JP2016205203A - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
JP2016205203A
JP2016205203A JP2015086500A JP2015086500A JP2016205203A JP 2016205203 A JP2016205203 A JP 2016205203A JP 2015086500 A JP2015086500 A JP 2015086500A JP 2015086500 A JP2015086500 A JP 2015086500A JP 2016205203 A JP2016205203 A JP 2016205203A
Authority
JP
Japan
Prior art keywords
cylindrical member
oil
separation chamber
oil separation
gas compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015086500A
Other languages
Japanese (ja)
Other versions
JP6491526B2 (en
Inventor
俊勝 宮地
Toshikatsu Miyaji
俊勝 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2015086500A priority Critical patent/JP6491526B2/en
Publication of JP2016205203A publication Critical patent/JP2016205203A/en
Application granted granted Critical
Publication of JP6491526B2 publication Critical patent/JP6491526B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently separate an oil component in a compressed gas by a centrifugal separation type oil separator even if a flow speed of the compressed gas is low.SOLUTION: A swirl flow of a compressed refrigerant 13 which flows into an oil separation chamber 7f from a flow-in port 7g of an oil separator 7e is made to collide with a fin 7q of a cylinder member 7k which extends on a route of the swirl flow, and the cylinder member 7k is rotated by a rotation thrust force which is obtained by the fin 7q from the swirl flow. A lubricant 11 is separated from the swirl flow of the compressed refrigerant 13 which has collided with the fin 7q by a centrifugal force, and made to adhere on an internal peripheral wall 7h of the oil separator 7f. Furthermore, the lubricant 11 in the compressed refrigerant 13 which has adhered on a peripheral face 7n of the cylinder member 7k, an internal peripheral edge of a communication hole 7p and an internal peripheral face of the cylinder member 7k is scattered to the outside of the cylinder member 7k by the centrifugal force which is generated by the rotation of the cylinder member 7k, and made to adhere on the internal peripheral wall 7h of the oil separation chamber 7f. The lubricant 11 which has adhered on the internal peripheral wall 7h of the oil separation chamber 7f is made to drip to an oil sump 7d of a compression chamber 7a.SELECTED DRAWING: Figure 3

Description

本発明は、圧縮機構で圧縮した気体から油分離器により油分を遠心分離する気体圧縮機に関する。   The present invention relates to a gas compressor that centrifuges oil from a gas compressed by a compression mechanism by an oil separator.

例えば冷凍サイクルに用いられる気体圧縮機では、吸入した冷媒を圧縮機構により圧縮して吐出室に吐出した際に、吐出室の油分離器において圧縮冷媒を螺旋状に旋回させて、遠心力により冷媒中の冷凍機油を分離している。分離した冷凍機油は、圧縮機構の回転体(例えばロータ)の回転軸受における潤滑油等として利用される(例えば、特許文献1)。   For example, in a gas compressor used in a refrigeration cycle, when the sucked refrigerant is compressed by the compression mechanism and discharged into the discharge chamber, the compressed refrigerant is swirled spirally in the oil separator of the discharge chamber, and the refrigerant is generated by centrifugal force. The refrigeration oil inside is separated. The separated refrigeration oil is used as lubricating oil or the like in a rotary bearing of a rotating body (for example, a rotor) of a compression mechanism (for example, Patent Document 1).

特開2007−323740号公報JP 2007-323740 A

上述した遠心分離式の油分離器では、冷凍負荷が小さく圧縮冷媒の吐出量が少ない場合に、冷媒の流速が低くなることから遠心力不足により冷凍機油の分離性能が下がってしまう。これを解消するために、圧縮機構と吐出室とを接続する吐出孔を小さくすると、冷凍負荷が大きい場合に、吐出孔で生じる圧力損失が大きくなり冷媒の圧縮効率が下がってしまう。   In the centrifugal oil separator described above, when the refrigeration load is small and the discharge amount of the compressed refrigerant is small, the flow rate of the refrigerant is low, so that the separation performance of the refrigerating machine oil is lowered due to insufficient centrifugal force. In order to solve this problem, if the discharge hole connecting the compression mechanism and the discharge chamber is made small, when the refrigeration load is large, the pressure loss generated in the discharge hole is increased, and the compression efficiency of the refrigerant is lowered.

本発明は前記事情に鑑みなされたもので、本発明の目的は、圧縮機構で圧縮した気体から油分離器により油分を遠心分離するのに当たり、圧縮気体の流速が低くても遠心分離式の油分離器により圧縮気体中の油分を効率よく分離することができる気体圧縮機を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to centrifuge oil from a gas compressed by a compression mechanism using an oil separator, even if the flow rate of the compressed gas is low. An object of the present invention is to provide a gas compressor capable of efficiently separating oil in compressed gas by a separator.

上記目的を達成するために、本発明の気体圧縮機は、
圧縮機構から導入した圧縮気体に螺旋状の旋回流を発生させて前記圧縮気体内の油分を遠心分離する気体圧縮機において、
前記圧縮気体の旋回流が発生する油分離室と、
前記旋回流の中心軸の周りに回転可能に前記油分離室に収容された円筒部材と、
前記油分離室に露出する前記円筒部材の外側と、前記油分を分離した圧縮気体が吐出される吐出室と連通する前記円筒部材の内側とを連通する連通孔と、
前記円筒部材の周面から前記油分離室の内周壁に向けて突設され、前記旋回流の経路上に延出して該旋回流から前記円筒部材の回転推進力を得るフィンと、
を備えることを特徴とする。
In order to achieve the above object, the gas compressor of the present invention comprises:
In the gas compressor for generating a spiral swirl flow in the compressed gas introduced from the compression mechanism and centrifuging the oil in the compressed gas,
An oil separation chamber in which a swirling flow of the compressed gas is generated;
A cylindrical member accommodated in the oil separation chamber so as to be rotatable around a central axis of the swirling flow;
A communication hole that communicates the outside of the cylindrical member exposed to the oil separation chamber and the inside of the cylindrical member that communicates with the discharge chamber from which the compressed gas separated from the oil is discharged;
A fin that protrudes from the circumferential surface of the cylindrical member toward the inner peripheral wall of the oil separation chamber, extends on the path of the swirling flow, and obtains the rotational driving force of the cylindrical member from the swirling flow;
It is characterized by providing.

