JP6489753B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP6489753B2
JP6489753B2 JP2014069982A JP2014069982A JP6489753B2 JP 6489753 B2 JP6489753 B2 JP 6489753B2 JP 2014069982 A JP2014069982 A JP 2014069982A JP 2014069982 A JP2014069982 A JP 2014069982A JP 6489753 B2 JP6489753 B2 JP 6489753B2
Authority
JP
Japan
Prior art keywords
air
refrigerant
exhaust
heat exchanger
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014069982A
Other languages
Japanese (ja)
Other versions
JP2015190729A (en
Inventor
一孝 寺尾
一孝 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014069982A priority Critical patent/JP6489753B2/en
Publication of JP2015190729A publication Critical patent/JP2015190729A/en
Application granted granted Critical
Publication of JP6489753B2 publication Critical patent/JP6489753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Description

本発明は、エンジンにより駆動され冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁と、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを有し、冷房運転時には前記蒸発器を通流する冷媒と熱交換した空調用空気を室内空間へ供給すると共に暖房運転時には前記凝縮器を通流する冷媒と熱交換した空調用空気を室内空間へ供給するエンジン駆動式ヒートポンプ装置と、室外空間から取り込んだ空気を室内空間へ供給する給気通路と、室内空間から取り出した空気を室外空間へ排気する排気通路と、前記給気通路に配置される第1給気領域と前記排気通路に配置される第1排気領域との間で通気性吸湿体から成るデシカントロータを回転駆動させて前記第1給気領域及び前記第1排気領域を通過する空気の除湿及び加湿を行う第1ロータ部と、前記給気通路の前記第1給気領域よりも下流側に配置される第2給気領域と前記排気通路における前記第1排気領域よりも上流側に配置される第2排気領域との間で通気性体からなる顕熱ロータを回転駆動させて前記第2給気領域を通過する空気と前記第2排気領域を通過する空気とを熱交換する第2ロータ部とを有するデシカント装置とを備え、前記エンジンのエンジン冷却水循環路を通流するエンジン冷却水と前記排気通路を通流する空気とを熱交換する第1熱交換器を、前記排気通路の前記第1排気領域と前記第2排気領域との間に備えた空調システムに関する。   The present invention includes a compressor that is driven by an engine and compresses refrigerant, a condenser that condenses the refrigerant compressed by the compressor, an expansion valve that expands the refrigerant condensed by the condenser, and the expansion valve An evaporator that evaporates the refrigerant expanded in step, and a refrigerant circulation path that circulates the refrigerant in the order described in the compressor, the condenser, the expansion valve, and the evaporator, and during the cooling operation, the evaporator An engine-driven heat pump device that supplies air-conditioning air heat-exchanged with the refrigerant flowing through the indoor space and supplies air-conditioning air heat-exchanged with the refrigerant flowing through the condenser to the indoor space during heating operation; An air supply passage for supplying air taken from the outdoor space to the indoor space, an exhaust passage for exhausting air taken from the indoor space to the outdoor space, a first air supply region disposed in the air supply passage, and the exhaust passage Arranged A first rotor unit that dehumidifies and humidifies air passing through the first air supply region and the first exhaust region by rotating a desiccant rotor made of a breathable hygroscopic body between the first exhaust region and the first exhaust region. , Between a second air supply region disposed downstream of the first air supply region in the air supply passage and a second exhaust region disposed upstream of the first exhaust region in the exhaust passage. And a desiccant device having a second rotor portion that rotates and drives a sensible heat rotor made of a gas-permeable body to exchange heat between air passing through the second air supply region and air passing through the second exhaust region. A first heat exchanger for exchanging heat between the engine coolant flowing through the engine coolant circulation path of the engine and the air flowing through the exhaust passage, and the first exhaust region of the exhaust passage and the second heat exchanger. Air conditioning system provided between the exhaust area On.

近年、建築基準法にて24時間換気が一般戸建て住宅にも義務付けられる等の理由により、空調システムとしては、一般的に知られるガスエンジン駆動式ヒートポンプ装置(以下、GHPと略称)に加え、室内空間の室内空気と室外空間の室外空気とを熱交換する形態で換気する換気装置とを備えたものが知られている(特許文献1を参照)。
特許文献1に開示の技術にあっては、換気装置は、室内空間の室内空気を室外空間へ排気する排気通路と、室外空間の室外空気を室内空間へ給気する給気通路と、給気通路に配置される第1給気領域と排気通路に配置される第1排気領域との間で通気性吸湿体から成るデシカントロータを回転駆動させて当該空気の除湿及び加湿を行う第1ロータ部と、給気通路の第1給気領域よりも下流側に配置される第2給気領域と排気通路における第1排気領域よりも上流側に配置される第2排気領域との間で通気性体からなる顕熱ロータを回転駆動させる第2ロータ部とを備えたデシカント装置として構成されている。
当該換気装置にあっては、特に、冷房運転時において、デシカントロータを良好に再生すべく、エンジンの排熱を回収した湯水と排気通路を通流する空気とを熱交換する熱交換器を、排気通路の第1排気領域と第2排気領域との間に備えている。これにより、第1排気領域を通過するデシカントロータへ、熱交換器にてエンジンの排熱により昇温された空気を導くことができ、良好に再生している。
In recent years, in addition to the generally known gas engine-driven heat pump device (hereinafter abbreviated as GHP) as an air conditioning system, the building standards law requires that 24-hour ventilation be required for general detached houses as well. What is provided with the ventilator which ventilates in the form which heat-exchanges the indoor air of space and the outdoor air of outdoor space is known (refer patent document 1).
In the technique disclosed in Patent Document 1, the ventilation device includes an exhaust passage for exhausting indoor air in the indoor space to the outdoor space, an air supply passage for supplying outdoor air in the outdoor space to the indoor space, and an air supply A first rotor unit that dehumidifies and humidifies the air by rotating a desiccant rotor made of a breathable hygroscopic material between a first air supply region disposed in the passage and a first exhaust region disposed in the exhaust passage. Between the second supply region disposed downstream of the first supply region of the supply passage and the second exhaust region disposed upstream of the first exhaust region of the exhaust passage. A desiccant device is provided that includes a second rotor unit that rotationally drives a sensible heat rotor made of a body.
In the ventilator, in particular, during cooling operation, in order to regenerate the desiccant rotor satisfactorily, a heat exchanger for exchanging heat between the hot water recovered from the exhaust heat of the engine and the air flowing through the exhaust passage, Provided between the first exhaust region and the second exhaust region of the exhaust passage. Thereby, the air heated by the exhaust heat of the engine by the heat exchanger can be guided to the desiccant rotor that passes through the first exhaust region, and is regenerated well.

特開2002−276996号公報JP 2002-276996 A

上記特許文献1に開示の技術では、例えば、エンジンの起動時等で、熱交換器へ導かれる湯水をエンジンの排熱にて十分に昇温できない場合等には、第1排気領域でのデシカントロータの再生を良好に行うことができないという課題があった。
また、エンジンが定格運転時であっても、エンジンの排熱を回収して熱交換器へ導かれる温水の温度は、75℃程度が上限温度となり、特に、湿度が高い夏場等にあっては、デシカントロータを十分に再生できないことがあり、改善の余地があった。
In the technique disclosed in Patent Document 1 described above, for example, when the temperature of hot water introduced to the heat exchanger cannot be sufficiently increased by exhaust heat of the engine when the engine is started, the desiccant in the first exhaust region is used. There was a problem that the rotor could not be regenerated satisfactorily.
Even when the engine is in rated operation, the temperature of the hot water that recovers the exhaust heat of the engine and leads it to the heat exchanger is about 75 ° C., especially in the summer when the humidity is high. The desiccant rotor could not be fully regenerated and there was room for improvement.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、GHPとデシカント装置とを備えたものにおいて、ガスエンジンの立ち上がり時や、外気の湿度が高い時等であっても、デシカントロータの再生を適切に行い、デシカント装置を介して室内空間へ供給される空調用空気の湿度を十分に下げることができる空調システムを提供することにある。   The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a GHP and a desiccant device, even when the gas engine starts up or when the humidity of the outside air is high. An object of the present invention is to provide an air conditioning system that can appropriately regenerate the desiccant rotor and sufficiently reduce the humidity of the air conditioning air supplied to the indoor space via the desiccant device.

