WO2017163809A1 - Oil separator - Google Patents

Oil separator Download PDF

Info

Publication number
WO2017163809A1
WO2017163809A1 PCT/JP2017/008387 JP2017008387W WO2017163809A1 WO 2017163809 A1 WO2017163809 A1 WO 2017163809A1 JP 2017008387 W JP2017008387 W JP 2017008387W WO 2017163809 A1 WO2017163809 A1 WO 2017163809A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cylindrical member
inner cylindrical
opening
space
Prior art date
Application number
PCT/JP2017/008387
Other languages
French (fr)
Japanese (ja)
Inventor
泰造 佐藤
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2017163809A1 publication Critical patent/WO2017163809A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Definitions

  • the present invention relates to an oil separator that separates oil-containing gas into oil and gas.
  • An oil separator (oil separator) described in Patent Document 1 is known as an example of this type of oil separator.
  • the oil separator is provided in the scroll compressor and separates the lubricating oil from the refrigerant gas discharged into the discharge chamber.
  • the oil separator has an outer cylinder and an inner cylinder, and the oil separator introduces the refrigerant gas into a hollow portion formed between the outer cylinder and the inner cylinder, and the introduced refrigerant gas By forming a swirling flow, the lubricating oil is separated from the refrigerant gas.
  • the separated lubricating oil flows downward on the inner wall surface of the outer cylinder, and is then dropped and stored in the oil storage chamber. It flows out from the outlet.
  • an object of the present invention is to suppress the separated oil from flowing out in an oil separator configured to separate oil-containing gas into oil and gas using a swirl flow. .
  • the oil separator has a cylindrical inner space having an open upper end, an outer member formed with a gas introduction hole for introducing oil-containing gas into the inner space, and the outer member.
  • An inner cylindrical member disposed in the inner space of the member and forming an annular space between an outer peripheral surface of the member and an inner peripheral surface of the outer member, wherein the oil-containing gas becomes a swirling flow
  • the oil is separated into oil and gas by passing through the space, and the separated oil is guided downward, while the separated gas passes through the inside of the inner cylindrical member and flows upward.
  • the lower end of the inner cylindrical member is closed, and an opening that communicates the inside of the inner cylindrical member with the annular space is formed in a lower region of the peripheral wall of the inner cylindrical member. ing.
  • the swirling flow is weakened by the opening, so that a high-speed swirling flow is prevented from flowing below the lower end of the inner cylindrical member. Further, since the separated gas flows into the inner cylindrical member from the opening, it floats below the lower end of the inner cylindrical member as compared with the case of flowing from the lower end of the inner cylindrical member. It is difficult for oil to flow into the inner cylindrical member. For this reason, according to the said oil separator, compared with the past, it is suppressed that the said separated oil flows out.
  • FIG. 1 is a schematic cross-sectional view of an oil separator according to an embodiment of the present invention.
  • the oil separator 100 introduces an oil-containing gas (for example, a refrigerant containing lubricating oil) and separates the introduced oil-containing gas into an oil (for example, a lubricating oil) and a gas (for example, a refrigerant).
  • the oil separator 100 includes an outer member 110 having a columnar inner space 111 having an upper end opened and a lower end closed, and an inner cylindrical member 120 disposed in the inner space 111 of the outer member 110.
  • the outer member 110 is formed as a bottomed cylindrical member. However, it is not restricted to this, The outer member 110 should just have the cylindrical internal space 111, The shape and magnitude
  • the gas introduction hole 114 is formed so as to introduce the oil-containing gas from the outside along the inner peripheral surface of the outer member 110 (that is, the peripheral edge of the internal space 111).
  • the lower space 112 communicates with an oil supply portion that receives oil supply via an oil supply passage.
  • the inner cylindrical member 120 is disposed in the inner space 111 of the outer member 110.
  • the inner cylindrical member 120 is formed so as to form an annular space 130 between its outer peripheral surface and the inner peripheral surface of the inner space 111 of the outer member 110. More specifically, in the present embodiment, the inner cylindrical member 120 has a large outer diameter portion 121 having a large outer diameter on the upper end side and a small outer diameter portion 122 having an outer diameter smaller than that of the large outer diameter portion 121. is doing.
  • the large outer diameter portion 121 is disposed above the gas introduction hole 114 formed in the outer member 110, and the space between the outer peripheral surface and the inner peripheral surface of the inner space 111 of the outer member 110 is maintained in an airtight state.
  • the small outer diameter portion 122 extends downward from the large outer diameter portion 121, and an annular space 130 is formed between the outer peripheral surface of the small outer diameter portion 122 and the inner peripheral surface of the inner space 111 of the outer member 110. ing. Note that the lower end of the inner cylindrical member 120 (that is, the lower end of the small outer diameter portion 122) is separated from the inner bottom surface of the internal space 111 (that is, the upper surface of the partition wall 113) by a predetermined distance H.
  • the lower end of the inner cylindrical member 120 (the lower end of the small outer diameter portion 122) is closed.
  • the inside of the inner cylindrical member 120 and the annular space 130 communicate with each other in the vicinity of the lower end of the peripheral wall (side wall) of the inner cylindrical member 120 (that is, in the vicinity of the lower end of the peripheral wall (side wall) of the small outer diameter portion 122).
  • the opening area of the first opening 120a and the second opening 120b is not particularly limited as long as it is larger than the opening area of the gas introduction hole 114.
  • the oil-containing gas is introduced into the internal space 111 from the gas introduction hole 114 of the outer member 110.
  • the gas introduction hole 114 is formed so as to introduce the oil-containing gas from the outside along the inner peripheral surface of the outer member 110 (the peripheral edge of the inner space 111).
  • an annular space 130 is formed between the inner peripheral surface of the outer member 110 and the outer peripheral surface of the inner cylindrical member 120 (the small outer diameter portion 122).
  • the oil-containing gas introduced into the internal space 111 through the gas introduction hole 114 passes through the annular space 130 as a downward swirling flow as indicated by a thick solid line arrow in the figure. Then, oil having a specific gravity larger than that of the gas collides with and adheres to the inner peripheral surface of the outer member 110 by centrifugal force (that is, is centrifuged). In this way, the oil-containing gas is separated into oil and gas.
  • the separated oil that is, the oil adhering to the inner peripheral surface of the outer member 110 flows down the inner peripheral surface of the outer member 110 downward as shown by a thin solid arrow in the figure, and the inner space 111 It is temporarily stored in the inner bottom portion, and then guided to the lower space 112 through the through hole 113a and stored in the lower space 112.
  • the oil stored in the lower space 112 is appropriately supplied to the oil supplied portion through the oil supply passage.
  • the separated gas that is, the gas after the oil is centrifuged, is formed in a portion near the lower end of the peripheral wall of the inner cylindrical member 120, as indicated by a broken arrow in the figure.
  • the first opening 120a and the second opening 120b communicating the inside of the inner cylindrical member 120 and the annular space 130 are located near the lower end of the peripheral wall of the inner cylindrical member 120. It is formed at the site.
  • the swirling flow passing through the annular space 130 is weakened by the first opening 120a and the second opening 120b, and high-speed swirling flow is prevented from flowing into the region below the lower end of the inner cylindrical member 120. . Therefore, the oil temporarily stored in the inner bottom portion of the internal space 111 (that is, the oil separated from the oil-containing gas) is hardly wound up. Further, since the lower end of the inner cylindrical member 120 is closed, the separated gas flows into the inner cylinder via the first opening 120a and the second opening 120b formed in the peripheral wall of the inner cylindrical member 120. It flows into the inside of the member 120.
  • the oil separator 100 according to the present embodiment, the outflow of the separated oil is significantly reduced as compared with the conventional case.
  • the first opening 120 a and the second opening 120 b are formed in the vicinity of the lower end of the peripheral wall of the inner cylindrical member 120. However, it is not limited to this.
  • At least one opening that communicates the inside of the inner cylindrical member 120 and the annular space 130 is formed in a lower region of the peripheral wall of the inner cylindrical member 120 (that is, below the intermediate position in the vertical direction). That's fine. Further, as shown in FIG. 3, the inner cylindrical member 120 is located at a position lower than the first opening 120 a and the second opening 120 b toward the inner peripheral surface of the outer member 110 rather than the outer peripheral surface thereof. You may have the overhang
