 67 connected to the secondary side of the refrigerant compressor 60 is provided with a refrigerant distribution flow rate adjustment valve 35 that can adjust the flow rate of the refrigerant flowing through the refrigerant pipe 67.
That is, if the opening degree of the refrigerant distribution flow rate adjustment valve 35 is adjusted, the refrigerant distribution flow rate from the refrigerant compressor 60 to the second high-pressure side refrigerant pipe HP2, in other words, the air cooling unit CE in the adsorption-type humidity control apparatus 1 is achieved. In addition, the refrigerant circulation flow rate in the refrigerant circulation circuit including the air heating unit HE can be adjusted.
Furthermore, the indoor air passage 23 is provided with a temperature / humidity measuring device 40 for measuring the temperature and relative humidity of the indoor air RA taken into the indoor air passage 23 from the room R. A temperature / humidity measuring device 41 for measuring the temperature and relative humidity of the supply air SA supplied from the supply passage 24 to the room R is provided.
And the control apparatus 90 functions as the humidity control means 93 which controls the opening degree of the refrigerant | coolant distribution flow rate adjustment valve 35 so that the absolute humidity of the room | chamber R may be maintained at the predetermined target humidity.
Specifically, the humidity control means 93 sequentially calculates the absolute humidity of the room air RA from the temperature and relative humidity of the room air RA measured by the temperature / humidity measuring device 40 and is measured by the temperature / humidity measuring device 41. The absolute humidity of the supply air SA is sequentially calculated from the temperature and relative humidity of the supply air SA. The calculation of absolute humidity can be performed using an air wetness diagram, a predetermined approximate expression, or the like.
Then, the humidity control means 93 recognizes the absolute humidity of the room air RA calculated in this way as the absolute humidity of the room R, and distributes the refrigerant so that the absolute humidity of the room air RA is maintained at a predetermined target humidity. The opening degree of the flow rate adjustment valve 35 is adjusted to operate / stop the adsorption humidity control device 1 and adjust the humidity control capability during operation.

即ち、冷房運転時(図1及び図2参照)において、室内空気RAの絶対湿度が上記目標湿度よりも若干高めの所定の運転開始目標湿度よりも高くなった場合には、閉状態の冷媒分配流量調整弁35の開度が漸次拡大されて、空気冷却部CEの冷却能力及び空気加熱部HEへの冷媒の通流が開始され、吸着式調湿装置1の運転が開始されて、室内Rの除湿が開始される。更に、運転時における冷媒分配流量調整弁35の開度は、給気SAの絶対湿度が上記若干低めの所定の給気目標湿度に維持されるように調整される。即ち、給気SAの絶対湿度が給気目標湿度よりも高い場合には、冷媒分配流量調整弁35の開度が拡大されることで、空気冷却部CEの冷却能力及び空気加熱部HEの加熱能力が増加して、吸着材10aに対して授受される水分量が増加し、結果、除湿された給気SAの絶対湿度の低下が図られる。逆に、給気SAの絶対湿度が給気目標湿度よりも低い場合には、冷媒分配流量調整弁35の開度が縮小されることで、空気冷却部CEの冷却能力及び空気加熱部HEの加熱能力が減少して、吸着材10aに対して授受される水分量が減少し、結果、除湿された給気SAの絶対湿度の上昇が図られる。
そして、室内空気RAの絶対湿度が上記目標湿度に維持された時点で、冷媒分配流量調整弁35の開度が漸次縮小された閉状態となり、空気冷却部CEの冷却能力及び空気加熱部HEへの冷媒の通流が停止され、吸着式調湿装置1の運転が停止される。
That is, during the cooling operation (see FIGS. 1 and 2), when the absolute humidity of the indoor air RA becomes higher than a predetermined operation start target humidity slightly higher than the target humidity, the refrigerant distribution in the closed state is performed. The opening degree of the flow rate adjustment valve 35 is gradually increased, the cooling capacity of the air cooling unit CE and the flow of the refrigerant to the air heating unit HE are started, the operation of the adsorption humidity control device 1 is started, and the room R Dehumidification of is started. Further, the opening degree of the refrigerant distribution flow rate adjustment valve 35 during operation is adjusted so that the absolute humidity of the supply air SA is maintained at the predetermined supply air target humidity slightly lower than the above. That is, when the absolute humidity of the supply air SA is higher than the supply air target humidity, the opening degree of the refrigerant distribution flow rate adjustment valve 35 is expanded, so that the cooling capacity of the air cooling unit CE and the heating of the air heating unit HE are increased. The capacity increases, the amount of water transferred to and from the adsorbent 10a increases, and as a result, the absolute humidity of the dehumidified supply air SA is reduced. On the contrary, when the absolute humidity of the supply air SA is lower than the supply air target humidity, the cooling capacity of the air cooling unit CE and the air heating unit HE are reduced by reducing the opening of the refrigerant distribution flow rate adjustment valve 35. The heating capacity is reduced, and the amount of moisture transferred to the adsorbent 10a is reduced. As a result, the absolute humidity of the dehumidified supply air SA is increased.
When the absolute humidity of the indoor air RA is maintained at the target humidity, the opening degree of the refrigerant distribution flow rate adjustment valve 35 is gradually reduced to the closed state, and the cooling capacity of the air cooling unit CE and the air heating unit HE are reached. The refrigerant flow is stopped, and the operation of the adsorption humidity control apparatus 1 is stopped.

