WO2018146991A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2018146991A1
WO2018146991A1 PCT/JP2018/000583 JP2018000583W WO2018146991A1 WO 2018146991 A1 WO2018146991 A1 WO 2018146991A1 JP 2018000583 W JP2018000583 W JP 2018000583W WO 2018146991 A1 WO2018146991 A1 WO 2018146991A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil
back pressure
chamber
scroll
Prior art date
Application number
PCT/JP2018/000583
Other languages
French (fr)
Japanese (ja)
Inventor
芳夫 小和田
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to US16/483,272 priority Critical patent/US20200003199A1/en
Priority to DE112018000719.7T priority patent/DE112018000719T5/en
Priority to CN201880010417.2A priority patent/CN110312868A/en
Publication of WO2018146991A1 publication Critical patent/WO2018146991A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0092Removing solid or liquid contaminants from the gas under pumping, e.g. by filtering or deposition; Purging; Scrubbing; Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/102Adaptations or arrangements of distribution members the members being disc valves
    • F04B39/1033Adaptations or arrangements of distribution members the members being disc valves annular disc valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/005Removing contaminants, deposits or scale from the pump; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/804Accumulators for refrigerant circuits

Definitions

  • the present invention relates to a compressor that compresses a working fluid such as a refrigerant.
  • a compressor when mist of lubricating oil is mixed into a gaseous refrigerant (gas refrigerant) compressed by a compression mechanism, it may be introduced into a condenser of a refrigerant circuit and the efficiency thereof may be reduced.
  • the compressor is provided with an oil separator that separates the lubricating oil from the gaseous refrigerant discharged from the compression mechanism.
  • the lubricating oil separated by the oil separator is used as a back pressure that presses the orbiting scroll against the fixed scroll in a scroll compressor, for example.
  • a back pressure control valve that operates according to a differential pressure between the suction pressure and the discharge pressure is used.
  • contamination foreign matter
  • sludge contamination (foreign matter) such as sludge is mixed in the lubricating oil of the compressor.
  • contamination foreign matter
  • the valve body cannot move smoothly, and the back pressure cannot be adjusted appropriately.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-343433
  • the filter of the back pressure control valve has a small contamination capturing area, if the compressor is used for many years, the entire surface of the filter is covered with the contamination and the lubricating oil does not flow. There is a risk of poor lubrication of moving parts. Note that a problem due to contamination mixed in the lubricating oil may occur not only in the back pressure control valve but also in an orifice disposed in the lubricating oil flow path.
  • an object of the present invention is to provide a compressor capable of suppressing control failure and lubrication failure due to contamination.
  • the compressor has an oil separator having a separation part that separates the lubricating oil from the working fluid using centrifugal force, and a storage part that is located below the separation part and stores the lubricating oil separated by the separation part And comprising.
  • emits the supernatant to a storage part is arrange
  • FIG. 1 shows an example of a scroll compressor.
  • a scroll compressor is an example of a compressor.
  • the scroll compressor 100 includes a scroll unit 120, a housing 140 having a gas refrigerant suction chamber H1 and a discharge chamber H2, an electric motor 160 that drives the scroll unit 120, and an inverter 180 that controls the electric motor 160. ing.
  • the scroll unit 120 may be driven by, for example, engine output instead of the electric motor 160. Further, the inverter 180 may not be incorporated in the scroll compressor 100.
  • the scroll unit 120 has a fixed scroll 122 and a turning scroll 124 that are meshed with each other.
  • the fixed scroll 122 includes a disc-shaped bottom plate 122A and an involute-shaped (spiral shape) wrap 122B standing from one surface of the bottom plate 122A.
  • the orbiting scroll 124 includes a disc-shaped bottom plate 124A and an involute-shaped wrap 124B standing from one surface of the bottom plate 124A.
  • the fixed scroll 122 and the orbiting scroll 124 are arranged so as to mesh the wraps 122B and 124B. Specifically, the front end portion of the wrap 122B of the fixed scroll 122 is in contact with one surface of the bottom plate 124A of the orbiting scroll 124, and the front end portion of the wrap 124B of the orbiting scroll 124 is in contact with one surface of the bottom plate 122A of the fixed scroll 122. Is arranged. A tip seal (not shown) is attached to the tip of the wraps 122B and 124B.
  • the fixed scroll 122 and the orbiting scroll 124 are arranged so that the side walls of the wraps 122B and 124B are partially in contact with each other in a state where the circumferential angles of the wraps 122B and 124B are shifted from each other. Therefore, a crescent-shaped sealed space that functions as the compression chamber H3 is formed between the wrap 122B of the fixed scroll 122 and the wrap 124B of the orbiting scroll 124.
  • the orbiting scroll 124 is disposed so as to be able to revolve around the axis of the fixed scroll 122 via a crank mechanism 240 described later in a state where the rotation is prevented. Therefore, the scroll unit 120 moves the compression chamber H3 defined by the wrap 122B of the fixed scroll 122 and the wrap 124B of the orbiting scroll 124 to the center, and gradually reduces the volume thereof. As a result, the scroll unit 120 compresses the gaseous refrigerant sucked into the compression chamber H3 from the outer ends of the wraps 122B and 124B.
  • the housing 140 includes a front housing 142 that houses the electric motor 160 and the inverter 180, a center housing 144 that houses the scroll unit 120, a rear housing 146, and an inverter cover 148.
  • the front housing 142, the center housing 144, the rear housing 146, and the inverter cover 148 are integrally fastened by, for example, a fastener (not shown) including a bolt and a washer, so that the housing of the scroll compressor 100 is obtained. 140 is configured.
  • the front housing 142 has a substantially cylindrical peripheral wall 142A and a partition wall 142B.
  • the internal space of the front housing 142 is partitioned into a space for housing the electric motor 160 and a space for housing the inverter 180 by the partition wall 142B.
  • the opening on one end side of the peripheral wall portion 142 ⁇ / b> A is closed by the inverter cover 148. Further, the opening on the other end side of the peripheral wall portion 142 ⁇ / b> A is closed by the center housing 144.
  • the partition wall 142B has a substantially cylindrical support 142B1 that rotatably supports one end of a drive shaft 166, which will be described later, at the center in the radial direction, and protrudes toward the other end of the peripheral wall 142A. Has been.
  • the suction chamber H1 for the gaseous refrigerant is partitioned by the peripheral wall 142A and the partition wall 142B of the front housing 142 and the center housing 144. Low-pressure and low-temperature gaseous refrigerant is sucked into the suction chamber H1 through a suction port P1 formed in the peripheral wall 142A.
  • gas refrigerant flows around the electric motor 160 so that the electric motor 160 can be cooled, and the space on one side of the electric motor 160 communicates with the space on the other side.
  • a suction chamber H1 is formed.
  • An appropriate amount of lubricating oil is stored in the suction chamber H1 in order to lubricate sliding portions such as the drive shaft 166 that is rotationally driven. For this reason, in the suction chamber H1, the gaseous refrigerant flows as a mixed fluid with the lubricating oil.
  • the center housing 144 has a substantially bottomed cylindrical shape that is open on the side opposite to the fastening side with the front housing 142, and can accommodate the scroll unit 120 therein.
  • the center housing 144 has a cylindrical portion 144A and a bottom wall portion 144B on one end side thereof.
  • the scroll unit 120 is accommodated in a space defined by the cylindrical portion 144A and the bottom wall portion 144B.
  • a fitting portion 144A1 into which the fixed scroll 122 is fitted is formed on the other end side of the cylindrical portion 144A. Therefore, the opening of the center housing 144 is closed by the fixed scroll 122.
  • the bottom wall portion 144 ⁇ / b> B is formed so that a central portion in the radial direction bulges toward the electric motor 160.
  • a through hole for allowing the other end portion of the drive shaft 166 to penetrate is formed in the radial center portion of the bulging portion 144B1 of the bottom wall portion 144B.
  • the fitting part which the bearing 200 which supports the other end part of the drive shaft 166 freely rotatably is formed in the scroll unit 120 side of the bulging part 144B1.
  • An annular thrust plate 210 is disposed between the bottom wall portion 144B of the center housing 144 and the bottom plate 124A of the orbiting scroll 124.
  • the outer peripheral portion of the bottom wall portion 144 ⁇ / b> B receives a thrust force from the orbiting scroll 124 via the thrust plate 210.
  • Sealing members (not shown) are embedded in the bottom wall portion 144B and the portions of the bottom plate 124A that are in contact with the thrust plate 210, respectively.
  • a back pressure chamber H4 is formed between the end surface of the bottom plate 124A on the electric motor 160 side and the bottom wall portion 144B, that is, between the end surface of the orbiting scroll 124 opposite to the fixed scroll 122 and the center housing 144.
  • a gas refrigerant (specifically, a mixed fluid of a gas refrigerant and lubricating oil) is introduced into the center housing 144 from the suction chamber H1 to the space H5 near the outer ends of the wraps 122B and 124B of the scroll unit 120.
  • a refrigerant introduction passage L1 is formed. Since the refrigerant introduction passage L1 communicates the space H5 and the suction chamber H1, the pressure of the space H5 is equal to the pressure of the suction chamber H1 (suction pressure Ps).
  • the rear housing 146 is fastened to a fitting portion 144A1 side end portion of the cylindrical portion 144A of the center housing 144 by a fastener. Accordingly, the bottom plate 122A of the fixed scroll 122 is fixed by being sandwiched between the fitting portion 144A1 and the rear housing 146. Further, the rear housing 146 has a substantially bottomed cylindrical shape with an opening on the fastening side (one end side) with the center housing 144, and has a cylindrical portion 146A and a bottom wall portion 146B on the other end side.
  • a gas refrigerant discharge chamber H2 is defined by the cylindrical portion 146A and the bottom wall portion 146B of the rear housing 146 and the bottom plate 122A of the fixed scroll 122.
  • a compressed refrigerant discharge passage (discharge hole) L2 is formed at the center of the bottom plate 122A, and the discharge passage L2 restricts the flow from the discharge chamber H2 to the scroll unit 120, for example, a check valve comprising a reed valve.
  • a valve 220 is attached. Compressed refrigerant compressed in the compression chamber H3 of the scroll unit 120 is discharged into the discharge chamber H2 through the discharge passage L2 and the check valve 220.
  • an oil separator 230 for separating the lubricating oil from the gaseous refrigerant in the discharge chamber H2 is disposed.
  • the rear end portion of the rear housing 146 that is, the end portion on the side opposite to the center housing 144, has a gas-liquid separation chamber having a circular cross section extending from the outer peripheral wall to the inside. 230A is formed.
  • a stepped inner cylinder 230B having a circular cross section is inserted into the gas-liquid separation chamber 230A so as to be concentric with the gas-liquid separation chamber 230A.
  • the base end portion of the inner cylinder 230B is locked to the step portion 230A1 of the gas-liquid separation chamber 230A, and the distal end portion extends to a position spaced apart from the innermost portion of the gas-liquid separation chamber 230A by a predetermined interval.
  • at least the space of the gas-liquid separation chamber 230A in which the inner cylinder 230B is disposed functions as a separation portion that separates the lubricating oil from the gas refrigerant, and is substantially cylindrical in shape at the innermost portion of the gas-liquid separation chamber 230A. This space is located below the separation part and functions as a storage part for temporarily storing the lubricating oil separated by the oil separator 230.
  • the opening of the gas-liquid separation chamber 230A in the rear housing 146 is closed by a bolt (not shown) that can press the inner cylinder 230B.
  • the bolt is formed with a through-hole penetrating from the end surface of the head portion to the tip end portion of the shaft portion.
  • a discharge port P2 for connecting piping is formed at the head of the bolt in order to guide the gaseous refrigerant from which the lubricating oil is separated by the oil separator 230 to a condenser (not shown).
  • the gas-liquid separation chamber 230A communicates with the discharge chamber H2 via an introduction port 146C extending in the tangential direction of the inner peripheral surface thereof.
  • the gaseous refrigerant compressed by the scroll unit 120 is introduced into the oil separator 230 from the introduction port 146C through the discharge chamber H2.
  • the gas refrigerant introduced into the oil separator 230 moves downward while swirling in an annular space formed by the inner peripheral surface of the gas-liquid separation chamber 230A and the outer peripheral surface of the inner cylinder 230B. And flow.
  • the mist of the lubricating oil contained in the gas refrigerant receives a centrifugal force generated when the gas refrigerant swirls and moves outward.
  • the lubricant mist moves outward, it adheres to the inner peripheral surface of the gas-liquid separation chamber 230A and is dropped onto the bottom using gravity.
  • the lubricating oil separated by the oil separator 230 is guided to a pressure supply passage L3 described later.
  • the gaseous refrigerant from which the lubricating oil has been separated enters the internal space from the tip of the inner cylinder 230B, and is discharged from a discharge port P2 formed in the head of the bolt using the pressure.
  • the flow of the gaseous refrigerant before or after mixing the lubricating oil is indicated by a hatched arrow, and the flow of the gaseous refrigerant (mixed fluid) mixed with the lubricating oil is indicated by a black arrow.
  • the flow of lubricating oil separated from the refrigerant is indicated by white arrows.
  • the electric motor 160 is composed of, for example, a three-phase AC motor, and includes a rotor 162 and a stator core unit 164 disposed on the radially outer side of the rotor 162.
  • a direct current from an on-vehicle battery (not shown) is converted into an alternating current by the inverter 180 and supplied to the electric motor 160.
  • the rotor 162 is rotatably supported on the radially inner side of the stator core unit 164 via a drive shaft 166 that is press-fitted into a shaft hole formed at the center in the radial direction.
  • One end portion of the drive shaft 166 is rotatably supported by the support portion 142B1 of the front housing 142.
  • the other end of the drive shaft 166 passes through a through hole formed in the center housing 144 and is rotatably supported by the bearing 200.
  • the crank mechanism 240 is attached in an eccentric state to a substantially cylindrical boss portion 240A that protrudes from the end surface on the back pressure chamber H4 side of the bottom plate 124A of the orbiting scroll 124 and a crank 240B that is provided at the other end portion of the drive shaft 166. And an eccentric bush 240C.
  • the eccentric bush 240C is rotatably supported by the boss portion 240A.
  • a balancer weight 240 ⁇ / b> D is attached to the other end portion of the drive shaft 166 to resist centrifugal force during the operation of the orbiting scroll 124.