上記目的を達成するための空調システムは、エンジンにより駆動され冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁と、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを有し、冷房運転時には前記蒸発器を通流する冷媒と熱交換した空調用空気を室内空間へ供給すると共に暖房運転時には前記凝縮器を通流する冷媒と熱交換した空調用空気を室内空間へ供給するエンジン駆動式ヒートポンプ装置と、
室外空間から取り込んだ空気を室内空間へ供給する給気通路と、室内空間から取り出した空気を室外空間へ排気する排気通路と、前記給気通路に配置される第1給気領域と前記排気通路に配置される第1排気領域との間で通気性吸湿体から成るデシカントロータを回転駆動させて前記第1給気領域及び前記第1排気領域を通過する空気の除湿及び加湿を行う第1ロータ部と、前記給気通路の前記第1給気領域よりも下流側に配置される第2給気領域と前記排気通路における前記第1排気領域よりも上流側に配置される第2排気領域との間で通気性体からなる顕熱ロータを回転駆動させて前記第2給気領域を通過する空気と前記第2排気領域を通過する空気とを熱交換する第2ロータ部とを有するデシカント装置とを備え、
前記エンジンのエンジン冷却水循環路を通流するエンジン冷却水と前記排気通路を通流する空気とを熱交換する第1熱交換器を、前記排気通路の前記第1排気領域と前記第2排気領域との間に備えた空調システムであって、その特徴構成は、
前記冷房運転時において前記冷媒循環路で前記圧縮機と前記凝縮器との間を通流する冷媒と前記排気通路を通流する空気とを熱交換する第2熱交換器を備え、
前記第1熱交換器と前記第2熱交換器とを、前記排気通路の前記第1排気領域と前記第2排気領域との間に、前記排気通路を通流する空気の流れ方向で記載の順に備え
設定される除湿設定値としての除湿量が高いほど、前記圧縮機による圧縮仕事を大きく設定する制御手段が設けられている点にある。
An air conditioning system for achieving the above object includes a compressor that is driven by an engine and compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and expands the refrigerant condensed by the condenser. An expansion valve, an evaporator that evaporates the refrigerant expanded by the expansion valve, and a refrigerant circulation path that circulates the refrigerant in the order described in the compressor, the condenser, the expansion valve, and the evaporator. In the cooling operation, the air-conditioning air heat-exchanged with the refrigerant flowing through the evaporator is supplied to the indoor space, and in the heating operation, the air-conditioning air heat-exchanged with the refrigerant flowing through the condenser is supplied into the indoor space. An engine-driven heat pump device;
An air supply passage for supplying air taken from the outdoor space to the indoor space, an exhaust passage for exhausting air taken from the indoor space to the outdoor space, a first air supply region disposed in the air supply passage, and the exhaust passage A first rotor for dehumidifying and humidifying air passing through the first air supply region and the first exhaust region by rotating a desiccant rotor made of a breathable moisture absorber between the first exhaust region and the first exhaust region. A second air supply region disposed downstream of the first air supply region of the air supply passage, and a second exhaust region disposed upstream of the first exhaust region of the exhaust passage. A desiccant device having a second rotor portion that rotates and drives a sensible heat rotor made of a gas-permeable member between the air and passes through the second air supply region and air that passes through the second exhaust region. And
A first heat exchanger for exchanging heat between the engine coolant flowing through the engine coolant circulation path of the engine and the air flowing through the exhaust passage; and the first exhaust region and the second exhaust region of the exhaust passage. The air conditioning system provided between
A second heat exchanger for exchanging heat between the refrigerant flowing between the compressor and the condenser and the air flowing through the exhaust passage in the refrigerant circulation path during the cooling operation;
The first heat exchanger and the second heat exchanger are described in a flow direction of air flowing through the exhaust passage between the first exhaust region and the second exhaust region of the exhaust passage. In order ,
The higher the dehumidification amount as the set dehumidification set value is, the more the control means for setting the compression work by the compressor larger is provided .

上記特徴構成によれば、排気通路において、第1排気領域と第2排気領域の間に、エンジン冷却水と排気通路を通流する空気とを熱交換する第1熱交換器に加え、冷房運転時に冷媒循環路で圧縮機と凝縮器との間を通流する冷媒と排気通路を通流する空気とを熱交換する第2熱交換器を備えるから、第1排気領域を通過するデシカントロータを、第1熱交換器に加え、第2熱交換器によっても加熱することができる。これにより、エンジンの起動時等で、第1熱交換器により第1排気領域を通流する空気が十分に昇温できない場合であっても、第2熱交換器により冷媒と熱交換する形態で、十分に昇温できる。
特に、第2熱交換器を通流する冷媒は、圧縮機にて圧縮され十分に昇温した後で凝縮器に導かれる前の冷媒であるから、圧縮機の圧縮仕事によっては、エンジン冷却水よりも高い温度とすることができるため、上記特徴構成では、第1排気通路において、第2熱交換器を第1熱交換器の下流側へ設けることで、第1熱交換器の上流側へ設ける場合よりも、より一層、第1排気領域へ導かれる空気を昇温させる効果を発揮し得る。これにより、例えば、外気の湿度が高いときで、デシカントロータが多くの湿分を吸湿している場合であっても、当該デシカントロータを第1排気領域にて良好に再生でき、除湿性能を向上できる。
更に、上記特徴構成によれば、圧縮機による圧縮仕事を、設定される除湿設定値に基づいて制御する制御手段を備えているから、例えば、除湿設定値として『除湿量:高』に設定されている場合、圧縮機による圧縮仕事を高め、圧縮機から出る冷媒を昇温することで、第2熱交換器で当該冷媒と熱交換する空気を昇温し、当該昇温した空気により、第1排気領域を通過するデシカントロータを十分に再生する形態で、給気通路から供給される空調用空気の湿度を下げることができる。当該システムによれば、GHPの室内機としての蒸発器での冷房能力を上げ過ぎることなく、湿度を良好に低下させることができるから、特に、空調用空気の温度を下げ過ぎず、湿度を下げる場合に、有効となる。
尚、通常のエアコンにおいて、空調用空気の温度を下げず湿度を下げる場合、室内機内において、蒸発器にて室内空気を冷却して除湿した後に再度加熱する再熱除湿運転が実行されており、当該加熱は電気ヒータ等で実行されるため、非常に効率が悪くなる。
上記特徴構成によれば、このような加熱を行うことなく、空調用空気の温度を下げ過ぎずに、湿度を下げることができるから、通常のエアコンにおいて再熱除湿運転を行う場合に比べて、COPの向上が期待できる。
According to the above characteristic configuration, in the exhaust passage, in addition to the first heat exchanger for exchanging heat between the engine coolant and the air flowing through the exhaust passage between the first exhaust region and the second exhaust region, the cooling operation is performed. Since a second heat exchanger that sometimes exchanges heat between the refrigerant flowing between the compressor and the condenser in the refrigerant circuit and the air flowing through the exhaust passage is provided, a desiccant rotor that passes through the first exhaust region is provided. In addition to the first heat exchanger, the second heat exchanger can also be used for heating. As a result, even when the air flowing through the first exhaust region cannot be sufficiently heated by the first heat exchanger at the time of starting the engine, the heat exchange with the refrigerant is performed by the second heat exchanger. The temperature can be raised sufficiently.
In particular, the refrigerant flowing through the second heat exchanger is the refrigerant before being introduced to the condenser after being sufficiently heated after being compressed by the compressor, so depending on the compression work of the compressor, Therefore, in the above characteristic configuration, the second heat exchanger is provided on the downstream side of the first heat exchanger in the first exhaust passage, so that the upstream side of the first heat exchanger is provided. The effect of raising the temperature of the air guided to the first exhaust region can be further exhibited compared to the case of providing. Thereby, for example, even when the humidity of the outside air is high and the desiccant rotor absorbs a lot of moisture, the desiccant rotor can be regenerated well in the first exhaust region, and the dehumidifying performance is improved. it can.
Further, according to the above characteristic configuration, since the control means for controlling the compression work by the compressor based on the set dehumidification set value is provided, for example, the dehumidification set value is set to “dehumidification amount: high”. If the compression work by the compressor is increased and the temperature of the refrigerant coming out of the compressor is raised, the temperature of the air that exchanges heat with the refrigerant is raised in the second heat exchanger, The humidity of the air-conditioning air supplied from the air supply passage can be lowered in a form in which the desiccant rotor passing through one exhaust region is sufficiently regenerated. According to the system, since the humidity can be satisfactorily reduced without excessively increasing the cooling capacity of the evaporator as the GHP indoor unit, in particular, the temperature of the air-conditioning air is not excessively decreased and the humidity is decreased. In case, it becomes effective.
In a normal air conditioner, when the humidity is lowered without lowering the temperature of the air-conditioning air, a reheat dehumidification operation is performed in the indoor unit in which the indoor air is cooled and dehumidified with an evaporator and then heated again. Since the heating is performed by an electric heater or the like, the efficiency is very poor.
According to the above characteristic configuration, the humidity can be lowered without reducing the temperature of the air-conditioning air without performing such heating, compared with the case of performing the reheat dehumidifying operation in a normal air conditioner, Improvement of COP can be expected.

