WO2019225510A1 - Oil separation structure and compressor - Google Patents

Oil separation structure and compressor Download PDF

Info

Publication number
WO2019225510A1
WO2019225510A1 PCT/JP2019/019746 JP2019019746W WO2019225510A1 WO 2019225510 A1 WO2019225510 A1 WO 2019225510A1 JP 2019019746 W JP2019019746 W JP 2019019746W WO 2019225510 A1 WO2019225510 A1 WO 2019225510A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
diameter portion
communication path
separation chamber
partition member
Prior art date
Application number
PCT/JP2019/019746
Other languages
French (fr)
Japanese (ja)
Inventor
美早子 冠城
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2019225510A1 publication Critical patent/WO2019225510A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Definitions

  • the present invention relates to an oil separation structure and a compressor.
  • Patent Document 1 discloses a structure for centrifuging oil from a refrigerant, and a partition plate for suppressing oil splashing is provided above an oil reservoir in the container. A notch that communicates in the vertical direction is formed at the periphery of the partition plate, and the oil flows to the oil reservoir through this notch.
  • An object of the present invention is to improve oil separation performance.
  • the oil separation structure is: An internal space extending in the vertical direction, separating the inflowing heat medium and oil, and a separation chamber in which the separated oil flows downward; A partition member in which the separation chamber is partitioned in the vertical direction and a communication passage through which oil passes is formed, and The communication path includes a section extending in the lateral direction.
  • the communication passage through which the oil passes has a section extending in the horizontal direction, so that the heat medium is less likely to pass compared to a simple structure communicating in the vertical direction. Thereby, the oil separation performance is improved.
  • FIG. 1 is a cross-sectional view of the compressor along the front-rear direction and the vertical direction.
  • the compressor 11 is an electric scroll compressor used in a refrigerant circuit of a car air conditioner, for example, and sucks in a refrigerant (heat medium), compresses it, and then discharges it.
  • the compressor 11 is integrated with a front housing 12, a center housing 13, and a rear housing 14 arranged in order from the front side along the front-rear direction so as to maintain airtightness.
  • a suction port (not shown) for sucking refrigerant is formed in the upper portion of the front housing 12, and a discharge port 16 for discharging compressed refrigerant is formed in the upper portion of the rear housing 14.
  • the front housing 12 includes a suction chamber 21 communicating with a suction port (not shown), and an electric motor 22 is accommodated in the suction chamber 21.
  • the rotating shaft 23 of the electric motor 22 is rotatably supported at the front side by the front housing 12 and is rotatably supported by the center housing 13 at the rear side.
  • a fixed scroll 24 and a movable scroll 25 are accommodated in the center housing 13.
  • the disk-shaped fixed scroll 24 is fixed so as to close the rear side of the center housing 13, and a spiral fixed-side wrap 26 is formed on the front surface.
  • the disc-shaped movable scroll 25 is disposed in front of the fixed scroll 24, and a spiral movable side wrap 27 is formed on the rear surface.
  • the front surface of the fixed scroll 24 and the rear surface of the movable scroll 25 face each other, and the fixed side wrap 26 and the movable side wrap 27 are engaged with each other.
  • a pressure chamber 28 for compressing the refrigerant is formed by a section surrounded by the front surface of the fixed scroll 24, the fixed side wrap 26, the rear surface of the movable scroll 25, and the movable side wrap 27. When viewed from the front-rear direction, the pressure chamber 28 is a crescent-shaped sealed space.
  • a back pressure chamber 29 is formed on the front side of the movable scroll 25.
  • the back pressure chamber 29 is supplied with high-pressure oil, which will be described later, so that the movable scroll 25 is pressed against the fixed scroll 24 and the hermeticity of the pressure chamber 28 is enhanced.
  • a boss 31 is formed on the front surface of the movable scroll 25, an eccentric crank end portion 32 is formed at the rear end of the rotating shaft 23, and the crank end portion 32 is fitted in the boss 31 in a rotatable state. Yes.
  • the rotating motion of the rotating shaft 23 is transmitted to the movable scroll 25 as a turning motion by the crank end portion 32.
  • the movable scroll 25 is prevented from rotating, for example, via a ball coupling, and is allowed to revolve with respect to the fixed scroll 24.
  • a discharge hole 33 penetrating in the front-rear direction is formed in the center of the fixed scroll 24, and a discharge valve 34 capable of opening and closing the rear end side of the discharge hole 33 is provided on the rear surface of the fixed scroll 24.
  • the discharge valve 34 is an elastically deformable plate material, and closes the rear end side of the discharge hole 33 on the lower end side with the upper end side fastened to the rear surface of the fixed scroll 24 via the bolt 35.
  • the pressure chamber 28 When the pressure chamber 28 is located at the center of the scroll, the pressure chamber 28 communicates with the discharge hole 33 and discharges the compressed refrigerant.
  • the discharge valve 34 When receiving the discharge pressure, the discharge valve 34 causes the lower end side to bend backward by elastic deformation, thereby discharging the refrigerant.
  • the rear housing 14 includes a separation chamber 42 that separates the refrigerant and the oil, and a storage chamber 43 that stores the separated oil.
  • the upper end of the separation chamber 42 communicates with the discharge port 16.
  • the bottom of the separation chamber 42 communicates with the bottom of the storage chamber 43 through the communication hole 46.
  • an oil return channel 51 that communicates with the bottom surface of the storage chamber 43 is formed.
  • the center housing 13 is formed with an oil return channel 52, one of which communicates with the oil return channel 51 and the other of which communicates with the back pressure chamber 29.
  • the oil stored in the storage chamber 43 receives the pressure from the separation chamber 42 that becomes high pressure, and is supplied to the back pressure chamber 29 through the oil return channel 51 and the oil return channel 52 in this order.
  • a throttle mechanism (not shown) is provided between the storage chamber 43 and the back pressure chamber 29, and the pressure is reduced from high pressure to medium pressure, and oil is supplied to the back pressure chamber 29.
  • a back pressure is applied to the movable scroll 25 to lubricate each sliding portion including the bearing.
  • an oil return channel 53 that extends along the front-rear direction and communicates with the back pressure chamber 29 is formed inside the rotating shaft 23. Therefore, the oil supplied to the back pressure chamber 29 is further supplied to the front end side of the rotating shaft 23 via the oil return channel 53.
  • a throttle mechanism (not shown) is provided inside the rotary shaft 23, and oil whose pressure has been reduced from medium pressure to low pressure is supplied to the front end side of the rotary shaft 23. Thereby, each sliding part including a bearing is lubricated.
  • FIG. 2 is an enlarged cross-sectional view of the separation chamber.
  • the separation chamber 42 is an internal space having an inner peripheral surface 55 that extends in the vertical direction (axial direction) and has a circular cross section along the horizontal direction (axial perpendicular direction).
  • the upper end of the discharge pipe 56 formed in a cylindrical shape is connected to the discharge port 16, and the lower end of the discharge pipe 56 extends to the approximate center in the vertical direction in the separation chamber 42.
  • An arrow indicated by a dotted line represents a refrigerant flow, and a block arrow represents an oil flow.
  • the refrigerant containing oil flows in from the communication hole 44, the refrigerant descends spirally between the inner peripheral surface 55 and the outer peripheral surface 57, and the refrigerant and the oil are separated by centrifugal action when turning in the circumferential direction.
  • the separated refrigerant flows in from the lower end of the discharge pipe 56, it rises in the discharge pipe 56 and is discharged to the outside from the discharge port 16.
  • the separated oil descends along the inner peripheral surface 55 of the separation chamber 42.
  • FIG. 3 is a diagram illustrating a partition member.
  • (A) in the figure is a view of the upper plate member 62 and the lower plate member 63 as viewed from above.
  • (B) in the figure is an A arrow view in a state where the upper plate member 62 and the lower plate member 63 are arranged in the vertical direction.
  • (C) in the figure is a perspective view of a state in which the upper plate member 62 and the lower plate member 63 are arranged in the vertical direction.
  • the upper plate member 62 has a substantially disk shape, and a plurality of upper communication passages 64 are formed at equal intervals along the circumferential direction on the outer circumferential surface on the radially outer side.
  • the three upper communication paths 64 are formed at intervals of about 120 degrees along the circumferential direction.
  • the upper communication path 64 is a notch communicating from the upper surface to the lower surface of the plate member 62, and is formed by denting an area of about 60 degrees along the circumferential direction.
  • the lower plate member 63 has a substantially disk shape, and a plurality of lower communication passages 65 are formed at equal intervals along the circumferential direction on the outer circumferential surface on the radially outer side.
  • the lower communication path 65 is a notch communicating from the upper surface to the lower surface of the plate member 63, and is formed by denting a region of about 60 degrees along the circumferential direction.
  • the lower communication path 65 is disposed so as not to overlap the upper communication path 64 when viewed from the vertical direction.
  • the lower communication path 65 is formed at a position shifted by about 60 degrees with respect to the upper communication path 64.
  • the upper plate member 62 and the lower plate member 63 are used as a common component, and the angular positions of both are relatively shifted by about 60 degrees.
  • the upper plate member 62 and the lower plate member 63 are provided substantially in parallel with a gap d in the vertical direction. Accordingly, the separated oil descends to the bottom of the separation chamber 42 through the upper communication path 64, the gap d, and the lower communication path 65 in this order, and is discharged from the communication hole 46 to the storage chamber 43. That is, the plurality of upper communication passages 64, the gaps d, and the plurality of lower communication passages 65 serve as communication passages 66 for allowing oil to pass, and the gaps d correspond to sections extending in the lateral direction.
  • a separation plate is provided at the bottom of the separation chamber 42 to prevent the separated oil from accumulating and the high-pressure refrigerant is wound up, and a notch for allowing the oil to pass through the partition plate is provided. It is possible. However, there is room for improvement in the oil separation performance because the refrigerant can easily pass by simply forming a simple notch communicating in the vertical direction.
  • a partition member 61 is provided in the separation chamber 42, and a section extending in the lateral direction is provided in the communication path 66 for allowing oil to pass therethrough.