  • the overhanging portion 123 is, for example, the outer diameter of the disc-shaped closing member 124 attached to the lower end in order to close the lower end of the inner cylindrical member 120, and the outer diameter of the inner cylindrical member 120 (the small outer diameter portion 122).
  • the swirling flow is further prevented from flowing into the region below the lower end of the inner cylindrical member 120 by the overhanging portion 123, and the oil that floats below the lower end of the inner cylindrical member 120 and the like Is more difficult to flow into the inner cylindrical member 120, so that the separated oil can be more effectively prevented from flowing out.
  • the distance between the inner peripheral surface of the outer member 110 and the outer peripheral surface of the inner cylindrical member 120 in the vicinity of the first opening 120a and the second opening 120b is larger than that in the vicinity of the gas introduction hole 114. May be. For example, as shown in FIG.
  • the small outer diameter portion 122 of the inner cylindrical member 120 is formed such that the outer diameter of a predetermined range on the lower end side is smaller than the outer diameter on the upper side of the predetermined range. Also good. In this way, the swirling flow is weakened even in the predetermined range, and therefore, it is more effectively prevented that a high-speed swirling flow flows into the region below the lower end of the inner cylindrical member 120.
  • the inner cylindrical member 120 may have an overhanging portion 123 (see FIG. 3). Although illustration is omitted, a taper portion in which the outer diameter gradually decreases downward at a position where the small outer diameter portion 122 of the inner cylindrical member 120 corresponds to the gas introduction hole 114 formed in the outer member 110. You may have.
  • FIG. 5 is a schematic cross-sectional view of a refrigerant compressor (hereinafter simply referred to as “compressor”).
  • compressor The compressor 1 shown in FIG.
  • the compressor 1 is configured as a so-called inverter body type electric compressor, and includes a compressor housing including a front housing 11, a rear housing 12, and an inverter cover 13, an inverter 20, an electric motor 30, a compression mechanism 40, and an oil separator 100. And including.
  • the rear housing 12 is fastened to one end (rear end) of the front housing 11 by fastening means (bolts or the like) not shown, and the inverter cover 13 is fastened to the other end (front end) of the front housing 11 by fastening means not shown.
  • the front housing 11 and the rear housing 12 form a first housing space S1 that houses the electric motor 30 and the compression mechanism 40, and the front housing 11 and the inverter cover 13 form a second housing space S2 that houses the inverter 20.
  • the first housing space S1 and the second housing space S2 are partitioned by a partition wall 11a formed in the front housing 11.
  • the front housing 11 is formed with a suction passage 14 for sucking the refrigerant from the refrigerant circuit (low pressure side) into the first housing space S1.
  • the rear housing 12 is formed with a discharge passage 15 for discharging the refrigerant compressed by the compression mechanism 40 (compressed refrigerant) to the refrigerant circuit (the high pressure side).
  • the discharge passage 15 is formed as a cylindrical space whose upper end is open and whose lower end is closed.
  • the inverter 20 converts a direct current from an external power source such as a vehicle battery into an alternating current and supplies the alternating current to the electric motor 30. When the alternating current is supplied from the inverter 20, the electric motor 30 drives the compression mechanism 40 via the drive shaft 31 and the crank mechanism 50.
  • the compression mechanism 40 is a scroll type compression mechanism, and includes a fixed scroll 41 and a movable scroll 42.
  • a suction chamber C1 communicating with the first accommodation space S1 is formed around the movable scroll 42.
  • a discharge chamber C2 is formed on the back side of the fixed scroll 41 (on the side opposite to the movable scroll 42 side), and a back pressure chamber C3 is formed on the back side of the movable scroll 42 (on the side opposite to the fixed scroll 41 side).
  • the compression mechanism 40 takes in and compresses the refrigerant that is sucked into the first storage space S1 and then mixed with the lubricating oil supplied by a lubricating oil supply means (not shown) and led to the suction chamber C1, and compresses the compressed refrigerant.
  • the movable scroll 42 is pressed against the fixed scroll 41 by the pressure in the back pressure chamber C3.
  • the oil separator 100 introduces the refrigerant discharged into the discharge chamber C2 (that is, the compressed refrigerant), and separates the introduced compressed refrigerant into lubricating oil and refrigerant.
  • the discharge passage 15 corresponds to the above-described cylindrical inner space 111
  • the rear housing 12 having the discharge passage 15 corresponds to the above-described outer member 110. That is, in FIG.
  • the oil separator 100 includes the rear housing 12 having the discharge passage 15 and the inner cylindrical member 120 disposed in the discharge passage 15.
  • the rear housing 12 is formed with a gas introduction hole 114 for introducing the compressed refrigerant (oil-containing gas) into the discharge passage 15 from the discharge chamber C2.
  • the rear housing 12 further has a lower space 112 below the discharge passage 15.
  • the discharge passage 15 and the lower space 112 communicate with each other through a through hole 113a formed in the partition wall 113 therebetween.
  • the lower space 112 communicates with the suction chamber C1 or the back pressure chamber C3 via a lubricating oil supply passage (not shown) in which an orifice is disposed in the middle.
  • Other configurations are the same as those in FIG. Next, the operation of the compressor 1 will be described.
  • the refrigerant (the refrigerant before compression) from the refrigerant circuit (low pressure side) is sucked into the first accommodation space S1 through the suction passage 14.
  • the refrigerant sucked into the first storage space S1 is mixed with the lubricating oil supplied by the lubricating oil supply means and guided to the suction chamber C1.
  • the refrigerant guided to the suction chamber C1 is taken in and compressed in a compression chamber formed between the spiral wrap of the fixed scroll 41 and the spiral wrap of the movable scroll 42, and the compressed refrigerant (compressed refrigerant) is compressed.
  • the ink is discharged into the discharge chamber C ⁇ b> 2 through the discharge hole 43 and the discharge valve 44.
  • the compressed refrigerant discharged into the discharge chamber C ⁇ b> 2 is introduced into the discharge passage 15 (corresponding to the internal space 111) of the oil separator 100 through the gas introduction hole 114.
  • the compressed refrigerant introduced into the discharge passage 15 passes through the annular space 130 as a downward swirling flow, and is separated into lubricating oil and refrigerant at that time.
  • the separated lubricating oil is temporarily stored in the inner bottom portion of the discharge passage 15 and then guided to the lower space 112 through the through hole 113a and stored in the lower space 112.
  • the separated refrigerant flows into the inner cylindrical member 120 from the first opening 120a and the second opening 120b formed in the vicinity of the lower end of the peripheral wall of the inner cylindrical member 120, and It passes through the inside and flows upward, and is then discharged through the upper end (opening end) of the discharge passage 15 to the refrigerant circuit (the high pressure side).
  • Lubricating oil stored in the lower space 112 is supplied to the suction chamber C1 through the lubricating oil supply passage based on the pressure difference between the discharge chamber C2 and the suction chamber C1, or between the discharge chamber C2 and the back pressure chamber C3. Based on the pressure difference, the oil is supplied to the back pressure chamber 3 through the lubricating oil supply passage.
  • the suction chamber C1 or the back pressure chamber C3 corresponds to the oil supplied portion.
  • the scroll type compression mechanism is used as the compression mechanism.
  • the compression mechanism includes a piston type compression mechanism and a vane type compression mechanism. There can be various compression mechanisms. As mentioned above, although embodiment of this invention and its modification were demonstrated, this invention is not limited to the above-mentioned embodiment and modification, Further deformation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

An oil separator (100) including: an outside member (110) having a cylindrical inner space (111); and an inside cylinder member (120) forming an annular space (130) between same and the inner circumferential surface of the outside member (110). The oil separator (100) has a configuration whereby: an oil-containing gas introduced from a gas introduction hole (114) is separated into oil and gas as a result of forming a swirling flow and passing through the annular space (130); the separated oil is guided downwards; and the separated gas passes through the inside of the inside cylinder member (120) and flows out upwards. The lower end of the inside cylinder member (120) is blocked, openings (120a, b) that connect the inside of the inside cylinder member (120) and the annular space (130) are formed in a lower area of the circumferential wall of the inside cylinder member (120), and flowing out of the separated oil is suppressed.