  • the orbiting scroll 124 can revolve around the axis of the fixed scroll 122 via the crank mechanism 240 in a state where the rotation of the orbiting scroll 124 is suppressed.
  • the scroll unit 120, the drive shaft 166, and the crank mechanism 240 are cited as examples of the compression mechanism.
  • FIG. 3 is a block diagram for explaining the flow of refrigerant and lubricating oil in the scroll compressor 100.
  • the low-pressure / low-temperature gas refrigerant from the evaporator is introduced into the suction chamber H1 through the suction port P1, and then the outer end of the scroll unit 120 through the refrigerant introduction passage L1.
  • the gaseous refrigerant in the space H5 is taken into the compression chamber H3 of the scroll unit 120 and compressed.
  • the compressed refrigerant compressed in the compression chamber H3 is discharged to the discharge chamber H2 through the discharge passage L2 and the check valve 220, and is then guided from the discharge chamber H2 to the oil separator 230 through the introduction port 146C.
  • the gaseous refrigerant from which the lubricating oil is separated by the oil separator 230 is discharged to the condenser through the discharge port P2.
  • the scroll unit 120 that compresses the gaseous refrigerant flowing in through the suction chamber H1 in the compression chamber H3 and discharges the compressed refrigerant through the discharge chamber H2 is configured.
  • a back pressure control valve 250 for adjusting the pressure of the back pressure chamber H4 is further incorporated in the rear end portion of the rear housing 146.
  • the back pressure control valve 250 operates according to the suction pressure Ps of the suction chamber H1 and the discharge pressure Pd of the discharge chamber H2, and the back pressure Pm of the back pressure chamber H4 is a target back pressure according to the suction pressure Ps and the discharge pressure Pd.
  • This is a known mechanical (autonomous) flow control valve that automatically adjusts the valve opening so as to approach Pc.
  • the scroll compressor 100 includes a pressure supply passage L3 and a pressure release passage L4 in addition to the refrigerant introduction passage L1 and the discharge passage L2.
  • the back pressure control valve 250 is disposed in the middle of the pressure supply passage L3 so as to constitute a part of the pressure supply passage L3. Accordingly, the lubricating oil separated by the oil separator 230 is supplied to the back pressure chamber H4 via the pressure supply passage L3 while being appropriately decompressed by the back pressure control valve 250. That is, by adjusting the opening of the pressure supply passage L3 connected to the inlet side (upstream side) of the back pressure chamber H4 with the back pressure control valve 250, the flow rate of the lubricating oil flowing into the back pressure chamber H4 is increased or decreased. Then, the back pressure Pm is adjusted.
  • the pressure relief passage L4 communicates the back pressure chamber H4 and the suction chamber H1.
  • An orifice OL is arranged in the middle of the pressure release passage L4.
  • the pressure release passage L4 in which the orifice OL is disposed is formed so as to penetrate the drive shaft 166 and extend along the central axis of the drive shaft 166.
  • the orifice OL is disposed at the end of the drive shaft 166 on the suction chamber H1 side.
  • the lubricating oil in the back pressure chamber H4 is returned to the suction chamber H1 while the flow rate is limited by the orifice OL.
  • the orbiting scroll 124 is pressed toward the fixed scroll 122 by the back pressure Pm in the back pressure chamber H4.
  • the resultant force of the back pressure Pm acting on the back pressure chamber H4 side end surface of the bottom plate 124A of the orbiting scroll 124 is smaller than the compression reaction force acting on the compression chamber H3 side end surface of the bottom plate 124A.
  • the back pressure Pm is adjusted by the back pressure control valve 250 so that the resultant force is greater than the compression reaction force.
  • the back pressure control valve 250 reduces the back pressure Pm so as to approach the target back pressure Pc so that the back pressure does not become excessive.
  • contamination such as sludge is mixed in the lubricating oil separated by the oil separator 230.
  • the back pressure control valve 250 located downstream of the oil separator 230, for example, the valve body of the back pressure control valve 250 cannot move smoothly, and the back pressure Pm in the back pressure chamber H4 is reduced to the target back pressure. There is a possibility that the pressure Pc cannot be adjusted.
  • contamination is introduced into the orifice OL located downstream of the oil separator 230, for example, the flow path of the lubricating oil is blocked or narrowed, and the lubricating oil is transferred from the back pressure chamber H4 to the suction chamber H1. It may be difficult to return, and the back pressure Pm in the back pressure chamber H4 may not be adjusted to the target back pressure Pc.
  • the oil separator 230 in order to precipitate and capture the contamination mixed in the lubricating oil, the lubricating oil separated by the separation unit is temporarily stored between the separation unit and the storage unit, and the supernatant is stored.
  • a capturing member to be discharged is disposed in the section.
  • FIG. 4 shows a first embodiment of a capture member that captures contamination.
  • a trapping member 260 that forms a hat-shaped partition wall is disposed between the tip of the inner cylinder 230B and the bottom wall of the gas-liquid separation chamber 230A.
  • the capturing member 260 includes a thin circular ring part 262, a cylindrical cylindrical part 264 that rises from the inner peripheral edge of the circular ring part 262, and a circular disk part 266 that closes the tip opening of the cylindrical part 264.
  • the cylindrical part 264 is an example of a part that rises toward the separation part.
  • the outer peripheral edge of the annular part 262 is fixed to the inner peripheral surface of the gas-liquid separation chamber 230A.
  • the cylindrical portion 264 is formed with a plurality of small holes 264A that connect the inner peripheral surface and the outer peripheral surface on the cross section thereof.
  • the opening area of the small hole 264A is appropriately determined in consideration of, for example, the viscosity of the lubricating oil so that the lubricating oil can pass therethrough.
  • the formation position of the small hole 264A is appropriately determined in consideration of, for example, the amount of captured lubricating oil.
  • the disc portion 266 is not limited to a flat surface, and may be a part of a spherical surface, a cone, or the like with a central portion protruding upward.
  • the lubricating oil OIL that adheres to and drops on the inner peripheral surface of the gas-liquid separation chamber 230A is the inner peripheral surface of the gas-liquid separation chamber 230A, the upper surface of the annular portion 262, and the outer periphery of the cylindrical portion 264. It is received by a substantially ring-shaped region partitioned by a surface. The lubricating oil OIL received in this region passes through the small hole 264A of the cylindrical portion 264 and is discharged to the lower portion of the gas-liquid separation chamber 230A that functions as a storage portion.
  • a part of the lubricating oil dropped on the substantially annular region may be wound up by the swirling flow of the gas refrigerant swirling around the outer periphery of the inner cylinder 230B and sucked from the tip of the inner cylinder 230B. Therefore, in order to suppress the rolling-up of the lubricating oil, as shown in FIG. 5, a flange portion 268 having a thin disc shape is formed on the upper portion of the capturing member 260, specifically, on the outer peripheral edge of the disc portion 266. You may make it integrate.
  • the collar part 268 is applicable also to the capture member demonstrated below.
  • FIG. 6 shows a second embodiment of a capture member that captures contamination.
  • a trapping member 270 that forms a hat-shaped partition is disposed between the tip of the inner cylinder 230B and the bottom wall of the gas-liquid separation chamber 230A.
  • the capturing member 270 includes a thin annular plate-shaped annular portion 272 whose central portion in the radial direction protrudes downward, a truncated cone-shaped cone portion 274 that rises from the inner peripheral edge of the annular portion 272, and the tip of the cone portion 274. And a disk-shaped disk part 276 whose upper part protrudes upward while closing the opening.
  • the conical part 274 is mentioned as an example of the part which stands up toward the separation part.
  • the outer peripheral edge of the annular portion 272 is fixed to the inner peripheral surface of the gas-liquid separation chamber 230A.
  • the conical portion 274 is formed with a plurality of small holes 274 ⁇ / b> A that connect the inner peripheral surface and the outer peripheral surface on the cross section.
  • the opening area of the small hole 274A is appropriately determined in consideration of, for example, the viscosity of the lubricating oil so that the lubricating oil can pass therethrough.
  • the formation position of the small hole 274A is appropriately determined in consideration of, for example, the amount of captured lubricating oil.
  • the lubricating oil OIL that adheres to and drops on the inner peripheral surface of the gas-liquid separation chamber 230A is received at least on the upper surface of the annular portion 272 whose central portion in the radial direction protrudes downward.
  • the lubricating oil received by the annular portion 272 passes through the small hole 274A of the conical portion 274 and is discharged below the gas-liquid separation chamber 230A that functions as a storage portion.
  • the lubricating oil OIL is once received by the annular portion 272, and then the supernatant is discharged to the lower part of the gas-liquid separation chamber 230A through the small hole 274A of the conical portion 274. Contaminating contamination CON can be precipitated and captured.
  • the contamination introduced into the back pressure control valve 250 and the orifice OL located downstream of the oil separator 230 is reduced, and control failures and lubrication failures due to contamination are suppressed.
  • the durability of the scroll compressor 100 can be improved.
  • the outer peripheral edge of the disc part 276 can be directly connected to the inner peripheral edge of the annular part 272 without using the conical part 274.
  • a plurality of small holes through which the lubricating oil can flow can be formed in at least one of the annular portion 272 and the disc portion 276, which is an example of a portion that rises toward the separation portion.
  • FIG. 7 shows a third embodiment of a capture member that captures contamination.
  • a trapping member 280 that forms a partition having a shape described below is disposed between the tip of the inner cylinder 230B and the bottom wall of the gas-liquid separation chamber 230A.
  • the capture member 280 includes a thin annular ring portion 282, a cylindrical cylindrical portion 284 that rises from the inner peripheral edge of the annular portion 282, and a thin annular ring shape that extends radially outward from the upper end of the cylindrical portion 284. And the collar portion 286.
  • the cylindrical part 284 is mentioned as an example of the part which stands up toward the separation part.
  • the outer peripheral edge of the annular portion 282 is fixed to the inner peripheral surface of the gas-liquid separation chamber 230A.
  • the cylindrical portion 284 is formed with a plurality of small holes 284A that connect the inner peripheral surface and the outer peripheral surface on the cross section.
  • the opening area of the small hole 284A is appropriately determined in consideration of, for example, the viscosity of the lubricating oil so that the lubricating oil can pass therethrough.
  • the position where the small hole 284A is formed is appropriately determined in consideration of, for example, the amount of lubricating oil captured.
  • the collar part 286 suppresses that a part of lubricating oil received with the capture member 280 is wound up similarly to the collar part 268 shown in FIG.
  • the lubricating oil OIL attached and dripped onto the inner peripheral surface of the gas-liquid separation chamber 230A is the inner peripheral surface of the gas-liquid separation chamber 230A, the upper surface of the annular portion 282, and the outer periphery of the cylindrical portion 284. It is received by a substantially ring-shaped region partitioned by a surface.
  • the lubricating oil OIL received in this region passes through the small hole 284A of the cylindrical portion 284 and is discharged to the lower portion of the gas-liquid separation chamber 230A that functions as a storage portion.
  • the lubricating oil OIL is once received in a substantially ring-shaped region, and then the supernatant is discharged to the lower portion of the gas-liquid separation chamber 230A through the small hole 284A of the cylindrical portion 284. Contamination CON contaminated with OIL can be precipitated and captured.
  • the upper end opening of the cylindrical portion 284 is not closed, the number of components of the capturing member 280 is reduced, and its weight can be reduced. Even if the upper end opening of the cylindrical portion 284 is not closed, the lubricating oil OIL is dripped along the inner peripheral surface of the gas-liquid separation chamber 230A, so that the lubricating oil passes through the upper end opening of the cylindrical portion 284 and is lubricated to the lower portion. There is little possibility that oil OIL will drop directly.
  • the upper end opening of the cylindrical portion 284 is an example of a communication hole that allows the separation portion and the storage portion to communicate with each other.
  • the collar part 286 can also be abbreviate
  • FIG. 8 shows a modification of the capturing member.
  • the capturing member 290 according to the modified example includes a truncated cone-shaped cone portion 292 that gradually decreases in cross-sectional area as it goes upward, and a thin annular plate-shaped flange portion that extends radially outward from the upper end portion of the cone portion 292. 294.
  • the intermediate portion of the conical portion 292 is an example of a portion that rises toward the separation portion.
  • the outer peripheral edge of the lower end portion of the conical portion 292 is fixed to the inner peripheral surface of the gas-liquid separation chamber 230A.
  • the conical portion 292 is formed with a plurality of small holes 292A that connect the inner peripheral surface and the outer peripheral surface on the cross section thereof.
  • the substantially ring-shaped region defined by the inner peripheral surface of the gas-liquid separation chamber 230A and the outer peripheral surface of the conical portion 292 receives the lubricating oil OIL dripped along the inner peripheral wall of the gas-liquid separation chamber 230A.
  • the lubricating oil OIL received in this region passes through the small hole 292A of the conical portion 292 and is discharged to the lower portion of the gas-liquid separation chamber 230A that functions as a storage portion. Since the action and effect of the capturing member 290 are the same as those of the first to third embodiments described above, the description thereof will be omitted to avoid redundant description. Please refer to the previous explanation if necessary.
  • the capturing member that captures contamination mixed in the lubricating oil can take various shapes. That is, the capturing member only needs to have at least a shape having a function of temporarily storing the lubricating oil separated by the separating portion and discharging the supernatant to the storing portion. As in the prior art, even if the back pressure control valve 250 is provided with a filter, the absolute amount of contamination introduced here is reduced, so that it does not clog in a short time.
  • the compressor is assumed to be a scroll compressor, but it may be a reciprocating compressor, a swash plate compressor, a rotary piston compressor, a slide vane compressor, or the like.
  • the oil separator is not limited to the centrifugal separation type, and may be a method of separating the lubricating oil from the gaseous refrigerant through a labyrinth passage, for example.