  • an upper plate member 62 and a lower plate member 63 are provided, an upper communication path 64 is formed in the upper plate member 62, and an upper side of the lower plate member 63 is viewed from above and below.
  • a lower communication path 65 is formed at a position that does not overlap with the communication path 64.
  • a gap d is provided between the upper plate member 62 and the lower plate member 63. This gap d is a section extending in the horizontal direction. Thereby, it becomes difficult for a refrigerant to pass compared with the simple structure connected in the up-down direction.
  • the refrigerant descending the separation chamber 42 always collides with the upper surface of the upper plate member 62 or the upper surface of the lower plate member 63. That is, since the upper communication path 64 and the lower communication path 65 are arranged so as not to overlap each other when viewed from the vertical direction, the upper communication path 64 and the lower communication path 65 are not changed without changing the direction of the refrigerant. You cannot pass through both. As shown in FIG. 3C, even if it passes straight through the upper communication path 64, it collides with the upper surface of the lower plate member 63 and is forced to change its direction in the lateral direction. In this way, the oil separation performance can be improved by making it difficult for the refrigerant to pass through.
  • the present invention is not limited to this.
  • One, two, or four or more communication paths may be formed.
  • the upper communication path 64 and the lower communication path 65 are configured by notches formed on the outer circumferential surface of the plate member on the radially outer side, but are not limited thereto. You may comprise a plate member by the through-hole penetrated to an up-down direction.
  • FIG. 4 is an enlarged cross-sectional view of the separation chamber in the second embodiment.
  • a partition member 71 that partitions the interior of the separation chamber 42 in the vertical direction and allows oil to pass therethrough is provided in the separation chamber 42.
  • the partition member 71 is fitted in the separation chamber 42 by press-fitting, for example.
  • FIG. 5 is a view showing a partition member according to the second embodiment.
  • (A) in the figure is the figure which looked at the partition member 71 from upper direction.
  • (B) in the drawing is a cross-sectional view of the partition member 71.
  • (B) in the figure is a perspective view of the partition member 71.
  • the partition member 71 includes a large diameter portion 72 and a small diameter portion 73.
  • the large diameter portion 72 has a substantially cylindrical shape that is short in the axial direction, and is fitted in the separation chamber 42.
  • the small diameter portion 73 has a substantially cylindrical shape that is short in the axial direction, is formed on the upper surface side of the large diameter portion 72, and has an outer diameter smaller than that of the large diameter portion 72.
  • the partition member 71 has a recess 74 that is recessed from the lower surface of the large diameter portion 72 toward the small diameter portion 73.
  • the recess 74 is recessed from the lower surface of the large diameter portion 72 to a position higher than the upper surface of the large diameter portion 72.
  • the partition member 71 has a plurality of through holes 75 penetrating from the outer peripheral surface of the small diameter portion 73 to the recess 74 along the radial direction.
  • the through holes 75 are formed at equal intervals along the circumferential direction.
  • the four through holes 75 are formed at intervals of about 90 degrees along the circumferential direction. Therefore, the separated oil descends to the bottom of the separation chamber 42 through the through hole 75 and the recess 74 in this order, and is discharged from the communication hole 46 to the storage chamber 43. That is, the plurality of through-holes 75 and the concave portions 74 serve as communication passages 76 for allowing the oil to pass therethrough, and the through-holes 75 thereof correspond to sections extending in the lateral direction.
  • a filter 77 for filtering oil is provided on the outlet side of the communication path 76. The filter 77 is fixed in the recess 74.
  • a partition member 71 is provided in the separation chamber 42, and a section extending in the lateral direction is provided in the communication passage 76 for allowing oil to pass therethrough.
  • the partition member 71 is formed of a large diameter portion 72 and a small diameter portion 73, a concave portion 74 that is recessed from the lower surface of the large diameter portion 72 toward the small diameter portion 73, and a radial direction from the outer peripheral surface of the small diameter portion 73.
  • a through-hole 75 penetrating to the concave portion 74.
  • This through hole 75 is a section extending in the lateral direction.
  • the refrigerant descending the separation chamber 42 always collides with the upper surface of the large diameter portion 72. That is, since the through-hole 75 extends in the lateral direction, the refrigerant collides with the upper surface of the large diameter portion 72 and is forced to change direction in the lateral direction. Thus, it becomes difficult for the refrigerant to pass through, so that the oil separation performance can be improved. Further, a filter 77 for filtering oil is provided on the outlet side of the communication path 76. As a result, contamination can be removed, and foreign substances can be prevented from getting stuck in the compressor 11 and flow path clogging can be suppressed.
  • the small-diameter portion 73 is formed on the upper surface side of the large-diameter portion 72.
  • the present invention is not limited to this, and the configuration in which the partition member 71 is turned upside down, that is, the small-diameter portion 73. May be formed on the lower surface side of the large diameter portion 72.
  • FIG. 6 is a view showing a modification in which the partition member of the second embodiment is turned upside down. As described above, the above-described effects can be obtained even when the partition member 71 is turned upside down.
  • four through holes 75 are formed in the partition member 71, but the present invention is not limited to this. You may form the through-hole 75 within three or five or more.
  • the filter 77 is provided on the outlet side of the communication path 76, but the present invention is not limited to this, and the filter 77 may be omitted.
  • FIG. 7 is an enlarged cross-sectional view of the separation chamber in the third embodiment.
  • a partition member 81 that partitions the separation chamber 42 in the vertical direction and allows oil to pass therethrough is provided.
  • the partition member 81 is fitted in the separation chamber 42 by press-fitting, for example.
  • FIG. 8 is a view showing a partition member according to the third embodiment.
  • (A) in the figure is the figure which looked at the partition member 81 from upper direction.
  • (B) in the drawing is a cross-sectional view of the partition member 81.
  • (B) in the figure is a perspective view of the partition member 81.
  • the partition member 81 includes a large diameter portion 82 and a small diameter portion 83.
  • the large-diameter portion 82 has a substantially cylindrical shape that is short in the axial direction, and is fitted in the separation chamber 42.
  • the small-diameter portion 83 has a substantially conical shape that is short in the axial direction, is formed on the upper end side of the large-diameter portion 82, and the outer diameter decreases toward the tip.
  • the partition member 81 has a recess 84 that is recessed from the lower surface of the large diameter portion 82 toward the small diameter portion 83.
  • the recess 84 is recessed from the lower surface of the large diameter portion 82 to a position higher than the upper end of the large diameter portion 82.
  • the partition member 81 is formed with a plurality of through holes 85 penetrating from the outer peripheral surface of the small diameter portion 83 to the concave portion 84 along the radial direction.
  • the through-hole 85 has a slight downward gradient toward the radially inner side.
  • the through holes 85 are formed at equal intervals along the circumferential direction.
  • the four through holes 85 are formed at intervals of about 90 degrees along the circumferential direction. Accordingly, the separated oil descends to the bottom of the separation chamber 42 through the through hole 85 and the recess 84 in this order, and is discharged from the communication hole 46 to the storage chamber 43.
  • the plurality of through-holes 85 and the recesses 84 serve as communication passages 86 for allowing the oil to pass therethrough, and the through-holes 85 correspond to sections extending in the lateral direction.
  • a filter 87 for filtering oil is provided on the outlet side of the communication path 86. The filter 87 is fixed by being fitted into the recess 84.
  • a partition member 81 is provided in the separation chamber 42, and a section extending in the lateral direction is provided in the communication passage 86 for allowing oil to pass therethrough.
  • the partition member 81 is formed of a large diameter portion 82 and a small diameter portion 83, a concave portion 84 that is recessed from the lower surface of the large diameter portion 82 toward the small diameter portion 83, and a radial direction from the outer peripheral surface of the small diameter portion 83.
  • a through hole 85 penetrating to the concave portion 84.
  • This through hole 85 is a section extending in the horizontal direction. Thereby, it becomes difficult for a refrigerant to pass compared with the simple structure connected in the up-down direction.
  • the refrigerant descending the separation chamber 42 always collides with the conical surface of the small diameter portion 83 or the floor portion near the inlet in the through hole 85. That is, since the through-hole 85 extends substantially in the lateral direction, the refrigerant collides with the conical surface of the small-diameter portion 83 or the floor portion near the inlet in the through-hole 85 and is forced to change direction in the substantially lateral direction. Become. Thus, it becomes difficult for the refrigerant to pass through, so that the oil separation performance can be improved. Moreover, since the through-hole 85 has a slight downward slope toward the inner side in the radial direction, the oil can pass smoothly. A filter 87 for filtering oil is provided on the outlet side of the communication path 86. As a result, contamination can be removed, and foreign substances can be prevented from getting stuck in the compressor 11 and flow path clogging can be suppressed.
  • the small-diameter portion 83 is formed on the upper surface side of the large-diameter portion 82.
  • the present invention is not limited to this, and the configuration in which the partition member 81 is turned upside down, that is, the small-diameter portion 83 is used. May be formed on the lower surface side of the large diameter portion 82.
  • FIG. 9 is a view showing a modification in which the partition member of the third embodiment is turned upside down. As described above, the above-described effects can be obtained even with the configuration in which the partition member 81 is turned upside down.
  • four through holes 85 are formed in the partition member 81, but the present invention is not limited to this. You may form the through-hole 85 within three or five or more.
  • the filter 87 is provided on the outlet side of the communication path 86, but the present invention is not limited to this, and the filter 87 may be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