Description

オイルセパレータOil separator
 本発明は、オイル含有ガスをオイルとガスとに分離するオイルセパレータに関する。 The present invention relates to an oil separator that separates oil-containing gas into oil and gas.
 この種のオイルセパレータの一例として特許文献1に記載されたオイルセパレータ(油分離器)が知られている。前記オイルセパレータは、スクロール型圧縮機に設けられ、吐出室に吐出された冷媒ガスから潤滑油を分離する。前記オイルセパレータは、外筒と内筒とを有し、前記オイルセパレータは、前記冷媒ガスを前記外筒と前記内筒との間に形成される中空部に導入し、導入された冷媒ガスが旋回流を形成することによって、前記冷媒ガスから潤滑油を分離するように構成されている。分離された潤滑油は、前記外筒の内壁面を下方に流れ、その後、貯油室に滴下して貯留され、潤滑油が除去されたガスは、前記内筒の下端を経由して上部のガス排出口から流出する。 An oil separator (oil separator) described in Patent Document 1 is known as an example of this type of oil separator. The oil separator is provided in the scroll compressor and separates the lubricating oil from the refrigerant gas discharged into the discharge chamber. The oil separator has an outer cylinder and an inner cylinder, and the oil separator introduces the refrigerant gas into a hollow portion formed between the outer cylinder and the inner cylinder, and the introduced refrigerant gas By forming a swirling flow, the lubricating oil is separated from the refrigerant gas. The separated lubricating oil flows downward on the inner wall surface of the outer cylinder, and is then dropped and stored in the oil storage chamber. It flows out from the outlet.
特開2006−17130号公報JP 2006-17130 A
 しかし、前記オイルセパレータにおいては、例えば冷媒の流量が増加して高速の旋回流が形成された場合に、前記分離された潤滑油、特に、前記貯油室に滴下する前の潤滑油が前記旋回流によって巻き上げられ、その結果、前記潤滑油が除去されたガスと一緒に流出してしまうおそれがあった。
 なお、このような課題は、スクロール型圧縮機に設けられるオイルセパレータに限られるものではなく、旋回流を利用してオイル含有ガスからオイルを分離する、換言すれば、前記オイル含有ガスをオイルとガスとに分離するように構成されたオイルセパレータに共通するものである。
 そこで、本発明は、旋回流を利用してオイル含有ガスをオイルとガスとに分離するように構成されたオイルセパレータにおいて、分離されたオイルが流出してしまうことを抑制することを目的とする。
However, in the oil separator, for example, when the flow rate of the refrigerant is increased and a high-speed swirling flow is formed, the separated lubricating oil, in particular, the lubricating oil before being dropped into the oil storage chamber is swirled. As a result, there is a possibility that the lubricating oil may flow out together with the removed gas.
Such a problem is not limited to the oil separator provided in the scroll compressor, and the oil is separated from the oil-containing gas using a swirling flow. In other words, the oil-containing gas is separated from the oil. This is common to oil separators configured to separate into gas.
Therefore, an object of the present invention is to suppress the separated oil from flowing out in an oil separator configured to separate oil-containing gas into oil and gas using a swirl flow. .
 本発明の一側面によると、オイルセパレータは、上端が開口した円柱状の内部空間を有すると共に、オイル含有ガスを前記内部空間に導入するためのガス導入孔が形成された外側部材と、前記外側部材の前記内部空間に配設され、その外周面と前記外側部材の内周面との間に環状空間を形成する内側円筒部材と、を含み、前記オイル含有ガスが旋回流となって前記環状空間を通過することによってオイルとガスとに分離され、分離されたオイルが下方に導かれる一方、分離されたガスが前記内側円筒部材の内部を通過して上方に流出するように構成されている。前記オイルセパレータにおいては、前記内側円筒部材の下端が閉鎖されていると共に、前記内側円筒部材の前記内部と前記環状空間とを連通する開口部が前記内側円筒部材の周壁の下側領域に形成されている。 According to one aspect of the present invention, the oil separator has a cylindrical inner space having an open upper end, an outer member formed with a gas introduction hole for introducing oil-containing gas into the inner space, and the outer member. An inner cylindrical member disposed in the inner space of the member and forming an annular space between an outer peripheral surface of the member and an inner peripheral surface of the outer member, wherein the oil-containing gas becomes a swirling flow The oil is separated into oil and gas by passing through the space, and the separated oil is guided downward, while the separated gas passes through the inside of the inner cylindrical member and flows upward. . In the oil separator, the lower end of the inner cylindrical member is closed, and an opening that communicates the inside of the inner cylindrical member with the annular space is formed in a lower region of the peripheral wall of the inner cylindrical member. ing.
 前記オイルセパレータにおいては、前記開口部によって前記旋回流が弱まるので、高速の旋回流が前記内側円筒部材の前記下端の下方に流入することが防止される。また、前記分離されたガスは前記開口部から前記内側円筒部材の内部に流入するため、前記内側円筒部材の前記下端から流入する場合に比べて、前記内側円筒部材の前記下端の下方に浮遊等するオイルが前記内側円筒部材の内部に流入し難くなっている。このため、前記オイルセパレータによれば、従来に比べて、前記分離されたオイルが流出してしまうことが抑制される。 In the oil separator, the swirling flow is weakened by the opening, so that a high-speed swirling flow is prevented from flowing below the lower end of the inner cylindrical member. Further, since the separated gas flows into the inner cylindrical member from the opening, it floats below the lower end of the inner cylindrical member as compared with the case of flowing from the lower end of the inner cylindrical member. It is difficult for oil to flow into the inner cylindrical member. For this reason, according to the said oil separator, compared with the past, it is suppressed that the said separated oil flows out.
本発明の一実施形態に係るオイルセパレータの概略断面図である。It is a schematic sectional drawing of the oil separator which concerns on one Embodiment of this invention. 前記オイルセパレータの作用を説明するための図である。It is a figure for demonstrating the effect | action of the said oil separator. 前記オイルセパレータの変形例を示す図である。It is a figure which shows the modification of the said oil separator. 前記オイルセパレータの他の変形例を示す図である。It is a figure which shows the other modification of the said oil separator. 前記オイルセパレータを含む冷媒圧縮機の概略断面図である。It is a schematic sectional drawing of the refrigerant compressor containing the said oil separator.
 以下、添付図面を参照して本発明の実施形態について説明する。図1は、本発明の一実施形態に係るオイルセパレータの概略断面図である。実施形態に係るオイルセパレータ100は、オイル含有ガス(例えば、潤滑油を含む冷媒)を導入し、導入されたオイル含有ガスをオイル(例えば、潤滑油)とガス(例えば、冷媒)とに分離する。オイルセパレタ100は、上端が開口すると共に下端が閉鎖された円柱状の内部空間111を有する外側部材110と、外側部材110の内部空間111に配設された内側円筒部材120と、を含む。なお、本実施形態において、外側部材110は有底の円筒部材として形成されている。しかし、これに限られるものではなく、外側部材110は、円柱状の内部空間111を有していればよく、その形状や大きさは問わない。また、円柱状の内部空間111は、外側部材110に形成された通路などであり得る。
 外側部材110は、円柱状の内部空間111の下方にさらに下部空間112を有している。内部空間111と下部空間112とは、これらの間の隔壁113に形成された貫通孔113aを介して連通している。
 また、外側部材110には、前記オイル含有ガスを内部空間111に導入するためのガス導入孔114が形成されている。ガス導入孔114は、外部からの前記オイル含有ガスを外側部材110の内周面(すなわち、内部空間111の周縁)に沿って導入するように形成されている。なお、図では省略しているが、下部空間112は、オイル供給通路を介して、オイルの供給を受けるオイル被供給部に連通している。
 内側円筒部材120は、外側部材110の内部空間111に配設されている。内側円筒部材120は、その外周面と外側部材110の内部空間111の前記内周面との間に環状空間130を形成するように形成されている。より具体的には、本実施形態において、内側円筒部材120は、上端側の外径が大きい大外径部121と、大外径部121よりも外径が小さい小外径部122とを有している。大外径部121は、外側部材110に形成されたガス導入孔114より上側に配置され、その外周面と外側部材110の内部空間111の前記内周面との間が気密状態に保持されている。小外径部122は、大外径部121から下方に延びており、小外径部122の外周面と外側部材110の内部空間111の前記内周面との間に環状空間130が形成されている。なお、内側円筒部材120の下端(すなわち、小外径部122の下端)は、内部空間111の内底面(すなわち、隔壁113の上面)とは所定距離Hだけ離れている。
 本実施形態において、内側円筒部材120の前記下端(小外径部122の前記下端)は閉鎖されている。また、内側円筒部材120の周壁(側壁)の前記下端近傍の部位(すなわち、小外径部122の周壁(側壁)の前記下端近傍には、内側円筒部材120の内部と環状空間130とを連通する第1開口部120a及び第2開口部120bが形成されている。第1開口部120aと第2開口部120bとは、内側円筒部材120の軸線(=外側部材110の軸線)Xを挟んで対向配置されている。第1開口部120a及び第2開口部120bの開口面積は、ガス導入孔114の開口面積に比べて大きければよく、特に制限されないが、好ましくは、内側円筒部材120の前記内部の断面積以上とされる。
 次に、図2を参照してオイルセパレータ100の作用を説明する。まず、前記オイル含有ガスが外側部材110のガス導入孔114から内部空間111に導入される。上述のように、ガス導入孔114は、外部からの前記オイル含有ガスを外側部材110の前記内周面(内部空間111の前記周縁)に沿って導入するように形成されている。また、内部空間111においては、環状空間130が外側部材110の前記内周面と内側円筒部材120(の小外径部122)の前記外周面との間に形成されている。このため、ガス導入孔114を介して内部空間111に導入されたオイル含有ガスは、図中の太い実線矢印で示されるように、下向きの旋回流となって環状空間130を通過する。すると、ガスよりも比重の大きいオイルが遠心力によって外側部材110の前記内周面に衝突して付着する(すなわち、遠心分離される)。このようにして前記オイル含有ガスがオイルとガスとに分離される。
 分離されたオイル、すなわち、外側部材110の前記内周面に付着したオイルは、図中の細い実線矢印に示されるように、外側部材110の前記内周面を下方に流れ落ちて内部空間111の内底部に一時的に貯留され、その後、貫通孔113aを介して下部空間112に導かれて下部空間112に貯留される。下部空間112に貯留されたオイルは、前記オイル供給通路を介して、適宜、前記オイル被供給部に供給される。
 一方、分離されたガス、すなわち、オイルが遠心分離された後のガスは、図中の破線矢印に示されるように、内側円筒部材120の前記周壁の前記下端近傍の部位に形成された第1開口部120a及び第2開口部120bから内側円筒部材120の内部に流入し、内側円筒部材120の内部を通過して上方に流出する。具体的には、内側円筒部材120の内部に流入したガスは、内側円筒部材120の内部を通過して内側円筒部材120の上端(開口端)から外側部材110の内部空間111に流出し、その後、外側部材110の上端(開口端)から外部に流出する。
 本実施形態に係るオイルセパレータ100では、内側円筒部材120の前記内部と環状空間130とを連通する第1開口部120a及び第2開口部120bが、内側円筒部材120の前記周壁の前記下端近傍の部位に形成されている。このため、環状空間130を通過する旋回流が第1開口部120a及び第2開口部120bによって弱まり、高速の旋回流が内側円筒部材120の前記下端の下方の領域に流入することが防止される。したがって、内部空間111の内底部に一時的に貯留しているオイル(すなわち、前記オイル含有ガスから分離されたオイル)が巻き上げられることはほとんどない。
 また、内側円筒部材120の前記下端は閉鎖されているため、前記分離されたガスは、内側円筒部材120の前記周壁に形成された第1開口部120a及び第2開口部120bを介して内側円筒部材120の内部に流入する。つまり、内側円筒部材120の前記下端が開口している場合に比べて、内側円筒部材120の前記下端の下方に浮遊等しているオイルが内側円筒部材120の内部に流入し難い構造となっている。このため、かりに内部空間111の内底部に一時的に貯留しているオイルが巻き上げられた場合でも、当該巻き上げられたオイルが内側円筒部材120の内部に流入することが抑制される。