Abstract

[Problem] To prevent a control failure, a lubrication failure, etc., which are caused by contamination. [Solution] An oil separator 230 provided to a compressor has: a separation section for separating lubricating oil OIL from an operating fluid utilizing a centrifugal force; and an accumulation section located below the separation section and accumulating the lubricating oil OIL having been separated by the separation section. A hat-shaped collection member 260 is provided between the separation section and the accumulation section. The collection member 260 temporarily accumulates the lubricating oil OIL, which has been separated by the separation section, and discharges the supernatant of the lubricating oil OIL into the accumulation section. The collection member 260 allows a contamination CON mixed in the lubricating oil OIL to settle and collects the contamination CON.

Description

圧縮機Compressor
 本発明は、冷媒などの作動流体を圧縮する圧縮機に関する。 The present invention relates to a compressor that compresses a working fluid such as a refrigerant.
 圧縮機においては、圧縮機構によって圧縮された気体の冷媒(気体冷媒)に潤滑油のミストが混入すると、冷媒回路の凝縮器などに導入され、その効率が低下してしまうおそれがある。このため、圧縮機には、圧縮機構から吐出された気体冷媒から潤滑油を分離するオイルセパレータが備えられている。オイルセパレータで分離された潤滑油は、例えば、スクロール圧縮機において旋回スクロールを固定スクロールに押し付ける背圧として利用されている。この背圧を調整するため、吸入圧力と吐出圧力との差圧に応じて作動する、背圧制御弁が利用されている。 In a compressor, when mist of lubricating oil is mixed into a gaseous refrigerant (gas refrigerant) compressed by a compression mechanism, it may be introduced into a condenser of a refrigerant circuit and the efficiency thereof may be reduced. For this reason, the compressor is provided with an oil separator that separates the lubricating oil from the gaseous refrigerant discharged from the compression mechanism. The lubricating oil separated by the oil separator is used as a back pressure that presses the orbiting scroll against the fixed scroll in a scroll compressor, for example. In order to adjust the back pressure, a back pressure control valve that operates according to a differential pressure between the suction pressure and the discharge pressure is used.
 ところで、圧縮機の潤滑油には、例えば、スラッジなどのコンタミネーション(異物)が混入している。背圧制御弁にコンタミネーションが導入されると、例えば、その弁体などが円滑に移動できなくなり、背圧を適切に調整できなくなってしまう。このため、特開2003-343433号公報(特許文献1)に記載されるように、背圧制御弁にフィルタを取り付けることで、コンタミネーションを捕捉して作動不良の発生を抑制している。 Incidentally, contamination (foreign matter) such as sludge is mixed in the lubricating oil of the compressor. When contamination is introduced into the back pressure control valve, for example, the valve body cannot move smoothly, and the back pressure cannot be adjusted appropriately. For this reason, as described in Japanese Patent Application Laid-Open No. 2003-343433 (Patent Document 1), by attaching a filter to the back pressure control valve, contamination is captured and occurrence of malfunction is suppressed.
特開2003-343433号公報JP 2003-343433 A
 しかしながら、背圧制御弁のフィルタはコンタミネーションの捕捉面積が小さいため、圧縮機を長年使用すると、フィルタの全面がコンタミネーションに覆われて潤滑油が流れなくなり、例えば、背圧の制御不良、摺動箇所の潤滑不良などが発生するおそれがある。なお、潤滑油に混入したコンタミネーションによる不具合は、背圧制御弁に限らず、潤滑油流路に配設されたオリフィスなどにも発生するおそれがある。 However, since the filter of the back pressure control valve has a small contamination capturing area, if the compressor is used for many years, the entire surface of the filter is covered with the contamination and the lubricating oil does not flow. There is a risk of poor lubrication of moving parts. Note that a problem due to contamination mixed in the lubricating oil may occur not only in the back pressure control valve but also in an orifice disposed in the lubricating oil flow path.
 そこで、本発明は、コンタミネーションによる制御不良や潤滑不良などを抑制可能な圧縮機を提供することを目的とする。 Therefore, an object of the present invention is to provide a compressor capable of suppressing control failure and lubrication failure due to contamination.
 このため、圧縮機は、遠心力を利用して作動流体から潤滑油を分離する分離部と、分離部の下方に位置し、分離部により分離された潤滑油を貯留する貯留部を有するオイルセパレータと、を備える。そして、分離部と貯留部との間に、分離部により分離された潤滑油を一時的に貯留し、その上澄みを貯留部に排出する捕捉部材が配設される。 For this reason, the compressor has an oil separator having a separation part that separates the lubricating oil from the working fluid using centrifugal force, and a storage part that is located below the separation part and stores the lubricating oil separated by the separation part And comprising. And the capture member which stores the lubricating oil isolate | separated by the separation part temporarily, and discharge | emits the supernatant to a storage part is arrange | positioned between the separation part and the storage part.
 本発明によれば、コンタミネーションによる制御不良や潤滑不良などを抑制することができる。 According to the present invention, it is possible to suppress control failure and lubrication failure due to contamination.
スクロール圧縮機の一例を示す断面図である。It is sectional drawing which shows an example of a scroll compressor. オイルセパレータによる潤滑油の分離方法の説明図である。It is explanatory drawing of the separation method of the lubricating oil by an oil separator. 冷媒及び潤滑油の流れを説明するブロック図である。It is a block diagram explaining the flow of a refrigerant and lubricating oil. 捕捉部材の第1実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 1st Embodiment of a capture member. 第1実施形態に係る捕捉部材の変形例の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the modification of the capture member which concerns on 1st Embodiment. 捕捉部材の第2実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of a capture member. 捕捉部材の第3実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 3rd Embodiment of a capture member. 第3実施形態に係る捕捉部材の変形例の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the modification of the capture member which concerns on 3rd Embodiment.
 以下、添付された図面を参照し、本発明を実施するための実施形態について詳述する。
 図1は、スクロール圧縮機の一例を示す。なお、スクロール圧縮機が、圧縮機の一例として挙げられる。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an example of a scroll compressor. A scroll compressor is an example of a compressor.
 スクロール圧縮機100は、スクロールユニット120と、気体冷媒の吸入室H1及び吐出室H2を有するハウジング140と、スクロールユニット120を駆動する電動モータ160と、電動モータ160を制御するインバータ180と、を備えている。なお、スクロールユニット120は、電動モータ160に代えて、例えば、エンジン出力によって駆動されてもよい。また、インバータ180は、スクロール圧縮機100に組み込まれていなくてもよい。 The scroll compressor 100 includes a scroll unit 120, a housing 140 having a gas refrigerant suction chamber H1 and a discharge chamber H2, an electric motor 160 that drives the scroll unit 120, and an inverter 180 that controls the electric motor 160. ing. The scroll unit 120 may be driven by, for example, engine output instead of the electric motor 160. Further, the inverter 180 may not be incorporated in the scroll compressor 100.
 スクロールユニット120は、互いに噛み合わされる固定スクロール122及び旋回スクロール124を有している。固定スクロール122は、円板形状の底板122Aと、底板122Aの一面から立設するインボリュート形状(渦巻き形状)のラップ122Bと、を含んでいる。旋回スクロール124は、固定スクロール122と同様に、円板形状の底板124Aと、底板124Aの一面から立設するインボリュート形状のラップ124Bと、を含んでいる。 The scroll unit 120 has a fixed scroll 122 and a turning scroll 124 that are meshed with each other. The fixed scroll 122 includes a disc-shaped bottom plate 122A and an involute-shaped (spiral shape) wrap 122B standing from one surface of the bottom plate 122A. Similar to the fixed scroll 122, the orbiting scroll 124 includes a disc-shaped bottom plate 124A and an involute-shaped wrap 124B standing from one surface of the bottom plate 124A.
 固定スクロール122及び旋回スクロール124は、そのラップ122B及び124Bを噛み合わせるように配置されている。詳細には、固定スクロール122のラップ122Bの先端部が、旋回スクロール124の底板124Aの一面に接触し、旋回スクロール124のラップ124Bの先端部が、固定スクロール122の底板122Aの一面に接触するように配置されている。なお、ラップ122B及び124Bの先端部には、チップシール(図示せず)が取り付けられている。 The fixed scroll 122 and the orbiting scroll 124 are arranged so as to mesh the wraps 122B and 124B. Specifically, the front end portion of the wrap 122B of the fixed scroll 122 is in contact with one surface of the bottom plate 124A of the orbiting scroll 124, and the front end portion of the wrap 124B of the orbiting scroll 124 is in contact with one surface of the bottom plate 122A of the fixed scroll 122. Is arranged. A tip seal (not shown) is attached to the tip of the wraps 122B and 124B.
 また、固定スクロール122及び旋回スクロール124は、そのラップ122B及び124Bの周方向の角度が互いにずれた状態で、そのラップ122B及び124Bの側壁が互いに部分的に接触するように配置されている。従って、固定スクロール122のラップ122Bと旋回スクロール124のラップ124Bとの間には、圧縮室H3として機能する、三日月形状の密閉空間が形成されている。 Further, the fixed scroll 122 and the orbiting scroll 124 are arranged so that the side walls of the wraps 122B and 124B are partially in contact with each other in a state where the circumferential angles of the wraps 122B and 124B are shifted from each other. Therefore, a crescent-shaped sealed space that functions as the compression chamber H3 is formed between the wrap 122B of the fixed scroll 122 and the wrap 124B of the orbiting scroll 124.
 旋回スクロール124は、その自転が阻止された状態で、後述するクランク機構240を介して、固定スクロール122の軸心周りに公転可能に配置されている。従って、スクロールユニット120は、固定スクロール122のラップ122Bと旋回スクロール124のラップ124Bとにより区画される圧縮室H3を中央部に移動させ、その容積を徐々に減少させる。その結果、スクロールユニット120は、ラップ122B及び124Bの外端部から圧縮室H3に吸入される気体冷媒を圧縮する。 The orbiting scroll 124 is disposed so as to be able to revolve around the axis of the fixed scroll 122 via a crank mechanism 240 described later in a state where the rotation is prevented. Therefore, the scroll unit 120 moves the compression chamber H3 defined by the wrap 122B of the fixed scroll 122 and the wrap 124B of the orbiting scroll 124 to the center, and gradually reduces the volume thereof. As a result, the scroll unit 120 compresses the gaseous refrigerant sucked into the compression chamber H3 from the outer ends of the wraps 122B and 124B.
 ハウジング140は、電動モータ160及びインバータ180を収容するフロントハウジング142と、スクロールユニット120を収容するセンターハウジング144と、リアハウジング146と、インバータカバー148と、を有している。そして、フロントハウジング142、センターハウジング144、リアハウジング146及びインバータカバー148が、例えば、ボルト及びワッシャを含む締結具(図示せず)によって、一体的に締結されることで、スクロール圧縮機100のハウジング140が構成されている。 The housing 140 includes a front housing 142 that houses the electric motor 160 and the inverter 180, a center housing 144 that houses the scroll unit 120, a rear housing 146, and an inverter cover 148. The front housing 142, the center housing 144, the rear housing 146, and the inverter cover 148 are integrally fastened by, for example, a fastener (not shown) including a bolt and a washer, so that the housing of the scroll compressor 100 is obtained. 140 is configured.
 フロントハウジング142は、略円筒形状の周壁部142Aと仕切壁部142Bとを有している。フロントハウジング142の内部空間は、仕切壁部142Bにより、電動モータ160を収容するための空間とインバータ180を収容するための空間とに仕切られている。周壁部142Aの一端側の開口は、インバータカバー148によって閉塞されている。また、周壁部142Aの他端側の開口は、センターハウジング144によって閉塞されている。仕切壁部142Bには、その径方向の中央部に後述する駆動軸166の一端部を回転自由に支持する、略円筒形状の支持部142B1が、周壁部142Aの他端側に向かって突設されている。 The front housing 142 has a substantially cylindrical peripheral wall 142A and a partition wall 142B. The internal space of the front housing 142 is partitioned into a space for housing the electric motor 160 and a space for housing the inverter 180 by the partition wall 142B. The opening on one end side of the peripheral wall portion 142 </ b> A is closed by the inverter cover 148. Further, the opening on the other end side of the peripheral wall portion 142 </ b> A is closed by the center housing 144. The partition wall 142B has a substantially cylindrical support 142B1 that rotatably supports one end of a drive shaft 166, which will be described later, at the center in the radial direction, and protrudes toward the other end of the peripheral wall 142A. Has been.
 また、フロントハウジング142の周壁部142A及び仕切壁部142Bとセンターハウジング144とにより、気体冷媒の吸入室H1が区画されている。吸入室H1には、周壁部142Aに形成された吸入ポートP1を介して、低圧・低温の気体冷媒が吸入される。なお、吸入室H1では、気体冷媒が電動モータ160の周囲を流通して電動モータ160を冷却可能になっており、電動モータ160一方側の空間とその他方側の空間とが連通する、1つの吸入室H1が形成されている。吸入室H1には、回転駆動される駆動軸166などの摺動箇所の潤滑のため、適量の潤滑油が貯留されている。このため、吸入室H1においては、気体冷媒は潤滑油との混合流体として流れている。 Further, the suction chamber H1 for the gaseous refrigerant is partitioned by the peripheral wall 142A and the partition wall 142B of the front housing 142 and the center housing 144. Low-pressure and low-temperature gaseous refrigerant is sucked into the suction chamber H1 through a suction port P1 formed in the peripheral wall 142A. In the suction chamber H1, gas refrigerant flows around the electric motor 160 so that the electric motor 160 can be cooled, and the space on one side of the electric motor 160 communicates with the space on the other side. A suction chamber H1 is formed. An appropriate amount of lubricating oil is stored in the suction chamber H1 in order to lubricate sliding portions such as the drive shaft 166 that is rotationally driven. For this reason, in the suction chamber H1, the gaseous refrigerant flows as a mixed fluid with the lubricating oil.