[Problem] To improve oil separation performance. [Solution] An oil separation structure provided with a partition member 61 which partitions the interior of a separation chamber 42 in the vertical direction and in which is formed a connecting passage 66 through which oil passes. The connecting passage 66 is provided with a section extending in the horizontal direction.

Description

オイル分離構造、圧縮機Oil separation structure, compressor
 本発明は、オイル分離構造、圧縮機に関するものである。 The present invention relates to an oil separation structure and a compressor.
 特許文献1では、冷媒からオイルを遠心分離させる構造が開示されており、容器内のオイル溜りの上方には、オイルの跳ね上がりを抑制する仕切板を設けている。仕切板の周縁には、上下方向に連通する切欠部が形成されており、オイルはこの切欠部を通ってオイル溜りへ流れる。 Patent Document 1 discloses a structure for centrifuging oil from a refrigerant, and a partition plate for suppressing oil splashing is provided above an oil reservoir in the container. A notch that communicates in the vertical direction is formed at the periphery of the partition plate, and the oil flows to the oil reservoir through this notch.
特開2015-215148号公報Japanese Patent Laying-Open No. 2015-215148
 仕切板を設けるとしても、上下方向に連通した単純な切欠を形成すると、冷媒も通過しやすいため、オイルの分離性能に改善の余地があった。
 本発明の課題は、オイルの分離性能を向上させることである。
Even if the partition plate is provided, if a simple notch communicating in the vertical direction is formed, the refrigerant easily passes therethrough, so there is room for improvement in oil separation performance.
An object of the present invention is to improve oil separation performance.
 本発明の一態様に係るオイル分離構造は、
 上下方向に延びる内部空間であり、流入した熱媒体とオイルとを分離させ、分離したオイルが下側へ流れる分離室と、
 分離室内を上下方向に仕切り、オイルを通過させる連通路が形成された仕切部材と、を備え、
 連通路は、横方向に延びる区間を備える。
The oil separation structure according to one aspect of the present invention is:
An internal space extending in the vertical direction, separating the inflowing heat medium and oil, and a separation chamber in which the separated oil flows downward;
A partition member in which the separation chamber is partitioned in the vertical direction and a communication passage through which oil passes is formed, and
The communication path includes a section extending in the lateral direction.
 本発明によれば、オイルを通過させる連通路は、横方向に延びる区間を備えるため、上下方向に連通した単純な構造と比較して熱媒体が通過しにくくなる。これにより、オイルの分離性能が向上する。 According to the present invention, the communication passage through which the oil passes has a section extending in the horizontal direction, so that the heat medium is less likely to pass compared to a simple structure communicating in the vertical direction. Thereby, the oil separation performance is improved.
圧縮機における前後方向及び上下方向に沿った断面図である。It is sectional drawing along the front-back direction and the up-down direction in a compressor. 分離室の拡大断面図である。It is an expanded sectional view of a separation chamber. 仕切部材を示す図である。It is a figure which shows a partition member. 第二実施形態における分離室の拡大断面図である。It is an expanded sectional view of the separation chamber in a second embodiment. 第二実施形態の仕切部材を示す図である。It is a figure which shows the partition member of 2nd embodiment. 第二実施形態の仕切部材を上下反転させた変形例を示す図である。It is a figure which shows the modification which turned the partition member of 2nd embodiment upside down. 第三実施形態における分離室の拡大断面図である。It is an expanded sectional view of the separation chamber in a third embodiment. 第三実施形態の仕切部材を示す図である。It is a figure which shows the partition member of 3rd embodiment. 第三実施形態の仕切部材を上下反転させた変形例を示す図である。It is a figure which shows the modification which turned the partition member of 3rd embodiment upside down.
 以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each drawing is schematic and may be different from the actual one. Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the configurations are not specified as follows. That is, the technical idea of the present invention can be variously modified within the technical scope described in the claims.
《第一実施形態》
 《構成》
 以下の説明では、互いに直交する三方向を、便宜的に、前後方向、左右方向、上下方向とする。
 図1は、圧縮機における前後方向及び上下方向に沿った断面図である。
 圧縮機11は、例えばカーエアコンの冷媒回路で用いられる電動型のスクロール圧縮機であり、冷媒(熱媒体)を吸入し、圧縮してから排出する。
<< First embodiment >>
"Constitution"
In the following description, three directions orthogonal to each other are referred to as a front-rear direction, a left-right direction, and a vertical direction for convenience.
FIG. 1 is a cross-sectional view of the compressor along the front-rear direction and the vertical direction.
The compressor 11 is an electric scroll compressor used in a refrigerant circuit of a car air conditioner, for example, and sucks in a refrigerant (heat medium), compresses it, and then discharges it.
 圧縮機11は、前後方向に沿って前側から順に並んだ、フロントハウジング12と、センタハウジング13と、リアハウジング14と、によって気密性を保つように一体化されている。フロントハウジング12の上部には、冷媒を吸入する吸入口(図示省略)が形成され、リアハウジング14の上部には、圧縮された冷媒を排出する排出口16が形成されている。
 フロントハウジング12は、吸入口(図示省略)に連通した吸入室21を備え、この吸入室21に電動モータ22が収容されている。電動モータ22の回転軸23は、前側がフロントハウジング12によって回転自在に支持され、後側がセンタハウジング13によって回転自在に支持されている。
The compressor 11 is integrated with a front housing 12, a center housing 13, and a rear housing 14 arranged in order from the front side along the front-rear direction so as to maintain airtightness. A suction port (not shown) for sucking refrigerant is formed in the upper portion of the front housing 12, and a discharge port 16 for discharging compressed refrigerant is formed in the upper portion of the rear housing 14.
The front housing 12 includes a suction chamber 21 communicating with a suction port (not shown), and an electric motor 22 is accommodated in the suction chamber 21. The rotating shaft 23 of the electric motor 22 is rotatably supported at the front side by the front housing 12 and is rotatably supported by the center housing 13 at the rear side.
 センタハウジング13には、固定スクロール24と、可動スクロール25と、が収容されている。
 円板状の固定スクロール24は、センタハウジング13の後側を閉塞するように固定され、前面に渦巻き状の固定側ラップ26が形成されている。円板状の可動スクロール25は、固定スクロール24よりも前側に配置され、後面に渦巻き状の可動側ラップ27が形成されている。固定スクロール24の前面と可動スクロール25の後面とが対向し、固定側ラップ26と可動側ラップ27とが噛み合っている。固定側ラップ26の先端は、図示しないチップシールを介して可動スクロール25の後面に摺動可能に接触し、可動側ラップ27の先端は、図示しないチップシールを介して固定スクロール24の前面に摺動可能に接触している。固定スクロール24の前面、固定側ラップ26、可動スクロール25の後面、及び可動側ラップ27で囲まれた区画によって、冷媒を圧縮するための圧力室28が形成されている。前後方向から見ると、圧力室28は、三日月状の密閉空間となる。
A fixed scroll 24 and a movable scroll 25 are accommodated in the center housing 13.
The disk-shaped fixed scroll 24 is fixed so as to close the rear side of the center housing 13, and a spiral fixed-side wrap 26 is formed on the front surface. The disc-shaped movable scroll 25 is disposed in front of the fixed scroll 24, and a spiral movable side wrap 27 is formed on the rear surface. The front surface of the fixed scroll 24 and the rear surface of the movable scroll 25 face each other, and the fixed side wrap 26 and the movable side wrap 27 are engaged with each other. The tip of the fixed side wrap 26 slidably contacts the rear surface of the movable scroll 25 via a tip seal (not shown), and the tip of the movable side wrap 27 slides on the front surface of the fixed scroll 24 via a tip seal (not shown). Contact is possible. A pressure chamber 28 for compressing the refrigerant is formed by a section surrounded by the front surface of the fixed scroll 24, the fixed side wrap 26, the rear surface of the movable scroll 25, and the movable side wrap 27. When viewed from the front-rear direction, the pressure chamber 28 is a crescent-shaped sealed space.
 可動スクロール25の前側には、背圧室29が形成されている。背圧室29には、後述する高圧のオイルが供給されることにより、可動スクロール25を固定スクロール24へ押し付け、圧力室28の密閉性を高めている。
 可動スクロール25の前面には、ボス31が形成され、回転軸23の後端には、偏心させたクランク端部32が形成され、クランク端部32がボス31に回転自在の状態で嵌め込まれている。回転軸23の回転運動は、クランク端部32によって旋回運動として可動スクロール25に伝達される。可動スクロール25は、例えばボールカップリングを介して自転が阻止され、且つ固定スクロール24に対する公転が許容されている。
A back pressure chamber 29 is formed on the front side of the movable scroll 25. The back pressure chamber 29 is supplied with high-pressure oil, which will be described later, so that the movable scroll 25 is pressed against the fixed scroll 24 and the hermeticity of the pressure chamber 28 is enhanced.
A boss 31 is formed on the front surface of the movable scroll 25, an eccentric crank end portion 32 is formed at the rear end of the rotating shaft 23, and the crank end portion 32 is fitted in the boss 31 in a rotatable state. Yes. The rotating motion of the rotating shaft 23 is transmitted to the movable scroll 25 as a turning motion by the crank end portion 32. The movable scroll 25 is prevented from rotating, for example, via a ball coupling, and is allowed to revolve with respect to the fixed scroll 24.
 固定スクロール24の中央には、前後方向に貫通した吐出孔33が形成され、固定スクロール24の後面には、吐出孔33の後端側を開閉可能な吐出弁34が設けられている。吐出弁34は、弾性変形可能な板材であり、上端側がボルト35を介して固定スクロール24の後面に締結された状態で、下端側で吐出孔33の後端側を塞いでいる。
 固定スクロール24に対して可動スクロール25が公転すると、圧力室28は、前後方向から見て、スクロール中心に向かって変位してゆき、且つ容積が縮小してゆく。圧力室28は、スクロール外側にあるときに吸入室21と連通して冷媒を吸入し、スクロール中心にあるときに吐出孔33と連通して圧縮した冷媒を吐出する。吐出弁34は、吐出圧を受けるときに、弾性変形によって下端側が後方に撓むことで冷媒を吐出させる。
A discharge hole 33 penetrating in the front-rear direction is formed in the center of the fixed scroll 24, and a discharge valve 34 capable of opening and closing the rear end side of the discharge hole 33 is provided on the rear surface of the fixed scroll 24. The discharge valve 34 is an elastically deformable plate material, and closes the rear end side of the discharge hole 33 on the lower end side with the upper end side fastened to the rear surface of the fixed scroll 24 via the bolt 35.
When the movable scroll 25 revolves with respect to the fixed scroll 24, the pressure chamber 28 is displaced toward the scroll center as seen from the front-rear direction, and the volume is reduced. The pressure chamber 28 communicates with the suction chamber 21 when it is outside the scroll, and sucks the refrigerant. When the pressure chamber 28 is located at the center of the scroll, the pressure chamber 28 communicates with the discharge hole 33 and discharges the compressed refrigerant. When receiving the discharge pressure, the discharge valve 34 causes the lower end side to bend backward by elastic deformation, thereby discharging the refrigerant.