一方、暖房運転時(図3及び図4参照)において、室内空気RAの絶対湿度が上記目標湿度よりも若干低めの所定の運転開始目標湿度よりも低くなった場合には、閉状態の冷媒分配流量調整弁35の開度が漸次拡大されて、空気冷却部CEの冷却能力及び空気加熱部HEへの冷媒の通流が開始され、吸着式調湿装置1の運転が開始されて、室内Rの加湿が開始される。更に、運転時における冷媒分配流量調整弁35の開度は、給気SAの絶対湿度が上記若干高めの所定の給気目標湿度に維持されるように調整される。即ち、給気SAの絶対湿度が給気目標湿度よりも低い場合には、冷媒分配流量調整弁35の開度が拡大されることで、空気冷却部CEの冷却能力及び空気加熱部HEの加熱能力が増加して、吸着材10aに対して授受される水分量が増加し、結果、加湿された給気SAの絶対湿度の上昇が図られる。逆に、給気SAの絶対湿度が給気目標湿度よりも高い場合には、冷媒分配流量調整弁35の開度が縮小されることで、空気冷却部CEの冷却能力及び空気加熱部HEの加熱能力が減少して、吸着材10aに対して授受される水分量が減少し、結果、加湿された給気SAの絶対湿度の低下が図られる。
そして、室内空気RAの絶対湿度が上記目標湿度に維持された時点で、冷媒分配流量調整弁35の開度が漸次縮小された閉状態となり、空気冷却部CEの冷却能力及び空気加熱部HEへの冷媒の通流が停止され、吸着式調湿装置1の運転が停止される。
On the other hand, during the heating operation (see FIGS. 3 and 4), when the absolute humidity of the indoor air RA becomes lower than a predetermined operation start target humidity slightly lower than the target humidity, the refrigerant distribution in the closed state is performed. The opening degree of the flow rate adjustment valve 35 is gradually increased, the cooling capacity of the air cooling unit CE and the flow of the refrigerant to the air heating unit HE are started, the operation of the adsorption humidity control device 1 is started, and the room R Humidification starts. Further, the opening degree of the refrigerant distribution flow rate adjustment valve 35 during operation is adjusted so that the absolute humidity of the supply air SA is maintained at the predetermined supply air target humidity slightly higher than the above. That is, when the absolute humidity of the supply air SA is lower than the supply air target humidity, the opening degree of the refrigerant distribution flow rate adjustment valve 35 is expanded, so that the cooling capacity of the air cooling unit CE and the heating of the air heating unit HE are increased. The capacity increases, the amount of water transferred to and from the adsorbent 10a increases, and as a result, the absolute humidity of the humidified supply air SA is increased. Conversely, when the absolute humidity of the supply air SA is higher than the supply air target humidity, the opening degree of the refrigerant distribution flow rate adjustment valve 35 is reduced, so that the cooling capacity of the air cooling unit CE and the air heating unit HE are reduced. The heating capacity is reduced, and the amount of moisture transferred to the adsorbent 10a is reduced. As a result, the absolute humidity of the humidified supply air SA is reduced.
When the absolute humidity of the indoor air RA is maintained at the target humidity, the opening degree of the refrigerant distribution flow rate adjustment valve 35 is gradually reduced to the closed state, and the cooling capacity of the air cooling unit CE and the air heating unit HE are reached. The refrigerant flow is stopped, and the operation of the adsorption humidity control apparatus 1 is stopped.

〔圧縮式ヒートポンプ装置〕
図1〜図4に示す圧縮式ヒートポンプ装置5は、ガスエンジン50で回転駆動される冷媒圧縮機60で圧縮された冷媒を第1膨張弁66に導く第1高圧側冷媒管路HP1に、当該第1高圧側冷媒管路HP1を通流する冷媒と加熱対象空間HAの空気との熱交換を行う凝縮部COを配置すると共に、第1膨張弁66で膨張された冷媒を冷媒圧縮機60に導く第1低圧側冷媒管路LP1に、当該第1低圧側冷媒管路LP1を通流する冷媒と冷却対象空間CAの空気との熱交換を行う蒸発部EVを配置し、蒸発部EVによる室内Rの空気の冷却又は凝縮部COによる室内Rの空気の加熱を行う形態で、室内Rの冷房又は暖房を行う所謂ガスエンジン・ヒートポンプ・エアコン(GHP)として構成されている。
[Compression heat pump device]
The compression heat pump device 5 shown in FIGS. 1 to 4 is connected to the first high-pressure side refrigerant pipe HP1 that guides the refrigerant compressed by the refrigerant compressor 60 that is rotationally driven by the gas engine 50 to the first expansion valve 66. A condensing unit CO that performs heat exchange between the refrigerant flowing through the first high-pressure side refrigerant pipe HP1 and the air in the space to be heated HA is disposed, and the refrigerant expanded by the first expansion valve 66 is supplied to the refrigerant compressor 60. In the first low-pressure side refrigerant pipe LP1 to be led, an evaporator EV that performs heat exchange between the refrigerant flowing through the first low-pressure refrigerant pipe LP1 and the air in the cooling target space CA is disposed. It is configured as a so-called gas engine, heat pump, and air conditioner (GHP) that cools or heats the room R in a form in which the air in the room R is heated by cooling or condensing the CO.

具体的に、圧縮式ヒートポンプ装置5は、室外O(例えば屋外)に配置された室外機5oと、室内Rに配置された室内機5rとからなり、これら室外機5oと室内機5rとの間で冷媒が循環される。
室外機5oには、ガスエンジン50及びそれにより回転駆動される冷媒圧縮機60に加えて、伝熱管内部に冷媒が通流し当該冷媒と外表面を通過する空気との熱交換を行うフィンチューブ熱交換器で構成された室外熱交換器70と、その室外熱交換器70に室外Oの空気を通過させるファン71とが設けられており、一方、室内機5rには、伝熱管内部に冷媒が通流し当該冷媒と外表面を通過する空気との熱交換を行うフィンチューブ熱交換器で構成された室内熱交換器80と、その室内熱交換器80に室内Rの空気を通過させるファン81とが設けられている。
Specifically, the compression heat pump device 5 includes an outdoor unit 5o disposed in an outdoor O (for example, outdoors) and an indoor unit 5r disposed in a room R, and between these outdoor units 5o and the indoor unit 5r. Then the refrigerant is circulated.
In the outdoor unit 5o, in addition to the gas engine 50 and the refrigerant compressor 60 that is rotationally driven by the gas engine 50, fin tube heat that exchanges heat between the refrigerant and the air that passes through the outer surface through which the refrigerant flows inside the heat transfer tube. An outdoor heat exchanger 70 composed of an exchanger and a fan 71 that allows the outdoor O air to pass through the outdoor heat exchanger 70 are provided. On the other hand, in the indoor unit 5r, a refrigerant is provided inside the heat transfer tube. An indoor heat exchanger 80 composed of a finned tube heat exchanger that exchanges heat between the refrigerant and the air that passes through the outer surface, and a fan 81 that allows the air in the room R to pass through the indoor heat exchanger 80. Is provided.

室外熱交換器70が配置された冷媒管路64の一方側端部と、室内熱交換器80が配置された冷媒管路65の一方側端部とは、夫々、高圧の冷媒を膨張させる第1膨張弁66を介して接続されている。
一方、室外熱交換器70が配置された冷媒管路64の他方側端部と、室内熱交換器80が配置された冷媒管路65の他方側端部とは、夫々、4方切換弁63に接続されている。
また、この4方切換弁63には、冷媒圧縮機60の二次側(吐出側)に接続された冷媒管路61と、同冷媒圧縮機60の一次側(吸込側)に接続された冷媒管路62とが接続されている。よって、この4方切換弁31の状態を切り替えることで、室外熱交換器70及び室内熱交換器80に対する冷媒の通流状態を、図1及び図2に示す冷房状態と、図2及び図4に示す暖房状態との間で切り替えることができる。
One end of the refrigerant pipe 64 in which the outdoor heat exchanger 70 is arranged and one end of the refrigerant pipe 65 in which the indoor heat exchanger 80 is arranged respectively expand the high-pressure refrigerant. 1 is connected via an expansion valve 66.
On the other hand, the other side end of the refrigerant pipe 64 where the outdoor heat exchanger 70 is arranged and the other side end of the refrigerant pipe 65 where the indoor heat exchanger 80 is arranged are each a four-way switching valve 63. It is connected to the.
The four-way switching valve 63 includes a refrigerant pipe 61 connected to the secondary side (discharge side) of the refrigerant compressor 60 and a refrigerant connected to the primary side (suction side) of the refrigerant compressor 60. A pipe line 62 is connected. Therefore, by switching the state of the four-way switching valve 31, the refrigerant flow state with respect to the outdoor heat exchanger 70 and the indoor heat exchanger 80 is changed to the cooling state shown in FIGS. 1 and 2, and FIGS. It can be switched between the heating states shown in FIG.