本発明によれば、圧縮機構からの圧縮気体が油分離室に流入して螺旋状の旋回流となると、その旋回流がフィンに衝突した円筒部材が油分離室内で圧縮気体と同じ方向に回転する。そして、円筒部材の外側を螺旋状に旋回する圧縮気体から油分が遠心分離されて油分離室の内周壁に付着すると共に、油分を分離した圧縮気体が連通孔を介して円筒部材の外側から内側に流入する。   According to the present invention, when the compressed gas from the compression mechanism flows into the oil separation chamber to form a spiral swirl flow, the cylindrical member that collided with the fin rotates in the same direction as the compressed gas in the oil separation chamber. To do. Then, the oil component is centrifuged from the compressed gas that spirally swirls around the outside of the cylindrical member and adheres to the inner peripheral wall of the oil separation chamber, and the compressed gas from which the oil component has been separated passes from the outside of the cylindrical member to the inside through the communication hole. Flow into.

また、油分離室内を旋回する圧縮気体中の油分は、円筒部材の周面や連通孔の内周縁に付着し、あるいは、連通孔を通過して円筒部材の内周面に付着する。付着した油分は、フィンに衝突した圧縮気体から得た回転推進力により円筒部材が回転して生じる遠心力で、円筒部材の周面や連通孔の内周面から円筒部材の外側に飛散し、あるいは、連通孔を通過して円筒部材の外側に飛散する。飛散した油分は油分離室の内周壁に付着する。   The oil content in the compressed gas swirling in the oil separation chamber adheres to the peripheral surface of the cylindrical member and the inner peripheral edge of the communication hole, or passes through the communication hole and adheres to the inner peripheral surface of the cylindrical member. The adhering oil component is a centrifugal force generated by rotating the cylindrical member by the rotational propulsion force obtained from the compressed gas colliding with the fins, and is scattered from the peripheral surface of the cylindrical member and the inner peripheral surface of the communication hole to the outside of the cylindrical member. Alternatively, it passes through the communication hole and scatters outside the cylindrical member. The scattered oil adheres to the inner peripheral wall of the oil separation chamber.

このように、圧縮機構から油分離室に流入した圧縮気体が円筒部材の外側で螺旋状の旋回流となって遠心力を発生するだけでなく、円筒部材を回転させて円筒部材にも遠心力を発生させる。このため、圧縮機構から油分離室への圧縮気体の流入量が少なく、圧縮気体の流速が遅いために円筒部材の外側で発生する螺旋状の旋回流による遠心力で圧縮気体から油分を十分に分離できなくても、円筒部材に付着した潤滑油11を円筒部材の回転による遠心力で円筒部材の外側に飛散させて、圧縮気体から油分をさらに分離させることができる。   Thus, the compressed gas flowing into the oil separation chamber from the compression mechanism becomes a spiral swirl flow outside the cylindrical member to generate centrifugal force, and also rotates the cylindrical member to apply centrifugal force to the cylindrical member. Is generated. For this reason, the amount of compressed gas flowing from the compression mechanism into the oil separation chamber is small, and the flow rate of the compressed gas is slow, so that the centrifugal force generated by the spiral swirling flow generated outside the cylindrical member sufficiently removes oil from the compressed gas. Even if it cannot be separated, it is possible to further separate the oil from the compressed gas by scattering the lubricating oil 11 adhering to the cylindrical member to the outside of the cylindrical member by centrifugal force due to the rotation of the cylindrical member.

よって、圧縮機構で圧縮した気体から油分離器により油分を遠心分離するのに当たり、圧縮気体の流速が低くても遠心分離式の油分離器により圧縮気体中の油分を効率よく分離することができる。   Therefore, when the oil component is centrifuged from the gas compressed by the compression mechanism by the oil separator, the oil component in the compressed gas can be efficiently separated by the centrifugal oil separator even if the flow rate of the compressed gas is low. .

なお、油分離室の内周壁や円筒部材の内周面に付着した油分は、自重による落下等により液溜まり部に回収することができる。   In addition, the oil component adhering to the inner peripheral wall of the oil separation chamber or the inner peripheral surface of the cylindrical member can be collected in the liquid reservoir by dropping due to its own weight.

一般的な気体圧縮機を示す正断面図である。It is a front sectional view showing a general gas compressor. 図1の気体圧縮機で用いられる一般的な油分離器の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the common oil separator used with the gas compressor of FIG. 図1の気体圧縮機に適用される本発明の一実施形態に係る油分離器の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the oil separator which concerns on one Embodiment of this invention applied to the gas compressor of FIG. 図1の気体圧縮機に適用される本発明の他の実施形態に係る油分離器の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the oil separator which concerns on other embodiment of this invention applied to the gas compressor of FIG.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は一般的な油分離器を有する気体圧縮機を示す正断面図、図2は図1の油分離器において圧縮冷媒中の冷凍機油が遠心分離される状態を示す説明図である。図1に示す気体圧縮機1は、回転式の圧縮機構3を電動モータ5で駆動して冷媒(請求項中の気体に相当)を圧縮するものである。   FIG. 1 is a front sectional view showing a gas compressor having a general oil separator, and FIG. 2 is an explanatory view showing a state where refrigeration oil in a compressed refrigerant is centrifuged in the oil separator of FIG. A gas compressor 1 shown in FIG. 1 compresses a refrigerant (corresponding to gas in claims) by driving a rotary compression mechanism 3 with an electric motor 5.

そして、気体圧縮機1は、圧縮機構3及び電動モータ5の他、これらが収容されるハウジング7、及び、電動モータ5の駆動を制御するコントローラ15を有している。   The gas compressor 1 includes a compression mechanism 3 and an electric motor 5, a housing 7 in which these are accommodated, and a controller 15 that controls the driving of the electric motor 5.

圧縮機構3は、一対のサイドブロック3a,3bと、これらによって挟持されたシリンダブロック3cと、シリンダブロック3cの内部に形成された楕円形のシリンダ室3dに収容した円柱状のロータ3eとを有している。   The compression mechanism 3 includes a pair of side blocks 3a and 3b, a cylinder block 3c sandwiched between them, and a columnar rotor 3e accommodated in an elliptical cylinder chamber 3d formed inside the cylinder block 3c. doing.

ロータ3eは、サイドブロック3a,3bの軸受部3f,3gで軸受された電動モータ5の回転軸5aに取り付けられており、ロータ3eの周面に開口する複数のベーン溝(図示せず)には、ロータ3eの周面から出没可能に不図示のベーンがそれぞれ支持されている。   The rotor 3e is attached to the rotary shaft 5a of the electric motor 5 supported by the bearing portions 3f and 3g of the side blocks 3a and 3b, and is formed in a plurality of vane grooves (not shown) opened on the peripheral surface of the rotor 3e. Are supported by vanes (not shown) so as to be able to protrude from the peripheral surface of the rotor 3e.