本発明の空調システムの更なる特徴構成は、
前記冷房運転時において前記冷媒循環路で前記蒸発器と前記圧縮機との間を通流する冷媒と前記給気通路を通流する空気とを熱交換する第3熱交換器を、前記給気通路を通流する空気の流れ方向で前記第2給気領域の下流側に備える点にある。
Further features of the air conditioning system of the present invention are as follows:
A third heat exchanger for exchanging heat between the refrigerant flowing between the evaporator and the compressor in the refrigerant circulation path and the air flowing through the air supply passage during the cooling operation; It exists in the point provided in the downstream of the said 2nd supply area | region with the flow direction of the air which flows through a channel | path.

上記特徴構成によれば、冷房運転時において冷媒循環路で蒸発器にて室内空間へ供給される空調用空気と熱交換した後の冷媒で、まだ冷熱を保有してる冷媒を、圧縮機に導かれる前に、第3熱交換器にて、給気通路で第2給気領域を通過した後で室内空間へ導かれる前の空気と熱交換することができ、冷凍サイクルで余った冷熱をデシカント装置側で空調用空気を冷却する形態で、有効に利用できる。
尚、特許文献1に開示の技術にあっても、デシカント装置において、給気通路で第2給気領域と室内空間との間に、給気通路を通過する空気と冷房運転時で冷媒循環路で膨張弁にて膨張された後の冷媒とを熱交換する第2熱交換器を設ける構成が開示されているが、当該第2熱交換器は、GHPの蒸発器として設けられており、本発明の『第2熱交換器』とは意味合いが異なる。即ち、特許文献1に開示の技術にあっては、GHPとしては、室内空気と冷媒とが熱交換器する蒸発器(室内機の室内熱交換器)が存在しない構成となるため、上記特徴構成を有する発明に比べ、低温の空調用空気を供給し難くなり、この意味で、冷房能力は低下する。
According to the above characteristic configuration, during the cooling operation, the refrigerant that has been heat-exchanged with the air-conditioning air supplied to the indoor space by the evaporator in the refrigerant circulation path and that still retains the cold heat is led to the compressor. Before the air is passed, the third heat exchanger can exchange heat with the air that has passed through the second air supply region in the air supply passage and before being led into the indoor space, and the remaining cold in the refrigeration cycle is desiccant. It can be effectively used in the form of cooling the air-conditioning air on the apparatus side.
Note that even in the technique disclosed in Patent Document 1, in the desiccant device, air passing through the air supply passage between the second air supply region and the indoor space in the air supply passage and the refrigerant circulation path during the cooling operation The second heat exchanger for exchanging heat with the refrigerant after being expanded by the expansion valve is disclosed, but the second heat exchanger is provided as a GHP evaporator. The meaning differs from the “second heat exchanger” of the invention. That is, in the technique disclosed in Patent Document 1, the GHP has a configuration in which there is no evaporator (indoor heat exchanger for an indoor unit) in which the indoor air and the refrigerant perform a heat exchanger. Compared to the invention having the above, it becomes difficult to supply low-temperature air-conditioning air. In this sense, the cooling capacity is lowered.

本発明の空調システムの更なる特徴構成は、
前記制御手段は、前記圧縮機による圧縮仕事を、前記第2熱交換器への冷媒の流入温度が、前記第1熱交換器へ流入するエンジン冷却水の最高温度よりも高くなるように制御する点にある。
Further features of the air conditioning system of the present invention are as follows:
The control means controls the compression work by the compressor so that a refrigerant inflow temperature to the second heat exchanger is higher than a maximum temperature of engine cooling water flowing into the first heat exchanger. In the point.

上記特徴構成によれば、制御手段は、圧縮機による圧縮仕事を、第2熱交換器への冷媒の流入温度が、第1熱交換器へ流入するエンジン冷却水の最高温度よりも高くなるように制御するから、排気通路において、第1熱交換器の下流側に設けられる第2熱交換器にて、排気通路で第1熱交換器を通過した後の空気を更に昇温して、第1排気領域でデシカントロータの再生を良好に実行できる。   According to the above characteristic configuration, the control means performs the compression work by the compressor so that the inflow temperature of the refrigerant to the second heat exchanger is higher than the maximum temperature of the engine coolant flowing into the first heat exchanger. In the exhaust passage, in the second heat exchanger provided on the downstream side of the first heat exchanger, the air after passing through the first heat exchanger in the exhaust passage is further heated, The regeneration of the desiccant rotor can be satisfactorily performed in one exhaust region.

除湿冷房運転を実行する場合の空調システムの概略構成図Schematic configuration diagram of air conditioning system when performing dehumidifying and cooling operation 暖房運転を実行する場合の空調システムの概略構成図Schematic configuration diagram of an air conditioning system when performing heating operation 本発明において除湿冷房運転を実行する場合のPH線図PH diagram when performing dehumidifying and cooling operation in the present invention 従来技術と本発明とにおいて除湿冷房運転を実行する場合の空気線図Air diagram when performing dehumidifying and cooling operation in the prior art and the present invention 従来技術において除湿冷房運転を実行する場合のPH線図PH diagram when performing dehumidifying and cooling operation in the prior art

本発明の空調システム100は、図1、2に示すように、エンジン駆動式ヒートポンプ装置(以下、GHPと略称する場合がある)と、エンジン駆動式ヒートポンプ装置にて発生した熱を利用するデシカント装置とを備えたものにおいて、ガスエンジン22の立ち上がり時や、外気の湿度が高い時等であっても、デシカントロータD1cの再生を適切に行い、デシカント装置から室内空間ISへ供給される空調用空気SAの湿度を十分に下げることができると共に、デシカント装置から室内空間ISへ供給される空調用空気SAの温度をも十分に低下させることができるものに関する。   As shown in FIGS. 1 and 2, an air conditioning system 100 according to the present invention includes an engine-driven heat pump device (hereinafter sometimes abbreviated as GHP) and a desiccant device that uses heat generated by the engine-driven heat pump device. The air for air conditioning supplied to the indoor space IS from the desiccant device by appropriately regenerating the desiccant rotor D1c even when the gas engine 22 is started up or when the humidity of the outside air is high. The present invention relates to an apparatus capable of sufficiently reducing the humidity of the SA and also sufficiently reducing the temperature of the air-conditioning air SA supplied from the desiccant device to the indoor space IS.