 次に、オイル分離構造について説明する。
 リアハウジング14は、冷媒とオイルとを分離させる分離室42と、分離したオイルを貯留する貯留室43と、を備える。
 分離室42の上端は、排出口16に連通している。分離室42の底部は、連通孔46を介して貯留室43の底部に連通している。
 リアハウジング14には、貯留室43の底面に連通するオイル戻し流路51が形成されている。センタハウジング13には、一方がオイル戻し流路51に連通し、他方が背圧室29に連通するオイル戻し流路52が形成されている。したがって、貯留室43に貯留されたオイルは、高圧となる分離室42からの圧力を受けて、オイル戻し流路51、オイル戻し流路52を順に経て背圧室29に供給される。なお、貯留室43から背圧室29の経路の間に絞り機構(図示省略)があり、高圧から中圧に減圧されて背圧室29にオイルが供給される。これにより、可動スクロール25に背圧を与え、軸受を含む各摺動部の潤滑が行なわれる。また、回転軸23の内方には、前後方向に沿って延び背圧室29に連通するオイル戻し流路53が形成されている。したがって、背圧室29に供給されたオイルは、さらにオイル戻し流路53を経て、回転軸23の前端側へ供給される。なお、回転軸23の内部には絞り機構(図示省略)があり、中圧から低圧に減圧されたオイルが回転軸23の前端側へ供給される。これにより、軸受を含む各摺動部の潤滑が行なわれる。
Next, the oil separation structure will be described.
The rear housing 14 includes a separation chamber 42 that separates the refrigerant and the oil, and a storage chamber 43 that stores the separated oil.
The upper end of the separation chamber 42 communicates with the discharge port 16. The bottom of the separation chamber 42 communicates with the bottom of the storage chamber 43 through the communication hole 46.
In the rear housing 14, an oil return channel 51 that communicates with the bottom surface of the storage chamber 43 is formed. The center housing 13 is formed with an oil return channel 52, one of which communicates with the oil return channel 51 and the other of which communicates with the back pressure chamber 29. Therefore, the oil stored in the storage chamber 43 receives the pressure from the separation chamber 42 that becomes high pressure, and is supplied to the back pressure chamber 29 through the oil return channel 51 and the oil return channel 52 in this order. A throttle mechanism (not shown) is provided between the storage chamber 43 and the back pressure chamber 29, and the pressure is reduced from high pressure to medium pressure, and oil is supplied to the back pressure chamber 29. As a result, a back pressure is applied to the movable scroll 25 to lubricate each sliding portion including the bearing. In addition, an oil return channel 53 that extends along the front-rear direction and communicates with the back pressure chamber 29 is formed inside the rotating shaft 23. Therefore, the oil supplied to the back pressure chamber 29 is further supplied to the front end side of the rotating shaft 23 via the oil return channel 53. In addition, a throttle mechanism (not shown) is provided inside the rotary shaft 23, and oil whose pressure has been reduced from medium pressure to low pressure is supplied to the front end side of the rotary shaft 23. Thereby, each sliding part including a bearing is lubricated.
 図2は、分離室の拡大断面図である。
 分離室42は、上下方向(軸方向)に延び、横方向(軸直角方向)に沿った断面が円形となる内周面55を有する内部空間である。分離室42では、筒状に形成された排出配管56の上端が排出口16に接続され、排出配管56の下端が分離室42における上下方向の略中央まで延びている。点線で示す矢印は冷媒の流れを表し、ブロック矢印はオイルの流れを表している。オイルを含む冷媒は、連通孔44から流入すると、内周面55と外周面57との間を螺旋状に下降してゆき、周方向に旋回するときの遠心作用によって冷媒とオイルとが分離される。分離された冷媒は、排出配管56の下端から流入すると、排出配管56内を上昇してゆき、排出口16から外部へ排出される。分離されたオイルは、分離室42の内周面55を伝って下降してゆく。
FIG. 2 is an enlarged cross-sectional view of the separation chamber.
The separation chamber 42 is an internal space having an inner peripheral surface 55 that extends in the vertical direction (axial direction) and has a circular cross section along the horizontal direction (axial perpendicular direction). In the separation chamber 42, the upper end of the discharge pipe 56 formed in a cylindrical shape is connected to the discharge port 16, and the lower end of the discharge pipe 56 extends to the approximate center in the vertical direction in the separation chamber 42. An arrow indicated by a dotted line represents a refrigerant flow, and a block arrow represents an oil flow. When the refrigerant containing oil flows in from the communication hole 44, the refrigerant descends spirally between the inner peripheral surface 55 and the outer peripheral surface 57, and the refrigerant and the oil are separated by centrifugal action when turning in the circumferential direction. The When the separated refrigerant flows in from the lower end of the discharge pipe 56, it rises in the discharge pipe 56 and is discharged to the outside from the discharge port 16. The separated oil descends along the inner peripheral surface 55 of the separation chamber 42.
 分離室42内には、分離室42内を上下方向に仕切り、且つオイルを通過させる仕切部材61が設けられている。
 仕切部材61は、分離室42内に嵌め合わされており、面方向を横方向にした状態で上下方向に並んだ上側の板部材62、及び下側の板部材63を備える。上側の板部材62、及び下側の板部材63は、夫々、例えば圧入によって分離室42内に嵌め合わされている。
 図3は、仕切部材を示す図である。
 図中の(a)は、上側の板部材62及び下側の板部材63を、夫々、上方から見た図である。図中の(b)は、上側の板部材62及び下側の板部材63を上下方向に並べた状態のA矢視である。図中の(c)は上側の板部材62及び下側の板部材63を上下方向に並べた状態の斜視図である。
A partition member 61 that partitions the interior of the separation chamber 42 in the vertical direction and allows oil to pass therethrough is provided in the separation chamber 42.
The partition member 61 is fitted in the separation chamber 42 and includes an upper plate member 62 and a lower plate member 63 that are arranged in the vertical direction with the surface direction set to the horizontal direction. The upper plate member 62 and the lower plate member 63 are fitted into the separation chamber 42 by, for example, press-fitting.
FIG. 3 is a diagram illustrating a partition member.
(A) in the figure is a view of the upper plate member 62 and the lower plate member 63 as viewed from above. (B) in the figure is an A arrow view in a state where the upper plate member 62 and the lower plate member 63 are arranged in the vertical direction. (C) in the figure is a perspective view of a state in which the upper plate member 62 and the lower plate member 63 are arranged in the vertical direction.
 上側の板部材62は、略円板状であり、径方向外側の外周面には、複数の上側連通路64が周方向に沿って等間隔に形成されている。ここでは、三つの上側連通路64が周方向に沿って約120度の間隔で形成されている。上側連通路64は、板部材62の上面から下面まで連通した切欠であり、一つあたり周方向に沿った約60度分の領域を凹ませて形成されている。
 下側の板部材63は、略円板状であり、径方向外側の外周面には、複数の下側連通路65が周方向に沿って等間隔に形成されている。ここでは、三つの下側連通路65が周方向に沿って約120度の間隔で形成されている。下側連通路65は、板部材63の上面から下面まで連通した切欠であり、一つあたり周方向に沿った約60度分の領域を凹ませて形成されている。
The upper plate member 62 has a substantially disk shape, and a plurality of upper communication passages 64 are formed at equal intervals along the circumferential direction on the outer circumferential surface on the radially outer side. Here, the three upper communication paths 64 are formed at intervals of about 120 degrees along the circumferential direction. The upper communication path 64 is a notch communicating from the upper surface to the lower surface of the plate member 62, and is formed by denting an area of about 60 degrees along the circumferential direction.
The lower plate member 63 has a substantially disk shape, and a plurality of lower communication passages 65 are formed at equal intervals along the circumferential direction on the outer circumferential surface on the radially outer side. Here, three lower communication passages 65 are formed at intervals of about 120 degrees along the circumferential direction. The lower communication path 65 is a notch communicating from the upper surface to the lower surface of the plate member 63, and is formed by denting a region of about 60 degrees along the circumferential direction.
 下側連通路65は、上下方向から見て、上側連通路64と重ならないように配置されている。ここでは、上側連通路64に対して下側連通路65が約60度ずれた位置に形成されている。具体的には、上側の板部材62と下側の板部材63とを共通の部品とし、双方の周方向の角度位置を相対的に約60度ずらすことで実現される。
 上側の板部材62と下側の板部材63とは、上下方向の隙間dを空けて略平行に設けられている。
 したがって、分離されたオイルは、上側連通路64、隙間d、下側連通路65を順に介して、分離室42の底部へ下降し、連通孔46から貯留室43へ排出される。すなわち、複数の上側連通路64、隙間d、及び複数の下側連通路65が、オイルを通過させるための連通路66となり、そのうちの隙間dが横方向に延びる区間に相当する。
The lower communication path 65 is disposed so as not to overlap the upper communication path 64 when viewed from the vertical direction. Here, the lower communication path 65 is formed at a position shifted by about 60 degrees with respect to the upper communication path 64. Specifically, the upper plate member 62 and the lower plate member 63 are used as a common component, and the angular positions of both are relatively shifted by about 60 degrees.
The upper plate member 62 and the lower plate member 63 are provided substantially in parallel with a gap d in the vertical direction.
Accordingly, the separated oil descends to the bottom of the separation chamber 42 through the upper communication path 64, the gap d, and the lower communication path 65 in this order, and is discharged from the communication hole 46 to the storage chamber 43. That is, the plurality of upper communication passages 64, the gaps d, and the plurality of lower communication passages 65 serve as communication passages 66 for allowing oil to pass, and the gaps d correspond to sections extending in the lateral direction.
 《作用》
 次に、第一実施形態の主要な作用効果について説明する。
 分離室42の底部には、分離されたオイルが溜まりやすく、これを高圧の冷媒が巻き上げてしまうことを抑制するために、仕切板を設け、この仕切板にオイルを通過させるための切欠を設けることが考えられる。しかしながら、上下方向に連通した単純な切欠を形成するだけでは、冷媒も通過しやすいため、オイルの分離性能に改善の余地があった。
<Action>
Next, main functions and effects of the first embodiment will be described.
A separation plate is provided at the bottom of the separation chamber 42 to prevent the separated oil from accumulating and the high-pressure refrigerant is wound up, and a notch for allowing the oil to pass through the partition plate is provided. It is possible. However, there is room for improvement in the oil separation performance because the refrigerant can easily pass by simply forming a simple notch communicating in the vertical direction.