 センターハウジング144は、フロントハウジング142との締結側とは反対側が開口した略有底円筒形状をなし、その内部にスクロールユニット120を収容することができる。センターハウジング144は、円筒部144Aとその一端側の底壁部144Bとを有している。円筒部144Aと底壁部144Bとによって区画される空間に、スクロールユニット120が収容されている。円筒部144Aの他端側には、固定スクロール122が嵌合する嵌合部144A1が形成されている。従って、センターハウジング144の開口は、固定スクロール122によって閉塞されている。また、底壁部144Bは、その径方向の中央部が電動モータ160に向かって膨出するように形成されている。底壁部144Bの膨出部144B1の径方向の中央部には、駆動軸166の他端部を貫通させるための貫通孔が形成されている。そして、膨出部144B1のスクロールユニット120側には、駆動軸166の他端部を回転自由に支持するベアリング200が嵌合する嵌合部が形成されている。 The center housing 144 has a substantially bottomed cylindrical shape that is open on the side opposite to the fastening side with the front housing 142, and can accommodate the scroll unit 120 therein. The center housing 144 has a cylindrical portion 144A and a bottom wall portion 144B on one end side thereof. The scroll unit 120 is accommodated in a space defined by the cylindrical portion 144A and the bottom wall portion 144B. A fitting portion 144A1 into which the fixed scroll 122 is fitted is formed on the other end side of the cylindrical portion 144A. Therefore, the opening of the center housing 144 is closed by the fixed scroll 122. Further, the bottom wall portion 144 </ b> B is formed so that a central portion in the radial direction bulges toward the electric motor 160. A through hole for allowing the other end portion of the drive shaft 166 to penetrate is formed in the radial center portion of the bulging portion 144B1 of the bottom wall portion 144B. And the fitting part which the bearing 200 which supports the other end part of the drive shaft 166 freely rotatably is formed in the scroll unit 120 side of the bulging part 144B1.
 センターハウジング144の底壁部144Bと旋回スクロール124の底板124Aとの間には、円環形状のスラストプレート210が配置されている。底壁部144Bの外周部は、スラストプレート210を介して旋回スクロール124からのスラスト力を受ける。底壁部144B及び底板124Aのスラストプレート210と当接する部位には、シール部材(図示せず)が夫々埋設されている。 An annular thrust plate 210 is disposed between the bottom wall portion 144B of the center housing 144 and the bottom plate 124A of the orbiting scroll 124. The outer peripheral portion of the bottom wall portion 144 </ b> B receives a thrust force from the orbiting scroll 124 via the thrust plate 210. Sealing members (not shown) are embedded in the bottom wall portion 144B and the portions of the bottom plate 124A that are in contact with the thrust plate 210, respectively.
 また、底板124Aの電動モータ160側端面と底壁部144Bとの間、つまり、旋回スクロール124の固定スクロール122とは反対側の端面とセンターハウジング144との間には、背圧室H4が形成されている。センターハウジング144には、吸入室H1からスクロールユニット120のラップ122B及び124Bの外端部付近の空間H5へと気体冷媒(詳細には、気体冷媒と潤滑油との混合流体)を導入するための冷媒導入通路L1が形成されている。冷媒導入通路L1は、空間H5と吸入室H1とを連通しているため、空間H5の圧力は、吸入室H1の圧力(吸入圧力Ps)と等しい。 Further, a back pressure chamber H4 is formed between the end surface of the bottom plate 124A on the electric motor 160 side and the bottom wall portion 144B, that is, between the end surface of the orbiting scroll 124 opposite to the fixed scroll 122 and the center housing 144. Has been. A gas refrigerant (specifically, a mixed fluid of a gas refrigerant and lubricating oil) is introduced into the center housing 144 from the suction chamber H1 to the space H5 near the outer ends of the wraps 122B and 124B of the scroll unit 120. A refrigerant introduction passage L1 is formed. Since the refrigerant introduction passage L1 communicates the space H5 and the suction chamber H1, the pressure of the space H5 is equal to the pressure of the suction chamber H1 (suction pressure Ps).
 リアハウジング146は、センターハウジング144の円筒部144Aの嵌合部144A1側端部に、締結具によって締結されている。従って、固定スクロール122は、その底板122Aが嵌合部144A1とリアハウジング146との間に挟持されて固定されている。また、リアハウジング146は、センターハウジング144との締結側(一端側)が開口した略有底円筒形状をなし、円筒部146Aとその他端側の底壁部146Bとを有している。 The rear housing 146 is fastened to a fitting portion 144A1 side end portion of the cylindrical portion 144A of the center housing 144 by a fastener. Accordingly, the bottom plate 122A of the fixed scroll 122 is fixed by being sandwiched between the fitting portion 144A1 and the rear housing 146. Further, the rear housing 146 has a substantially bottomed cylindrical shape with an opening on the fastening side (one end side) with the center housing 144, and has a cylindrical portion 146A and a bottom wall portion 146B on the other end side.
 リアハウジング146の円筒部146A及び底壁部146Bと固定スクロール122の底板122Aとにより、気体冷媒の吐出室H2が区画されている。底板122Aの中央部には、圧縮冷媒の吐出通路(吐出孔)L2が形成され、吐出通路L2には、吐出室H2からスクロールユニット120への流れを規制する、例えば、リードバルブからなる逆止弁220が付設されている。吐出室H2には、スクロールユニット120の圧縮室H3で圧縮された圧縮冷媒が吐出通路L2及び逆止弁220を介して吐出される。 A gas refrigerant discharge chamber H2 is defined by the cylindrical portion 146A and the bottom wall portion 146B of the rear housing 146 and the bottom plate 122A of the fixed scroll 122. A compressed refrigerant discharge passage (discharge hole) L2 is formed at the center of the bottom plate 122A, and the discharge passage L2 restricts the flow from the discharge chamber H2 to the scroll unit 120, for example, a check valve comprising a reed valve. A valve 220 is attached. Compressed refrigerant compressed in the compression chamber H3 of the scroll unit 120 is discharged into the discharge chamber H2 through the discharge passage L2 and the check valve 220.
 リアハウジング146には、吐出室H2の気体冷媒から潤滑油を分離するためのオイルセパレータ230が配置されている。具体的には、リアハウジング146の後端部、即ち、センターハウジング144とは反対側に位置する端部には、その外周壁から内部へと向かって延びる、円形横断面を有する気液分離室230Aが形成されている。気液分離室230Aには、これと同心になるように、円形横断面を有する段付形状の内筒230Bが内挿されている。内筒230Bの基端部は、気液分離室230Aの段部230A1に係止し、その先端部は、気液分離室230Aの最奥部から所定間隔を隔てた位置まで延びている。ここで、少なくとも内筒230Bが配置されている気液分離室230Aの空間は、気体冷媒から潤滑油を分離する分離部として機能し、気液分離室230Aの最奥部に位置する略円柱形状の空間は、分離部の下方に位置し、オイルセパレータ230によって分離された潤滑油を一時的に貯留する貯留部として機能する。 In the rear housing 146, an oil separator 230 for separating the lubricating oil from the gaseous refrigerant in the discharge chamber H2 is disposed. Specifically, the rear end portion of the rear housing 146, that is, the end portion on the side opposite to the center housing 144, has a gas-liquid separation chamber having a circular cross section extending from the outer peripheral wall to the inside. 230A is formed. A stepped inner cylinder 230B having a circular cross section is inserted into the gas-liquid separation chamber 230A so as to be concentric with the gas-liquid separation chamber 230A. The base end portion of the inner cylinder 230B is locked to the step portion 230A1 of the gas-liquid separation chamber 230A, and the distal end portion extends to a position spaced apart from the innermost portion of the gas-liquid separation chamber 230A by a predetermined interval. Here, at least the space of the gas-liquid separation chamber 230A in which the inner cylinder 230B is disposed functions as a separation portion that separates the lubricating oil from the gas refrigerant, and is substantially cylindrical in shape at the innermost portion of the gas-liquid separation chamber 230A. This space is located below the separation part and functions as a storage part for temporarily storing the lubricating oil separated by the oil separator 230.
 リアハウジング146における気液分離室230Aの開口は、内筒230Bを押圧可能なボルト(図示せず)によって閉塞されている。ボルトには、その頭部の端面から軸部の先端部へと貫通する貫通孔が形成されている。そして、ボルトの頭部には、オイルセパレータ230によって潤滑油が分離された気体冷媒を図示しない凝縮器へと導くために、配管を接続する吐出ポートP2が形成されている。また、気液分離室230Aは、その内周面の接線方向に延びる導入ポート146Cを介して、吐出室H2に連通している。 The opening of the gas-liquid separation chamber 230A in the rear housing 146 is closed by a bolt (not shown) that can press the inner cylinder 230B. The bolt is formed with a through-hole penetrating from the end surface of the head portion to the tip end portion of the shaft portion. A discharge port P2 for connecting piping is formed at the head of the bolt in order to guide the gaseous refrigerant from which the lubricating oil is separated by the oil separator 230 to a condenser (not shown). The gas-liquid separation chamber 230A communicates with the discharge chamber H2 via an introduction port 146C extending in the tangential direction of the inner peripheral surface thereof.
 従って、スクロールユニット120によって圧縮された気体冷媒は、吐出室H2を経て、導入ポート146Cからオイルセパレータ230へと導入される。オイルセパレータ230へと導入された気体冷媒は、図2に示すように、気液分離室230Aの内周面と内筒230Bの外周面により形成される円環形状の空間を旋回しつつ下方へと流れる。このとき、気体冷媒に含まれる潤滑油のミストは、気体冷媒が旋回するときに発生する遠心力を受け、その外方へと移動する。潤滑油のミストが外方へと移動すると、気液分離室230Aの内周面に付着し、重力を利用してその底部へと滴下される。そして、オイルセパレータ230により分離された潤滑油は、後述する圧力供給通路L3へと導かれる。一方、潤滑油が分離された気体冷媒は、内筒230Bの先端部からその内部空間へと入り込み、その圧力を利用してボルトの頭部に形成された吐出ポートP2から吐出される。 Therefore, the gaseous refrigerant compressed by the scroll unit 120 is introduced into the oil separator 230 from the introduction port 146C through the discharge chamber H2. As shown in FIG. 2, the gas refrigerant introduced into the oil separator 230 moves downward while swirling in an annular space formed by the inner peripheral surface of the gas-liquid separation chamber 230A and the outer peripheral surface of the inner cylinder 230B. And flow. At this time, the mist of the lubricating oil contained in the gas refrigerant receives a centrifugal force generated when the gas refrigerant swirls and moves outward. When the lubricant mist moves outward, it adheres to the inner peripheral surface of the gas-liquid separation chamber 230A and is dropped onto the bottom using gravity. Then, the lubricating oil separated by the oil separator 230 is guided to a pressure supply passage L3 described later. On the other hand, the gaseous refrigerant from which the lubricating oil has been separated enters the internal space from the tip of the inner cylinder 230B, and is discharged from a discharge port P2 formed in the head of the bolt using the pressure.
 なお、図1では、潤滑油の混合前又は分離後の気体冷媒の流れは斜線付き矢印で示され、潤滑油と混合された気体冷媒(混合流体)の流れは黒塗り矢印で示され、気体冷媒から分離された潤滑油の流れは白抜き矢印で示されている。 In FIG. 1, the flow of the gaseous refrigerant before or after mixing the lubricating oil is indicated by a hatched arrow, and the flow of the gaseous refrigerant (mixed fluid) mixed with the lubricating oil is indicated by a black arrow. The flow of lubricating oil separated from the refrigerant is indicated by white arrows.
 電動モータ160は、例えば、三相交流モータからなり、ロータ162と、ロータ162の径方向外側に配置されるステータコアユニット164と、を有している。そして、例えば、車載のバッテリ(図示せず)からの直流電流が、インバータ180により交流電流に変換され、電動モータ160に供給される。 The electric motor 160 is composed of, for example, a three-phase AC motor, and includes a rotor 162 and a stator core unit 164 disposed on the radially outer side of the rotor 162. For example, a direct current from an on-vehicle battery (not shown) is converted into an alternating current by the inverter 180 and supplied to the electric motor 160.
 ロータ162は、その径方向中心に形成された軸孔に圧入される駆動軸166を介して、ステータコアユニット164の径方向内側で回転可能に支持されている。駆動軸166の一端部は、フロントハウジング142の支持部142B1に回転可能に支持されている。駆動軸166の他端部は、センターハウジング144に形成された貫通孔を貫通して、ベアリング200によって回転可能に支持されている。インバータ180からの給電により、ステータコアユニット164に磁界が発生すると、ロータ162に回転力が作用して駆動軸166が回転駆動される。駆動軸166の他端部は、クランク機構240を介して、旋回スクロール124に連結されている。 The rotor 162 is rotatably supported on the radially inner side of the stator core unit 164 via a drive shaft 166 that is press-fitted into a shaft hole formed at the center in the radial direction. One end portion of the drive shaft 166 is rotatably supported by the support portion 142B1 of the front housing 142. The other end of the drive shaft 166 passes through a through hole formed in the center housing 144 and is rotatably supported by the bearing 200. When a magnetic field is generated in the stator core unit 164 by power feeding from the inverter 180, a rotational force acts on the rotor 162, and the drive shaft 166 is rotationally driven. The other end of the drive shaft 166 is connected to the orbiting scroll 124 via the crank mechanism 240.
 クランク機構240は、旋回スクロール124の底板124Aの背圧室H4側端面に突出形成された略円筒形状のボス部240Aと、駆動軸166の他端部に設けられたクランク240Bに偏心状態で取り付けられた偏心ブッシュ240Cと、を有している。偏心ブッシュ240Cは、ボス部240Aに回転可能に支持されている。なお、駆動軸166の他端部には、旋回スクロール124の動作時の遠心力に対抗するバランサウェイト240Dが取り付けられている。従って、旋回スクロール124は、その自転が抑制された状態で、クランク機構240を介して、固定スクロール122の軸心周りに公転可能になっている。ここで、スクロールユニット120、駆動軸166及びクランク機構240が、圧縮機構の一例として挙げられる。 The crank mechanism 240 is attached in an eccentric state to a substantially cylindrical boss portion 240A that protrudes from the end surface on the back pressure chamber H4 side of the bottom plate 124A of the orbiting scroll 124 and a crank 240B that is provided at the other end portion of the drive shaft 166. And an eccentric bush 240C. The eccentric bush 240C is rotatably supported by the boss portion 240A. Note that a balancer weight 240 </ b> D is attached to the other end portion of the drive shaft 166 to resist centrifugal force during the operation of the orbiting scroll 124. Therefore, the orbiting scroll 124 can revolve around the axis of the fixed scroll 122 via the crank mechanism 240 in a state where the rotation of the orbiting scroll 124 is suppressed. Here, the scroll unit 120, the drive shaft 166, and the crank mechanism 240 are cited as examples of the compression mechanism.
 図3は、スクロール圧縮機100における、冷媒及び潤滑油の流れを説明するためのブロック図である。 FIG. 3 is a block diagram for explaining the flow of refrigerant and lubricating oil in the scroll compressor 100.