〔エンジン駆動式ヒートポンプ装置〕
当該空調システム100は、図1、2に示すように、ガスエンジン22の軸出力にて冷媒を圧縮する圧縮機21と、当該圧縮機21にて圧縮された冷媒と空気とを熱交換させる形態で冷媒を凝縮させる凝縮器Gと、凝縮器Gにて凝縮した冷媒を膨張させる膨張弁24と、膨張弁24にて膨張した冷媒と空気とを熱交換させる形態で冷媒を蒸発させる蒸発器Jとに、記載の順に冷媒を循環する冷媒循環路Cとを有するGHPを備えている。
説明を追加すると、当該GHPは、凝縮器G又は蒸発器Jとして働く室内熱交換器25a、当該室内熱交換器25aに空気を送る送風ファン25bとを内部に配設する室内機25と、凝縮器G又は蒸発器Jとして働く室外熱交換器23a、送風ファン23b、圧縮機21、ガスエンジン22、冷媒循環路Cの冷媒循環方向を冷房運転と暖房運転とで切り替える四方弁26、及び四方弁26の切り替えに伴って冷媒循環状態を切り替える第1三方弁V1、第2三方弁V2、及びそれらを制御する制御装置Sとを内部に備える室外機(図示せず)とを備えている。
尚、第1三方弁V1、第2三方弁V2による冷媒循環状態の切り替えについては、後述するデシカント装置における説明箇所にて詳述する。
[Engine-driven heat pump device]
As shown in FIGS. 1 and 2, the air-conditioning system 100 is configured to exchange heat between a compressor 21 that compresses a refrigerant with a shaft output of the gas engine 22, and the refrigerant and air compressed by the compressor 21. The condenser G that condenses the refrigerant in the condenser G, the expansion valve 24 that expands the refrigerant condensed in the condenser G, and the evaporator J that evaporates the refrigerant in the form of heat exchange between the refrigerant expanded in the expansion valve 24 and the air. And a GHP having a refrigerant circulation path C for circulating the refrigerant in the order described.
When the explanation is added, the GHP includes an indoor unit 25 in which an indoor heat exchanger 25a serving as a condenser G or an evaporator J and a blower fan 25b that sends air to the indoor heat exchanger 25a are disposed inside, An outdoor heat exchanger 23a, a blower fan 23b, a compressor 21, a gas engine 22, and a four-way valve 26 for switching the refrigerant circulation direction of the refrigerant circuit C between a cooling operation and a heating operation, and a four-way valve. And an outdoor unit (not shown) that includes therein a first three-way valve V1, a second three-way valve V2, and a control device S that controls them.
Note that switching of the refrigerant circulation state by the first three-way valve V1 and the second three-way valve V2 will be described in detail in an explanation part of the desiccant device described later.

ガスエンジン22は、シリンダ及びシリンダヘッドにエンジン冷却水を循環するエンジンジャケット22aと、エンジン冷却水を空気と熱交換する熱交換器22c及び送風ファン22dから成るラジエータと、エンジンジャケット22aとラジエータとの間でエンジン冷却水を循環するエンジン冷却水循環路C2と、エンジン冷却水循環路C2にエンジン冷却水を圧送する循環ポンプ22bとを備えている。   The gas engine 22 includes an engine jacket 22a that circulates engine coolant through a cylinder and a cylinder head, a radiator that includes a heat exchanger 22c that exchanges heat between the engine coolant and air, and a blower fan 22d, and an engine jacket 22a and a radiator. An engine cooling water circulation path C2 that circulates the engine cooling water between them, and a circulation pump 22b that pumps the engine cooling water to the engine cooling water circulation path C2.

これにより、当該GHPは、四方弁26を図1に示す状態に切り替えることにより、圧縮機21で圧縮された冷媒が、凝縮器Gとしての室外熱交換器23aで室外の空気と熱交換する形態で凝縮し、膨張弁24で膨張された冷媒が、蒸発器Jとしての室内熱交換器25aで室内の空気と熱交換する形態で蒸発し、熱交換した後の室内空気を比較的低温で低湿の空調用空気SAとして室内空間ISへ導く、所謂、冷房運転を実行する。
更に、GHPは、四方弁26を図2に示す状態(図1に示す状態から90度回転した状態)に切り替えることにより、膨張弁24で膨張された冷媒が、蒸発器Jとしての室外熱交換器23aで室外空間OSの空気と熱交換する形態で蒸発し、圧縮機21で圧縮された冷媒が、凝縮器Gとしての室内熱交換器25aで室内空間ISの空気と熱交換する形態で凝縮し、熱交換した後の室内の空気を比較的高温の空調用空気SAとして室内空間ISへ導く、所謂、暖房運転を実行する。
Thereby, the said GHP is the form which the refrigerant | coolant compressed with the compressor 21 heat-exchanges with outdoor air with the outdoor heat exchanger 23a as the condenser G by switching the four-way valve 26 to the state shown in FIG. The refrigerant condensed by the expansion valve 24 and expanded by the expansion valve 24 evaporates in a form in which heat is exchanged with the indoor air in the indoor heat exchanger 25a as the evaporator J, and the indoor air after the heat exchange is relatively low temperature and low humidity. A so-called cooling operation is performed in which the air-conditioning air SA is led to the indoor space IS.
Further, the GHP switches the four-way valve 26 to the state shown in FIG. 2 (the state rotated 90 degrees from the state shown in FIG. 1), so that the refrigerant expanded by the expansion valve 24 exchanges outdoor heat as the evaporator J. The refrigerant evaporated in the form of heat exchange with the air in the outdoor space OS in the condenser 23a and condensed in the form of heat exchange with the air in the indoor space IS in the indoor heat exchanger 25a as the condenser G Then, a so-called heating operation is performed in which the indoor air after the heat exchange is led to the indoor space IS as a relatively high-temperature air-conditioning air SA.

〔デシカント装置〕
デシカント装置は、室外空間OSから取り込んだ空気を室内空間ISへ供給する給気通路R1と、室内空間ISから取り出した空気を室外空間OSへ排気する排気通路R2と、給気通路R1に配置される第1給気領域D1aと排気通路R2に配置される第1排気領域D1bとの間で通気性吸湿体から成るデシカントロータD1cを回転駆動させて第1給気領域D1a及び第1排気領域D1bを通過する空気の除湿及び加湿を行う第1ロータ部D1と、給気通路R1の第1給気領域D1aよりも下流側に配置される第2給気領域D2aと排気通路R2における第1排気領域D1bよりも上流側に配置される第2排気領域D2bとの間で通気性体からなる顕熱ロータD2cを回転駆動させて第2給気領域D2aを通過する空気と第2排気領域D2bを通過する空気とを熱交換する第2ロータ部D2と、給気通路R1に空気を圧送する第2ファンF2と、排気通路R2に空気を圧送する第1ファンF1とを備えている。
制御装置Sは、給気通路R1及び排気通路R2の圧力損失等を考慮して、給気通路R1を通流する空気流量と排気通路R2を通流する空気流量とが略同一となるように、第1ファンF1及び第2ファンF2の回転数を制御する。
[Desicant device]
The desiccant device is disposed in an air supply passage R1 that supplies air taken from the outdoor space OS to the indoor space IS, an exhaust passage R2 that exhausts air taken from the indoor space IS to the outdoor space OS, and an air supply passage R1. The desiccant rotor D1c made of a breathable hygroscopic material is rotationally driven between the first air supply region D1a and the first exhaust region D1b arranged in the exhaust passage R2, thereby rotating the first air supply region D1a and the first exhaust region D1b. The first rotor part D1 that dehumidifies and humidifies the air passing through the air, the second air supply region D2a disposed on the downstream side of the first air supply region D1a of the air supply passage R1, and the first exhaust in the exhaust passage R2. The air passing through the second air supply region D2a by rotating the sensible heat rotor D2c made of a gas permeable body between the second exhaust region D2b disposed upstream of the region D1b and the second exhaust region D2 A second rotor section D2 of the air heat exchanger that passes through, and a second fan F2 to pump air into the air supply passage R1, and a first fan F1 to pump air to the exhaust passage R2.
The control device S takes into consideration the pressure loss of the supply passage R1 and the exhaust passage R2, and the like so that the air flow rate through the supply passage R1 and the air flow rate through the exhaust passage R2 are substantially the same. The rotational speeds of the first fan F1 and the second fan F2 are controlled.