即ち、図1及び図2に示す冷房状態では、冷媒圧縮機60で圧縮された冷媒が、冷媒管路61、4方切換弁63、冷媒管路64に配置された室外熱交換器70、第1膨張弁66、冷媒管路65に配置された室内熱交換器80、4方切換弁63、及び、冷媒管路62を記載の順に通過した後に、冷媒圧縮機60に戻される形態で、圧縮式ヒートポンプ装置5の冷媒循環路において冷媒が循環することになる。そして、この冷房状態では、室外熱交換器70が配置された冷媒管路64が、冷媒圧縮機60で圧縮された高圧の冷媒が通流する第1高圧側冷媒管路HP1となり、室内熱交換器80が配置された冷媒管路65が、第1膨張弁66で膨張された低圧の冷媒が通流する第1低圧側冷媒管路LP1となる。従って、この冷房状態では、室内熱交換器80が低圧環境下で冷媒液を蒸発させる蒸発部EVとして機能して外表面を通流する室内Rの空気を冷却し、一方、室外熱交換器70が高圧環境下で冷媒蒸気を凝縮させる凝縮部COとして機能して外表面を通流する室外Oの空気を加熱する。即ち、室内熱交換器80では、第1膨張弁66で膨張された低圧の冷媒液が蒸発することにより吸熱作用を奏し、外表面を通流する室内Rの空気から冷媒へ熱を取り込む形態で、外表面を通流する室内Rの空気を冷却して、室内Rの冷房を行うことができる。一方、室外熱交換器70では、冷媒圧縮機60で圧縮された高圧の冷媒蒸気が凝縮することにより放熱作用を奏し、外表面を通流する室外Oの空気へ冷媒の熱を放出することから、外表面を通流する室外Oの空気を加熱することができる。   That is, in the cooling state shown in FIG. 1 and FIG. 2, the refrigerant compressed by the refrigerant compressor 60 is transferred to the refrigerant pipe 61, the four-way switching valve 63, the outdoor heat exchanger 70 disposed in the refrigerant pipe 64, After passing through the indoor heat exchanger 80, the four-way switching valve 63, and the refrigerant pipe 62 arranged in the order described in the order of the expansion valve 66, the refrigerant pipe 65, compression is performed in a form that is returned to the refrigerant compressor 60. The refrigerant circulates in the refrigerant circulation path of the heat pump device 5. In this cooling state, the refrigerant pipe 64 in which the outdoor heat exchanger 70 is arranged becomes the first high-pressure side refrigerant pipe HP1 through which the high-pressure refrigerant compressed by the refrigerant compressor 60 flows, and indoor heat exchange is performed. The refrigerant line 65 in which the vessel 80 is arranged becomes the first low-pressure side refrigerant line LP1 through which the low-pressure refrigerant expanded by the first expansion valve 66 flows. Therefore, in this cooling state, the indoor heat exchanger 80 functions as an evaporation unit EV that evaporates the refrigerant liquid under a low pressure environment to cool the air in the room R flowing through the outer surface, while the outdoor heat exchanger 70 Functions as a condensing part CO that condenses the refrigerant vapor in a high pressure environment and heats the air in the outdoor O flowing through the outer surface. That is, in the indoor heat exchanger 80, the low-pressure refrigerant liquid expanded by the first expansion valve 66 has an endothermic effect and evaporates heat from the air in the room R flowing through the outer surface into the refrigerant. The room R flowing through the outer surface can be cooled to cool the room R. On the other hand, in the outdoor heat exchanger 70, the high-pressure refrigerant vapor compressed by the refrigerant compressor 60 condenses, thereby releasing heat and releasing the heat of the refrigerant to the outdoor O air flowing through the outer surface. The outdoor O air flowing through the outer surface can be heated.

一方、図3及び図4に示す暖房状態では、冷媒圧縮機60で圧縮された冷媒が、冷媒管路61、4方切換弁63、冷媒管路65に配置された室内熱交換器80、第1膨張弁66、冷媒管路64に配置された室外熱交換器70、4方切換弁63、及び、冷媒管路62を記載の順に通過した後に、冷媒圧縮機60に戻される形態で、圧縮式ヒートポンプ装置5の冷媒循環路において冷媒が循環することになる。そして、この暖房状態では、室内熱交換器80が配置された冷媒管路65が、冷媒圧縮機60で圧縮された高圧の冷媒が通流する第1高圧側冷媒管路HP1となり、室外熱交換器70が配置された冷媒管路64が、第1膨張弁66で膨張された低圧の冷媒が通流する第1低圧側冷媒管路LP1となる。従って、この冷房状態では、室外熱交換器70が低圧環境下で冷媒液を蒸発させる蒸発部EVとして機能して外表面を通流する室内Rの空気を冷却し、一方、室内熱交換器80が高圧環境下で冷媒蒸気を凝縮させる凝縮部COとして機能して外表面を通流する室外Oの空気を加熱する。即ち、室内熱交換器80では、冷媒圧縮機60で圧縮された高圧の冷媒蒸気が凝縮することにより放熱作用を奏し、外表面を通流する室内Rの空気へ冷媒の熱を放出することから、外表面を通流する室内Rの空気を加熱して、室内Rの暖房を行うことができる。一方、室外熱交換器70では、第1膨張弁66で膨張された低圧の冷媒液が蒸発することにより吸熱作用を奏し、外表面を通流する室内Rの空気から冷媒へ熱を取り込む形態で、外表面を通流する室内Rの空気を冷却することができる。   On the other hand, in the heating state shown in FIG. 3 and FIG. 4, the refrigerant compressed by the refrigerant compressor 60 is the indoor heat exchanger 80 disposed in the refrigerant pipe 61, the four-way switching valve 63, and the refrigerant pipe 65, After passing through the expansion valve 66, the outdoor heat exchanger 70 disposed in the refrigerant pipe 64, the four-way switching valve 63, and the refrigerant pipe 62 in the stated order, the compressed air is returned to the refrigerant compressor 60 and compressed. The refrigerant circulates in the refrigerant circulation path of the heat pump device 5. In this heating state, the refrigerant pipe 65 in which the indoor heat exchanger 80 is arranged becomes the first high-pressure side refrigerant pipe HP1 through which the high-pressure refrigerant compressed by the refrigerant compressor 60 flows, and outdoor heat exchange is performed. The refrigerant line 64 in which the vessel 70 is disposed becomes the first low-pressure side refrigerant line LP1 through which the low-pressure refrigerant expanded by the first expansion valve 66 flows. Therefore, in this cooling state, the outdoor heat exchanger 70 functions as an evaporation unit EV that evaporates the refrigerant liquid in a low pressure environment to cool the air in the room R flowing through the outer surface, while the indoor heat exchanger 80 Functions as a condensing part CO that condenses the refrigerant vapor in a high pressure environment and heats the air in the outdoor O flowing through the outer surface. That is, in the indoor heat exchanger 80, the high-pressure refrigerant vapor compressed by the refrigerant compressor 60 condenses, thereby releasing heat and releasing the heat of the refrigerant to the air in the room R flowing through the outer surface. The room R flowing through the outer surface can be heated to heat the room R. On the other hand, in the outdoor heat exchanger 70, the low-pressure refrigerant liquid expanded by the first expansion valve 66 has an endothermic effect and evaporates heat from the air in the room R flowing through the outer surface into the refrigerant. The air in the room R flowing through the outer surface can be cooled.