 図1及び図3に示すように、蒸発器からの低圧・低温の気体冷媒は、吸入ポートP1を介して吸入室H1に導入され、その後、冷媒導入通路L1を介してスクロールユニット120の外端部付近の空間H5に導かれる。そして、空間H5の気体冷媒は、スクロールユニット120の圧縮室H3に取り込まれて圧縮される。圧縮室H3で圧縮された圧縮冷媒は、吐出通路L2及び逆止弁220を介して吐出室H2に吐出され、その後、吐出室H2から導入ポート146Cを介してオイルセパレータ230に導かれる。オイルセパレータ230によって潤滑油が分離された気体冷媒は、吐出ポートP2を通って凝縮器へと吐出される。このようにして、吸入室H1を介して流入される気体冷媒を圧縮室H3で圧縮し、この圧縮冷媒を吐出室H2を介して吐出するスクロールユニット120が構成される。 As shown in FIGS. 1 and 3, the low-pressure / low-temperature gas refrigerant from the evaporator is introduced into the suction chamber H1 through the suction port P1, and then the outer end of the scroll unit 120 through the refrigerant introduction passage L1. To the space H5 near the section. The gaseous refrigerant in the space H5 is taken into the compression chamber H3 of the scroll unit 120 and compressed. The compressed refrigerant compressed in the compression chamber H3 is discharged to the discharge chamber H2 through the discharge passage L2 and the check valve 220, and is then guided from the discharge chamber H2 to the oil separator 230 through the introduction port 146C. The gaseous refrigerant from which the lubricating oil is separated by the oil separator 230 is discharged to the condenser through the discharge port P2. In this way, the scroll unit 120 that compresses the gaseous refrigerant flowing in through the suction chamber H1 in the compression chamber H3 and discharges the compressed refrigerant through the discharge chamber H2 is configured.
 ここで、図1に示すように、リアハウジング146の後端部には、背圧室H4の圧力調整用の背圧制御弁250が更に組み込まれている。 Here, as shown in FIG. 1, a back pressure control valve 250 for adjusting the pressure of the back pressure chamber H4 is further incorporated in the rear end portion of the rear housing 146.
 背圧制御弁250は、吸入室H1の吸入圧力Ps及び吐出室H2の吐出圧力Pdに応じて作動し、背圧室H4の背圧Pmが吸入圧力Ps及び吐出圧力Pdに応じた目標背圧Pcに近づくように、その弁開度を自動的に調整する、公知の機械式(自律式)の流量制御弁である。 The back pressure control valve 250 operates according to the suction pressure Ps of the suction chamber H1 and the discharge pressure Pd of the discharge chamber H2, and the back pressure Pm of the back pressure chamber H4 is a target back pressure according to the suction pressure Ps and the discharge pressure Pd. This is a known mechanical (autonomous) flow control valve that automatically adjusts the valve opening so as to approach Pc.
 スクロール圧縮機100は、図1及び図3に示すように、冷媒導入通路L1及び吐出通路L2に加えて、圧力供給通路L3及び放圧通路L4を備えている。 As shown in FIGS. 1 and 3, the scroll compressor 100 includes a pressure supply passage L3 and a pressure release passage L4 in addition to the refrigerant introduction passage L1 and the discharge passage L2.
 背圧制御弁250は、圧力供給通路L3の一部を構成するように、圧力供給通路L3の途上に配置されている。従って、オイルセパレータ230によって分離された潤滑油は、背圧制御弁250により適宜減圧されつつ、圧力供給通路L3を介して背圧室H4に供給される。つまり、背圧室H4の入口側(上流側)に接続される圧力供給通路L3の開度を背圧制御弁250によって調整することで、背圧室H4へと流入する潤滑油の流量を増減して背圧Pmを調整する。 The back pressure control valve 250 is disposed in the middle of the pressure supply passage L3 so as to constitute a part of the pressure supply passage L3. Accordingly, the lubricating oil separated by the oil separator 230 is supplied to the back pressure chamber H4 via the pressure supply passage L3 while being appropriately decompressed by the back pressure control valve 250. That is, by adjusting the opening of the pressure supply passage L3 connected to the inlet side (upstream side) of the back pressure chamber H4 with the back pressure control valve 250, the flow rate of the lubricating oil flowing into the back pressure chamber H4 is increased or decreased. Then, the back pressure Pm is adjusted.
 放圧通路L4は、背圧室H4と吸入室H1とを連通する。放圧通路L4の途上には、オリフィスOLが配置されている。また、オリフィスOLが配置される放圧通路L4は、駆動軸166を貫通して形成され、駆動軸166の中心軸に沿うように延びている。オリフィスOLは、例えば、駆動軸166の吸入室H1側端部に配置されている。背圧室H4の潤滑油は、オリフィスOLにより流量が制限されつつ、吸入室H1へと戻される。 The pressure relief passage L4 communicates the back pressure chamber H4 and the suction chamber H1. An orifice OL is arranged in the middle of the pressure release passage L4. The pressure release passage L4 in which the orifice OL is disposed is formed so as to penetrate the drive shaft 166 and extend along the central axis of the drive shaft 166. For example, the orifice OL is disposed at the end of the drive shaft 166 on the suction chamber H1 side. The lubricating oil in the back pressure chamber H4 is returned to the suction chamber H1 while the flow rate is limited by the orifice OL.
 そして、背圧室H4の背圧Pmにより、旋回スクロール124が固定スクロール122に向けて押し付けられる。スクロールユニット120の圧縮動作中において、旋回スクロール124の底板124Aの背圧室H4側端面に作用する背圧Pmの合力が底板124Aの圧縮室H3側端面に作用する圧縮反力より小さい、つまり、背圧不足状態になると、旋回スクロール124のラップ124Bの先端部と固定スクロール122の底板122Aとの間に隙間が生じると共に、旋回スクロール124の底板124Aと固定スクロール122のラップ122Bの先端部との間に隙間が生じて、圧縮機の体積効率が低下するおそれがある。このため、合力が圧縮反力より大きくなるように、背圧制御弁250によって背圧Pmが調整される。 Then, the orbiting scroll 124 is pressed toward the fixed scroll 122 by the back pressure Pm in the back pressure chamber H4. During the compression operation of the scroll unit 120, the resultant force of the back pressure Pm acting on the back pressure chamber H4 side end surface of the bottom plate 124A of the orbiting scroll 124 is smaller than the compression reaction force acting on the compression chamber H3 side end surface of the bottom plate 124A. When the back pressure is insufficient, a gap is generated between the tip of the wrap 124B of the orbiting scroll 124 and the bottom plate 122A of the fixed scroll 122, and the bottom plate 124A of the orbiting scroll 124 and the tip of the wrap 122B of the fixed scroll 122 There may be a gap between them, which may reduce the volumetric efficiency of the compressor. For this reason, the back pressure Pm is adjusted by the back pressure control valve 250 so that the resultant force is greater than the compression reaction force.
 一方、背圧室H4の背圧Pmによる合力が圧縮反力よりも高すぎる、つまり、背圧過剰状態になると、固定スクロール122と旋回スクロール124との間の摩擦力が大きくなるため、圧縮機の機械効率が低下する。このため、背圧制御弁250は、背圧Pmが目標背圧Pcを超えた場合、背圧過剰状態にならないように、背圧Pmを低下させて目標背圧Pcに近づける。 On the other hand, when the resultant force due to the back pressure Pm in the back pressure chamber H4 is too higher than the compression reaction force, that is, when the back pressure is excessive, the frictional force between the fixed scroll 122 and the orbiting scroll 124 becomes large. The machine efficiency is reduced. For this reason, when the back pressure Pm exceeds the target back pressure Pc, the back pressure control valve 250 reduces the back pressure Pm so as to approach the target back pressure Pc so that the back pressure does not become excessive.
 ところで、オイルセパレータ230によって分離された潤滑油には、例えば、スラッジなどのコンタミネーションが混入している。オイルセパレータ230の下流に位置する背圧制御弁250にコンタミネーションが導入されると、例えば、背圧制御弁250の弁体が円滑に移動できなくなり、背圧室H4の背圧Pmを目標背圧Pcに調整できなくなってしまうおそれがある。また、オイルセパレータ230の下流に位置するオリフィスOLにコンタミネーションが導入されると、例えば、潤滑油の流路が閉塞したり狭くなったりして、背圧室H4から潤滑油を吸入室H1に戻すことが困難となり、背圧室H4の背圧Pmを目標背圧Pcに調整できなくなってしまうおそれがある。 Incidentally, contamination such as sludge is mixed in the lubricating oil separated by the oil separator 230. When contamination is introduced into the back pressure control valve 250 located downstream of the oil separator 230, for example, the valve body of the back pressure control valve 250 cannot move smoothly, and the back pressure Pm in the back pressure chamber H4 is reduced to the target back pressure. There is a possibility that the pressure Pc cannot be adjusted. When contamination is introduced into the orifice OL located downstream of the oil separator 230, for example, the flow path of the lubricating oil is blocked or narrowed, and the lubricating oil is transferred from the back pressure chamber H4 to the suction chamber H1. It may be difficult to return, and the back pressure Pm in the back pressure chamber H4 may not be adjusted to the target back pressure Pc.
 そこで、オイルセパレータ230において、潤滑油に混入したコンタミネーションを沈殿させて捕捉するため、分離部と貯留部との間に、分離部により分離した潤滑油を一時的に貯留し、その上澄みを貯留部に排出する捕捉部材を配設する。 Therefore, in the oil separator 230, in order to precipitate and capture the contamination mixed in the lubricating oil, the lubricating oil separated by the separation unit is temporarily stored between the separation unit and the storage unit, and the supernatant is stored. A capturing member to be discharged is disposed in the section.
 図4は、コンタミネーションを捕捉する捕捉部材の第1実施形態を示す。
 内筒230Bの先端部と気液分離室230Aの底壁との間には、ハット形状の隔壁をなす捕捉部材260が配設されている。捕捉部材260は、薄板円環形状の円環部262と、円環部262の内周縁から立ち上がる円筒形状の円筒部264と、円筒部264の先端開口を閉塞する円板形状の円板部266と、を含んでいる。ここで、円筒部264が、分離部に向けて立ち上がる部分の一例として挙げられる。
FIG. 4 shows a first embodiment of a capture member that captures contamination.
A trapping member 260 that forms a hat-shaped partition wall is disposed between the tip of the inner cylinder 230B and the bottom wall of the gas-liquid separation chamber 230A. The capturing member 260 includes a thin circular ring part 262, a cylindrical cylindrical part 264 that rises from the inner peripheral edge of the circular ring part 262, and a circular disk part 266 that closes the tip opening of the cylindrical part 264. And. Here, the cylindrical part 264 is an example of a part that rises toward the separation part.
 円環部262の外周縁は、気液分離室230Aの横断面上において、その内周面に固定されている。また、円筒部264には、その横断面上において内周面と外周面とを連通する、複数の小孔264Aが形成されている。小孔264Aの開口面積は、ここを潤滑油が通過可能なように、例えば、潤滑油の粘性などを考慮して適宜決定されている。小孔264Aの形成位置は、例えば、潤滑油の捕捉量を考慮して適宜決定されている。なお、円板部266は、平面に限らず、その中央部が上方に突出する、球面の一部、円錐などとすることもできる。 The outer peripheral edge of the annular part 262 is fixed to the inner peripheral surface of the gas-liquid separation chamber 230A. The cylindrical portion 264 is formed with a plurality of small holes 264A that connect the inner peripheral surface and the outer peripheral surface on the cross section thereof. The opening area of the small hole 264A is appropriately determined in consideration of, for example, the viscosity of the lubricating oil so that the lubricating oil can pass therethrough. The formation position of the small hole 264A is appropriately determined in consideration of, for example, the amount of captured lubricating oil. Note that the disc portion 266 is not limited to a flat surface, and may be a part of a spherical surface, a cone, or the like with a central portion protruding upward.
 かかる捕捉部材260によれば、気液分離室230Aの内周面に付着して滴下した潤滑油OILは、気液分離室230Aの内周面、円環部262の上面及び円筒部264の外周面によって区画される略円環形状の領域で受け止められる。この領域で受け止められた潤滑油OILは、円筒部264の小孔264Aを通って、貯留部として機能する気液分離室230Aの下部へと排出される。このとき、潤滑油OILは、略円環形状の領域で一旦受け止められた後、その上澄みが円筒部264の小孔264Aを通って気液分離室230Aの下部へと排出されるため、潤滑油OILに混入するコンタミネーションCONを沈殿させて捕捉することができる。 According to the trapping member 260, the lubricating oil OIL that adheres to and drops on the inner peripheral surface of the gas-liquid separation chamber 230A is the inner peripheral surface of the gas-liquid separation chamber 230A, the upper surface of the annular portion 262, and the outer periphery of the cylindrical portion 264. It is received by a substantially ring-shaped region partitioned by a surface. The lubricating oil OIL received in this region passes through the small hole 264A of the cylindrical portion 264 and is discharged to the lower portion of the gas-liquid separation chamber 230A that functions as a storage portion. At this time, since the lubricating oil OIL is once received in the substantially annular region, the supernatant is discharged to the lower part of the gas-liquid separation chamber 230A through the small hole 264A of the cylindrical portion 264. Contamination CON contaminated with OIL can be precipitated and captured.
 従って、オイルセパレータ230の下流に位置する背圧制御弁250及びオリフィスOLなどに導入されるコンタミネーションが少なくなり、コンタミネーションによる制御不良や潤滑不良などが抑制され、スクロール圧縮機100の耐久性を向上させることができる。なお、オイルセパレータ230で捕集できなかった軽微なコンタミネーションは、気体冷媒とともに外部へと排出され、例えば、冷媒回路に配設されたレシーバドライヤなどで捕捉される。 Accordingly, contamination introduced into the back pressure control valve 250 and the orifice OL located downstream of the oil separator 230 is reduced, and control failure and lubrication failure due to contamination are suppressed, and the durability of the scroll compressor 100 is improved. Can be improved. Note that the minor contamination that could not be collected by the oil separator 230 is discharged to the outside together with the gaseous refrigerant, and is captured by, for example, a receiver dryer provided in the refrigerant circuit.
 略円環形状の領域に滴下した潤滑油の一部は、内筒230Bの外周を旋回する気体冷媒の旋回流によって巻き上げられ、内筒230Bの先端部から吸い込まれてしまう可能性がある。このため、潤滑油の巻き上げを抑制するため、図5に示すように、捕捉部材260の上部、具体的には、その円板部266の外周縁に、薄板円板形状をなす鍔部268を一体化するようにしてもよい。このようにすれば、潤滑油の一部が旋回流によって巻き上げられようとしても、鍔部268の下面に当たってその下方へと戻るため、内筒230Bの先端部から吸い込まれる潤滑油の絶対量を低減することができる。なお、鍔部268は、以下に説明する捕捉部材にも適用可能である。 A part of the lubricating oil dropped on the substantially annular region may be wound up by the swirling flow of the gas refrigerant swirling around the outer periphery of the inner cylinder 230B and sucked from the tip of the inner cylinder 230B. Therefore, in order to suppress the rolling-up of the lubricating oil, as shown in FIG. 5, a flange portion 268 having a thin disc shape is formed on the upper portion of the capturing member 260, specifically, on the outer peripheral edge of the disc portion 266. You may make it integrate. In this way, even if a part of the lubricating oil is wound up by the swirling flow, it hits the lower surface of the flange 268 and returns to the lower side, so the absolute amount of lubricating oil sucked from the tip of the inner cylinder 230B is reduced. can do. In addition, the collar part 268 is applicable also to the capture member demonstrated below.
 図6は、コンタミネーションを捕捉する捕捉部材の第2実施形態を示す。
 内筒230Bの先端部と気液分離室230Aの底壁との間には、ハット形状の隔壁をなす捕捉部材270が配設されている。捕捉部材270は、半径方向の中央部が下方に突出した薄板円環形状の円環部272と、円環部272の内周縁から立ち上がる裁頭円錐形状の円錐部274と、円錐部274の先端開口を閉塞しつつ中央部が上方に突出した円板形状の円板部276と、を含んでいる。ここで、円錐部274が、分離部に向けて立ち上がる部分の一例として挙げられる。