ここで、第1ロータ部D1の構成の説明を加える。
第1ロータ部D1に設けられるデシカントロータD1cは、モータ等の回転機構部M1により、回転される回転軸に中心部が固定されて比較的低速の所定の回転速度で回転駆動し、複数の通路に配設される領域D1a、D1bを横断する姿勢で配設された円盤状又は円柱状の部材として構成されている。当該デシカントロータD1cは、回転軸に沿う方向に貫通する多数の通路が形成されたハニカム状に形成されており、各領域D1a、D1bにおいて空気がデシカントロータD1cを貫通する状態で通過する。当該デシカントロータD1cは、ゼオライト、シリカゲル、活性炭等の公知の吸着剤を担持して、通気性吸湿体とされている。
このようなデシカントロータD1cを備えたロータ部D1は、第1給気領域D1a、第1排気領域D1bのうち、第1給気領域D1aに比較的低温の空気が通過することにより、当該空気がデシカントロータD1cの吸湿時の放熱作用による温度上昇を伴って除湿され、それによりデシカントロータD1cは空気の水分を吸着した状態となる。その水分を吸着したデシカントロータD1cの部分が上記回転駆動により第1排気領域D1bに移動することになる。
一方、第1排気領域D1bに比較的高温の空気が通過することで、その空気はデシカントロータD1cの放湿時の吸熱作用による温度低下を伴って加湿され、それによりデシカントロータD1cは上記吸着した水分を脱着させて再生されることとなる。その再生されたデシカントロータD1cの部分が上記回転駆動により第1給気領域D1aに移動することになる。
このようにして、ロータ部D1は、第1給気領域D1a及び第1排気領域D1bを通過する夫々の空気の除湿と加湿とを行うことができるように構成されている。
Here, a description of the configuration of the first rotor part D1 will be added.
The desiccant rotor D1c provided in the first rotor part D1 is driven by a rotation mechanism part M1 such as a motor, the center part of which is fixed to the rotating shaft to be rotated at a predetermined relatively low rotational speed. It is comprised as a disk-shaped or column-shaped member arrange | positioned with the attitude | position crossing the area | regions D1a and D1b arrange | positioned in this. The desiccant rotor D1c is formed in a honeycomb shape having a large number of passages penetrating in the direction along the rotation axis, and air passes through the desiccant rotor D1c in each of the regions D1a and D1b. The desiccant rotor D1c carries a known adsorbent such as zeolite, silica gel, activated carbon, etc., and is a breathable moisture absorber.
The rotor portion D1 having such a desiccant rotor D1c has a relatively low temperature air passing through the first air supply region D1a out of the first air supply region D1a and the first exhaust region D1b. The desiccant rotor D1c is dehumidified with an increase in temperature due to heat dissipation during moisture absorption, and the desiccant rotor D1c is in a state of adsorbing moisture from the air. The portion of the desiccant rotor D1c that has adsorbed the moisture moves to the first exhaust region D1b by the rotational drive.
On the other hand, when relatively high-temperature air passes through the first exhaust region D1b, the air is humidified with a decrease in temperature due to the endothermic action of the desiccant rotor D1c when the moisture is released, whereby the desiccant rotor D1c is adsorbed. It is regenerated by desorbing moisture. The regenerated portion of the desiccant rotor D1c moves to the first air supply region D1a by the rotational drive.
In this way, the rotor part D1 is configured to be able to dehumidify and humidify each of the air passing through the first air supply region D1a and the first exhaust region D1b.

第2ロータ部D2は、顕熱ロータD2cが吸着剤が担持されていない点を除き、第1ロータ部D1と同一の構成を有しているため、ここでは、その詳細な説明を割愛する。   Since the second rotor part D2 has the same configuration as the first rotor part D1 except that the sensible heat rotor D2c does not carry an adsorbent, its detailed description is omitted here.

本発明の空調システム100にあっては、給気通路R1及び排気通路R2を通過する空気を加熱・冷却するべく、以下のように構成されている。
即ち、エンジン冷却水循環路C2を通流するエンジン冷却水と排気通路R2を通流する空気とを熱交換する第1熱交換器EX1と、GHPの冷房運転時(図1に示す回路状態にある時)において冷媒循環路C1で圧縮機21と凝縮器Gとしての室外熱交換器23aとの間を通流する冷媒と排気通路R2を通流する空気とを熱交換する第2熱交換器EX2とを備え、第1熱交換器EX1と第2熱交換器EX2とを、排気通路R2の第1排気領域D1bと第2排気領域D2bとの間に、排気通路R2を通流する空気の流れ方向で記載の順に備える。
説明を加えると、第1熱交換器EX1は、エンジン冷却水循環路C2において、エンジン冷却水の流れ方向で、エンジンジャケット22aから送り出されたエンジン冷却水が第1熱交換器EX1とラジエータとしての熱交換器22cとを記載の順に通流するように配設されている。これにより、エンジン冷却水循環路C2を循環するエンジン冷却水のうち、エンジンジャケット22aを出た後の比較的高温(例えば、70℃程度)のエンジン冷却水にて排気通路R2の第1排気領域D1bと第2排気領域D2bとの間を通流する空気を加熱できる。
また、冷媒循環路C1には、GHPの冷房運転時に、冷媒循環路C1の圧縮機21と凝縮器Gとしての室外熱交換器23aとの間を通流する冷媒を第2熱交換器EX2の側へ導く状態(図1に示す回路状態)と、GHPの暖房運転時に、冷媒循環路C1を通流する冷媒を第2熱交換器EX2の側へ導かず圧縮機21と蒸発器Jとしての室外熱交換器23aとを直接接続する状態(図2に示す回路状態)とを切り替える第2三方弁V2が設けられている。これにより、GHPの冷房運転時においては、第2熱交換器EX2に、圧縮機21にて圧縮された比較的高温(例えば、73℃〜90℃程度)の冷媒を通流させることができ、第1排気領域D1bと第2排気領域D2bとの間を通流する空気を、当該第2熱交換器EX2にて加熱することができる。
尚、制御装置Sは、圧縮機21による圧縮仕事を可変に設定可能に構成されており、本発明にあっては、例えば、GHPを定格運転している場合において、当該圧縮機21による圧縮仕事を、図5に示す従来技術の圧縮仕事ΔW'から、図3に示す本発明の圧縮仕事ΔWまで増加させる制御を実行する。これにより、圧縮機21にて圧縮された冷媒の温度を、73℃から90℃程度まで昇温させて、第2熱交換器EX2への冷媒の流入温度を、第1熱交換器EX1へ流入するエンジン冷却水の最高温度(例えば、70℃)よりも高くして、第1排気領域D1bを通過する空気の温度を十分に昇温させる。これにより、第1ロータ部D1のデシカントロータD1cを、第1排気領域D1bにて十分に再生し、第1給気領域D1bでの吸湿性能を向上させている。
The air conditioning system 100 of the present invention is configured as follows in order to heat and cool the air passing through the air supply passage R1 and the exhaust passage R2.
That is, the first heat exchanger EX1 that exchanges heat between the engine coolant that flows through the engine coolant circulation path C2 and the air that flows through the exhaust passage R2, and the cooling operation of the GHP (the circuit state shown in FIG. 1 is present). The second heat exchanger EX2 that exchanges heat between the refrigerant flowing between the compressor 21 and the outdoor heat exchanger 23a as the condenser G and the air flowing through the exhaust passage R2 in the refrigerant circulation path C1. The flow of air flowing through the exhaust passage R2 between the first exhaust region D1b and the second exhaust region D2b of the exhaust passage R2 between the first heat exchanger EX1 and the second heat exchanger EX2 Prepare in the order listed in the direction.
In other words, the first heat exchanger EX1 is configured such that the engine cooling water sent from the engine jacket 22a in the engine cooling water circulation path C2 in the flow direction of the engine cooling water is heated with the first heat exchanger EX1 and the radiator. It arrange | positions so that it may flow through the exchanger 22c in the order of description. As a result, of the engine coolant that circulates through the engine coolant circulation path C2, the first exhaust region D1b of the exhaust passage R2 is made of engine coolant having a relatively high temperature (eg, about 70 ° C.) after exiting the engine jacket 22a. And the air flowing between the second exhaust region D2b can be heated.
Further, in the refrigerant circulation path C1, the refrigerant flowing between the compressor 21 in the refrigerant circulation path C1 and the outdoor heat exchanger 23a as the condenser G is supplied to the refrigerant circulation path C1 in the second heat exchanger EX2. 1 (the circuit state shown in FIG. 1) and the refrigerant flowing through the refrigerant circulation path C1 during the heating operation of the GHP are not guided to the second heat exchanger EX2 side as the compressor 21 and the evaporator J. A second three-way valve V2 that switches between a state (circuit state shown in FIG. 2) in which the outdoor heat exchanger 23a is directly connected is provided. Thereby, during the cooling operation of the GHP, a relatively high temperature refrigerant (for example, about 73 ° C. to 90 ° C.) compressed by the compressor 21 can be passed through the second heat exchanger EX2. The air flowing between the first exhaust region D1b and the second exhaust region D2b can be heated by the second heat exchanger EX2.
Note that the control device S is configured so that the compression work by the compressor 21 can be set variably. In the present invention, for example, when the GHP is rated, the compression work by the compressor 21 is performed. Is increased from the conventional compression work ΔW ′ shown in FIG. 5 to the compression work ΔW of the present invention shown in FIG. Thereby, the temperature of the refrigerant compressed by the compressor 21 is raised from about 73 ° C. to about 90 ° C., and the inflow temperature of the refrigerant to the second heat exchanger EX2 flows into the first heat exchanger EX1. The temperature of the air that passes through the first exhaust region D1b is sufficiently raised by setting it higher than the maximum temperature (for example, 70 ° C.) of the engine cooling water. Thereby, the desiccant rotor D1c of the first rotor part D1 is sufficiently regenerated in the first exhaust region D1b, and the moisture absorption performance in the first supply region D1b is improved.