そして、制御装置90が機能する冷暖房切替手段92により、冷房運転時においては加熱対象空間HAを室外Oとすると共に冷却対象空間CAを室内Rとし、暖房運転時においては加熱対象空間HAを室内Rとすると共に冷却対象空間CAを室外Oとするように、圧縮式ヒートポンプ装置5における冷媒の通流状態が上記冷房状態と上記暖房状態との間で切り替えられることから、室内Rに対して、図1及び図2に示す冷房運転時には、室内熱交換器80を蒸発部EVとして機能させて当該室内熱交換器80により室内Rの空気を冷却する形態で冷房が行われ、図3及び図4に示す暖房運転時には、室内熱交換器80を凝縮部COとして機能させて当該室内熱交換器80により室内Rの空気を加熱する形態で暖房が行われることになる。   Then, by the cooling / heating switching means 92 functioning by the control device 90, the heating target space HA is set to the outdoor O and the cooling target space CA is set to the room R during the cooling operation, and the heating target space HA is set to the room R during the heating operation. And the refrigerant flow state in the compression heat pump device 5 is switched between the cooling state and the heating state so that the cooling target space CA is the outdoor O. In the cooling operation shown in FIGS. 1 and 2, the indoor heat exchanger 80 is caused to function as the evaporator EV, and the air in the room R is cooled by the indoor heat exchanger 80, and FIGS. During the heating operation shown, heating is performed in such a manner that the indoor heat exchanger 80 functions as the condenser CO and the air in the room R is heated by the indoor heat exchanger 80.

また、冷媒圧縮機60は、ガスエンジン50の出力を調整して回転速度を調整可能に構成されている。
即ち、この冷媒圧縮機60の回転速度を調整すれば、圧縮式ヒートポンプ装置5において室外熱交換器70及び室内熱交換器80を含む冷媒循環回路における冷媒循環流量が調整可能となる。
更に、室内機5rには、室内熱交換器80を通過して冷却又は加熱された空気の温度(以下「室内吹出温度」と呼ぶ。)を計測する温度計測器83が設けられている。
そして、制御装置90は、室内Rの温度を所定の目標温度に維持するように冷媒圧縮機60の回転速度を制御する調温制御手段94として機能する。
具体的に、調温制御手段94は、温度計測器83で計測された室内吹出温度が目標温度に維持されるようにガスエンジン50の出力を調整して冷媒圧縮機60の回転速度の調整を行う。
即ち、冷房運転時(図1及び図2参照)において、吹出温度が上記目標温度よりも高くなった場合には、冷媒圧縮機60の回転速度が増加されて、蒸発部EVとして機能する室内熱交換器80の冷却能力が増加し、結果、室内吹出温度の低下が図られる。逆に、吹出温度が上記目標温度よりも低くなった場合には、冷媒圧縮機60の回転速度が減少されて、蒸発部EVとして機能する室内熱交換器80の冷却能力が減少し、結果、室内吹出温度の上昇が図られる。
一方、暖房運転時(図3及び図3参照)において、吹出温度が上記目標温度よりも低くなった場合には、冷媒圧縮機60の回転速度が増加されて、凝縮部COとして機能する室内熱交換器80の加熱能力が増加し、結果、室内吹出温度の上昇が図られる。逆に、吹出温度が上記目標温度よりも高くなった場合には、冷媒圧縮機60の回転速度が減少されて、凝縮部COとして機能する室内熱交換器80の加熱能力が減少し、結果、室内吹出温度の低下が図られる。
尚、本実施形態では、調温制御手段94により、室内吹出温度に基づいて冷媒圧縮機60の回転速度を制御する構成としたが、室内熱交換器80の温度を計測する温度計測器を設け、その室内熱交換器80の温度(冷房運転時には蒸発温度、暖房運転時には凝縮温度)に基づいて冷媒圧縮機60の回転速度を制御するように構成しても構わない。
The refrigerant compressor 60 is configured to be able to adjust the rotation speed by adjusting the output of the gas engine 50.
That is, if the rotational speed of the refrigerant compressor 60 is adjusted, the refrigerant circulation flow rate in the refrigerant circuit including the outdoor heat exchanger 70 and the indoor heat exchanger 80 in the compression heat pump device 5 can be adjusted.
Furthermore, the indoor unit 5r is provided with a temperature measuring device 83 that measures the temperature of the air that has passed through the indoor heat exchanger 80 and is cooled or heated (hereinafter referred to as “indoor blowing temperature”).
And the control apparatus 90 functions as the temperature control means 94 which controls the rotational speed of the refrigerant | coolant compressor 60 so that the temperature of the room | chamber R may be maintained at predetermined | prescribed target temperature.
Specifically, the temperature control means 94 adjusts the rotational speed of the refrigerant compressor 60 by adjusting the output of the gas engine 50 so that the indoor blowing temperature measured by the temperature measuring device 83 is maintained at the target temperature. Do.
That is, during the cooling operation (see FIGS. 1 and 2), when the blowing temperature becomes higher than the target temperature, the rotational speed of the refrigerant compressor 60 is increased and the indoor heat functioning as the evaporation unit EV is increased. The cooling capacity of the exchanger 80 is increased, and as a result, the indoor blowing temperature is lowered. On the other hand, when the blowing temperature is lower than the target temperature, the rotational speed of the refrigerant compressor 60 is reduced, and the cooling capacity of the indoor heat exchanger 80 functioning as the evaporation unit EV is reduced. The indoor blowing temperature can be increased.
On the other hand, during the heating operation (see FIGS. 3 and 3), when the blowing temperature becomes lower than the target temperature, the rotational speed of the refrigerant compressor 60 is increased and the indoor heat functioning as the condensing unit CO is increased. The heating capacity of the exchanger 80 is increased, and as a result, the indoor blowing temperature is increased. On the contrary, when the blowing temperature becomes higher than the target temperature, the rotational speed of the refrigerant compressor 60 is decreased, and the heating capacity of the indoor heat exchanger 80 functioning as the condensing unit CO is decreased. The indoor blowing temperature is reduced.
In the present embodiment, the temperature control means 94 controls the rotational speed of the refrigerant compressor 60 based on the indoor blowing temperature. However, a temperature measuring device for measuring the temperature of the indoor heat exchanger 80 is provided. The rotational speed of the refrigerant compressor 60 may be controlled based on the temperature of the indoor heat exchanger 80 (evaporation temperature during cooling operation and condensation temperature during heating operation).