ロータ3eが電動モータ5によりシリンダ室3d内で回転されると、ロータ3eの各ベーンシリンダ室3dの内周面に倣ってベーン溝から出没し、ロータ3eと隣り合う2つのベーンとシリンダ室3dとで構成される空間の容積が変化する。   When the rotor 3e is rotated in the cylinder chamber 3d by the electric motor 5, the rotor 3e protrudes and retracts from the vane groove along the inner peripheral surface of each vane cylinder chamber 3d, and the two vanes adjacent to the rotor 3e and the cylinder chamber 3d. The volume of the space composed of and changes.

そして、空間の容積が増加する間に、サイドブロック3aに形成した吸入口(図示せず)を通じて低圧の冷媒が吸入され、吸入された冷媒が、空間の容積の減少に伴い圧縮される。圧縮された高圧の冷媒は、シリンダブロック3cの不図示の吐出ポートに設けられた吐出弁を開弁させ、さらに、サイドブロック3bに形成した吐出口(図示せず)から吐出される。   Then, while the space volume increases, low-pressure refrigerant is sucked through a suction port (not shown) formed in the side block 3a, and the sucked refrigerant is compressed as the space volume decreases. The compressed high-pressure refrigerant opens a discharge valve provided at a discharge port (not shown) of the cylinder block 3c, and is discharged from a discharge port (not shown) formed in the side block 3b.

図1に示すように、電動モータ5は、回転軸5aに取り付けられたロータ5bと、ロータ5bの外側に配置されたステータ5cとを有している。ステータ5cは複数の極に対応したティース(図示せず)を有しており、各ティースにはコイル5dがそれぞれ巻回されている。電動モータ5は、各コイル5dに所定のパターンで電圧を印加することでステータ5cに回転磁界を発生させることで、ロータ5bを回転させる。   As shown in FIG. 1, the electric motor 5 includes a rotor 5b attached to the rotating shaft 5a and a stator 5c disposed outside the rotor 5b. The stator 5c has teeth (not shown) corresponding to a plurality of poles, and a coil 5d is wound around each tooth. The electric motor 5 rotates the rotor 5b by generating a rotating magnetic field in the stator 5c by applying a voltage in a predetermined pattern to each coil 5d.

ハウジング7は、一端が閉塞された円筒状を呈している。このハウジング7には圧縮機構3が収容されており、収容された圧縮機構3によりハウジング7の内部は、サイドブロック3bが露出する閉塞側の密閉された吐出室7aと、サイドブロック3aが露出する開口側の吸入室7bとに仕切られている。吸入室7bには電動モータ5が収容されており、吸入室7bは、ハウジング7の開口7cに取り付けた蓋部9によって密閉されている。   The housing 7 has a cylindrical shape with one end closed. The housing 7 accommodates the compression mechanism 3, and the accommodated compression mechanism 3 exposes the inside of the housing 7 to the closed discharge chamber 7 a on the closed side where the side block 3 b is exposed and the side block 3 a. It is partitioned off from the suction chamber 7b on the opening side. An electric motor 5 is accommodated in the suction chamber 7 b, and the suction chamber 7 b is sealed by a lid portion 9 attached to the opening 7 c of the housing 7.

上述した吸入室7bは、圧縮機構3によって圧縮する低温低圧の冷媒が、気体圧縮機1の外部(例えば、冷凍サイクルの蒸発器)から不図示の吸入ポートを介して吸入される空間である。   The suction chamber 7b described above is a space in which the low-temperature and low-pressure refrigerant compressed by the compression mechanism 3 is sucked from the outside of the gas compressor 1 (for example, the evaporator of the refrigeration cycle) via a suction port (not shown).

また、圧縮機構3によって吸入室7bと気密に仕切られた吐出室7aは、圧縮機構3によって圧縮された高温高圧の冷媒を、不図示の吐出ポートを介して気体圧縮機1の外部(例えば、冷凍サイクルの凝縮器)に吐出する空間である。この吐出室7aの下部には、潤滑油11(冷凍機油とも言う。請求項中の油分に相当)が貯留される液溜まり部7dが形成されている。   Further, the discharge chamber 7a, which is hermetically partitioned from the suction chamber 7b by the compression mechanism 3, allows the high-temperature and high-pressure refrigerant compressed by the compression mechanism 3 to be discharged to the outside of the gas compressor 1 (for example, via a discharge port not shown). This is the space discharged to the condenser of the refrigeration cycle. A liquid reservoir 7d for storing lubricating oil 11 (also referred to as refrigerating machine oil, corresponding to oil in the claims) is formed at the lower portion of the discharge chamber 7a.

液溜まり部7dの潤滑油11は、吐出室7aの冷媒の圧力によりサイドブロック3a,3bの軸受部3f,3gに供給されて、軸受部3f,3gが軸受する回転軸5aの潤滑に用いられる。軸受部3f,3gは、サイドブロック3a,3bの回転軸5aが貫通する貫通孔の内周面に形成された環状溝からなる。   The lubricating oil 11 in the liquid pool portion 7d is supplied to the bearing portions 3f and 3g of the side blocks 3a and 3b by the pressure of the refrigerant in the discharge chamber 7a, and is used for lubricating the rotating shaft 5a that the bearing portions 3f and 3g support. . The bearing portions 3f and 3g are formed by annular grooves formed on the inner peripheral surface of the through hole through which the rotation shaft 5a of the side blocks 3a and 3b passes.

サイドブロック3aの軸受部3fには、サイドブロック3bの通路3hと、シリンダブロック3cの通路3iと、サイドブロック3aの通路3jとを介して、液溜まり部7dの潤滑油11が供給される。サイドブロック3bの軸受部3gには、サイドブロック3bの通路3kを介して液溜まり部7dの潤滑油11が供給される。   The lubricating oil 11 in the liquid reservoir 7d is supplied to the bearing portion 3f of the side block 3a through the passage 3h of the side block 3b, the passage 3i of the cylinder block 3c, and the passage 3j of the side block 3a. The lubricating oil 11 in the liquid reservoir 7d is supplied to the bearing portion 3g of the side block 3b through the passage 3k of the side block 3b.

サイドブロック3a,3bの軸受部3f,3gに供給された潤滑油11は、不図示の通路を経て、吐出室7aの液溜まり部7dに回収される。また、サイドブロック3bの軸受部3gに供給された潤滑油11の一部は、シリンダ室3d等を経て、吐出室7aに吐出される高圧の冷媒に混入する。   The lubricating oil 11 supplied to the bearing portions 3f and 3g of the side blocks 3a and 3b is collected in the liquid reservoir 7d of the discharge chamber 7a through a passage (not shown). A part of the lubricating oil 11 supplied to the bearing portion 3g of the side block 3b is mixed with the high-pressure refrigerant discharged into the discharge chamber 7a through the cylinder chamber 3d and the like.