更に、本発明にあっては、GHPの冷房運転時(図1に示す回路状態の時)に、冷媒循環路C1で蒸発器Jとしての室内熱交換器25aと圧縮機21との間を通流する冷媒と給気通路R1を通流する空気とを熱交換する第3熱交換器EX3を、給気通路R1を通流する空気の流れ方向で第2給気領域D2aの下流側、即ち、室内空間ISの直前に備えている。
説明を加えると、冷媒循環路C1には、GHPの冷房運転時に、冷媒循環路C1で蒸発器Jとしての室内熱交換器25aと圧縮機21との間を通流する冷媒を第3熱交換器EX3の側へ導く状態(図1に示す回路状態)と、GHPの暖房運転時に、冷媒循環路C1で蒸発器Jとしての室内熱交換器25aと圧縮機21との間を通流する冷媒を第3熱交換器EX3の側へ導かず圧縮機21と凝縮器Gとしての室内熱交換器25aとを直接接続する状態(図2に示す回路状態)とを切り替える第1三方弁V1が設けられている。これにより、GHPの冷房運転時においては、図3でP14−P15間に示すように、蒸発器Jを出た後で冷熱(潜熱+顕熱)を保有する冷媒を第3熱交換器EX3へ導くことができ、第3熱交換器EX3にて空調用空気SAを冷却している。尚、図3におけるP11〜P15は、図1の冷媒循環路C1でのP11〜P15における値を示している。
Furthermore, in the present invention, during the cooling operation of the GHP (in the circuit state shown in FIG. 1), the refrigerant circuit C1 passes between the indoor heat exchanger 25a as the evaporator J and the compressor 21. The third heat exchanger EX3 that exchanges heat between the flowing refrigerant and the air flowing through the supply passage R1 is arranged downstream of the second supply region D2a in the flow direction of the air flowing through the supply passage R1, that is, , Provided immediately before the indoor space IS.
In other words, in the refrigerant circulation path C1, during the cooling operation of the GHP, the refrigerant flowing between the indoor heat exchanger 25a as the evaporator J and the compressor 21 in the refrigerant circulation path C1 is subjected to the third heat exchange. Refrigerant that flows between the indoor heat exchanger 25a as the evaporator J and the compressor 21 in the refrigerant circulation path C1 during the heating operation of the GHP (the circuit state shown in FIG. 1) and the GEX heating operation Is provided with a first three-way valve V1 that switches between a state (circuit state shown in FIG. 2) in which the compressor 21 and the indoor heat exchanger 25a as the condenser G are directly connected without guiding the air to the third heat exchanger EX3 side. It has been. Thus, during the cooling operation of the GHP, as shown between P14 and P15 in FIG. 3, the refrigerant that holds the cold (latent heat + sensible heat) after leaving the evaporator J is transferred to the third heat exchanger EX3. The air conditioning air SA is cooled by the third heat exchanger EX3. In addition, P11-P15 in FIG. 3 has shown the value in P11-P15 in the refrigerant circuit C1 of FIG.

〔除湿冷房運転〕
本発明の空調システム100では、GHPにて冷房運転を実行している時に、デシカント装置にて空調用空気SAを除湿冷却することで、所謂、除湿冷房運転を実行可能に構成されている。
制御装置Sは、除湿冷房運転において、GHP側では、四方弁26を図1に示す状態に切り替えると共に、第2熱交換器EX2、第3熱交換器EX3に冷媒が循環するように第1三方弁V1、第2三方弁V2の開閉状態を制御すると共に、デシカント装置側では、第1ファンF1及び第2ファンF2を所定の回転速度で働かせると共に、第1ロータ部D1の回転機構部M1及び第2ロータ部D2の回転機構部M2を働かせて、デシカントロータD1c及び顕熱ロータD2cを回転駆動させる。
当該除湿冷房運転により、デシカント装置側での空気線図を図4に示す。図4で、一点鎖線、二点鎖線は従来技術(第2熱交換器EX2を設けない構成)の空気線図を示すものであり、実線、太実線は本発明の空気線図を示すものである。
図4から、第2熱交換器EX2を設け、第1排気領域D1bを通過する空気の温度を、約15℃程度(P7―P8間の温度)増加させることにより、本発明での除湿量Hを従来技術の除湿量H'からΔH(約20%)増加できており、除湿性能の向上が見込まれる。
尚、当該空気線図におけるP1−P9は、図1におけるP1−P9での空気の状態を示すものである。
本発明の空調システム100は、例えば、除湿冷房運転時に、外部に設けられる設定部(図示せず)からの除湿設定値に基づいて、圧縮機21による圧縮仕事を制御する構成を採用する。
例えば、除湿設定値が『除湿量:低』から『除湿量:高』へ変更設定された場合、圧縮機21の圧縮仕事を大きく設定することで、当該圧縮機21にて圧縮される冷媒の温度を昇温させ、第2熱交換器EX2を通過した後の空気を昇温させ、第1ロータ部の第1排気領域D1bを通過するデシカントロータD1cの再生をより良好に行う形態で、第1給気領域D1aを通過する空気の除湿量を向上させることができる。
[Dehumidifying and cooling operation]
The air conditioning system 100 according to the present invention is configured to perform a so-called dehumidifying and cooling operation by dehumidifying and cooling the air-conditioning air SA with a desiccant device when the cooling operation is being performed by the GHP.
In the dehumidifying and cooling operation, the control device S switches the four-way valve 26 to the state shown in FIG. 1 on the GHP side, and causes the refrigerant to circulate in the second heat exchanger EX2 and the third heat exchanger EX3. The open / close state of the valve V1 and the second three-way valve V2 is controlled, and on the desiccant device side, the first fan F1 and the second fan F2 are operated at a predetermined rotation speed, and the rotation mechanism part M1 of the first rotor part D1 and The desiccant rotor D1c and the sensible heat rotor D2c are rotationally driven by operating the rotation mechanism part M2 of the second rotor part D2.
FIG. 4 shows an air diagram on the desiccant device side in the dehumidifying and cooling operation. In FIG. 4, the one-dot chain line and the two-dot chain line show the air diagram of the prior art (a configuration in which the second heat exchanger EX2 is not provided), and the solid line and the thick solid line show the air diagram of the present invention. is there.
From FIG. 4, by providing the second heat exchanger EX2 and increasing the temperature of the air passing through the first exhaust region D1b by about 15 ° C. (temperature between P7 and P8), the dehumidification amount H in the present invention. Can be increased by ΔH (about 20%) from the dehumidifying amount H ′ of the prior art, and an improvement in dehumidifying performance is expected.
In addition, P1-P9 in the said air diagram shows the state of the air in P1-P9 in FIG.
The air conditioning system 100 of the present invention employs, for example, a configuration that controls the compression work by the compressor 21 based on a dehumidification setting value from a setting unit (not shown) provided outside during dehumidifying and cooling operation.
For example, when the dehumidification set value is changed and set from “dehumidification amount: low” to “dehumidification amount: high”, the compression work of the compressor 21 is set to be large so that the refrigerant compressed by the compressor 21 is set. In a form in which the temperature is increased, the air after passing through the second heat exchanger EX2 is heated, and the regeneration of the desiccant rotor D1c that passes through the first exhaust region D1b of the first rotor portion is performed more favorably. The dehumidification amount of the air passing through the one air supply region D1a can be improved.