FIG. 6 shows a second embodiment of a capture member that captures contamination.
A trapping member 270 that forms a hat-shaped partition is disposed between the tip of the inner cylinder 230B and the bottom wall of the gas-liquid separation chamber 230A. The capturing member 270 includes a thin annular plate-shaped annular portion 272 whose central portion in the radial direction protrudes downward, a truncated cone-shaped cone portion 274 that rises from the inner peripheral edge of the annular portion 272, and the tip of the cone portion 274. And a disk-shaped disk part 276 whose upper part protrudes upward while closing the opening. Here, the conical part 274 is mentioned as an example of the part which stands up toward the separation part.
 円環部272の外周縁は、気液分離室230Aの横断面上において、その内周面に固定されている。また、円錐部274には、その横断面上において内周面と外周面とを連通する、複数の小孔274Aが形成されている。小孔274Aの開口面積は、ここを潤滑油が通過可能なように、例えば、潤滑油の粘性などを考慮して適宜決定されている。小孔274Aの形成位置は、例えば、潤滑油の捕捉量を考慮して適宜決定されている。 The outer peripheral edge of the annular portion 272 is fixed to the inner peripheral surface of the gas-liquid separation chamber 230A. The conical portion 274 is formed with a plurality of small holes 274 </ b> A that connect the inner peripheral surface and the outer peripheral surface on the cross section. The opening area of the small hole 274A is appropriately determined in consideration of, for example, the viscosity of the lubricating oil so that the lubricating oil can pass therethrough. The formation position of the small hole 274A is appropriately determined in consideration of, for example, the amount of captured lubricating oil.
 かかる捕捉部材270によれば、気液分離室230Aの内周面に付着して滴下した潤滑油OILは、少なくとも、半径方向の中央部が下方に突出した円環部272の上面で受け止められる。円環部272で受け止められた潤滑油は、円錐部274の小孔274Aを通って、貯留部として機能する気液分離室230Aの下方へと排出される。このとき、潤滑油OILは、円環部272で一旦受け止められた後、その上澄みが円錐部274の小孔274Aを通って気液分離室230Aの下部へと排出されるため、潤滑油OILに混入するコンタミネーションCONを沈殿させて捕捉することができる。 According to the trapping member 270, the lubricating oil OIL that adheres to and drops on the inner peripheral surface of the gas-liquid separation chamber 230A is received at least on the upper surface of the annular portion 272 whose central portion in the radial direction protrudes downward. The lubricating oil received by the annular portion 272 passes through the small hole 274A of the conical portion 274 and is discharged below the gas-liquid separation chamber 230A that functions as a storage portion. At this time, the lubricating oil OIL is once received by the annular portion 272, and then the supernatant is discharged to the lower part of the gas-liquid separation chamber 230A through the small hole 274A of the conical portion 274. Contaminating contamination CON can be precipitated and captured.
 従って、第1実施形態と同様に、オイルセパレータ230の下流に位置する背圧制御弁250及びオリフィスOLなどに導入されるコンタミネーションが少なくなり、コンタミネーションによる制御不良や潤滑不良などが抑制され、スクロール圧縮機100の耐久性を向上させることができる。なお、捕捉部材270においては、円錐部274を使用せずに、円環部272の内周縁に円板部276の外周縁を直接連結することもできる。この場合、円環部272及び円板部276の少なくとも一方に、潤滑油を流す複数の小孔を形成することができ、この部分が分離部に向けて立ち上がる部分の一例として挙げられる。 Accordingly, as in the first embodiment, the contamination introduced into the back pressure control valve 250 and the orifice OL located downstream of the oil separator 230 is reduced, and control failures and lubrication failures due to contamination are suppressed. The durability of the scroll compressor 100 can be improved. In the capturing member 270, the outer peripheral edge of the disc part 276 can be directly connected to the inner peripheral edge of the annular part 272 without using the conical part 274. In this case, a plurality of small holes through which the lubricating oil can flow can be formed in at least one of the annular portion 272 and the disc portion 276, which is an example of a portion that rises toward the separation portion.
 図7は、コンタミネーションを捕捉する捕捉部材の第3実施形態を示す。
 内筒230Bの先端部と気液分離室230Aの底壁との間には、以下で説明する形状を有する隔壁をなす捕捉部材280が配設されている。捕捉部材280は、薄板円環形状の円環部282と、円環部282の内周縁から立ち上がる円筒形状の円筒部284と、円筒部284の上端部から半径外方へと延びる薄板円環形状の鍔部286と、を含んでいる。ここで、円筒部284が、分離部に向けて立ち上がる部分の一例として挙げられる。
FIG. 7 shows a third embodiment of a capture member that captures contamination.
A trapping member 280 that forms a partition having a shape described below is disposed between the tip of the inner cylinder 230B and the bottom wall of the gas-liquid separation chamber 230A. The capture member 280 includes a thin annular ring portion 282, a cylindrical cylindrical portion 284 that rises from the inner peripheral edge of the annular portion 282, and a thin annular ring shape that extends radially outward from the upper end of the cylindrical portion 284. And the collar portion 286. Here, the cylindrical part 284 is mentioned as an example of the part which stands up toward the separation part.
 円環部282の外周縁は、気液分離室230Aの横断面上において、その内周面に固定されている。また、円筒部284には、その横断面上において内周面と外周面とを連通する、複数の小孔284Aが形成されている。小孔284Aの開口面積は、ここを潤滑油が通過可能なように、例えば、潤滑油の粘性などを考慮して適宜決定されている。小孔284Aの形成位置は、例えば、潤滑油の捕捉量を考慮して適宜決定されている。なお、鍔部286は、図5に示す鍔部268と同様に、捕捉部材280で受け止められた潤滑油の一部が巻き上げられることを抑制する。 The outer peripheral edge of the annular portion 282 is fixed to the inner peripheral surface of the gas-liquid separation chamber 230A. The cylindrical portion 284 is formed with a plurality of small holes 284A that connect the inner peripheral surface and the outer peripheral surface on the cross section. The opening area of the small hole 284A is appropriately determined in consideration of, for example, the viscosity of the lubricating oil so that the lubricating oil can pass therethrough. The position where the small hole 284A is formed is appropriately determined in consideration of, for example, the amount of lubricating oil captured. In addition, the collar part 286 suppresses that a part of lubricating oil received with the capture member 280 is wound up similarly to the collar part 268 shown in FIG.
 かかる捕捉部材280によれば、気液分離室230Aの内周面に付着して滴下した潤滑油OILは、気液分離室230Aの内周面、円環部282の上面及び円筒部284の外周面によって区画される略円環形状の領域で受け止められる。この領域で受け止められた潤滑油OILは、円筒部284の小孔284Aを通って、貯留部として機能する気液分離室230Aの下部へと排出される。このとき、潤滑油OILは、略円環形状の領域で一旦受け止められた後、その上澄みが円筒部284の小孔284Aを通って気液分離室230Aの下部へと排出されるため、潤滑油OILに混入するコンタミネーションCONを沈殿させて捕捉することができる。 According to the trapping member 280, the lubricating oil OIL attached and dripped onto the inner peripheral surface of the gas-liquid separation chamber 230A is the inner peripheral surface of the gas-liquid separation chamber 230A, the upper surface of the annular portion 282, and the outer periphery of the cylindrical portion 284. It is received by a substantially ring-shaped region partitioned by a surface. The lubricating oil OIL received in this region passes through the small hole 284A of the cylindrical portion 284 and is discharged to the lower portion of the gas-liquid separation chamber 230A that functions as a storage portion. At this time, the lubricating oil OIL is once received in a substantially ring-shaped region, and then the supernatant is discharged to the lower portion of the gas-liquid separation chamber 230A through the small hole 284A of the cylindrical portion 284. Contamination CON contaminated with OIL can be precipitated and captured.
 また、円筒部284の上端開口が閉塞されていないので、捕捉部材280の構成部品が少なくなり、その重量を低減することができる。なお、円筒部284の上端開口が閉塞されていなくとも、潤滑油OILは気液分離室230Aの内周面に沿って滴下するので、円筒部284の上端開口を通って、その下部へと潤滑油OILが直接滴下する可能性は少ない。ここで、円筒部284の上端開口が、分離部と貯留部とを連通する連通孔の一例として挙げられる。 Further, since the upper end opening of the cylindrical portion 284 is not closed, the number of components of the capturing member 280 is reduced, and its weight can be reduced. Even if the upper end opening of the cylindrical portion 284 is not closed, the lubricating oil OIL is dripped along the inner peripheral surface of the gas-liquid separation chamber 230A, so that the lubricating oil passes through the upper end opening of the cylindrical portion 284 and is lubricated to the lower portion. There is little possibility that oil OIL will drop directly. Here, the upper end opening of the cylindrical portion 284 is an example of a communication hole that allows the separation portion and the storage portion to communicate with each other.
 従って、第1実施形態及び第2実施形態と同様に、オイルセパレータ230の下流に位置する背圧制御弁250及びオリフィスOLなどに導入されるコンタミネーションが少なくなり、コンタミネーションによる制御不良や潤滑不良などが抑制され、スクロール圧縮機100の耐久性を向上させることができる。なお、潤滑油の一部が巻き上げられる可能性が少ない場合には、鍔部286を省略することもできる。 Accordingly, as in the first and second embodiments, contamination introduced into the back pressure control valve 250 and the orifice OL located downstream of the oil separator 230 is reduced, resulting in poor control and poor lubrication due to contamination. And the durability of the scroll compressor 100 can be improved. In addition, when there is little possibility that a part of lubricating oil is wound up, the collar part 286 can also be abbreviate | omitted.
 図8は、捕捉部材の変形例を示す。
 変形例に係る捕捉部材290は、上方に向かうにつれて横断面積が徐々に小さくなる裁頭円錐形状の円錐部292と、円錐部292の上端部から半径外方へと延びる薄板円環形状の鍔部294と、を含んでいる。ここで、円錐部292の中間部が、分離部に向けて立ち上がる部分の一例として挙げられる。円錐部292の下端部の外周縁は、気液分離室230Aの内周面に固定されている。また、円錐部292には、その横断面上において内周面と外周面とを連通する、複数の小孔292Aが形成されている。
FIG. 8 shows a modification of the capturing member.
The capturing member 290 according to the modified example includes a truncated cone-shaped cone portion 292 that gradually decreases in cross-sectional area as it goes upward, and a thin annular plate-shaped flange portion that extends radially outward from the upper end portion of the cone portion 292. 294. Here, the intermediate portion of the conical portion 292 is an example of a portion that rises toward the separation portion. The outer peripheral edge of the lower end portion of the conical portion 292 is fixed to the inner peripheral surface of the gas-liquid separation chamber 230A. Further, the conical portion 292 is formed with a plurality of small holes 292A that connect the inner peripheral surface and the outer peripheral surface on the cross section thereof.
 そして、気液分離室230Aの内周面と円錐部292の外周面とによって区画される略円環形状の領域は、気液分離室230Aの内周壁に沿って滴下した潤滑油OILを受け止める。この領域で受け止められた潤滑油OILは、円錐部292の小孔292Aを通って、貯留部として機能する気液分離室230Aの下部へと排出される。なお、この捕捉部材290による作用及び効果は、上述した第1実施形態~第3実施形態と同様であるため、重複説明を避けるために、その説明を省略するものとする。必要があれば、先の説明を参照されたい。 Then, the substantially ring-shaped region defined by the inner peripheral surface of the gas-liquid separation chamber 230A and the outer peripheral surface of the conical portion 292 receives the lubricating oil OIL dripped along the inner peripheral wall of the gas-liquid separation chamber 230A. The lubricating oil OIL received in this region passes through the small hole 292A of the conical portion 292 and is discharged to the lower portion of the gas-liquid separation chamber 230A that functions as a storage portion. Since the action and effect of the capturing member 290 are the same as those of the first to third embodiments described above, the description thereof will be omitted to avoid redundant description. Please refer to the previous explanation if necessary.
 このように、潤滑油に混入したコンタミネーションを捕捉する捕捉部材は、種々の形状をとることができる。即ち、捕捉部材は、少なくとも、分離部により分離した潤滑油を一時的に貯留し、その上澄みを貯留部に排出する機能を有する形状をなしていればよい。なお、従来技術と同様に、背圧制御弁250にフィルタを備えるようにしても、ここに導入されるコンタミネーションの絶対量が少なくなるので、これが短時間で詰まるようなことはない。 Thus, the capturing member that captures contamination mixed in the lubricating oil can take various shapes. That is, the capturing member only needs to have at least a shape having a function of temporarily storing the lubricating oil separated by the separating portion and discharging the supernatant to the storing portion. As in the prior art, even if the back pressure control valve 250 is provided with a filter, the absolute amount of contamination introduced here is reduced, so that it does not clog in a short time.
 以上説明した実施形態では、圧縮機としては、スクロール圧縮機を前提としたが、往復圧縮機、斜板式圧縮機、ロータリーピストン圧縮機、スライドベーン型圧縮機などであってもよい。また、オイルセパレータとしては、遠心分離式に限らず、例えば、ラビリンス通路により気体冷媒から潤滑油を分離する方式であってもよい。 In the embodiment described above, the compressor is assumed to be a scroll compressor, but it may be a reciprocating compressor, a swash plate compressor, a rotary piston compressor, a slide vane compressor, or the like. Further, the oil separator is not limited to the centrifugal separation type, and may be a method of separating the lubricating oil from the gaseous refrigerant through a labyrinth passage, for example.
  100 スクロール圧縮機(圧縮機)
  230 オイルセパレータ
  260 捕捉部材
  264 円筒部
  264A 小孔
  268 鍔部
  270 捕捉部材
  274 円錐部
  274A 小孔
  280 捕捉部材
  284 円筒部
  284A 小孔
  286 鍔部
  290 捕捉部材
  292 円錐部
  292A 小孔
  294 鍔部
  OIL 潤滑油
100 scroll compressor (compressor)
230 Oil separator 260 Capturing member 264 Cylindrical portion 264A Small hole 268 Ridge portion 270 Capturing member 274 Conical portion 274A Small hole 280 Capturing member 284 Cylindrical portion 284A Small hole 286 Ridge portion 290 Capturing member 292 Conical portion 292A Small hole 294 Spear portion OIL Lubrication oil