 そこで本実施形態では、分離室42内に仕切部材61を設け、オイルを通過させるための連通路66に、横方向に延びる区間を設けている。具体的には、上側の板部材62と下側の板部材63とを設け、上側の板部材62には上側連通路64を形成し、下側の板部材63には上下方向から見て上側連通路64と重ならない位置に下側連通路65を形成している。そして、上側の板部材62と下側の板部材63との間に隙間dを設けている。この隙間dが横方向に延びる区間となる。これにより、上下方向に連通した単純な構造と比較して冷媒が通過しにくくなる。 Therefore, in this embodiment, a partition member 61 is provided in the separation chamber 42, and a section extending in the lateral direction is provided in the communication path 66 for allowing oil to pass therethrough. Specifically, an upper plate member 62 and a lower plate member 63 are provided, an upper communication path 64 is formed in the upper plate member 62, and an upper side of the lower plate member 63 is viewed from above and below. A lower communication path 65 is formed at a position that does not overlap with the communication path 64. A gap d is provided between the upper plate member 62 and the lower plate member 63. This gap d is a section extending in the horizontal direction. Thereby, it becomes difficult for a refrigerant to pass compared with the simple structure connected in the up-down direction.
 これは、分離室42を下降する冷媒が、上側の板部材62の上面、又は下側の板部材63の上面に、必ず衝突するためである。すなわち、上側連通路64と下側連通路65とは、上下方向から見て互いに重ならないように配置されているため、冷媒が向きを変えることなく、上側連通路64と下側連通路65との双方を素通りすることはできない。図3の(c)に示すように、上側連通路64を真っ直ぐ通過しても、下側の板部材63の上面に衝突し、横方向への方向転換が強いられることになる。このように、冷媒が通過しにくくなることで、オイルの分離性能を向上させることができる。 This is because the refrigerant descending the separation chamber 42 always collides with the upper surface of the upper plate member 62 or the upper surface of the lower plate member 63. That is, since the upper communication path 64 and the lower communication path 65 are arranged so as not to overlap each other when viewed from the vertical direction, the upper communication path 64 and the lower communication path 65 are not changed without changing the direction of the refrigerant. You cannot pass through both. As shown in FIG. 3C, even if it passes straight through the upper communication path 64, it collides with the upper surface of the lower plate member 63 and is forced to change its direction in the lateral direction. In this way, the oil separation performance can be improved by making it difficult for the refrigerant to pass through.
 《変形例》
 第一実施形態では、仕切部材61を構成する板部材62、63に対して、夫々、三つの連通路を形成しているが、これに限定されるものではない。一つか二つ、又は四つ以上の連通路を形成してもよい。
 第一実施形態では、上側連通路64、下側連通路65は、板部材における径方向外側の外周面に形成された切欠で構成されているが、これに限定されるものではない。板部材を上下方向に貫通する貫通孔で構成してもよい。
<Modification>
In the first embodiment, three communication paths are formed for the plate members 62 and 63 constituting the partition member 61, respectively, but the present invention is not limited to this. One, two, or four or more communication paths may be formed.
In the first embodiment, the upper communication path 64 and the lower communication path 65 are configured by notches formed on the outer circumferential surface of the plate member on the radially outer side, but are not limited thereto. You may comprise a plate member by the through-hole penetrated to an up-down direction.
《第二実施形態》
 《構成》
 第二実施形態は、仕切部材の他の構成を示すものである。
 前述した第一実施形態と共通する部分については、詳細な説明を省略する。
 図4は、第二実施形態における分離室の拡大断面図である。
 分離室42内には、分離室42内を上下方向に仕切り、且つオイルを通過させる仕切部材71が設けられている。仕切部材71は、例えば圧入によって分離室42内に嵌め合わされている。
<< Second Embodiment >>
"Constitution"
The second embodiment shows another configuration of the partition member.
Detailed description of portions common to the above-described first embodiment will be omitted.
FIG. 4 is an enlarged cross-sectional view of the separation chamber in the second embodiment.
A partition member 71 that partitions the interior of the separation chamber 42 in the vertical direction and allows oil to pass therethrough is provided in the separation chamber 42. The partition member 71 is fitted in the separation chamber 42 by press-fitting, for example.
 図5は、第二実施形態の仕切部材を示す図である。
 図中の(a)は、仕切部材71を上方から見た図である。図中の(b)は、仕切部材71の断面図である。図中の(b)は、仕切部材71の斜視図である。
 仕切部材71は、大径部72と、小径部73と、を備える。
 大径部72は、軸方向に短い略円柱状であり、分離室42内に嵌め合わされる。
 小径部73は、軸方向に短い略円柱状であり、大径部72の上面側に形成され、大径部72よりも外径が小さい。
 仕切部材71は、大径部72の下面から小径部73に向かって凹んだ凹部74が形成されている。凹部74は、大径部72の下面から大径部72の上面よりも高い位置まで凹んでいる。
FIG. 5 is a view showing a partition member according to the second embodiment.
(A) in the figure is the figure which looked at the partition member 71 from upper direction. (B) in the drawing is a cross-sectional view of the partition member 71. (B) in the figure is a perspective view of the partition member 71.
The partition member 71 includes a large diameter portion 72 and a small diameter portion 73.
The large diameter portion 72 has a substantially cylindrical shape that is short in the axial direction, and is fitted in the separation chamber 42.
The small diameter portion 73 has a substantially cylindrical shape that is short in the axial direction, is formed on the upper surface side of the large diameter portion 72, and has an outer diameter smaller than that of the large diameter portion 72.
The partition member 71 has a recess 74 that is recessed from the lower surface of the large diameter portion 72 toward the small diameter portion 73. The recess 74 is recessed from the lower surface of the large diameter portion 72 to a position higher than the upper surface of the large diameter portion 72.
 仕切部材71は、小径部73の外周面から径方向に沿って凹部74まで貫通した複数の貫通孔75が形成されている。貫通孔75は、周方向に沿って等間隔に形成されており、ここでは四つの貫通孔75が周方向に沿って約90度の間隔で形成されている。
 したがって、分離されたオイルは、貫通孔75、凹部74を順に介して、分離室42の底部へ下降し、連通孔46から貯留室43へ排出される。すなわち、複数の貫通孔75、及び凹部74が、オイルを通過させるための連通路76となり、そのうちの貫通孔75が横方向に延びる区間に相当する。
 連通路76の出口側には、オイルを濾過するフィルタ77が設けられている。フィルタ77は、凹部74に嵌め込まれて固定されている。
The partition member 71 has a plurality of through holes 75 penetrating from the outer peripheral surface of the small diameter portion 73 to the recess 74 along the radial direction. The through holes 75 are formed at equal intervals along the circumferential direction. Here, the four through holes 75 are formed at intervals of about 90 degrees along the circumferential direction.
Therefore, the separated oil descends to the bottom of the separation chamber 42 through the through hole 75 and the recess 74 in this order, and is discharged from the communication hole 46 to the storage chamber 43. That is, the plurality of through-holes 75 and the concave portions 74 serve as communication passages 76 for allowing the oil to pass therethrough, and the through-holes 75 thereof correspond to sections extending in the lateral direction.
A filter 77 for filtering oil is provided on the outlet side of the communication path 76. The filter 77 is fixed in the recess 74.
 《作用》
 次に、第二実施形態の主要な作用効果について説明する。
 本実施形態では、分離室42内に仕切部材71を設け、オイルを通過させるための連通路76に、横方向に延びる区間を設けている。具体的には、仕切部材71を大径部72と小径部73とで形成し、大径部72の下面から小径部73に向かって凹んだ凹部74と、小径部73の外周面から径方向に沿って凹部74まで貫通した貫通孔75と、を形成している。この貫通孔75が横方向に延びる区間となる。これにより、上下方向に連通した単純な構造と比較して冷媒が通過しにくくなる。
<Action>
Next, main effects of the second embodiment will be described.
In the present embodiment, a partition member 71 is provided in the separation chamber 42, and a section extending in the lateral direction is provided in the communication passage 76 for allowing oil to pass therethrough. Specifically, the partition member 71 is formed of a large diameter portion 72 and a small diameter portion 73, a concave portion 74 that is recessed from the lower surface of the large diameter portion 72 toward the small diameter portion 73, and a radial direction from the outer peripheral surface of the small diameter portion 73. And a through-hole 75 penetrating to the concave portion 74. This through hole 75 is a section extending in the lateral direction. Thereby, it becomes difficult for a refrigerant to pass compared with the simple structure connected in the up-down direction.
 これは、分離室42を下降する冷媒が、大径部72の上面に、必ず衝突するためである。すなわち、貫通孔75は横方向に延びているため、冷媒は大径部72の上面に衝突し、横方向への方向転換が強いられることになる。このように、冷媒が通過しにくくなることで、オイルの分離性能を向上させることができる。
 また、連通路76の出口側には、オイルを濾過するフィルタ77が設けられている。これにより、コンタミを除去し、圧縮機11に異物が噛み込むことや流路詰まりを抑制することができる。
This is because the refrigerant descending the separation chamber 42 always collides with the upper surface of the large diameter portion 72. That is, since the through-hole 75 extends in the lateral direction, the refrigerant collides with the upper surface of the large diameter portion 72 and is forced to change direction in the lateral direction. Thus, it becomes difficult for the refrigerant to pass through, so that the oil separation performance can be improved.
Further, a filter 77 for filtering oil is provided on the outlet side of the communication path 76. As a result, contamination can be removed, and foreign substances can be prevented from getting stuck in the compressor 11 and flow path clogging can be suppressed.
 《変形例》
 第二実施形態では、小径部73が大径部72の上面側に形成されている構成としたが、これに限定されるものではなく、仕切部材71を上下反転させた構成、つまり小径部73が大径部72の下面側に形成された構成としてもよい。
 図6は、第二実施形態の仕切部材を上下反転させた変形例を示す図である。
 このように、仕切部材71を上下反転させた構成でも、前述した作用効果を得ることができる。
 第二実施形態では、仕切部材71に対して、四つの貫通孔75を形成しているが、これに限定されるものではない。三つ以内、又は五つ以上の貫通孔75を形成してもよい。
 第二実施形態では、連通路76の出口側にフィルタ77を設けているが、これに限定されるものではなく、フィルタ77を省略してもよい。
<Modification>
In the second embodiment, the small-diameter portion 73 is formed on the upper surface side of the large-diameter portion 72. However, the present invention is not limited to this, and the configuration in which the partition member 71 is turned upside down, that is, the small-diameter portion 73. May be formed on the lower surface side of the large diameter portion 72.
FIG. 6 is a view showing a modification in which the partition member of the second embodiment is turned upside down.
As described above, the above-described effects can be obtained even when the partition member 71 is turned upside down.
In the second embodiment, four through holes 75 are formed in the partition member 71, but the present invention is not limited to this. You may form the through-hole 75 within three or five or more.