〔暖房運転〕
本発明の空調システム100では、四方弁26を図2に示す状態に切り替えることで、暖房運転をも実行可能に構成されている。
制御装置Sは、暖房運転において、GHP側では、四方弁26を図2に示す状態に切り替えると共に、第2熱交換器EX2、第3熱交換器EX3に冷媒が循環しないように第1三方弁V1、第2三方弁V2の開閉状態を制御すると共に、デシカント装置側では、第1ファンF1及び第2ファンF2を所定の回転速度で働かせると共に、第1ロータ部D1の回転機構部M1を働かせずデシカントロータD1cの回転を停止状態で、第2ロータ部D2の回転機構部M2を働かせて、顕熱ロータD2cを回転駆動させる。
即ち、当該暖房運転においては、デシカント装置は、室内空気RAと室外空気OAとを熱交換する装置として機能する。
尚、当該暖房運転にあっては、第2熱交換器EX2及び第3熱交換器EX3へ冷媒は導かれないため、冷媒循環路C1を循環する冷媒のP11〜P14(P15はP14と同一)の状態は、図5に示す従来技術のPH線図のP11'〜P14'と略同等の値となる。
[Heating operation]
In the air conditioning system 100 of the present invention, the heating operation can also be executed by switching the four-way valve 26 to the state shown in FIG.
In the heating operation, the control device S switches the four-way valve 26 to the state shown in FIG. 2 on the GHP side, and the first three-way valve so that the refrigerant does not circulate in the second heat exchanger EX2 and the third heat exchanger EX3. V1 controls the open / close state of the second three-way valve V2, and on the desiccant device side, the first fan F1 and the second fan F2 are operated at a predetermined rotational speed, and the rotation mechanism unit M1 of the first rotor unit D1 is operated. Without stopping the rotation of the desiccant rotor D1c, the rotation mechanism M2 of the second rotor part D2 is operated to rotate the sensible heat rotor D2c.
That is, in the heating operation, the desiccant device functions as a device for exchanging heat between the indoor air RA and the outdoor air OA.
In the heating operation, since the refrigerant is not guided to the second heat exchanger EX2 and the third heat exchanger EX3, P11 to P14 of the refrigerant circulating in the refrigerant circuit C1 (P15 is the same as P14). This state is substantially the same value as P11 ′ to P14 ′ in the conventional PH diagram shown in FIG.

〔別実施形態〕
(1)上記実施形態においては、第1ロータ部D1及び第2ロータ部D2は、夫々1つづつ設ける構成を例示したが、別に複数設ける構成を採用しても構わない。
[Another embodiment]
(1) In the above-described embodiment, the configuration in which the first rotor portion D1 and the second rotor portion D2 are provided one by one is exemplified, but a configuration in which a plurality of the first rotor portion D1 and the second rotor portion D2 are separately provided may be employed.

(2)第1ファンF1は、排気通路R2で第1排気領域D1bの下流側に設けられる例を示したが、排気通路R2上であれば、どこに設けられていても良い。
また、第2ファンF2は、給気通路R1で第1給気領域D1aの上流側に設けられる例を示したが、給気通路R1上であれば、どこに設けられていても良い。
(2) Although the example in which the first fan F1 is provided on the downstream side of the first exhaust region D1b in the exhaust passage R2 is shown, it may be provided anywhere on the exhaust passage R2.
In addition, although the example in which the second fan F2 is provided on the upstream side of the first supply region D1a in the supply passage R1 is shown, it may be provided anywhere on the supply passage R1.

)上記実施形態では、除湿冷房運転と暖房運転とを切り替え実行可能な構成を示したが、四方弁26、第1三方弁V1、第2三方弁V2を設けない構成を採用し、除湿冷房運転を専用で行う空調システムとすることができる。




( 3 ) In the above embodiment, a configuration is shown in which the dehumidifying and cooling operation and the heating operation can be switched. However, a configuration in which the four-way valve 26, the first three-way valve V1, and the second three-way valve V2 are not provided is employed for dehumidification. It can be set as the air-conditioning system which performs cooling operation only.




本発明の空調システムは、GHPとデシカント装置とを備えたものにおいて、ガスエンジンの立ち上がり時や、外気の湿度が高い時等であっても、デシカントロータの再生を適切に行い、デシカント装置を介して室内空間へ供給される空調用空気の湿度を十分に下げることができる空調システムとして、有効に利用可能である。   The air conditioning system of the present invention includes a GHP and a desiccant device, and appropriately reproduces the desiccant rotor even when the gas engine starts up or when the humidity of the outside air is high, via the desiccant device. Therefore, it can be effectively used as an air conditioning system capable of sufficiently reducing the humidity of air conditioning air supplied to the indoor space.

21 :圧縮機
22 :エンジン
23a :室外熱交換器(凝縮器、蒸発器)
25a :室内熱交換器(凝縮器、蒸発器)
26 :四方弁
S :制御装置
G :凝縮器
J :蒸発器
D1 :第1ロータ部
D1a :給気領域
D1b :排気領域
D1c :デシカントロータ
D2 :第2ロータ部
D2a :給気領域
D2b :排気領域
D1c :顕熱ロータ
R1 :給気通路
R2 :排気通路
EX1 :第1熱交換器
EX2 :第2熱交換器
EX3 :第3熱交換器
SA :空調用空気
RA :室内空気
OA :室外空気
EA :排気
100 :空調システム
21: Compressor 22: Engine 23a: Outdoor heat exchanger (condenser, evaporator)
25a: Indoor heat exchanger (condenser, evaporator)
26: Four-way valve S: Control device G: Condenser J: Evaporator D1: First rotor part D1a: Supply area D1b: Exhaust area D1c: Desiccant rotor D2: Second rotor part D2a: Supply area D2b: Exhaust area D1c: Sensible heat rotor R1: Air supply passage R2: Exhaust passage EX1: First heat exchanger EX2: Second heat exchanger EX3: Third heat exchanger SA: Air conditioning air RA: Indoor air OA: Outdoor air EA: Exhaust 100: Air conditioning system

Claims (3)