Claims (5)

  1.  遠心力を利用して作動流体から潤滑油を分離する分離部、及び、前記分離部の下方に位置し、当該分離部により分離された潤滑油を貯留する貯留部を有するオイルセパレータを備えた圧縮機であって、
     前記分離部と前記貯留部との間に、当該分離部により分離された潤滑油を一時的に貯留し、その上澄みを前記貯留部に排出する捕捉部材が配設された、
     圧縮機。
    A compression unit including an oil separator having a separation unit that separates the lubricating oil from the working fluid using centrifugal force, and a storage unit that is located below the separation unit and stores the lubricating oil separated by the separation unit. Machine,
    Between the separation part and the storage part, a capture member that temporarily stores the lubricating oil separated by the separation part and discharges the supernatant to the storage part is disposed,
    Compressor.
  2.  前記捕捉部材は、前記分離部に向けて立ち上がる部分を有し、当該部分に潤滑油の上澄みを通過させる少なくとも1つの小孔が形成された、
     請求項1に記載の圧縮機。
    The capture member has a portion that rises toward the separation portion, and at least one small hole that allows the supernatant of the lubricating oil to pass therethrough is formed in the portion.
    The compressor according to claim 1.
  3.  前記捕捉部材はハット形状の隔壁からなる、
     請求項2に記載の圧縮機。
    The capture member is a hat-shaped partition wall,
    The compressor according to claim 2.
  4.  前記捕捉部材の中央部には、前記分離部と前記貯留部とを連通する連通孔が形成された、
     請求項3に記載の圧縮機。
    In the central portion of the capture member, a communication hole that connects the separation portion and the storage portion is formed,
    The compressor according to claim 3.
  5.  前記捕捉部材の上部には、半径外方へと延びる円環形状の鍔部が一体化された、
     請求項3又は請求項4に記載の圧縮機。
    In the upper part of the capturing member, an annular flange extending radially outward is integrated,
    The compressor according to claim 3 or 4.
PCT/JP2018/000583 2017-02-07 2018-01-12 Compressor WO2018146991A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/483,272 US20200003199A1 (en) 2017-02-07 2018-01-12 Compressor
DE112018000719.7T DE112018000719T5 (en) 2017-02-07 2018-01-12 compressor
CN201880010417.2A CN110312868A (en) 2017-02-07 2018-01-12 Compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-020676 2017-02-07
JP2017020676A JP2018127933A (en) 2017-02-07 2017-02-07 Compressor

Publications (1)

Publication Number Publication Date
WO2018146991A1 true WO2018146991A1 (en) 2018-08-16

Family

ID=63107435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000583 WO2018146991A1 (en) 2017-02-07 2018-01-12 Compressor

Country Status (5)

Country Link
US (1) US20200003199A1 (en)
JP (1) JP2018127933A (en)
CN (1) CN110312868A (en)
DE (1) DE112018000719T5 (en)
WO (1) WO2018146991A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225510A1 (en) * 2018-05-24 2019-11-28 サンデン・オートモーティブコンポーネント株式会社 Oil separation structure and compressor
EP4105485A4 (en) * 2020-09-30 2023-05-31 Anhui Welling Auto Parts Co., Ltd. Scroll compressor, refrigeration device, and vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017871A (en) * 2019-07-23 2021-02-15 サンデン・オートモーティブコンポーネント株式会社 Compressor
CN110608154A (en) * 2019-11-04 2019-12-24 广州广涡压缩机有限公司 Oil-gas separator for medium-pressure compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038189A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Separation apparatus
JP2009007990A (en) * 2007-06-27 2009-01-15 Denso Corp Compressor
JP2016113920A (en) * 2014-12-12 2016-06-23 アイシン精機株式会社 Engine-driven air conditioner drainer for discharging drain
WO2016143950A1 (en) * 2015-03-06 2016-09-15 한온시스템 주식회사 Method for manufacturing electric compressor and oil separator for electric compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006006084U1 (en) * 2006-04-12 2007-08-16 Mann + Hummel Gmbh Multi-stage device for separating drops of liquid from gases
CN204061187U (en) * 2014-08-15 2014-12-31 瑞智(青岛)精密机电有限公司 A kind of compressor with oil separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038189A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Separation apparatus
JP2009007990A (en) * 2007-06-27 2009-01-15 Denso Corp Compressor
JP2016113920A (en) * 2014-12-12 2016-06-23 アイシン精機株式会社 Engine-driven air conditioner drainer for discharging drain
WO2016143950A1 (en) * 2015-03-06 2016-09-15 한온시스템 주식회사 Method for manufacturing electric compressor and oil separator for electric compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019225510A1 (en) * 2018-05-24 2019-11-28 サンデン・オートモーティブコンポーネント株式会社 Oil separation structure and compressor
EP4105485A4 (en) * 2020-09-30 2023-05-31 Anhui Welling Auto Parts Co., Ltd. Scroll compressor, refrigeration device, and vehicle

Also Published As

Publication number Publication date
CN110312868A (en) 2019-10-08
US20200003199A1 (en) 2020-01-02
JP2018127933A (en) 2018-08-16
DE112018000719T5 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2018146991A1 (en) Compressor
KR102043808B1 (en) Co-rotating compressor
US6422842B2 (en) Scroll compressor discharge muffler
CN205578273U (en) Oil pumping mechanism and horizontal compressor with same
US6106251A (en) Scroll machine with reverse rotation sound attenuation
US7186099B2 (en) Inclined scroll machine having a special oil sump
US8506272B2 (en) Scroll compressor lubrication system
CA2437262C (en) Horizontal scroll compressor having an oil injection fitting
EP2864635B1 (en) Scroll compressor with slider block
EP3076019A1 (en) Scroll compressor
CN107575380B (en) Scroll compressor having a plurality of scroll members
EP2236828B1 (en) Scroll compressor
US8118563B2 (en) Tandem compressor system and method
US9897088B2 (en) Scroll compressor with back pressure chamber having leakage channel
US11781548B2 (en) Oil separation apparatus and horizontal compressor
JP2006144660A (en) Compressor
JP2012149544A (en) Compressor
JP2018112130A (en) Compressor
JP2018159285A (en) Scroll type compressor
US20090116977A1 (en) Compressor With Muffler
JP2018179067A (en) Fluid control valve and compressor
JP2007085298A (en) Compressor
JP2004027983A (en) Scroll type compressor
JP2018123805A (en) Compressor
JPH1061573A (en) Oil separating structure for scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751775

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18751775

Country of ref document: EP

Kind code of ref document: A1