In the second embodiment, the filter 77 is provided on the outlet side of the communication path 76, but the present invention is not limited to this, and the filter 77 may be omitted.
《第三実施形態》
 《構成》
 第三実施形態は、仕切部材の他の構成を示すものである。
 前述した第一実施形態と共通する部分については、詳細な説明を省略する。
 図7は、第三実施形態における分離室の拡大断面図である。
 分離室42内には、分離室42内を上下方向に仕切り、且つオイルを通過させる仕切部材81が設けられている。仕切部材81は、例えば圧入によって分離室42内に嵌め合わされている。
<< 3rd embodiment >>
"Constitution"
The third embodiment shows another configuration of the partition member.
Detailed description of portions common to the above-described first embodiment will be omitted.
FIG. 7 is an enlarged cross-sectional view of the separation chamber in the third embodiment.
In the separation chamber 42, a partition member 81 that partitions the separation chamber 42 in the vertical direction and allows oil to pass therethrough is provided. The partition member 81 is fitted in the separation chamber 42 by press-fitting, for example.
 図8は、第三実施形態の仕切部材を示す図である。
 図中の(a)は、仕切部材81を上方から見た図である。図中の(b)は、仕切部材81の断面図である。図中の(b)は、仕切部材81の斜視図である。
 仕切部材81は、大径部82と、小径部83と、を備える。
 大径部82は、軸方向に短い略円柱状であり、分離室42内に嵌め合わされる。
 小径部83は、軸方向に短い略円錐状であり、大径部82の上端側に形成され、先端に向かうほど外径が小さくなる。
 仕切部材81は、大径部82の下面から小径部83に向かって凹んだ凹部84が形成されている。凹部84は、大径部82の下面から大径部82の上端よりも高い位置まで凹んでいる。
FIG. 8 is a view showing a partition member according to the third embodiment.
(A) in the figure is the figure which looked at the partition member 81 from upper direction. (B) in the drawing is a cross-sectional view of the partition member 81. (B) in the figure is a perspective view of the partition member 81.
The partition member 81 includes a large diameter portion 82 and a small diameter portion 83.
The large-diameter portion 82 has a substantially cylindrical shape that is short in the axial direction, and is fitted in the separation chamber 42.
The small-diameter portion 83 has a substantially conical shape that is short in the axial direction, is formed on the upper end side of the large-diameter portion 82, and the outer diameter decreases toward the tip.
The partition member 81 has a recess 84 that is recessed from the lower surface of the large diameter portion 82 toward the small diameter portion 83. The recess 84 is recessed from the lower surface of the large diameter portion 82 to a position higher than the upper end of the large diameter portion 82.
 仕切部材81は、小径部83の外周面から径方向に沿って凹部84まで貫通した複数の貫通孔85が形成されている。貫通孔85は、径方向内側に向かって僅かな下り勾配がある。貫通孔85は、周方向に沿って等間隔に形成されており、ここでは四つの貫通孔85が周方向に沿って約90度の間隔で形成されている。
 したがって、分離されたオイルは、貫通孔85、凹部84を順に介して、分離室42の底部へ下降し、連通孔46から貯留室43へ排出される。すなわち、複数の貫通孔85、及び凹部84が、オイルを通過させるための連通路86となり、そのうちの貫通孔85が横方向に延びる区間に相当する。
 連通路86の出口側には、オイルを濾過するフィルタ87が設けられている。フィルタ87は、凹部84に嵌め込まれて固定されている。
The partition member 81 is formed with a plurality of through holes 85 penetrating from the outer peripheral surface of the small diameter portion 83 to the concave portion 84 along the radial direction. The through-hole 85 has a slight downward gradient toward the radially inner side. The through holes 85 are formed at equal intervals along the circumferential direction. Here, the four through holes 85 are formed at intervals of about 90 degrees along the circumferential direction.
Accordingly, the separated oil descends to the bottom of the separation chamber 42 through the through hole 85 and the recess 84 in this order, and is discharged from the communication hole 46 to the storage chamber 43. That is, the plurality of through-holes 85 and the recesses 84 serve as communication passages 86 for allowing the oil to pass therethrough, and the through-holes 85 correspond to sections extending in the lateral direction.
A filter 87 for filtering oil is provided on the outlet side of the communication path 86. The filter 87 is fixed by being fitted into the recess 84.
 《作用》
 次に、第三実施形態の主要な作用効果について説明する。
 本実施形態では、分離室42内に仕切部材81を設け、オイルを通過させるための連通路86に、横方向に延びる区間を設けている。具体的には、仕切部材81を大径部82と小径部83とで形成し、大径部82の下面から小径部83に向かって凹んだ凹部84と、小径部83の外周面から径方向に沿って凹部84まで貫通した貫通孔85と、を形成している。この貫通孔85が横方向に延びる区間となる。これにより、上下方向に連通した単純な構造と比較して冷媒が通過しにくくなる。
<Action>
Next, main effects of the third embodiment will be described.
In the present embodiment, a partition member 81 is provided in the separation chamber 42, and a section extending in the lateral direction is provided in the communication passage 86 for allowing oil to pass therethrough. Specifically, the partition member 81 is formed of a large diameter portion 82 and a small diameter portion 83, a concave portion 84 that is recessed from the lower surface of the large diameter portion 82 toward the small diameter portion 83, and a radial direction from the outer peripheral surface of the small diameter portion 83. And a through hole 85 penetrating to the concave portion 84. This through hole 85 is a section extending in the horizontal direction. Thereby, it becomes difficult for a refrigerant to pass compared with the simple structure connected in the up-down direction.
 これは、分離室42を下降する冷媒が、小径部83の円錐面、又は貫通孔85における入口付近の床部に、必ず衝突するためである。すなわち、貫通孔85は略横方向に延びているため、冷媒は小径部83の円錐面、又は貫通孔85における入口付近の床部に衝突し、略横方向への方向転換が強いられることになる。このように、冷媒が通過しにくくなることで、オイルの分離性能を向上させることができる。また、貫通孔85は径方向内側に向かって僅かな下り勾配があるため、オイルを円滑に通過させることができる。
 また、連通路86の出口側には、オイルを濾過するフィルタ87が設けられている。これにより、コンタミを除去し、圧縮機11に異物が噛み込むことや流路詰まりを抑制することができる。
This is because the refrigerant descending the separation chamber 42 always collides with the conical surface of the small diameter portion 83 or the floor portion near the inlet in the through hole 85. That is, since the through-hole 85 extends substantially in the lateral direction, the refrigerant collides with the conical surface of the small-diameter portion 83 or the floor portion near the inlet in the through-hole 85 and is forced to change direction in the substantially lateral direction. Become. Thus, it becomes difficult for the refrigerant to pass through, so that the oil separation performance can be improved. Moreover, since the through-hole 85 has a slight downward slope toward the inner side in the radial direction, the oil can pass smoothly.
A filter 87 for filtering oil is provided on the outlet side of the communication path 86. As a result, contamination can be removed, and foreign substances can be prevented from getting stuck in the compressor 11 and flow path clogging can be suppressed.
 《変形例》
 第三実施形態では、小径部83が大径部82の上面側に形成されている構成としたが、これに限定されるものではなく、仕切部材81を上下反転させた構成、つまり小径部83が大径部82の下面側に形成された構成としてもよい。
 図9は、第三実施形態の仕切部材を上下反転させた変形例を示す図である。
 このように、仕切部材81を上下反転させた構成でも、前述した作用効果を得ることができる。
 第三実施形態では、仕切部材81に対して、四つの貫通孔85を形成しているが、これに限定されるものではない。三つ以内、又は五つ以上の貫通孔85を形成してもよい。
 第二実施形態では、連通路86の出口側にフィルタ87を設けているが、これに限定されるものではなく、フィルタ87を省略してもよい。
<Modification>
In the third embodiment, the small-diameter portion 83 is formed on the upper surface side of the large-diameter portion 82. However, the present invention is not limited to this, and the configuration in which the partition member 81 is turned upside down, that is, the small-diameter portion 83 is used. May be formed on the lower surface side of the large diameter portion 82.
FIG. 9 is a view showing a modification in which the partition member of the third embodiment is turned upside down.
As described above, the above-described effects can be obtained even with the configuration in which the partition member 81 is turned upside down.
In the third embodiment, four through holes 85 are formed in the partition member 81, but the present invention is not limited to this. You may form the through-hole 85 within three or five or more.
In the second embodiment, the filter 87 is provided on the outlet side of the communication path 86, but the present invention is not limited to this, and the filter 87 may be omitted.
 以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。 The above description has been made with reference to a limited number of embodiments. However, the scope of rights is not limited thereto, and modifications of the embodiments based on the above disclosure are obvious to those skilled in the art.
 11…圧縮機、12…フロントハウジング、13…センタハウジング、14…リアハウジング、16…排出口、21…吸入室、22…電動モータ、23…回転軸、24…固定スクロール、25…可動スクロール、26…固定側ラップ、27…可動側ラップ、28…圧力室、29…背圧室、31…ボス、32…クランク端部、33…吐出孔、34…吐出弁、35…ボルト、42…分離室、43…貯留室、44…連通孔、46…連通孔、47…遮蔽部、51…オイル戻し流路、52…オイル戻し流路、53…オイル戻し流路、55…内周面、56…排出配管、57…外周面、61…仕切部材、62…板部材、63…板部材、64…上側連通路、65…下側連通路、66…連通路、71…仕切部材、72…大径部、73…小径部、74…凹部、75…貫通孔、76…連通路、77…フィルタ、81…仕切部材、82…大径部、83…小径部、84…凹部、85…貫通孔、86…連通路、87…フィルタ DESCRIPTION OF SYMBOLS 11 ... Compressor, 12 ... Front housing, 13 ... Center housing, 14 ... Rear housing, 16 ... Discharge port, 21 ... Suction chamber, 22 ... Electric motor, 23 ... Rotating shaft, 24 ... Fixed scroll, 25 ... Moveable scroll, 26 ... Fixed side wrap, 27 ... Movable side wrap, 28 ... Pressure chamber, 29 ... Back pressure chamber, 31 ... Boss, 32 ... Crank end, 33 ... Discharge hole, 34 ... Discharge valve, 35 ... Bolt, 42 ... Separation Chamber, 43 ... storage chamber, 44 ... communication hole, 46 ... communication hole, 47 ... shielding part, 51 ... oil return channel, 52 ... oil return channel, 53 ... oil return channel, 55 ... inner peripheral surface, 56 DESCRIPTION OF SYMBOLS ... Discharge piping, 57 ... Outer peripheral surface, 61 ... Partition member, 62 ... Plate member, 63 ... Plate member, 64 ... Upper communication path, 65 ... Lower communication path, 66 ... Communication path, 71 ... Partition member, 72 ... Large Diameter portion, 73 ... small diameter portion, 74 ... concave portion, 7 ... through hole, 76 ... communicating passage, 77 ... Filter, 81 ... partitioning member, 82 ... larger diameter portion, 83 ... smaller diameter portion, 84 ... concave portion, 85 ... through hole, 86 ... communicating passage, 87 ... filter