エンジンにより駆動され冷媒を圧縮する圧縮機と、前記圧縮機にて圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器にて凝縮した冷媒を膨張させる膨張弁と、前記膨張弁にて膨張した冷媒を蒸発させる蒸発器と、前記圧縮機と前記凝縮器と前記膨張弁と前記蒸発器とに記載の順に冷媒を循環する冷媒循環路とを有し、冷房運転時には前記蒸発器を通流する冷媒と熱交換した空調用空気を室内空間へ供給すると共に暖房運転時には前記凝縮器を通流する冷媒と熱交換した空調用空気を室内空間へ供給するエンジン駆動式ヒートポンプ装置と、
室外空間から取り込んだ空気を室内空間へ供給する給気通路と、室内空間から取り出した空気を室外空間へ排気する排気通路と、前記給気通路に配置される第1給気領域と前記排気通路に配置される第1排気領域との間で通気性吸湿体から成るデシカントロータを回転駆動させて前記第1給気領域及び前記第1排気領域を通過する空気の除湿及び加湿を行う第1ロータ部と、前記給気通路の前記第1給気領域よりも下流側に配置される第2給気領域と前記排気通路における前記第1排気領域よりも上流側に配置される第2排気領域との間で通気性体からなる顕熱ロータを回転駆動させて前記第2給気領域を通過する空気と前記第2排気領域を通過する空気とを熱交換する第2ロータ部とを有するデシカント装置とを備え、
前記エンジンのエンジン冷却水循環路を通流するエンジン冷却水と前記排気通路を通流する空気とを熱交換する第1熱交換器を、前記排気通路の前記第1排気領域と前記第2排気領域との間に備えた空調システムにおいて、
前記冷房運転時において前記冷媒循環路で前記圧縮機と前記凝縮器との間を通流する冷媒と前記排気通路を通流する空気とを熱交換する第2熱交換器を備え、
前記第1熱交換器と前記第2熱交換器とを、前記排気通路の前記第1排気領域と前記第2排気領域との間に、前記排気通路を通流する空気の流れ方向で記載の順に備え
設定される除湿設定値としての除湿量が高いほど、前記圧縮機による圧縮仕事を大きく設定する制御手段が設けられている空調システム。
A compressor driven by the engine to compress the refrigerant, a condenser that condenses the refrigerant compressed by the compressor, an expansion valve that expands the refrigerant condensed by the condenser, and an expansion valve that expands the refrigerant An evaporator that evaporates the refrigerant; a refrigerant circulation path that circulates the refrigerant in the order described in the compressor, the condenser, the expansion valve, and the evaporator; and flows through the evaporator during cooling operation. An engine-driven heat pump device that supplies air-conditioning air heat-exchanged with the refrigerant to the indoor space and supplies air-conditioning air heat-exchanged with the refrigerant flowing through the condenser during heating operation to the indoor space;
An air supply passage for supplying air taken from the outdoor space to the indoor space, an exhaust passage for exhausting air taken from the indoor space to the outdoor space, a first air supply region disposed in the air supply passage, and the exhaust passage A first rotor for dehumidifying and humidifying air passing through the first air supply region and the first exhaust region by rotating a desiccant rotor made of a breathable moisture absorber between the first exhaust region and the first exhaust region. A second air supply region disposed downstream of the first air supply region of the air supply passage, and a second exhaust region disposed upstream of the first exhaust region of the exhaust passage. A desiccant device having a second rotor portion that rotates and drives a sensible heat rotor made of a gas-permeable member between the air and passes through the second air supply region and air that passes through the second exhaust region. And
A first heat exchanger for exchanging heat between the engine coolant flowing through the engine coolant circulation path of the engine and the air flowing through the exhaust passage; and the first exhaust region and the second exhaust region of the exhaust passage. In the air conditioning system prepared between
A second heat exchanger for exchanging heat between the refrigerant flowing between the compressor and the condenser and the air flowing through the exhaust passage in the refrigerant circulation path during the cooling operation;
The first heat exchanger and the second heat exchanger are described in a flow direction of air flowing through the exhaust passage between the first exhaust region and the second exhaust region of the exhaust passage. In order ,
The air conditioning system provided with the control means which sets the compression work by the said compressor large, so that the dehumidification amount as a dehumidification setting value set is high .
前記冷房運転時において前記冷媒循環路で前記蒸発器と前記圧縮機との間を通流する冷媒と前記給気通路を通流する空気とを熱交換する第3熱交換器を、前記給気通路を通流する空気の流れ方向で前記第2給気領域の下流側に備える請求項1に記載の空調システム。   A third heat exchanger for exchanging heat between the refrigerant flowing between the evaporator and the compressor in the refrigerant circulation path and the air flowing through the air supply passage during the cooling operation; The air conditioning system according to claim 1, wherein the air conditioning system is provided on the downstream side of the second supply region in the flow direction of the air flowing through the passage. 前記制御手段は、前記圧縮機による圧縮仕事を、前記第2熱交換器への冷媒の流入温度が、前記第1熱交換器へ流入するエンジン冷却水の最高温度よりも高くなるように制御する請求項1又は2に記載の空調システム。 The control means controls the compression work by the compressor so that a refrigerant inflow temperature to the second heat exchanger is higher than a maximum temperature of engine cooling water flowing into the first heat exchanger. The air conditioning system according to claim 1 or 2 .
JP2014069982A 2014-03-28 2014-03-28 Air conditioning system Active JP6489753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069982A JP6489753B2 (en) 2014-03-28 2014-03-28 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069982A JP6489753B2 (en) 2014-03-28 2014-03-28 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2015190729A JP2015190729A (en) 2015-11-02
JP6489753B2 true JP6489753B2 (en) 2019-03-27

Family

ID=54425356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069982A Active JP6489753B2 (en) 2014-03-28 2014-03-28 Air conditioning system

Country Status (1)

Country Link
JP (1) JP6489753B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220153945A (en) * 2021-05-12 2022-11-21 주식회사 원방테크 Dehumidification system using two rotors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708419C1 (en) * 2019-06-20 2019-12-06 Владимир Евгеньевич Воскресенский Supply air conditioning system with non-liquid rotary heating

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949642A (en) * 1995-08-04 1997-02-18 Sanyo Electric Co Ltd Air conditioning equipment
JPH09264557A (en) * 1996-03-26 1997-10-07 Daikin Ind Ltd Air conditioner
JP2002276996A (en) * 2001-03-23 2002-09-25 Osaka Gas Co Ltd Air conditioning system
JP2004085096A (en) * 2002-08-27 2004-03-18 Univ Waseda Hybrid-type desiccant air-conditioning system
JP4696482B2 (en) * 2003-07-03 2011-06-08 パナソニック株式会社 Dehumidifier
JP2006189189A (en) * 2005-01-05 2006-07-20 Mitsubishi Heavy Ind Ltd Air conditioner
JP2008241190A (en) * 2007-03-28 2008-10-09 Tokyo Gas Co Ltd Air-conditioning system and its control method
JP2009150631A (en) * 2007-12-18 2009-07-09 Earth Clean Tohoku:Kk Desiccant air conditioner using gas heat pump as heat source
JP5068235B2 (en) * 2008-10-28 2012-11-07 三菱電機株式会社 Refrigeration air conditioner
JP5443146B2 (en) * 2009-12-11 2014-03-19 株式会社長府製作所 Desiccant ventilation fan system
JP6320116B2 (en) * 2014-03-28 2018-05-09 大阪瓦斯株式会社 Air conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220153945A (en) * 2021-05-12 2022-11-21 주식회사 원방테크 Dehumidification system using two rotors
KR102556842B1 (en) 2021-05-12 2023-07-18 케이엔솔 주식회사 Dehumidification system using two rotors

Also Published As

Publication number Publication date
JP2015190729A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP4169747B2 (en) Air conditioner
JP2968232B2 (en) Air conditioning system and operating method thereof
JP2009275955A (en) Desiccant air-conditioning device
JP5669587B2 (en) Low temperature regeneration desiccant air conditioner and operation method
JP3992051B2 (en) Air conditioning system
JP5542701B2 (en) Low temperature regeneration desiccant air conditioner
WO2017183689A1 (en) Outside-air treatment system, and device and method for controlling outside-air treatment system
JP6532270B2 (en) Low temperature regeneration desiccant air conditioner
JP6489753B2 (en) Air conditioning system
JP6320116B2 (en) Air conditioning system
JP6898138B2 (en) Desiccant type humidity control device and its control method
JP3729595B2 (en) Air conditioning system and operation method thereof
JP2015068599A (en) Dehumidification system
JP6335721B2 (en) Air conditioning system
JP6452368B2 (en) Fuel cell equipment type air conditioning system
JP7129281B2 (en) Desiccant air conditioner
JP5714946B2 (en) Air conditioning system
JP6663655B2 (en) Desiccant air conditioner
JP6073163B2 (en) Air conditioning system and operation method thereof
JP6324269B2 (en) Air conditioning system
JP7045911B2 (en) Air conditioning system
JP6376900B2 (en) Air conditioning system
JP4285010B2 (en) Air conditioner
JP6188438B2 (en) Air conditioner and operation method thereof
JP6073164B2 (en) Air conditioning system and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190226

R150 Certificate of patent or registration of utility model

Ref document number: 6489753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150