 したがって、本実施形態に係るオイルセパレータ100によれば、従来に比べて、前記分離されたオイルの流出が大幅に低減される。
 なお、上述の実施形態においては、第1開口部120a及び第2開口部120bが内側円筒部材120の前記周壁の前記下端近傍の部位に形成されている。しかし、これに限られるものではない。内側円筒部材120の内部と環状空間130とを連通する少なくとも一つの開口部が、内側円筒部材120の前記周壁の下側領域(すなわち、上下方向に中間位置よりも下側)に形成されていればよい。
 また、図3に示されるように、内側円筒部材120は、第1開口部120a及び第2開口部120bよりも下側の位置に、その外周面よりも外側部材110の内周面に向かって張り出すように形成された張出部123を有してもよい。張出部123は、例えば内側円筒部材120の前記下端を閉鎖するために前記下端に取り付けられる円板状の閉鎖部材124の外径を内側円筒部材120(の小外径部122)の外径より大きく、且つ、外側部材110の内径(前記内部空間の径)より小さく形成することによって形成され得る。このようにすると、張出部123によって前記旋回流が内側円筒部材120の前記下端の下方の領域に流入することがさらに防止されると共に、内側円筒部材120の前記下端の下方に浮遊等するオイルが内側円筒部材120の内部にさらに流入し難くなるので、前記分離されたオイルの流出がさらに効果的に防止され得る。
 また、第1開口部120a及び第2開口部120bの近傍における外側部材110の前記内周面と内側円筒部材120の前記外周面との間隔が、ガス導入孔114近傍におけるそれに比べて大きくなっていてもよい。例えば、図4に示されるように、内側円筒部材120の小外径部122は、その下端側の所定範囲の外径が前記所定範囲よりも上側の外径よりも小さくなるように形成されてもよい。このようにすると、前記所定範囲においても前記旋回流が弱まることになるため、高速の旋回流が内側円筒部材120の前記下端の下方の領域に流入することがより効果的に防止される。この場合において、内側円筒部材120が張出部123(図3参照)を有してもよいことはもちろんである。
 なお、図示は省略するが、内側円筒部材120の小外径部122が、外側部材110に形成されたガス導入孔114に対応する位置に、外径が下方に向かって徐々に小さくなるテーパ部を有してもよい。このようにすると、ガス導入孔114から導入されたオイル含有ガスが下向きの旋回流になり易くなり、前記オイル含有ガスが外側部材110の前記内周面に概ね沿うように導入されればよいので、ガス導入孔114の形成が容易である。
 本実施形態に係るオイルセパレータ100又はその変形例は、オイル含有ガスをオイルとガスとに分離する必要のある様々な機器や装置に適用され得る。以下、その一例としてオイルセパレータ100を含む冷媒圧縮機について説明する。
 図5は、冷媒圧縮機(以下、単に「圧縮機」という)の概略断面図である。図5に示される圧縮機1は、例えば車両用空調装置の冷媒回路に組み込まれ、前記冷媒回路(の低圧側)から吸入した冷媒を圧縮して前記冷媒回路(の高圧側)に吐出する。圧縮機1は、いわゆるインバーター体型電動圧縮機として構成され、フロントハウジング11、リアハウジング12及びインバータカバー13からなる圧縮機ハウジングと、インバータ20と、電動モータ30と、圧縮機構40と、オイルセパレータ100と、を含む。
 リアハウジング12は、フロントハウジング11の一端(後端)に図示省略の締結手段(ボルト等)によって締結され、インバータカバー13は、フロントハウジング11の他端(前端)に図示省略の締結手段によって締結されている。フロントハウジング11とリアハウジング12とによって電動モータ30及び圧縮機構40を収容する第1収容空間S1が形成され、フロントハウジング11とインバータカバー13とによってインバータ20を収容する第2収容空間S2が形成されている。第1収容空間S1と第2収容空間S2とは、フロントハウジング11に形成された隔壁11aによって仕切られている。
 フロントハウジング11には、前記冷媒回路(の低圧側)からの冷媒を第1収容空間S1に吸入するための吸入通路14が形成されている。リアハウジング12には、圧縮機構40によって圧縮された冷媒(圧縮後の冷媒)を前記冷媒回路(の高圧側)に吐出するための吐出通路15が形成されている。吐出通路15は、上端が開口すると共に下端が閉鎖された円柱状の空間として形成されている。
 インバータ20は、車両のバッテリー等の外部電源からの直流電流を交流電流に変換して電動モータ30に供給する。電動モータ30は、インバータ20から前記交流電流が供給されると、駆動軸31及びクランク機構50を介して圧縮機構40を駆動する。
 圧縮機構40は、スクロール型圧縮機構であり、固定スクロール41と可動スクロール42とを含む。可動スクロール42の周囲には、第1収容空間S1に連通する吸入室C1が形成されている。また、固定スクロール41の背面側(可動スクロール42側とは反対側)には吐出室C2が形成され、可動スクロール42の背面側(固定スクロール41側と反対側)には背圧室C3が形成されている。
 圧縮機構40は、第1収容空間S1に吸入された後に図示省略の潤滑油供給手段によって供給された潤滑油と混合されて吸入室C1に導かれた冷媒を取り込んで圧縮し、圧縮した冷媒を吐出孔43及び吐出弁44を介して吐出室C2に吐出する。なお、圧縮機構40の動作中、可動スクロール42は、背圧室C3の圧力によって固定スクロール41に対して押圧されている。
 オイルセパレータ100は、吐出室C2に吐出された冷媒(すなわち、圧縮後の冷媒)を導入し、導入された前記圧縮後の冷媒を潤滑油と冷媒とに分離する。ここで、図5に示される圧縮機1においては、吐出通路15が上述の円柱状の内部空間111に相当し、吐出通路15を有するリアハウジング12が上述の外側部材110に相当している。すなわち、図5において、オイルセパレータ100は、吐出通路15を有するリアハウジング12と、吐出通路15に配設された内側円筒部材120と、を含む。リアハウジング12には、吐出室C2から前記圧縮後の冷媒(オイル含有ガス)を吐出通路15に導入するためのガス導入孔114が形成されている。また、リアハウジング12は、吐出通路15の下方にさらに下部空間112を有している。吐出通路15と下部空間112とは、これらの間の隔壁113に形成された貫通孔113aを介して連通している。下部空間112は、その途中にオリフィスが配置された潤滑油供給通路(図示省略)を介して吸入室C1又は背圧室C3に連通している。なお、その他の構成については図1と同様である。
 次に、圧縮機1の作用を説明する。前記冷媒回路(の低圧側)からの冷媒(圧縮前の冷媒)は、吸入通路14を介して第1収容空間S1に吸入される。第1収容空間S1に吸入された冷媒は、前記潤滑油供給手段によって供給された潤滑油と混合されて吸入室C1に導かれる。吸入室C1に導かれた冷媒は、固定スクロール41の渦巻きラップと可動スクロール42の渦巻きラップとの間に形成される圧縮室に取り込まれて圧縮され、圧縮された冷媒(圧縮後の冷媒)が吐出孔43及び吐出弁44を介して吐出室C2に吐出される。
 吐出室C2に吐出された前記圧縮後の冷媒は、ガス導入孔114を介してオイルセパレータ100の吐出通路15(内部空間111に相当する)に導入される。吐出通路15に導入された前記圧縮後の冷媒は、下向きの旋回流となって環状空間130を通過し、その際に潤滑油と冷媒とに分離される。分離された潤滑油は、吐出通路15の内底部に一時的に貯留され、その後、貫通孔113aを介して下部空間112に導かれて下部空間112に貯留される。一方、分離された冷媒は、内側円筒部材120の周壁の下端近傍の部位に形成された第1開口部120a及び第2開口部120bから内側円筒部材120の内部に流入し、内側円筒部材120の内部を通過して上方に流出し、その後、吐出通路15の上端(開口端)を介して前記冷媒回路(の高圧側)に吐出される。
 下部空間112に貯留された潤滑油は、吐出室C2と吸入室C1との圧力差に基づき前記潤滑油供給通路を介して吸入室C1に供給され、又は、吐出室C2と背圧室C3の圧力差に基づき前記潤滑油供給通路を介して背圧室3に供給される。すなわち、ここでは、吸入室C1又は背圧室C3が前記オイル被供給部に相当する。
 本実施形態に係る圧縮機1によれば、従来に比べて、潤滑油の前記冷媒回路への流出が大幅に低減される。このため、前記車両用空調装置などの効率低下が防止される。
 なお、本実施形態に係る圧縮機1においては、圧縮機構としてスクロール型圧縮機構が用いられているが、これに限られるものではなく、圧縮機構は、ピストン型圧縮機構やベーン型圧縮機構を含む各種の圧縮機構であり得る。
 以上、本発明の実施形態及びその変形例について説明したが、本発明は上述の実施形態や変形例に限定されるものではなく、本発明の技術的思想に基づいて更なる変形や変更が可能である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of an oil separator according to an embodiment of the present invention. The oil separator 100 according to the embodiment introduces an oil-containing gas (for example, a refrigerant containing lubricating oil) and separates the introduced oil-containing gas into an oil (for example, a lubricating oil) and a gas (for example, a refrigerant). . The oil separator 100 includes an outer member 110 having a columnar inner space 111 having an upper end opened and a lower end closed, and an inner cylindrical member 120 disposed in the inner space 111 of the outer member 110. In the present embodiment, the outer member 110 is formed as a bottomed cylindrical member. However, it is not restricted to this, The outer member 110 should just have the cylindrical internal space 111, The shape and magnitude | size are not ask | required. Further, the columnar inner space 111 may be a passage formed in the outer member 110 or the like.
The outer member 110 further has a lower space 112 below the cylindrical inner space 111. The internal space 111 and the lower space 112 communicate with each other through a through hole 113a formed in the partition wall 113 therebetween.
The outer member 110 is formed with a gas introduction hole 114 for introducing the oil-containing gas into the internal space 111. The gas introduction hole 114 is formed so as to introduce the oil-containing gas from the outside along the inner peripheral surface of the outer member 110 (that is, the peripheral edge of the internal space 111). Although not shown in the drawing, the lower space 112 communicates with an oil supply portion that receives oil supply via an oil supply passage.
The inner cylindrical member 120 is disposed in the inner space 111 of the outer member 110. The inner cylindrical member 120 is formed so as to form an annular space 130 between its outer peripheral surface and the inner peripheral surface of the inner space 111 of the outer member 110. More specifically, in the present embodiment, the inner cylindrical member 120 has a large outer diameter portion 121 having a large outer diameter on the upper end side and a small outer diameter portion 122 having an outer diameter smaller than that of the large outer diameter portion 121. is doing. The large outer diameter portion 121 is disposed above the gas introduction hole 114 formed in the outer member 110, and the space between the outer peripheral surface and the inner peripheral surface of the inner space 111 of the outer member 110 is maintained in an airtight state. Yes. The small outer diameter portion 122 extends downward from the large outer diameter portion 121, and an annular space 130 is formed between the outer peripheral surface of the small outer diameter portion 122 and the inner peripheral surface of the inner space 111 of the outer member 110. ing. Note that the lower end of the inner cylindrical member 120 (that is, the lower end of the small outer diameter portion 122) is separated from the inner bottom surface of the internal space 111 (that is, the upper surface of the partition wall 113) by a predetermined distance H.
In the present embodiment, the lower end of the inner cylindrical member 120 (the lower end of the small outer diameter portion 122) is closed. In addition, the inside of the inner cylindrical member 120 and the annular space 130 communicate with each other in the vicinity of the lower end of the peripheral wall (side wall) of the inner cylindrical member 120 (that is, in the vicinity of the lower end of the peripheral wall (side wall) of the small outer diameter portion 122). The first opening 120a and the second opening 120b are formed so that the first opening 120a and the second opening 120b sandwich the axis X of the inner cylindrical member 120 (= the axis of the outer member 110). The opening area of the first opening 120a and the second opening 120b is not particularly limited as long as it is larger than the opening area of the gas introduction hole 114. It is greater than the internal cross-sectional area.