更に、この圧縮式ヒートポンプ装置5の室外機5oには、吸着式調湿装置1の第2高圧側冷媒管路HP2に流入する冷媒をガスエンジンの排熱との熱交換により加熱する冷媒加熱部として、冷媒管路67を通流する冷媒とガスエンジン50の冷却水との間で熱交換を行う冷媒加熱熱交換器54が設けられている。
この冷媒加熱熱交換器54に供給される冷却水は、ガスエンジン50の水ジャケットを通流して加熱された後に、ガスエンジン50の排気路51に配置された排ガス熱交換器53を通流して排ガスとの熱交換により高温(例えば90℃)に加熱された冷却水とされている。
従って、冷媒圧縮機60の定格回転時等において圧縮後の冷媒の温度が比較的高い(例えば75℃)であったとしても、その冷媒を冷媒加熱熱交換器54において高温の冷却水との熱交換により高温に加熱することができる。
そして、吸着式調湿装置1において、第2高圧側冷媒管路HP2から空気加熱部HEに対して高温に加熱された冷媒が供給されることで、加湿通路WLにおいて吸着材10aを通過して再生処理を行う空気が空気加熱部HEにより一層高温に加熱されるので、吸着式調湿装置1が高い調湿能力を発揮することになる。
尚、冷媒加熱熱交換器54を通過後の冷却水は、ラジエータ55で冷却された後に、当該冷却水を循環させる循環ポンプ56を介してガスエンジン50の水ジャケットに供給される。
Furthermore, the outdoor unit 5o of the compression heat pump device 5 includes a refrigerant heating unit that heats the refrigerant flowing into the second high-pressure side refrigerant pipe HP2 of the adsorption humidity control device 1 by heat exchange with the exhaust heat of the gas engine. As described above, a refrigerant heating heat exchanger 54 that performs heat exchange between the refrigerant flowing through the refrigerant pipe 67 and the cooling water of the gas engine 50 is provided.
The cooling water supplied to the refrigerant heating heat exchanger 54 flows through the water jacket of the gas engine 50 and is heated, and then flows through the exhaust gas heat exchanger 53 disposed in the exhaust passage 51 of the gas engine 50. It is the cooling water heated to high temperature (for example, 90 degreeC) by heat exchange with waste gas.
Therefore, even if the temperature of the refrigerant after compression is relatively high (for example, 75 ° C.) at the time of rated rotation of the refrigerant compressor 60 or the like, the refrigerant is heated by the refrigerant heating heat exchanger 54 with the high-temperature cooling water. It can be heated to a high temperature by exchange.
And in the adsorption-type humidity control apparatus 1, the refrigerant | coolant heated by high temperature is supplied with respect to the air heating part HE from 2nd high voltage | pressure side refrigerant | coolant pipeline HP2, and it passes the adsorbent 10a in the humidification channel | path WL. Since the air to be regenerated is heated to a higher temperature by the air heating unit HE, the adsorptive humidity control apparatus 1 exhibits a high humidity control capability.
The cooling water after passing through the refrigerant heating heat exchanger 54 is cooled by the radiator 55 and then supplied to the water jacket of the gas engine 50 through the circulation pump 56 that circulates the cooling water.

また、上述したような空気調和システムでは、冷房運転時において、室内Rの除湿を吸着式調湿装置1で行うため、圧縮式ヒートポンプ装置5では、蒸発部EVとして機能する室内熱交換器80において、室内Rの空気を露点以下に冷却して除湿する必要がなくなる。
そこで、制御装置90は、室内熱交換器80の蒸発温度が室内Rの露点以上に制限されるように、第1膨張弁66の開度が比較的大き目に制御するように構成されている。このことにより、冷媒圧縮機60の一次側(吸込側)の冷媒圧力が比較的高めに維持されることで、冷媒圧縮機60を回転駆動するための必要動力が低下し、結果、圧縮式ヒートポンプ装置5の成績係数(COP、冷媒圧縮機60からの入力エネルギに対する凝縮部COで放出される熱量の割合)が向上することになる。
Further, in the air conditioning system as described above, since the dehumidification of the room R is performed by the adsorption humidity control apparatus 1 during the cooling operation, the compression heat pump apparatus 5 uses the indoor heat exchanger 80 that functions as the evaporation unit EV. The air in the room R does not need to be dehumidified by being cooled below the dew point.
Therefore, the control device 90 is configured to control the opening degree of the first expansion valve 66 to be relatively large so that the evaporation temperature of the indoor heat exchanger 80 is limited to the dew point of the room R or higher. As a result, the refrigerant pressure on the primary side (suction side) of the refrigerant compressor 60 is maintained relatively high, so that the power required to rotationally drive the refrigerant compressor 60 is reduced. As a result, the compression heat pump The coefficient of performance of the apparatus 5 (COP, the ratio of the amount of heat released from the condenser CO with respect to the input energy from the refrigerant compressor 60) is improved.

〔その他の実施形態〕
最後に、本発明のその他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
[Other Embodiments]
Finally, other embodiments of the present invention will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction arises.

(1)上記実施形態では、冷媒圧縮機60から吸着式調湿装置1の第2高圧側冷媒管路HP2への冷媒の分配流量を調整可能な冷媒分配流量調整弁35を設け、調湿制御手段93により、その冷媒分配流量調整弁35の開度を、室内Rの湿度を目標湿度に維持するように制御する構成を採用したが、別に、これら冷媒分配流量調整弁35及び調湿制御手段93を省略し、常時一定量の冷媒を冷媒圧縮機60から吸着式調湿装置1の第2高圧側冷媒管路HP2へ供給するように構成しても構わない。 (1) In the above embodiment, the refrigerant distribution flow rate adjustment valve 35 capable of adjusting the refrigerant distribution flow rate from the refrigerant compressor 60 to the second high-pressure side refrigerant pipe HP2 of the adsorption humidity controller 1 is provided, and humidity control is performed. The means 93 controls the opening degree of the refrigerant distribution flow rate adjustment valve 35 so that the humidity in the room R is maintained at the target humidity. Separately, the refrigerant distribution flow rate adjustment valve 35 and the humidity control means are used. 93 may be omitted, and a constant amount of refrigerant may be supplied from the refrigerant compressor 60 to the second high-pressure side refrigerant pipe HP2 of the adsorption humidity controller 1 at all times.