そこで、吐出室7aには、高圧の冷媒から潤滑油11を分離する油分離器7eが設けられる。油分離器7eによって冷媒から分離された潤滑油11は、吐出室7aの下部の液溜まり部7dに滞留される。   Therefore, the discharge chamber 7a is provided with an oil separator 7e that separates the lubricating oil 11 from the high-pressure refrigerant. The lubricating oil 11 separated from the refrigerant by the oil separator 7e is retained in the liquid reservoir 7d below the discharge chamber 7a.

図1に示す気体圧縮機1の一般的な油分離器7eは、図2に示すように、円筒形で有底の油分離室7fを有しており、圧縮機構3において圧縮された冷媒13が油分離室7fに流入口7gを介して油分離室7fに流入する。この流入口7gは、油分離室7fの内周壁7hに形成されており、油分離室7fの中心よりもずれた方向に向けて開口している。また、油分離室7fの底部7iには連通孔7jが形成されている。   A general oil separator 7 e of the gas compressor 1 shown in FIG. 1 has a cylindrical and bottomed oil separation chamber 7 f as shown in FIG. 2, and the refrigerant 13 compressed in the compression mechanism 3. Flows into the oil separation chamber 7f through the inlet 7g. The inflow port 7g is formed in the inner peripheral wall 7h of the oil separation chamber 7f and opens toward a direction shifted from the center of the oil separation chamber 7f. A communication hole 7j is formed in the bottom 7i of the oil separation chamber 7f.

油分離室7fには、両端が開放された中空の円筒部材7kが収容されている。円筒部材7kは油分離室7fの内周壁7hと同心円上に配置されており、上端のフランジ部7lが油分離室7fの上部に取付固定されている。油分離器7eの流入口7gを通過して油分離室7fに流入した圧縮冷媒13(請求項中の圧縮気体に相当)は、油分離室7fの内周壁7hと円筒部材7kとの隙間を上方から下方に向けて螺旋状に旋回する旋回流となる。   The oil separation chamber 7f accommodates a hollow cylindrical member 7k that is open at both ends. The cylindrical member 7k is disposed concentrically with the inner peripheral wall 7h of the oil separation chamber 7f, and a flange portion 7l at the upper end is attached and fixed to the upper portion of the oil separation chamber 7f. The compressed refrigerant 13 (corresponding to the compressed gas in the claims) that flows into the oil separation chamber 7f through the inlet 7g of the oil separator 7e passes through the gap between the inner peripheral wall 7h of the oil separation chamber 7f and the cylindrical member 7k. It becomes a swirl flow swirling spirally from above to below.

この旋回流により圧縮冷媒13中の潤滑油11の成分が油分離室7f内で遠心分離されて内周壁7hに付着する。付着した潤滑油11は、自重により内周壁7hの下端に流れ落ち、油分離室7fの底部7iに溜まって連通孔7jから圧縮室7aの油溜まり部7dに滴下される。   By this swirling flow, the component of the lubricating oil 11 in the compressed refrigerant 13 is centrifuged in the oil separation chamber 7f and attached to the inner peripheral wall 7h. The adhering lubricating oil 11 flows down to the lower end of the inner peripheral wall 7h due to its own weight, accumulates at the bottom 7i of the oil separation chamber 7f, and drops from the communication hole 7j to the oil reservoir 7d of the compression chamber 7a.

油分離室7fの底部7iに達した圧縮冷媒13の旋回流は、その後、筒状部材7kの下端の連通孔7mから筒状部材7kの内部に流入し、円筒部材7kの上端からハウジング7の吐出室7aに流入する。   The swirling flow of the compressed refrigerant 13 that has reached the bottom 7i of the oil separation chamber 7f then flows into the inside of the cylindrical member 7k from the communication hole 7m at the lower end of the cylindrical member 7k, and from the upper end of the cylindrical member 7k to the housing 7 It flows into the discharge chamber 7a.

このような一般的な構成の油分離器7eでは、気体圧縮機1から圧縮冷媒13が供給される冷凍サイクル(図示せず)における冷凍負荷が小さく、圧縮機構3から油分離室7fに圧縮冷媒13の流量が少ないと、油分離室7fにおける圧縮冷媒13の旋回流の流速が低くなり、遠心力不足により潤滑油11の分離性能が下がってしまう。   In the oil separator 7e having such a general configuration, the refrigeration load in the refrigeration cycle (not shown) to which the compressed refrigerant 13 is supplied from the gas compressor 1 is small, and the compressed refrigerant is transferred from the compression mechanism 3 to the oil separation chamber 7f. When the flow rate of 13 is small, the flow velocity of the swirling flow of the compressed refrigerant 13 in the oil separation chamber 7f is low, and the separation performance of the lubricating oil 11 is lowered due to insufficient centrifugal force.

そこで、本発明では、圧縮冷媒13の低流量時における潤滑油11の分離性能を向上させるために、油分離器7eの構成を一部変更した。以下、本発明の一実施形態に係る気体圧縮機における油分離器の概略構成について、図3を参照して説明する。なお、図3において図2と同一の部材、部分には、同一の引用符号を付して重複する説明を省略する。   Therefore, in the present invention, in order to improve the separation performance of the lubricating oil 11 when the compressed refrigerant 13 is at a low flow rate, the configuration of the oil separator 7e is partially changed. Hereinafter, a schematic configuration of an oil separator in a gas compressor according to an embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same members and portions as those in FIG.

そして、図3に示す本実施形態の油分離器7eは、円筒部材7kを、底部7oを閉塞した有底円筒状とし、その底部7oを、油分離室7fの底部7iにおいて、油分離室7fにおける圧縮冷媒13の旋回流の回転中心軸X(請求項中の中心軸に相当)の周りに回転可能に軸受している。   In the oil separator 7e of the present embodiment shown in FIG. 3, the cylindrical member 7k has a bottomed cylindrical shape with the bottom 7o closed, and the bottom 7o is formed in the oil separation chamber 7f at the bottom 7i of the oil separation chamber 7f. Are supported so as to be rotatable around a rotation center axis X (corresponding to a center axis in claims) of the swirling flow of the compressed refrigerant 13 in FIG.

これに伴い、円筒部材7kのフランジ部7lは、油分離室7fの内周壁7hとの間に若干の隙間を有する大きさに形成されている。また、円筒部材7kには、図2に示す下端の連通孔7mに代わる連通孔7pが、周面7nに複数形成されている。   Accordingly, the flange portion 7l of the cylindrical member 7k is formed in a size having a slight gap with the inner peripheral wall 7h of the oil separation chamber 7f. The cylindrical member 7k is formed with a plurality of communication holes 7p in place of the communication holes 7m at the lower end shown in FIG.