Claims (6)

  1.  上下方向に延びる内部空間であり、流入した熱媒体とオイルとを分離させ、分離した前記オイルが下側へ流れる分離室と、
     前記分離室内を上下方向に仕切り、前記オイルを通過させる連通路が形成された仕切部材と、を備え、
     前記連通路は、横方向に延びる区間を備えることを特徴とするオイル分離構造。
    An internal space extending in the vertical direction, separating the inflowing heat medium and oil, and a separation chamber in which the separated oil flows downward;
    A partition member in which the separation chamber is partitioned in the vertical direction, and a communication passage through which the oil passes is formed,
    The oil separation structure, wherein the communication path includes a section extending in a lateral direction.
  2.  前記仕切部材は、
     前記分離室内に嵌め合わされ、面方向を横方向にした状態で上下方向に並んだ複数の板部材を備え、
     前記連通路は、
     上側の前記板部材に形成され、上下方向に連通した上側連通路と、
     下側の前記板部材のうち、上下方向から見て前記上側連通路と重ならない位置に形成され、上下方向に連通した下側連通路と、を備え、
     上側の前記板部材と下側の前記板部材との上下方向の隙間と、を備え、
     前記隙間が前記横方向に延びる区間に相当することを特徴とする請求項1に記載のオイル分離構造。
    The partition member is
    A plurality of plate members that are fitted in the separation chamber and arranged in the vertical direction in a state in which the surface direction is in the horizontal direction,
    The communication path is
    An upper communication path formed in the upper plate member and communicating in the vertical direction;
    Of the lower plate member, a lower communication path formed in a position not overlapping with the upper communication path when viewed from the vertical direction, and communicated in the vertical direction,
    A vertical gap between the upper plate member and the lower plate member,
    The oil separation structure according to claim 1, wherein the gap corresponds to a section extending in the lateral direction.
  3.  前記仕切部材は、
     前記分離室内に嵌め合わされる大径部と、
     前記大径部における上面側及び下面側の一方に形成され、前記大径部よりも外径の小さい小径部と、を備え、
     前記連通路は、
     前記大径部における上面及び下面の他方から前記小径部に向かって凹んだ凹部と、
     前記小径部の外周面から径方向に沿って前記凹部まで貫通した貫通孔と、を備え、
     前記貫通孔が前記横方向に延びる区間に相当することを特徴とする請求項1に記載のオイル分離構造。
    The partition member is
    A large diameter portion fitted in the separation chamber;
    Formed on one of the upper surface side and the lower surface side in the large diameter portion, and a small diameter portion having a smaller outer diameter than the large diameter portion, and
    The communication path is
    A recess recessed from the other of the upper surface and the lower surface of the large diameter portion toward the small diameter portion;
    A through-hole penetrating from the outer peripheral surface of the small-diameter portion to the concave portion along the radial direction,
    The oil separation structure according to claim 1, wherein the through hole corresponds to a section extending in the lateral direction.
  4.  前記連通路の出口側には、前記オイルを濾過するフィルタが設けられていることを特徴とする請求項3に記載のオイル分離構造。 The oil separation structure according to claim 3, wherein a filter for filtering the oil is provided on an outlet side of the communication path.
  5.  前記分離室は、軸方向に延び軸直角方向に沿った断面が円形となる内部空間であり、前記オイルを含んだ前記熱媒体が流入して内周面に沿って周方向に旋回するときの遠心作用によって前記熱媒体と前記オイルとを分離させることを特徴とする請求項1~4の何れか一項に記載のオイル分離構造。 The separation chamber is an internal space extending in the axial direction and having a circular cross section along the direction perpendicular to the axis, and when the heat medium containing the oil flows in and swirls in the circumferential direction along the inner peripheral surface The oil separation structure according to any one of claims 1 to 4, wherein the heat medium and the oil are separated by a centrifugal action.
  6.  請求項1~5の何れか一項に記載のオイル分離構造を備えたことを特徴とする圧縮機。 A compressor comprising the oil separation structure according to any one of claims 1 to 5.
PCT/JP2019/019746 2018-05-24 2019-05-17 Oil separation structure and compressor WO2019225510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-099561 2018-05-24
JP2018099561A JP2019203651A (en) 2018-05-24 2018-05-24 Oil separation structure and compressor