Next, the operation of the oil separator 100 will be described with reference to FIG. First, the oil-containing gas is introduced into the internal space 111 from the gas introduction hole 114 of the outer member 110. As described above, the gas introduction hole 114 is formed so as to introduce the oil-containing gas from the outside along the inner peripheral surface of the outer member 110 (the peripheral edge of the inner space 111). In the internal space 111, an annular space 130 is formed between the inner peripheral surface of the outer member 110 and the outer peripheral surface of the inner cylindrical member 120 (the small outer diameter portion 122). For this reason, the oil-containing gas introduced into the internal space 111 through the gas introduction hole 114 passes through the annular space 130 as a downward swirling flow as indicated by a thick solid line arrow in the figure. Then, oil having a specific gravity larger than that of the gas collides with and adheres to the inner peripheral surface of the outer member 110 by centrifugal force (that is, is centrifuged). In this way, the oil-containing gas is separated into oil and gas.
The separated oil, that is, the oil adhering to the inner peripheral surface of the outer member 110 flows down the inner peripheral surface of the outer member 110 downward as shown by a thin solid arrow in the figure, and the inner space 111 It is temporarily stored in the inner bottom portion, and then guided to the lower space 112 through the through hole 113a and stored in the lower space 112. The oil stored in the lower space 112 is appropriately supplied to the oil supplied portion through the oil supply passage.
On the other hand, the separated gas, that is, the gas after the oil is centrifuged, is formed in a portion near the lower end of the peripheral wall of the inner cylindrical member 120, as indicated by a broken arrow in the figure. It flows into the inside of the inner cylindrical member 120 from the opening 120a and the second opening 120b, passes through the inside of the inner cylindrical member 120, and flows out upward. Specifically, the gas flowing into the inner cylindrical member 120 passes through the inner cylindrical member 120 and flows out from the upper end (opening end) of the inner cylindrical member 120 to the inner space 111 of the outer member 110, and then The outer member 110 flows out from the upper end (open end).
In the oil separator 100 according to the present embodiment, the first opening 120a and the second opening 120b communicating the inside of the inner cylindrical member 120 and the annular space 130 are located near the lower end of the peripheral wall of the inner cylindrical member 120. It is formed at the site. For this reason, the swirling flow passing through the annular space 130 is weakened by the first opening 120a and the second opening 120b, and high-speed swirling flow is prevented from flowing into the region below the lower end of the inner cylindrical member 120. . Therefore, the oil temporarily stored in the inner bottom portion of the internal space 111 (that is, the oil separated from the oil-containing gas) is hardly wound up.
Further, since the lower end of the inner cylindrical member 120 is closed, the separated gas flows into the inner cylinder via the first opening 120a and the second opening 120b formed in the peripheral wall of the inner cylindrical member 120. It flows into the inside of the member 120. That is, compared to the case where the lower end of the inner cylindrical member 120 is open, the oil floating below the lower end of the inner cylindrical member 120 is less likely to flow into the inner cylindrical member 120. Yes. For this reason, even when the oil temporarily stored in the inner bottom portion of the internal space 111 is rolled up, the rolled up oil is suppressed from flowing into the inner cylindrical member 120.
Therefore, according to the oil separator 100 according to the present embodiment, the outflow of the separated oil is significantly reduced as compared with the conventional case.
In the above-described embodiment, the first opening 120 a and the second opening 120 b are formed in the vicinity of the lower end of the peripheral wall of the inner cylindrical member 120. However, it is not limited to this. At least one opening that communicates the inside of the inner cylindrical member 120 and the annular space 130 is formed in a lower region of the peripheral wall of the inner cylindrical member 120 (that is, below the intermediate position in the vertical direction). That's fine.
Further, as shown in FIG. 3, the inner cylindrical member 120 is located at a position lower than the first opening 120 a and the second opening 120 b toward the inner peripheral surface of the outer member 110 rather than the outer peripheral surface thereof. You may have the overhang | projection part 123 formed so that it might overhang. The overhanging portion 123 is, for example, the outer diameter of the disc-shaped closing member 124 attached to the lower end in order to close the lower end of the inner cylindrical member 120, and the outer diameter of the inner cylindrical member 120 (the small outer diameter portion 122). It can be formed by being larger and smaller than the inner diameter of the outer member 110 (the diameter of the inner space). In this way, the swirling flow is further prevented from flowing into the region below the lower end of the inner cylindrical member 120 by the overhanging portion 123, and the oil that floats below the lower end of the inner cylindrical member 120 and the like Is more difficult to flow into the inner cylindrical member 120, so that the separated oil can be more effectively prevented from flowing out.
Further, the distance between the inner peripheral surface of the outer member 110 and the outer peripheral surface of the inner cylindrical member 120 in the vicinity of the first opening 120a and the second opening 120b is larger than that in the vicinity of the gas introduction hole 114. May be. For example, as shown in FIG. 4, the small outer diameter portion 122 of the inner cylindrical member 120 is formed such that the outer diameter of a predetermined range on the lower end side is smaller than the outer diameter on the upper side of the predetermined range. Also good. In this way, the swirling flow is weakened even in the predetermined range, and therefore, it is more effectively prevented that a high-speed swirling flow flows into the region below the lower end of the inner cylindrical member 120. In this case, it goes without saying that the inner cylindrical member 120 may have an overhanging portion 123 (see FIG. 3).
Although illustration is omitted, a taper portion in which the outer diameter gradually decreases downward at a position where the small outer diameter portion 122 of the inner cylindrical member 120 corresponds to the gas introduction hole 114 formed in the outer member 110. You may have. In this case, the oil-containing gas introduced from the gas introduction hole 114 is likely to be a downward swirling flow, and the oil-containing gas may be introduced so as to be substantially along the inner peripheral surface of the outer member 110. The gas introduction hole 114 can be easily formed.
The oil separator 100 according to the present embodiment or a modified example thereof can be applied to various devices and apparatuses that need to separate oil-containing gas into oil and gas. Hereinafter, a refrigerant compressor including the oil separator 100 will be described as an example.
FIG. 5 is a schematic cross-sectional view of a refrigerant compressor (hereinafter simply referred to as “compressor”). The compressor 1 shown in FIG. 5 is incorporated in, for example, a refrigerant circuit of a vehicle air conditioner, compresses refrigerant sucked from the refrigerant circuit (low pressure side), and discharges it to the refrigerant circuit (high pressure side). The compressor 1 is configured as a so-called inverter body type electric compressor, and includes a compressor housing including a front housing 11, a rear housing 12, and an inverter cover 13, an inverter 20, an electric motor 30, a compression mechanism 40, and an oil separator 100. And including.