さらに、円筒部材7kの周面7nの上部には、油分離室7fの内周壁7hに向けてフィン7qが突設されている。フィン7qは、円筒部材7kの外側を旋回する圧縮冷媒13の旋回流の経路上に延出している。   Furthermore, a fin 7q projects from the upper surface of the peripheral surface 7n of the cylindrical member 7k toward the inner peripheral wall 7h of the oil separation chamber 7f. The fin 7q extends on the path of the swirling flow of the compressed refrigerant 13 swirling outside the cylindrical member 7k.

なお、円筒部材7kの周面7nにおける最下方の連通孔7pよりも下方の箇所には、油分離室7fの内周壁7hに向けて円板状の逆流防止片7rが突設されている。逆流防止片7rの外周縁と油分離室7fの内周壁7hとの間には、油分離室7f内で圧縮冷媒13から遠心分離されて内周壁7hに付着した潤滑油11が自重により油分離室7fの底部7iに流れ落ちるのを許容する隙間が設けられる。   A disc-shaped backflow prevention piece 7r projects from the lowermost communication hole 7p on the peripheral surface 7n of the cylindrical member 7k toward the inner peripheral wall 7h of the oil separation chamber 7f. Between the outer peripheral edge of the backflow prevention piece 7r and the inner peripheral wall 7h of the oil separation chamber 7f, the lubricating oil 11 that has been centrifuged from the compressed refrigerant 13 in the oil separation chamber 7f and adhered to the inner peripheral wall 7h is separated by its own weight. A gap is provided that allows the bottom 7i of the chamber 7f to flow down.

このように構成された本実施形態の油分離器7eでは、油分離器7eの流入口7gを通過して油分離室7fに流入した圧縮冷媒13が、油分離室7fの内周壁7hと円筒部材7kとの隙間を上方から下方に向かう螺旋状の旋回流となると、その旋回流が、旋回流の経路上に延出した円筒部材7kのフィン7qに衝突する。   In the oil separator 7e of the present embodiment configured as described above, the compressed refrigerant 13 that has flowed into the oil separation chamber 7f through the inlet 7g of the oil separator 7e is combined with the inner peripheral wall 7h of the oil separation chamber 7f and the cylinder. When the spiral swirl flow is directed downward from above the gap with the member 7k, the swirl flow collides with the fins 7q of the cylindrical member 7k extending on the swirl flow path.

圧縮冷媒13の旋回流が衝突したフィン7qは旋回流から回転推進力を得るので、この回転推進力により円筒部材7kが圧縮冷媒13と同じ方向に回転する。   Since the fin 7q collided with the swirling flow of the compressed refrigerant 13 obtains a rotational driving force from the swirling flow, the cylindrical member 7k rotates in the same direction as the compressed refrigerant 13 by this rotating driving force.

そして、フィン7qに衝突した後の圧縮冷媒13の旋回流は、油分離室7fの下方に向かう間に、圧縮冷媒13内の潤滑油11を自らの旋回により発生した遠心力により分離させ、分離された潤滑油11を油分離室7fの内周壁7hに付着させる。   Then, the swirling flow of the compressed refrigerant 13 after colliding with the fins 7q separates the lubricating oil 11 in the compressed refrigerant 13 by the centrifugal force generated by its own swirling while going downward of the oil separation chamber 7f. The lubricated oil 11 is adhered to the inner peripheral wall 7h of the oil separation chamber 7f.

また、油分離室7fの下方に向かった圧縮冷媒13は、逆流防止片7rに達すると、円筒部材7kの周面7nの連通孔7pを通って円筒部材7kの外側から内側に流入する。円筒部材7kの内側に流入した圧縮冷媒13は、円筒部材7kの上端からハウジング7の吐出室7aに流入する。   In addition, when the compressed refrigerant 13 directed downward in the oil separation chamber 7f reaches the backflow prevention piece 7r, the compressed refrigerant 13 flows from the outside to the inside of the cylindrical member 7k through the communication hole 7p on the peripheral surface 7n of the cylindrical member 7k. The compressed refrigerant 13 that has flowed into the inside of the cylindrical member 7k flows into the discharge chamber 7a of the housing 7 from the upper end of the cylindrical member 7k.

なお、圧縮冷媒13が旋回流となって油分離室7fを上方から下方に流れる際に、円筒部材7kの周面7nや連通孔7pの内周縁には、圧縮冷媒13中の潤滑油11が付着する。付着した潤滑油11は、回転する円筒部材7kに発生した遠心力により周面7nや連通孔7pの内周縁から円筒部材7kの外側に飛散する。   Note that when the compressed refrigerant 13 is swirled and flows through the oil separation chamber 7f from the upper side to the lower side, the lubricating oil 11 in the compressed refrigerant 13 is placed on the peripheral surface 7n of the cylindrical member 7k and the inner peripheral edge of the communication hole 7p. Adhere to. The adhering lubricating oil 11 is scattered to the outside of the cylindrical member 7k from the peripheral surface 7n and the inner peripheral edge of the communication hole 7p by the centrifugal force generated in the rotating cylindrical member 7k.

また、潤滑油11の一部は連通孔7pを通過して円筒部材7kの内側に流入し、円筒部材7kの内周面に付着する。この潤滑油11も、円筒部材7kの回転による遠心力で連通孔7pを通過し円筒部材7kの外側に飛散する。飛散した潤滑油11は油分離室7fの内周壁7hに付着する。   Part of the lubricating oil 11 passes through the communication hole 7p, flows into the cylindrical member 7k, and adheres to the inner peripheral surface of the cylindrical member 7k. The lubricating oil 11 also passes through the communication hole 7p by the centrifugal force generated by the rotation of the cylindrical member 7k and is scattered outside the cylindrical member 7k. The scattered lubricating oil 11 adheres to the inner peripheral wall 7h of the oil separation chamber 7f.

ここで、円筒部材7kの周面7nに形成した複数の連通孔7pの合計流路断面積は、圧縮機構3から吐出室7aに吐出される最大流量の圧縮冷媒13が通過できるように設定されている。また、円筒部材7kの最も下方に形成された連通孔7pは、閉塞された底部7oの直上に配置されている。したがって、円筒部材7kの内側で圧縮冷媒13から遠心分離された潤滑油11は、円筒部材7kの内側に留まることなく連通孔7pを通って円筒部材7kの外側に排出される。   Here, the total flow path cross-sectional area of the plurality of communication holes 7p formed on the peripheral surface 7n of the cylindrical member 7k is set so that the maximum flow rate of the compressed refrigerant 13 discharged from the compression mechanism 3 to the discharge chamber 7a can pass through. ing. Further, the communication hole 7p formed at the lowermost portion of the cylindrical member 7k is disposed immediately above the closed bottom portion 7o. Therefore, the lubricating oil 11 centrifuged from the compressed refrigerant 13 inside the cylindrical member 7k is discharged outside the cylindrical member 7k through the communication hole 7p without staying inside the cylindrical member 7k.