Publications (1)

Publication Number Publication Date
WO2019225510A1 true WO2019225510A1 (en) 2019-11-28

Family

ID=68616905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019746 WO2019225510A1 (en) 2018-05-24 2019-05-17 Oil separation structure and compressor

Country Status (2)

Country Link
JP (1) JP2019203651A (en)
WO (1) WO2019225510A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147072A (en) * 1982-11-19 1986-07-04 ハスマン コ−ポレ−シヨン Pressure differential valve
JPH0170067U (en) * 1987-10-29 1989-05-10
JPH05312437A (en) * 1992-05-15 1993-11-22 Daikin Ind Ltd Centrifugal oil separator
US5899667A (en) * 1997-04-10 1999-05-04 Ingersoll-Rand Company Fluid compressor with seal scavenge and method
JP2015163796A (en) * 2015-06-17 2015-09-10 日立アプライアンス株式会社 Screw compressor and chiller unit including the same
WO2017163809A1 (en) * 2016-03-24 2017-09-28 サンデン・オートモーティブコンポーネント株式会社 Oil separator
WO2018146991A1 (en) * 2017-02-07 2018-08-16 サンデンホールディングス株式会社 Compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147072A (en) * 1982-11-19 1986-07-04 ハスマン コ−ポレ−シヨン Pressure differential valve
JPH0170067U (en) * 1987-10-29 1989-05-10
JPH05312437A (en) * 1992-05-15 1993-11-22 Daikin Ind Ltd Centrifugal oil separator
US5899667A (en) * 1997-04-10 1999-05-04 Ingersoll-Rand Company Fluid compressor with seal scavenge and method
JP2015163796A (en) * 2015-06-17 2015-09-10 日立アプライアンス株式会社 Screw compressor and chiller unit including the same
WO2017163809A1 (en) * 2016-03-24 2017-09-28 サンデン・オートモーティブコンポーネント株式会社 Oil separator
WO2018146991A1 (en) * 2017-02-07 2018-08-16 サンデンホールディングス株式会社 Compressor

Also Published As

Publication number Publication date
JP2019203651A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
US10835094B2 (en) Dust collecting apparatus
JP5692177B2 (en) Compressor
JP2007162561A (en) Refrigerant compressor
KR101431183B1 (en) Scroll compressor
WO2011045928A1 (en) Compressor
US8945265B2 (en) Compressor
JP6007737B2 (en) Scroll compressor
WO2019225510A1 (en) Oil separation structure and compressor
JP2004324564A (en) Compressor and its method of manufacture
JP2009114943A (en) Scroll fluid machine
JP6311374B2 (en) Compressor
JP2020033989A (en) Scroll compressor
JP2020112064A (en) Compressor
WO2019163409A1 (en) Oil separation structure and compressor
JP5014363B2 (en) Scroll compressor
WO2021106329A1 (en) Compressor
JP2019143591A (en) Scroll compressor
JP2020020281A (en) Scroll compressor
JP2014118872A (en) Compressor with built-in oil separator
JP2019143524A (en) Oil separation structure, and compressor
JP6385118B2 (en) Rotary compressor
JP2020020280A (en) Scroll compressor
KR102036200B1 (en) A compressor having an oil separator
JP2012211548A (en) Scroll-type compressor
JP4958534B2 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806543

Country of ref document: EP

Kind code of ref document: A1