The rear housing 12 is fastened to one end (rear end) of the front housing 11 by fastening means (bolts or the like) not shown, and the inverter cover 13 is fastened to the other end (front end) of the front housing 11 by fastening means not shown. Has been. The front housing 11 and the rear housing 12 form a first housing space S1 that houses the electric motor 30 and the compression mechanism 40, and the front housing 11 and the inverter cover 13 form a second housing space S2 that houses the inverter 20. ing. The first housing space S1 and the second housing space S2 are partitioned by a partition wall 11a formed in the front housing 11.
The front housing 11 is formed with a suction passage 14 for sucking the refrigerant from the refrigerant circuit (low pressure side) into the first housing space S1. The rear housing 12 is formed with a discharge passage 15 for discharging the refrigerant compressed by the compression mechanism 40 (compressed refrigerant) to the refrigerant circuit (the high pressure side). The discharge passage 15 is formed as a cylindrical space whose upper end is open and whose lower end is closed.
The inverter 20 converts a direct current from an external power source such as a vehicle battery into an alternating current and supplies the alternating current to the electric motor 30. When the alternating current is supplied from the inverter 20, the electric motor 30 drives the compression mechanism 40 via the drive shaft 31 and the crank mechanism 50.
The compression mechanism 40 is a scroll type compression mechanism, and includes a fixed scroll 41 and a movable scroll 42. A suction chamber C1 communicating with the first accommodation space S1 is formed around the movable scroll 42. A discharge chamber C2 is formed on the back side of the fixed scroll 41 (on the side opposite to the movable scroll 42 side), and a back pressure chamber C3 is formed on the back side of the movable scroll 42 (on the side opposite to the fixed scroll 41 side). Has been.
The compression mechanism 40 takes in and compresses the refrigerant that is sucked into the first storage space S1 and then mixed with the lubricating oil supplied by a lubricating oil supply means (not shown) and led to the suction chamber C1, and compresses the compressed refrigerant. It discharges to the discharge chamber C2 through the discharge hole 43 and the discharge valve 44. During the operation of the compression mechanism 40, the movable scroll 42 is pressed against the fixed scroll 41 by the pressure in the back pressure chamber C3.
The oil separator 100 introduces the refrigerant discharged into the discharge chamber C2 (that is, the compressed refrigerant), and separates the introduced compressed refrigerant into lubricating oil and refrigerant. Here, in the compressor 1 shown in FIG. 5, the discharge passage 15 corresponds to the above-described cylindrical inner space 111, and the rear housing 12 having the discharge passage 15 corresponds to the above-described outer member 110. That is, in FIG. 5, the oil separator 100 includes the rear housing 12 having the discharge passage 15 and the inner cylindrical member 120 disposed in the discharge passage 15. The rear housing 12 is formed with a gas introduction hole 114 for introducing the compressed refrigerant (oil-containing gas) into the discharge passage 15 from the discharge chamber C2. The rear housing 12 further has a lower space 112 below the discharge passage 15. The discharge passage 15 and the lower space 112 communicate with each other through a through hole 113a formed in the partition wall 113 therebetween. The lower space 112 communicates with the suction chamber C1 or the back pressure chamber C3 via a lubricating oil supply passage (not shown) in which an orifice is disposed in the middle. Other configurations are the same as those in FIG.
Next, the operation of the compressor 1 will be described. The refrigerant (the refrigerant before compression) from the refrigerant circuit (low pressure side) is sucked into the first accommodation space S1 through the suction passage 14. The refrigerant sucked into the first storage space S1 is mixed with the lubricating oil supplied by the lubricating oil supply means and guided to the suction chamber C1. The refrigerant guided to the suction chamber C1 is taken in and compressed in a compression chamber formed between the spiral wrap of the fixed scroll 41 and the spiral wrap of the movable scroll 42, and the compressed refrigerant (compressed refrigerant) is compressed. The ink is discharged into the discharge chamber C <b> 2 through the discharge hole 43 and the discharge valve 44.
The compressed refrigerant discharged into the discharge chamber C <b> 2 is introduced into the discharge passage 15 (corresponding to the internal space 111) of the oil separator 100 through the gas introduction hole 114. The compressed refrigerant introduced into the discharge passage 15 passes through the annular space 130 as a downward swirling flow, and is separated into lubricating oil and refrigerant at that time. The separated lubricating oil is temporarily stored in the inner bottom portion of the discharge passage 15 and then guided to the lower space 112 through the through hole 113a and stored in the lower space 112. On the other hand, the separated refrigerant flows into the inner cylindrical member 120 from the first opening 120a and the second opening 120b formed in the vicinity of the lower end of the peripheral wall of the inner cylindrical member 120, and It passes through the inside and flows upward, and is then discharged through the upper end (opening end) of the discharge passage 15 to the refrigerant circuit (the high pressure side).
Lubricating oil stored in the lower space 112 is supplied to the suction chamber C1 through the lubricating oil supply passage based on the pressure difference between the discharge chamber C2 and the suction chamber C1, or between the discharge chamber C2 and the back pressure chamber C3. Based on the pressure difference, the oil is supplied to the back pressure chamber 3 through the lubricating oil supply passage. That is, here, the suction chamber C1 or the back pressure chamber C3 corresponds to the oil supplied portion.
According to the compressor 1 according to the present embodiment, the outflow of lubricating oil to the refrigerant circuit is significantly reduced as compared with the conventional one. For this reason, the efficiency fall of the said vehicle air conditioner etc. is prevented.
In the compressor 1 according to the present embodiment, the scroll type compression mechanism is used as the compression mechanism. However, the present invention is not limited to this, and the compression mechanism includes a piston type compression mechanism and a vane type compression mechanism. There can be various compression mechanisms.
As mentioned above, although embodiment of this invention and its modification were demonstrated, this invention is not limited to the above-mentioned embodiment and modification, Further deformation | transformation and change are possible based on the technical idea of this invention. It is.
 1…冷媒圧縮機
 14…吸入通路
 15…吐出通路
 40…圧縮機構
 100…オイルセパレータ
 110…外側部材
 111…内部空間
 112…下部空間
 114…ガス導入孔
 120…内側円筒部材
 120a…第1開口部
 120b…第2開口部
 121…大外径部
 122…小外径部
 123…張出部
 130…環状空間
DESCRIPTION OF SYMBOLS 1 ... Refrigerant compressor 14 ... Intake passage 15 ... Discharge passage 40 ... Compression mechanism 100 ... Oil separator 110 ... Outer member 111 ... Inner space 112 ... Lower space 114 ... Gas introduction hole 120 ... Inner cylindrical member 120a ... First opening 120b ... 2nd opening part 121 ... Large outer diameter part 122 ... Small outer diameter part 123 ... Overhang part 130 ... Annular space