なお、運用上支障がなければ、円筒部材7kの最も下方に形成された連通孔7pを、閉塞された底部7oから間隔をおいた上方の箇所に配置してもよい。   If there is no problem in operation, the communication hole 7p formed at the lowermost position of the cylindrical member 7k may be disposed at an upper position spaced from the closed bottom portion 7o.

このようにして、円筒部材7kの外側で圧縮冷媒13に発生した遠心力により圧縮冷媒13から分離された潤滑油11や、円筒部材7kの周面7nや連通孔7pの内周縁、あるいは、円筒部材7kの内周面に付着し円筒部材7kの回転による遠心力で円筒部材7kの外側に飛散した潤滑油11は、いずれも油分離室7fの内周壁7hに付着する。   Thus, the lubricating oil 11 separated from the compressed refrigerant 13 by the centrifugal force generated in the compressed refrigerant 13 outside the cylindrical member 7k, the inner peripheral edge of the peripheral surface 7n of the cylindrical member 7k and the communication hole 7p, or the cylinder Any lubricating oil 11 that adheres to the inner peripheral surface of the member 7k and scatters outside the cylindrical member 7k due to the centrifugal force generated by the rotation of the cylindrical member 7k adheres to the inner peripheral wall 7h of the oil separation chamber 7f.

内周壁7hに付着した潤滑油11は、逆流防止片7rと内周壁7hとの隙間を通って自重により内周壁7hの下端に流れ落ち、油分離室7fの底部7iに溜まって連通孔7jから圧縮室7aの油溜まり部7dに滴下される。   The lubricating oil 11 adhering to the inner peripheral wall 7h flows down to the lower end of the inner peripheral wall 7h due to its own weight through the clearance between the backflow preventing piece 7r and the inner peripheral wall 7h, accumulates at the bottom 7i of the oil separation chamber 7f, and is compressed from the communication hole 7j. It is dripped at the oil reservoir 7d of the chamber 7a.

このとき、油分離室7fの底部7iに溜まった潤滑油11の液面は逆流防止片7rによって覆われるので、円筒部材7kの外側で旋回流となり油分離室7fの底部7iに向かった圧縮冷媒13により逆流防止片7rの上方に巻き上げられて、圧縮冷媒13と共に連通孔7pを通って円筒部材7kの外側から内側に流入することが阻止される。   At this time, since the liquid level of the lubricating oil 11 accumulated in the bottom 7i of the oil separation chamber 7f is covered with the backflow prevention piece 7r, it becomes a swirling flow outside the cylindrical member 7k and becomes a compressed refrigerant directed toward the bottom 7i of the oil separation chamber 7f. 13 is prevented from flowing into the inside of the cylindrical member 7k from the outside through the communication hole 7p together with the compressed refrigerant 13 by being wound up above the backflow preventing piece 7r.

このように、本実施形態の気体圧縮機1の油分離器7eでは、圧縮機構3から油分離室7fに流入した圧縮冷媒13が円筒部材7kの外側で螺旋状の旋回流となって遠心力を発生するだけでなく、円筒部材7kを回転させて円筒部材7kにも遠心力を発生させる。このため、圧縮機構3から油分離室7fへの圧縮冷媒13の流入量が少なく、圧縮冷媒13の流速が遅いために円筒部材7kの外側で発生する螺旋状の旋回流による遠心力で圧縮冷媒13から潤滑油11を十分に分離できなくても、円筒部材7kに付着した潤滑油11を円筒部材7kの回転による遠心力で円筒部材7kの外側に飛散させて、圧縮冷媒13から潤滑油11をさらに分離させることができる。   As described above, in the oil separator 7e of the gas compressor 1 of the present embodiment, the compressed refrigerant 13 flowing into the oil separation chamber 7f from the compression mechanism 3 becomes a spiral swirl flow outside the cylindrical member 7k, and the centrifugal force. In addition, the cylindrical member 7k is rotated to generate a centrifugal force on the cylindrical member 7k. For this reason, the amount of the compressed refrigerant 13 flowing from the compression mechanism 3 into the oil separation chamber 7f is small, and the flow rate of the compressed refrigerant 13 is slow, so that the compressed refrigerant is compressed by the centrifugal force generated by the spiral swirling flow generated outside the cylindrical member 7k. Even if the lubricating oil 11 cannot be sufficiently separated from the cylinder 13, the lubricating oil 11 attached to the cylindrical member 7 k is scattered outside the cylindrical member 7 k by the centrifugal force generated by the rotation of the cylindrical member 7 k, and the lubricating oil 11 is compressed from the compressed refrigerant 13. Can be further separated.

よって、圧縮機構3で圧縮した冷媒13から油分離器7eにより潤滑油11を遠心分離するのに当たり、圧縮冷媒13の流速が低くても遠心分離式の油分離器7eにより圧縮冷媒13中の潤滑油11を効率よく分離することができる。   Therefore, when the lubricating oil 11 is centrifuged by the oil separator 7e from the refrigerant 13 compressed by the compression mechanism 3, the centrifugal oil separator 7e lubricates the compressed refrigerant 13 even if the flow rate of the compressed refrigerant 13 is low. The oil 11 can be separated efficiently.

なお、円筒部材7kの周面7nから油分離室7fの内周壁7hに向けて突設した逆流防止片7rは省略してもよい。また、円筒部材7kの周面7nにフィン7qを突設する位置は、連通孔7pの上方でも下方でもよく、連通孔7pと同じ高さの周面7n位置に突設してもよい。   The backflow prevention piece 7r protruding from the peripheral surface 7n of the cylindrical member 7k toward the inner peripheral wall 7h of the oil separation chamber 7f may be omitted. Moreover, the position where the fin 7q protrudes from the peripheral surface 7n of the cylindrical member 7k may be above or below the communication hole 7p, or may protrude from the peripheral surface 7n at the same height as the communication hole 7p.