(2)上記実施形態では、調温制御手段94により、冷媒圧縮機60の回転速度を、室内Rの温度を目標温度に維持するように制御する構成を採用したが、別に、この調温制御手段94を省略し、冷媒圧縮機60を常時一定の回転速度で駆動するように構成しても構わない。 (2) In the above embodiment, the temperature control means 94 controls the rotational speed of the refrigerant compressor 60 so as to maintain the temperature of the room R at the target temperature. The means 94 may be omitted, and the refrigerant compressor 60 may be always driven at a constant rotational speed.

(3)上記実施形態では、吸着式調湿装置1において、空気冷却部CE及び空気加熱部HEとして機能する熱交換器として、吸着材10aを空気側表面に設けた第1吸着熱交換器11及び第2吸着熱交換器12を採用し、吸湿再生切替手段91により、冷媒と空気との通流状態を所定時間間隔で切り替えることで、吸着材10aに対する吸湿処理と再生処理とを行うように構成したが、例えば、吸着材10aを、回転駆動されるデシカントロータで構成し、そのデシカントロータに対して除湿通路DLと加湿通路WLとを通過させる状態で配置し、除湿通路DLにおけるデシカントロータの上流側に空気冷却部CEとしての熱交換器を配置し、加湿通路WLにおけるデシカントロータの上流側に空気加熱部HEとしての熱交換器を配置する形態で、吸着式調湿装置1を所謂ロータ形式のデシカント空調装置として構成しても構わない。 (3) In the said embodiment, in the adsorption-type humidity control apparatus 1, as the heat exchanger which functions as the air cooling part CE and the air heating part HE, the 1st adsorption heat exchanger 11 which provided the adsorbent 10a in the air side surface And the second adsorption heat exchanger 12 is adopted, and the moisture absorption regeneration switching means 91 switches the flow state of the refrigerant and the air at predetermined time intervals so that the moisture absorption process and the regeneration process are performed on the adsorbent 10a. For example, the adsorbent 10a is constituted by a desiccant rotor that is rotationally driven, and is disposed in a state in which the dehumidifying passage DL and the humidifying passage WL are passed through the desiccant rotor, and the desiccant rotor in the dehumidifying passage DL A heat exchanger as the air cooling unit CE is arranged on the upstream side, and a heat exchanger as the air heating unit HE is arranged on the upstream side of the desiccant rotor in the humidification passage WL. In, it may be structured device 1 moisture sorption-tone as desiccant air-conditioning system of a so-called rotor type.

(4)上記実施形態では、冷媒圧縮機60の駆動源をガスエンジン50としたが、電気モータなどのガスエンジン50とは別の駆動源により冷媒圧縮機60を駆動しても構わない。また、上記実施形態では、冷媒加熱熱交換器54において、冷媒の加熱のための熱源をガスエンジン50の排熱としたが、ガスエンジン50を駆動源としない場合などにおいて、太陽熱などの別の熱源により冷媒を加熱しても構わない。 (4) Although the driving source of the refrigerant compressor 60 is the gas engine 50 in the above embodiment, the refrigerant compressor 60 may be driven by a driving source other than the gas engine 50 such as an electric motor. Further, in the above embodiment, in the refrigerant heating heat exchanger 54, the heat source for heating the refrigerant is the exhaust heat of the gas engine 50. However, when the gas engine 50 is not used as a drive source, another heat source such as solar heat is used. The refrigerant may be heated by a heat source.

(5)上記実施形態では、空気調和システムを、冷暖房切替手段92により冷房運転及び暖房運転の両方を択一的に実行可能なシステムとして構成したが、冷房運転及び暖房運転の何れか一方のみを実行可能なシステムとして構成しても構わない。 (5) In the above embodiment, the air conditioning system is configured as a system that can selectively execute both the cooling operation and the heating operation by the cooling / heating switching unit 92, but only one of the cooling operation and the heating operation is performed. It may be configured as an executable system.

本発明は、加熱対象空間から取り込んだ空気を加熱対象空間とは別の冷却対象空間へ供給する除湿通路と、前記冷却対象空間から取り込んだ空気を前記加熱対象空間へ供給する加湿通路とを有し、前記除湿通路において空気を空気冷却部による冷却を伴って再生処理後の吸着材に通過させる吸湿処理を行うと共に、前記加湿通路において空気を空気加熱部による加熱を伴って吸湿処理後の吸着材に通過させる再生処理を行う吸着式調湿装置と、ガスエンジンで回転駆動される冷媒圧縮機で圧縮された冷媒を第1膨張弁に導く第1高圧側冷媒管路に、当該第1高圧側冷媒管路を通流する冷媒と前記加熱対象空間の空気との熱交換を行う凝縮部を配置すると共に、前記第1膨張弁で膨張された冷媒を前記冷媒圧縮機に導く第1低圧側冷媒管路に、当該第1低圧側冷媒管路を通流する冷媒と前記冷却対象空間の空気との熱交換を行う蒸発部を配置してなる圧縮式ヒートポンプ装置と、を備え、前記加熱対象空間及び前記冷却対象空間の一方を室内として他方を室外として当該室内の調温及び調湿を行う空気調和システムとして好適に利用可能である。   The present invention has a dehumidifying passage for supplying air taken in from the heating target space to a cooling target space different from the heating target space, and a humidifying passage for supplying air taken in from the cooling target space to the heating target space. In the dehumidifying passage, the moisture is passed through the adsorbent after the regeneration treatment with cooling by the air cooling section, and the air is absorbed in the humidifying passage after the moisture absorption treatment with the heating by the air heating section. An adsorbing humidity control device that performs a regeneration process that passes through the material, and a first high-pressure side refrigerant pipe that guides the refrigerant compressed by a refrigerant compressor that is rotationally driven by a gas engine to the first expansion valve. A first low-pressure side that arranges a condensing unit that exchanges heat between the refrigerant flowing through the side refrigerant pipe and the air in the space to be heated, and guides the refrigerant expanded by the first expansion valve to the refrigerant compressor In the refrigerant line, A compression heat pump device in which an evaporating unit that performs heat exchange between the refrigerant flowing through the first low-pressure side refrigerant pipe and the air in the cooling target space is disposed, and the heating target space and the cooling target The present invention can be suitably used as an air conditioning system that adjusts the temperature and humidity of the room, with one of the spaces indoors and the other outdoor.

1 :吸着式調湿装置
5 :圧縮式ヒートポンプ装置
10a :吸着材
11 :第1吸着熱交換器
12 :第2吸着熱交換器
13i,13o:第1通路
14i,14o:第2通路
30 :第2膨張弁
35 :冷媒分配流量調整弁
50 :ガスエンジン
54 :冷媒加熱熱交換器(冷媒加熱部)
60 :冷媒圧縮機
66 :第1膨張弁
91 :吸湿再生切替手段
92 :冷暖房切替手段
93 :調湿制御手段
94 :調温制御手段
CA :冷却対象空間
CE :空気冷却部
CO :凝縮部
DL :除湿通路
EV :蒸発部
HA :加熱対象空間
HE :空気加熱部
HP1 :第1高圧側冷媒管路
HP2 :第2高圧側冷媒管路
LP :第2低圧側冷媒管路
LP1 :第1低圧側冷媒管路
LP2 :第2低圧側冷媒管路
O :室外
R :室内
WL :加湿通路
1: Adsorption type humidity control device 5: Compression heat pump device 10a: Adsorbent 11: First adsorption heat exchanger 12: Second adsorption heat exchanger 13i, 13o: First passage 14i, 14o: Second passage 30: First 2 expansion valve 35: refrigerant distribution flow rate adjustment valve 50: gas engine 54: refrigerant heating heat exchanger (refrigerant heating unit)
60: Refrigerant compressor 66: First expansion valve 91: Moisture absorption regeneration switching means 92: Air conditioning switching means 93: Humidity control means 94: Temperature control means CA: Cooling target space CE: Air cooling section CO: Condensing section DL: Dehumidification passage EV: Evaporating section HA: Heating target space HE: Air heating section HP1: First high-pressure side refrigerant pipe HP2: Second high-pressure side refrigerant pipe LP: Second low-pressure side refrigerant pipe LP1: First low-pressure side refrigerant Line LP2: Second low-pressure side refrigerant line O: Outdoor R: Indoor WL: Humidification passage

Claims (5)

加熱対象空間から取り込んだ空気を加熱対象空間とは別の冷却対象空間へ供給する除湿通路と、前記冷却対象空間から取り込んだ空気を前記加熱対象空間へ供給する加湿通路とを有し、前記除湿通路において空気を空気冷却部による冷却を伴って再生処理後の吸着材に通過させる吸湿処理を行うと共に、前記加湿通路において空気を空気加熱部による加熱を伴って吸湿処理後の吸着材に通過させる再生処理を行う吸着式調湿装置と、
冷媒圧縮機で圧縮された冷媒を第1膨張弁に導く第1高圧側冷媒管路に、当該第1高圧側冷媒管路を通流する冷媒と前記加熱対象空間の空気との熱交換を行う凝縮部を配置すると共に、前記第1膨張弁で膨張された冷媒を前記冷媒圧縮機に導く第1低圧側冷媒管路に、当該第1低圧側冷媒管路を通流する冷媒と前記冷却対象空間の空気との熱交換を行う蒸発部を配置してなる圧縮式ヒートポンプ装置と、を備え、
前記加熱対象空間及び前記冷却対象空間の一方を室内として他方を室外として当該室内の調温及び調湿を行う空気調和システムであって、
前記冷媒圧縮機で圧縮した冷媒の一部を取り出して前記空気加熱部で凝縮させた後に前記第1膨張弁とは別の第2膨張弁に導く第2高圧側冷媒管路と、前記第2膨張弁で膨張した冷媒を前記冷媒圧縮機に導く第2低圧側冷媒管路とを有すると共に、
前記第2高圧側冷媒管路に流入する冷媒を加熱する冷媒加熱部を備え、
前記空気冷却部が、前記第2低圧側冷媒管路に配置されて当該管路を通流する冷媒と前記除湿通路を通流する空気との熱交換を行う熱交換器で構成され、
前記空気加熱部が、前記第2高圧側冷媒管路に配置されて当該管路を通流する冷媒と前記加湿通路を通流する空気との熱交換を行う熱交換器で構成されている空気調和システム。
A dehumidifying passage for supplying air taken in from the heating target space to a cooling target space different from the heating target space; and a humidifying passage for supplying air taken in from the cooling target space to the heating target space; Moisture absorption treatment is performed in which air is passed through the regenerated adsorbent with cooling by the air cooling unit in the passage, and air is passed through the moisture adsorbent after heating in the humidification passage with the air heating unit. An adsorption-type humidity control device for performing a regeneration process;
Heat exchange between the refrigerant flowing through the first high-pressure side refrigerant pipe and the air in the heating target space is performed on the first high-pressure side refrigerant pipe that guides the refrigerant compressed by the refrigerant compressor to the first expansion valve. A refrigerant that is disposed through the first low-pressure side refrigerant pipe and the cooling target is disposed in a first low-pressure side refrigerant pipe that arranges a condensing unit and guides the refrigerant expanded by the first expansion valve to the refrigerant compressor. A compression heat pump device in which an evaporation unit that performs heat exchange with air in the space is disposed, and
An air conditioning system for adjusting the temperature and humidity of the room, with one of the space to be heated and the space to be cooled being indoors and the other being outdoor.
A second high-pressure side refrigerant pipe that leads to a second expansion valve different from the first expansion valve after taking out a part of the refrigerant compressed by the refrigerant compressor and condensing in the air heating unit; A second low-pressure side refrigerant pipe for guiding the refrigerant expanded by the expansion valve to the refrigerant compressor;
A refrigerant heating unit for heating the refrigerant flowing into the second high-pressure side refrigerant pipe;
The air cooling unit is configured by a heat exchanger that is arranged in the second low-pressure side refrigerant pipe and performs heat exchange between the refrigerant flowing through the pipe and the air flowing through the dehumidification passage,
The air is configured by a heat exchanger in which the air heating unit is arranged in the second high-pressure side refrigerant pipe and performs heat exchange between the refrigerant flowing through the pipe and the air flowing through the humidifying passage. Harmony system.
前記冷媒圧縮機の駆動源がガスエンジンであり、
前記冷媒加熱部が、前記ガスエンジンの排熱との熱交換により冷媒を加熱する請求項1に記載の空気調和システム。
The driving source of the refrigerant compressor is a gas engine,
The air conditioning system according to claim 1, wherein the refrigerant heating unit heats the refrigerant by heat exchange with exhaust heat of the gas engine.
前記冷媒圧縮機から前記第2高圧側冷媒管路への冷媒の分配流量を調整可能な冷媒分配流量調整弁を備え、
前記室内の温度を目標温度に維持するように前記冷媒圧縮機の回転速度を制御する調温制御手段と、
前記室内の湿度を目標湿度に維持するように前記冷媒分配流量調整弁の開度を制御する調湿制御手段とを備えた請求項1又は2に記載の空気調和システム。
A refrigerant distribution flow rate adjustment valve capable of adjusting a refrigerant distribution flow rate from the refrigerant compressor to the second high-pressure side refrigerant pipe;
Temperature control means for controlling the rotational speed of the refrigerant compressor so as to maintain the indoor temperature at the target temperature;
The air conditioning system according to claim 1, further comprising a humidity control unit that controls an opening degree of the refrigerant distribution flow rate adjustment valve so as to maintain the humidity in the room at a target humidity.
前記空気冷却部及び前記空気加熱部として機能する熱交換器として、前記吸着材を空気側表面に設けた第1吸着熱交換器及び第2吸着熱交換器を備え、
前記第1吸着熱交換器を前記空気冷却部として機能させた状態で前記第1吸着熱交換器が配置された第1通路を前記除湿通路とすると共に、前記第2吸着熱交換器を前記空気加熱部として機能させた状態で前記第2吸着熱交換器が配置された第2通路を前記加湿通路とする第1状態と、前記第1吸着熱交換器を前記空気加熱部として機能させた状態で前記第1通路を前記加湿通路とすると共に、前記第2吸着熱交換器を前記空気冷却部として機能させた状態で前記第2通路を前記除湿通路とする第2状態との間で、前記吸着式調湿装置における冷媒と空気との通流状態を所定時間間隔で切り替えて、前記吸着材に対する前記吸湿処理と前記再生処理とを行う吸湿再生切替手段を備えた請求項1〜3の何れか1項に記載の空気調和システム。
The heat exchanger functioning as the air cooling unit and the air heating unit includes a first adsorption heat exchanger and a second adsorption heat exchanger in which the adsorbent is provided on the air side surface,
The first passage in which the first adsorption heat exchanger is disposed in a state where the first adsorption heat exchanger functions as the air cooling unit is used as the dehumidification passage, and the second adsorption heat exchanger is used as the air. A first state where the humidifying passage is the second passage where the second adsorption heat exchanger is arranged in a state where the second adsorption heat exchanger is functioned as a heating unit, and a state where the first adsorption heat exchanger is functioned as the air heating unit In the second state in which the first passage is used as the humidification passage, and the second passage is used as the dehumidification passage in a state where the second adsorption heat exchanger functions as the air cooling unit, The moisture absorption regeneration switching means for performing the moisture absorption process and the regeneration process on the adsorbent by switching the flow state of the refrigerant and air in the adsorption humidity controller at predetermined time intervals. The air conditioning system according to claim 1.
冷房運転と暖房運転とを切り替える冷暖房切替手段を備え、
前記冷暖房切替手段が、冷房運転時においては、室外を前記加熱対象空間とすると共に室内を前記冷却対象空間とし、暖房運転時においては、室内を前記加熱対象空間とすると共に室外を前記冷却対象空間とするように、前記吸着式調湿装置における冷媒と空気の通流状態並びに前記圧縮式ヒートポンプ装置における冷媒の通流状態を切り替える請求項1〜4の何れか1項に記載の空気調和システム。
Air-conditioning switching means for switching between air-conditioning operation and heating operation is provided,
When the cooling / heating switching means is in a cooling operation, the outside is set as the heating target space and the room is set as the cooling target space, and during the heating operation, the room is set as the heating target space and the outside is set as the cooling target space. The air conditioning system according to any one of claims 1 to 4, wherein the refrigerant and air flow state in the adsorption humidity controller and the refrigerant flow state in the compression heat pump device are switched.
JP2013256246A 2013-12-11 2013-12-11 Air conditioning system Active JP6120759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256246A JP6120759B2 (en) 2013-12-11 2013-12-11 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256246A JP6120759B2 (en) 2013-12-11 2013-12-11 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2015114039A true JP2015114039A (en) 2015-06-22
JP6120759B2 JP6120759B2 (en) 2017-04-26

Family

ID=53528009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256246A Active JP6120759B2 (en) 2013-12-11 2013-12-11 Air conditioning system

Country Status (1)

Country Link
JP (1) JP6120759B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106885303A (en) * 2015-12-16 2017-06-23 上海日立电器有限公司 Sensible heat latent heat separates the air-conditioning system of control
JP2020012603A (en) * 2018-07-19 2020-01-23 三菱電機株式会社 Air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134025A (en) * 2003-10-30 2005-05-26 Japan Gas Association Cooling system combining desiccant air conditioner and cooling device
JP2009109151A (en) * 2007-10-31 2009-05-21 Daikin Ind Ltd Humidity conditioner
JP2012127649A (en) * 2012-03-29 2012-07-05 Mitsubishi Electric Corp Air conditioning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134025A (en) * 2003-10-30 2005-05-26 Japan Gas Association Cooling system combining desiccant air conditioner and cooling device
JP2009109151A (en) * 2007-10-31 2009-05-21 Daikin Ind Ltd Humidity conditioner
JP2012127649A (en) * 2012-03-29 2012-07-05 Mitsubishi Electric Corp Air conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106885303A (en) * 2015-12-16 2017-06-23 上海日立电器有限公司 Sensible heat latent heat separates the air-conditioning system of control
JP2020012603A (en) * 2018-07-19 2020-01-23 三菱電機株式会社 Air conditioning system

Also Published As

Publication number Publication date
JP6120759B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5822931B2 (en) Humidity control apparatus, air conditioning system, and control method of humidity control apparatus
KR101201010B1 (en) Humidity control device
JP3668785B2 (en) Air conditioner
AU2006253462B2 (en) Air conditioning system
JP2012026700A (en) Desiccant air-conditioning system
JP2006329593A (en) Air conditioning system
JP2010107059A (en) Refrigerating and air-conditioning apparatus
JP5576327B2 (en) Air conditioning system
JP6178174B2 (en) Desiccant air conditioner and desiccant air conditioner
JP5542701B2 (en) Low temperature regeneration desiccant air conditioner
KR20080011233A (en) Humidity control device
KR101528640B1 (en) Controlling Method Of Hybrid Desiccant Dehumidification Apparatus
US20140230479A1 (en) Refrigeration and air-conditioning apparatus and humidity control device
JP6018938B2 (en) Air conditioning system for outside air treatment
JP2005195285A (en) Air conditioner
WO2008015981A1 (en) Air-conditioning apparatus
JP2013190177A (en) Humidity controller
JP6120759B2 (en) Air conditioning system
JP3821031B2 (en) Desiccant air conditioning system
JP2010078245A (en) Humidity control system
JP6594227B2 (en) Air conditioning system
JP7126611B2 (en) air conditioner
JP2011094904A (en) Desiccant type ventilation fan
JP2005140372A (en) Air conditioner
JP2002018228A (en) Humidity controlling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170328

R150 Certificate of patent or registration of utility model

Ref document number: 6120759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150