Claims (6)

  1.  上端が開口した円柱状の内部空間を有すると共に、オイル含有ガスを前記内部空間に導入するためのガス導入孔が形成された外側部材と、
     前記外側部材の前記内部空間に配設され、その外周面と前記外側部材の内周面との間に環状空間を形成する内側円筒部材と、を含み、
     前記オイル含有ガスが旋回流となって前記環状空間を通過することによってオイルとガスとに分離され、分離されたオイルが下方に導かれる一方、分離されたガスが前記内側円筒部材の内部を通過して上方に流出するように構成されたオイルセパレータであって、
     前記内側円筒部材の下端が閉鎖されていると共に、前記内側円筒部材の前記内部と前記環状空間とを連通する開口部が前記内側円筒部材の周壁の下側領域に形成されている、
     オイルセパレータ。
    An outer member having a cylindrical inner space with an open upper end and a gas introduction hole for introducing oil-containing gas into the inner space;
    An inner cylindrical member that is disposed in the inner space of the outer member and forms an annular space between an outer peripheral surface thereof and an inner peripheral surface of the outer member;
    The oil-containing gas is swirled and passes through the annular space to be separated into oil and gas, and the separated oil is guided downward, while the separated gas passes through the inside of the inner cylindrical member. An oil separator configured to flow upward,
    The lower end of the inner cylindrical member is closed, and an opening that communicates the inside of the inner cylindrical member with the annular space is formed in a lower region of the peripheral wall of the inner cylindrical member.
    Oil separator.
  2.  前記開口部は、前記内側円筒部材の前記周壁の前記下端近傍の部位に形成されている、請求項1に記載のオイルセパレータ。 The oil separator according to claim 1, wherein the opening is formed in a portion near the lower end of the peripheral wall of the inner cylindrical member.
  3.  前記開口部は、前記内側円筒部材の軸線を挟んで対向配置された第1開口部と第2開口部を含む、請求項1又は2に記載のオイルセパレータ。 3. The oil separator according to claim 1, wherein the opening includes a first opening and a second opening that are opposed to each other with an axis of the inner cylindrical member interposed therebetween.
  4.  前記内側円筒部材は、前記外側部材の前記内周面に向かって張り出すと共に前記開口部よりも下側に配置された張出部を有する、請求項1~3のいずれか一つに記載のオイルセパレータ。 The inner cylindrical member according to any one of claims 1 to 3, wherein the inner cylindrical member has a protruding portion that protrudes toward the inner peripheral surface of the outer member and is disposed below the opening. Oil separator.
  5.  前記開口部の近傍における前記外側部材の前記内周面と前記内側円筒部材の前記外周面との間隔が前記ガス導入孔の近傍におけるそれに比べて大きい、請求項1~4のいずれか一つに記載のオイルセパレータ。 The gap between the inner peripheral surface of the outer member and the outer peripheral surface of the inner cylindrical member in the vicinity of the opening is larger than that in the vicinity of the gas introduction hole. The oil separator described.
  6.  冷媒を圧縮する圧縮機構を含む圧縮機に設けられ、
     前記圧縮機構によって圧縮された冷媒からそこに含まれる潤滑油を分離する、
     請求項1~5のいずれか一つに記載のオイルセパレータ。
    Provided in a compressor including a compression mechanism for compressing refrigerant;
    Separating the lubricating oil contained therein from the refrigerant compressed by the compression mechanism;
    The oil separator according to any one of claims 1 to 5.
PCT/JP2017/008387 2016-03-24 2017-02-24 Oil separator WO2017163809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016060597A JP2017172895A (en) 2016-03-24 2016-03-24 Oil separator
JP2016-060597 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017163809A1 true WO2017163809A1 (en) 2017-09-28

Family

ID=59901226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008387 WO2017163809A1 (en) 2016-03-24 2017-02-24 Oil separator

Country Status (2)

Country Link
JP (1) JP2017172895A (en)
WO (1) WO2017163809A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225510A1 (en) * 2018-05-24 2019-11-28 サンデン・オートモーティブコンポーネント株式会社 Oil separation structure and compressor
US11739754B2 (en) * 2018-08-24 2023-08-29 Brose Fahrzeugtelle SE & Co. Kommanditgesellschaft Compressor module having oil separator and electric-powered refrigerant compressor having the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6953213B2 (en) * 2017-07-20 2021-10-27 三菱重工サーマルシステムズ株式会社 Compressor
JP7462403B2 (en) 2019-11-26 2024-04-05 サンデン株式会社 Compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144924U (en) * 1984-03-05 1985-09-26 株式会社 大阪補機製作所 Drain separator for air compression
US7823412B2 (en) * 2006-05-01 2010-11-02 Samsung Electronics Co., Ltd. Hermetic vessel equipped with inserted-type discharge pipe, and oil separator, gas-liquid separator, and air conditioning system using the same
JP2014020306A (en) * 2012-07-19 2014-02-03 Toyota Industries Corp Compressor
JP2016205203A (en) * 2015-04-21 2016-12-08 カルソニックカンセイ株式会社 Gas compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144924U (en) * 1984-03-05 1985-09-26 株式会社 大阪補機製作所 Drain separator for air compression
US7823412B2 (en) * 2006-05-01 2010-11-02 Samsung Electronics Co., Ltd. Hermetic vessel equipped with inserted-type discharge pipe, and oil separator, gas-liquid separator, and air conditioning system using the same
JP2014020306A (en) * 2012-07-19 2014-02-03 Toyota Industries Corp Compressor
JP2016205203A (en) * 2015-04-21 2016-12-08 カルソニックカンセイ株式会社 Gas compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225510A1 (en) * 2018-05-24 2019-11-28 サンデン・オートモーティブコンポーネント株式会社 Oil separation structure and compressor
US11739754B2 (en) * 2018-08-24 2023-08-29 Brose Fahrzeugtelle SE & Co. Kommanditgesellschaft Compressor module having oil separator and electric-powered refrigerant compressor having the same

Also Published As

Publication number Publication date
JP2017172895A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2017163809A1 (en) Oil separator
JP5692177B2 (en) Compressor
US10155188B2 (en) Oil separator, and compressor provided with same
JP4967685B2 (en) Bubble separator
TWI515369B (en) A screw compressor and a chiller unit having the screw compressor
JP5104644B2 (en) Compressor
WO2010050622A1 (en) Scroll compressor with internal oil separator
EP2183042B1 (en) Liquid separator
US9810116B2 (en) Oil separator
WO2010050621A1 (en) Oil separator built-in compressor
JP3453765B2 (en) Hermetic compressor
JP5570917B2 (en) Rotary compressor
WO2018173543A1 (en) Scroll compressor
WO2018185914A1 (en) Screw compressor
JP5874010B2 (en) Rotary compressor
JPH0610852A (en) Scroll compressor
WO2010050623A1 (en) Oil separator built-in compressor
JP5681958B2 (en) Rotary compressor
JPH0315693A (en) Screw compressor
JP2007023985A (en) Hermetic compressor
WO2020148824A1 (en) Compressor and refrigeration cycle device
WO2017163812A1 (en) Refrigerant compressor
WO2013065140A1 (en) Rotary compressor
JP2012072716A (en) Rotary compressor and method for manufacturing the same
KR102036200B1 (en) A compressor having an oil separator

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769854

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769854

Country of ref document: EP

Kind code of ref document: A1