さらに、円筒部材7kの周面7nの連通孔7pに代えて、図4に示すように、円筒部材7kの底部7oに円筒部材7kの外側と内側とを連通する連通孔7pを複数形成してもよい。この場合は、円筒部材7kの底部7oを油分離室7fの底部7iで回転中心軸Xの周りに回転可能に軸受する代わりに、油分離室7fの上部に段差を形成して円筒部材7kのフランジ部7lを回転中心軸Xの周りに回転可能に軸受する構造としてもよい。   Further, in place of the communication hole 7p on the peripheral surface 7n of the cylindrical member 7k, as shown in FIG. 4, a plurality of communication holes 7p for communicating the outside and the inside of the cylindrical member 7k are formed at the bottom 7o of the cylindrical member 7k. Also good. In this case, instead of bearing the bottom portion 7o of the cylindrical member 7k so as to be rotatable around the rotation center axis X at the bottom portion 7i of the oil separation chamber 7f, a step is formed on the upper portion of the oil separation chamber 7f. It is good also as a structure which bearings the flange part 7l so that rotation around the rotation center axis | shaft X is possible.

また、円筒部材7kの周面7nや底部7oに形成する連通孔7pの開口径を大きくして単数にしてもよいが、図3や図4に示すように、小径の連通孔7pを複数形成する方が、円筒部材7kの連通孔7pを形成する部分の剛性を維持しやすいので有利である。   Moreover, although the opening diameter of the communication hole 7p formed in the peripheral surface 7n and the bottom 7o of the cylindrical member 7k may be increased to be singular, as shown in FIGS. 3 and 4, a plurality of small-diameter communication holes 7p are formed. This is advantageous because it is easy to maintain the rigidity of the portion of the cylindrical member 7k that forms the communication hole 7p.

さらに、以上の実施形態では、シリンダ室3d内でロータ3eを回転させるベーンロータリー式の圧縮機構3を有する気体圧縮機1に本発明を適用した場合を例に取って説明した。しかし、本発明は、例えば、可動スクロールを固定スクロールに対して回転させて気体を圧縮するスクロール方式のコンプレッサ等、回転体を回転させることで気体を吸入して圧縮する回転式の圧縮機構を有する気体圧縮機に広く適用可能である。   Furthermore, in the above embodiment, the case where the present invention is applied to the gas compressor 1 having the vane rotary type compression mechanism 3 that rotates the rotor 3e in the cylinder chamber 3d has been described as an example. However, the present invention has a rotary compression mechanism that sucks and compresses gas by rotating a rotating body, such as a scroll compressor that rotates a movable scroll with respect to a fixed scroll to compress gas. Widely applicable to gas compressors.

また、以上の実施形態では、圧縮機構3を電動モータ5によって回転駆動する電動式の気体圧縮機1を例に取って説明した。しかし、本発明は、例えば、車両に搭載されてエンジンの動力により圧縮機構を回転駆動する電動式以外の気体圧縮機にも広く適用可能である。   Further, in the above embodiment, the electric gas compressor 1 in which the compression mechanism 3 is rotationally driven by the electric motor 5 has been described as an example. However, the present invention can be widely applied to, for example, a gas compressor other than an electric compressor that is mounted on a vehicle and rotationally drives a compression mechanism with the power of an engine.

本発明は、圧縮機構で圧縮した気体から油分離器により油分を遠心分離する気体圧縮機において利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized in the gas compressor which centrifuges an oil component with the oil separator from the gas compressed with the compression mechanism.

1 気体圧縮機
3 圧縮機構
3a,3b サイドブロック
3c シリンダブロック
3d シリンダ室
3e,5b ロータ
5 電動モータ
5a 回転軸
5c ステータ
5d コイル
7 ハウジング
7a 吐出室
7b 吸入室
7c ハウジング開口
7d 液溜まり部
7e 油分離器
7f 油分離室
7g 流入口
7h 油分離室内周壁
7i 油分離室底部
7j 油分離室連通孔
7k 円筒部材
7l フランジ部
7p 円筒部材連通孔
7n 円筒部材周面
7o 円筒部材底部
7q フィン
7r 逆流防止片
9 蓋部
11 潤滑油(油分)
13 圧縮冷媒(圧縮気体)
15 コントローラ
X 回転中心軸(中心軸)
DESCRIPTION OF SYMBOLS 1 Gas compressor 3 Compression mechanism 3a, 3b Side block 3c Cylinder block 3d Cylinder chamber 3e, 5b Rotor 5 Electric motor 5a Rotating shaft 5c Stator 5d Coil 7 Housing 7a Discharge chamber 7b Suction chamber 7c Housing opening 7d Oil separation part 7e 7f Oil separation chamber 7g Inlet 7h Oil separation chamber peripheral wall 7i Oil separation chamber bottom 7j Oil separation chamber communication hole 7k Cylindrical member 7l Flange 7p Cylindrical member communication hole 7n Cylindrical member peripheral surface 7o Cylindrical member bottom 7q Fin 7r Backflow prevention piece 9 Lid 11 Lubricating oil (oil content)
13 Compressed refrigerant (compressed gas)
15 Controller X Center axis of rotation (center axis)

Claims (5)

圧縮機構(3)から導入した圧縮気体(13)に螺旋状の旋回流を発生させて前記圧縮気体(13)内の油分(11)を遠心分離する気体圧縮機(1)において、
前記圧縮気体(13)の旋回流が発生する油分離室(7f)と、
前記旋回流の中心軸(X)の周りに回転可能に前記油分離室(7f)に収容された円筒部材(7k)と、
前記油分離室(7f)に露出する前記円筒部材(7k)の外側と、前記油分(11)を分離した圧縮気体(13)が吐出される吐出室(7a)と連通する前記円筒部材(7k)の内側とを連通する連通孔(7p)と、
前記円筒部材(7k)の周面(7n)から前記油分離室(7f)の内周壁(7h)に向けて突設され、前記旋回流の経路上に延出して該旋回流から前記円筒部材(7k)の回転推進力を得るフィン(7q)と、
を備えることを特徴とする気体圧縮機(1)。
In the gas compressor (1) for generating a spiral swirl flow in the compressed gas (13) introduced from the compression mechanism (3) and centrifuging the oil (11) in the compressed gas (13),
An oil separation chamber (7f) in which a swirling flow of the compressed gas (13) is generated;
A cylindrical member (7k) accommodated in the oil separation chamber (7f) so as to be rotatable around a central axis (X) of the swirling flow;
The cylindrical member (7k) communicating with the outside of the cylindrical member (7k) exposed to the oil separation chamber (7f) and the discharge chamber (7a) into which the compressed gas (13) separated from the oil (11) is discharged. ) Communication hole (7p) communicating with the inside,
Projecting from the peripheral surface (7n) of the cylindrical member (7k) toward the inner peripheral wall (7h) of the oil separation chamber (7f), the cylindrical member extends from the swirling flow to the cylindrical member. A fin (7q) for obtaining a rotational driving force of (7k);
A gas compressor (1) comprising:
前記円筒部材(7k)は底部(7o)が閉塞された有底円筒状に形成されており、前記連通孔(7p)は前記周面(7n)上に形成されており、前記フィン(7q)は前記周面(7n)の前記連通孔(7p)よりも上方に配置されており、前記連通孔(7p)よりも下方の前記周面(7n)から前記内周壁(7h)に向けて該内周壁(7h)よりも一回り小さい外形の逆流防止片(7r)が突設されていることを特徴とする請求項1記載の気体圧縮機(1)。   The cylindrical member (7k) is formed in a bottomed cylindrical shape with a closed bottom (7o), the communication hole (7p) is formed on the peripheral surface (7n), and the fin (7q) Is disposed above the communication hole (7p) of the peripheral surface (7n), and is directed from the peripheral surface (7n) below the communication hole (7p) toward the inner peripheral wall (7h). The gas compressor (1) according to claim 1, wherein a backflow prevention piece (7r) having an outer shape slightly smaller than the inner peripheral wall (7h) is projected. 前記円筒部材(7k)は底部(7o)が閉塞された有底円筒状に形成されており、該底部(7o)が前記油分離室(7f)により前記中心軸(X)の周りに回転可能に軸受されていることを特徴とする請求項1又は2記載の気体圧縮機(1)。   The cylindrical member (7k) is formed in a bottomed cylindrical shape with a closed bottom (7o), and the bottom (7o) can be rotated around the central axis (X) by the oil separation chamber (7f). 3. The gas compressor (1) according to claim 1 or 2, characterized in that the gas compressor (1) is supported by the bearing. 前記円筒部材(7k)は底部(7o)が閉塞された有底円筒状に形成されており、前記連通孔(7p)は前記周面(7n)上の前記底部(7o)の直上箇所に形成されていることを特徴とする請求項1、2又は3記載の気体圧縮機(1)。   The cylindrical member (7k) is formed in a bottomed cylindrical shape with a closed bottom (7o), and the communication hole (7p) is formed on the peripheral surface (7n) immediately above the bottom (7o). The gas compressor (1) according to claim 1, 2 or 3, wherein the gas compressor (1) is provided. 前記連通孔(7p)を複数有しており、該複数の連通孔(7p)の合計流路断面積は、最大流量の前記圧縮気体(13)が通過できるように設定されていることを特徴とする請求項1、2、3又は4記載の気体圧縮機(1)。   A plurality of the communication holes (7p) are provided, and the total flow path cross-sectional area of the plurality of communication holes (7p) is set so that the compressed gas (13) having the maximum flow rate can pass therethrough. The gas compressor (1) according to claim 1, 2, 3 or 4.
JP2015086500A 2015-04-21 2015-04-21 Gas compressor Expired - Fee Related JP6491526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015086500A JP6491526B2 (en) 2015-04-21 2015-04-21 Gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015086500A JP6491526B2 (en) 2015-04-21 2015-04-21 Gas compressor

Publications (2)

Publication Number Publication Date
JP2016205203A true JP2016205203A (en) 2016-12-08
JP6491526B2 JP6491526B2 (en) 2019-03-27

Family

ID=57487467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015086500A Expired - Fee Related JP6491526B2 (en) 2015-04-21 2015-04-21 Gas compressor

Country Status (1)

Country Link
JP (1) JP6491526B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163809A1 (en) * 2016-03-24 2017-09-28 サンデン・オートモーティブコンポーネント株式会社 Oil separator
CN108679889A (en) * 2018-08-17 2018-10-19 珠海格力电器股份有限公司 Refrigeration system and oil separator
WO2020038993A1 (en) * 2018-08-24 2020-02-27 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Compressor module and electric-powered refrigerant compressor
WO2020249556A1 (en) * 2019-06-13 2020-12-17 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Compressor module and electric-motor-driven coolant compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214344A (en) * 2002-01-24 2003-07-30 Seiko Instruments Inc Gas compressor
JP2014020306A (en) * 2012-07-19 2014-02-03 Toyota Industries Corp Compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214344A (en) * 2002-01-24 2003-07-30 Seiko Instruments Inc Gas compressor
JP2014020306A (en) * 2012-07-19 2014-02-03 Toyota Industries Corp Compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163809A1 (en) * 2016-03-24 2017-09-28 サンデン・オートモーティブコンポーネント株式会社 Oil separator
JP2017172895A (en) * 2016-03-24 2017-09-28 サンデン・オートモーティブコンポーネント株式会社 Oil separator
CN108679889A (en) * 2018-08-17 2018-10-19 珠海格力电器股份有限公司 Refrigeration system and oil separator
CN108679889B (en) * 2018-08-17 2023-11-28 珠海格力电器股份有限公司 Refrigerating system and oil separator
WO2020038993A1 (en) * 2018-08-24 2020-02-27 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Compressor module and electric-powered refrigerant compressor
US11739754B2 (en) 2018-08-24 2023-08-29 Brose Fahrzeugtelle SE & Co. Kommanditgesellschaft Compressor module having oil separator and electric-powered refrigerant compressor having the same
WO2020249556A1 (en) * 2019-06-13 2020-12-17 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Compressor module and electric-motor-driven coolant compressor

Also Published As

Publication number Publication date
JP6491526B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP4542161B2 (en) Hermetic electric compressor
WO2011045928A1 (en) Compressor
JP5862693B2 (en) Compressor
JP6491526B2 (en) Gas compressor
JP5080287B2 (en) Compressor motor
JP3242528U (en) rotation mechanism
JP5232595B2 (en) Multistage compressor
US20200003199A1 (en) Compressor
JPWO2018151061A1 (en) Compressor
JP2006342722A (en) Compressor
US11781548B2 (en) Oil separation apparatus and horizontal compressor
JP6479206B2 (en) Rotary compressor
WO2008032514A1 (en) Compressor
JP5709544B2 (en) Compressor
JP2006348928A (en) Compressor
JP2020045778A (en) Compressor
CN109386467B (en) Oil separation device and horizontal compressor
JP2011001835A (en) Screw compressor
WO2004102005A1 (en) Compressor
JP2019082269A (en) Oil separator
JP6440927B2 (en) Hermetic scroll compressor
JP2011001834A (en) Screw compressor
JP2013224626A (en) Compressor
JPS62178790A (en) Scroll compressor
JP6738174B2 (en) Refrigerant compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190301

R150 Certificate of patent or registration of utility model

Ref document number: 6491526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees