JP5232595B2 - Multistage compressor - Google Patents

Multistage compressor Download PDF

Info

Publication number
JP5232595B2
JP5232595B2 JP2008274752A JP2008274752A JP5232595B2 JP 5232595 B2 JP5232595 B2 JP 5232595B2 JP 2008274752 A JP2008274752 A JP 2008274752A JP 2008274752 A JP2008274752 A JP 2008274752A JP 5232595 B2 JP5232595 B2 JP 5232595B2
Authority
JP
Japan
Prior art keywords
compression mechanism
stage
refrigerant gas
pressure refrigerant
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008274752A
Other languages
Japanese (ja)
Other versions
JP2010101272A (en
Inventor
創 佐藤
央幸 木全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008274752A priority Critical patent/JP5232595B2/en
Priority to PCT/JP2009/068199 priority patent/WO2010047371A1/en
Priority to EP09822068.4A priority patent/EP2339180B1/en
Publication of JP2010101272A publication Critical patent/JP2010101272A/en
Application granted granted Critical
Publication of JP5232595B2 publication Critical patent/JP5232595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

本発明は、密閉ハウジング内に、電動モータにより駆動される低段側圧縮機構および高段側圧縮機構を設けた多段圧縮機に関するものである。   The present invention relates to a multistage compressor in which a low-stage compression mechanism and a high-stage compression mechanism driven by an electric motor are provided in a hermetically sealed housing.

密閉ハウジング内に、電動モータにより駆動される低段側圧縮機構および高段側圧縮機構を設けた多段圧縮機の一例として、密閉ハウジング内のほぼ中央部に電動モータを設置し、この電動モータを挟んでその下部に低段側ロータリ圧縮機構、上部に高段側スクロール圧縮機構を設置するとともに、この低段側ロータリ圧縮機構および高段側スクロール圧縮機構を電動モータにより回転軸を介して駆動するように構成した多段圧縮機が特許文献1に示されている。
特開平5−87074号公報
As an example of a multistage compressor in which a low-stage compression mechanism and a high-stage compression mechanism driven by an electric motor are provided in a hermetic housing, an electric motor is installed at a substantially central portion in the hermetic housing. A low-stage rotary compression mechanism is installed at the bottom and a high-stage scroll compression mechanism is installed at the top, and the low-stage rotary compression mechanism and the high-stage scroll compression mechanism are driven by an electric motor via a rotating shaft. A multistage compressor configured as described above is disclosed in Patent Document 1.
JP-A-5-87074

上記の多段圧縮機は、冷凍サイクル側から吸入管を介して低圧冷媒ガスを低段側ロータリ圧縮機構に吸入して中間圧まで圧縮した後、この中間圧冷媒ガスをいったん密閉ハウジング内に吐き出し、その中間圧冷媒ガスを高段側スクロール圧縮機構により吸い込み、高温高圧状態に2段圧縮し、吐出管を経て外部に吐き出すように構成されており、密閉ハウジング内は中間圧冷媒ガス雰囲気とされるものである。   The above multi-stage compressor sucks low-pressure refrigerant gas from the refrigeration cycle side through the suction pipe into the low-stage rotary compression mechanism and compresses it to an intermediate pressure, and then discharges this intermediate-pressure refrigerant gas into the sealed housing. The intermediate pressure refrigerant gas is sucked by a high-stage scroll compression mechanism, compressed in two stages to a high temperature and high pressure state, and discharged to the outside through a discharge pipe. The inside of the hermetic housing is an intermediate pressure refrigerant gas atmosphere. Is.

上記多段圧縮機において、密閉ハウジング内に吐き出された中間圧冷媒ガスには、低段側ロータリ圧縮機構の潤滑に供された後、冷媒ガスと共に密閉ハウジング内に吐き出された潤滑油や、高段側スクロール圧縮機構を潤滑した後、高段側スクロール圧縮機構から密閉ハウジング内に沿って落下される潤滑油等が多量に溶け込んでおり、油リッチの状態となっている。この中間圧冷媒ガスは、電動モータの内部通路を流通してその上部空間に流動された後、高段側スクロール圧縮機構の吸入口へと導かれるが、その間に各部に衝突する等によって相当量の潤滑油は分離される。   In the multistage compressor, the intermediate pressure refrigerant gas discharged into the hermetic housing is supplied with lubricating oil discharged into the hermetic housing together with the refrigerant gas after being used for lubrication of the low-stage rotary compression mechanism. After the side scroll compression mechanism is lubricated, a large amount of lubricating oil or the like dropped from the high stage side scroll compression mechanism along the sealed housing is melted, resulting in an oil-rich state. This intermediate-pressure refrigerant gas flows through the internal passage of the electric motor and flows into the upper space, and is then guided to the suction port of the high-stage scroll compression mechanism. The lubricating oil is separated.

しかしながら、密閉ハウジング内の中間圧冷媒ガスには、上記の如く多量の潤滑油が溶け込んでおり、その潤滑油が十分に分離されないまま冷媒ガスと共に高段側スクロール圧縮機構に吸い込まれる。この潤滑油は高段側スクロール圧縮機構から圧縮冷媒ガスに伴われて吐き出され、冷凍サイクル側に循環されることになる。この結果、冷凍サイクル側に循環される潤滑油の油循環率(OCR)[全質量流量(冷媒流量+潤滑油流量)に対する潤滑油の質量流量の比]が増加し、冷凍サイクル側での熱交換を阻害することによりシステム効率を低下させるとともに、圧縮機側において潤滑油不足に陥るおそれがある等の問題が発生する。   However, a large amount of lubricating oil is dissolved in the intermediate pressure refrigerant gas in the hermetic housing as described above, and the lubricating oil is sucked into the high-stage scroll compression mechanism together with the refrigerant gas without being sufficiently separated. This lubricating oil is discharged from the high-stage scroll compression mechanism along with the compressed refrigerant gas, and is circulated to the refrigeration cycle side. As a result, the oil circulation rate (OCR) [ratio of the lubricating oil mass flow rate to the total mass flow rate (refrigerant flow rate + lubricating oil flow rate)] of the lubricating oil circulated to the refrigeration cycle side increases, and heat on the refrigeration cycle side increases. Inhibiting the replacement reduces system efficiency and causes problems such as the possibility of running out of lubricating oil on the compressor side.

本発明は、このような事情に鑑みてなされたものであって、低段側圧縮機構から吐き出された中間圧冷媒ガスに伴われて高段側圧縮機構に吸入される潤滑油量を低減することにより油循環率を低減し、システム効率の向上と潤滑油不足の解消を図ることができる多段圧縮機を提供することを目的とする。   The present invention has been made in view of such circumstances, and reduces the amount of lubricating oil sucked into the high-stage compression mechanism along with the intermediate-pressure refrigerant gas discharged from the low-stage compression mechanism. Accordingly, an object of the present invention is to provide a multi-stage compressor that can reduce the oil circulation rate, improve the system efficiency, and eliminate the shortage of lubricating oil.

本発明は、上記課題を解決するため、以下の手段を採用した。
本発明に係る多段圧縮機は、密閉ハウジング内のほぼ中央部に電動モータを設置し、該電動モータにより回転軸を介して駆動される低段側圧縮機構および高段側圧縮機構を、前記電動モータを挟んでその下部および上部に設置するとともに、前記低段側圧縮機構で圧縮された中間圧冷媒ガスを前記密閉ハウジング内に吐き出し、該中間圧冷媒ガスを前記高段側圧縮機構により吸入して2段圧縮する多段圧縮機において、前記電動モータ内を流通後に前記高段側圧縮機構へと吸入される前記中間圧冷媒ガス中に含まれる潤滑油を遠心分離する第1の油分離板が、前記回転軸の一端部を軸受け支持する軸受を貫通させて設けられている。
The present invention employs the following means in order to solve the above problems.
In the multistage compressor according to the present invention, an electric motor is installed at a substantially central portion in the hermetic housing, and the low-stage compression mechanism and the high-stage compression mechanism driven by the electric motor via a rotating shaft are connected to the electric compressor. The intermediate pressure refrigerant gas compressed by the low-stage compression mechanism is discharged into the sealed housing, and the intermediate-pressure refrigerant gas is sucked by the high-stage compression mechanism. A first oil separation plate that centrifuges the lubricating oil contained in the intermediate-pressure refrigerant gas that is sucked into the high-stage compression mechanism after flowing through the electric motor. Further, a bearing that supports and supports one end of the rotating shaft is provided.

本発明に係る多段圧縮機によれば、低段側圧縮機構から吐き出され、電動モータ内を流通後に高段側圧縮機構へと吸い込まれる中間圧冷媒ガス中に溶け込んでいる潤滑油を、回転軸の一端部を軸受け支持する軸受を貫通させて設けられ、ロータと共に回転する第1の油分離板により遠心分離し、中間圧冷媒ガス中に含まれる潤滑油量を低減した後、高段側圧縮機構へと吸入させることができる。これにより、中間圧冷媒ガスに伴われて高段側圧縮機構に吸入され、高圧圧縮ガスと共に外部に吐き出される潤滑油の量を低減することができる。従って、冷凍サイクル側に循環される潤滑油の油循環率(OCR)[全質量流量(冷媒流量+潤滑油流量)に対する潤滑油の質量流量の比]を低減し、システム効率を向上させることができるとともに、圧縮機における潤滑油不足の発生を解消することができる。   According to the multistage compressor according to the present invention, the lubricating oil dissolved in the intermediate pressure refrigerant gas discharged from the low stage compression mechanism and sucked into the high stage compression mechanism after flowing through the electric motor is supplied to the rotary shaft. The first oil separation plate, which is provided through the bearing that supports one end of the bearing and rotates with the rotor, is centrifuged to reduce the amount of lubricating oil contained in the intermediate-pressure refrigerant gas, and then the high-stage compression Can be inhaled into the mechanism. As a result, the amount of lubricating oil sucked into the high-stage compression mechanism along with the intermediate-pressure refrigerant gas and discharged to the outside together with the high-pressure compressed gas can be reduced. Therefore, the oil circulation rate (OCR) [ratio of the mass flow rate of the lubricating oil to the total mass flow rate (refrigerant flow rate + lubricating oil flow rate)] of the lubricating oil circulated to the refrigeration cycle side can be reduced, and the system efficiency can be improved. In addition, it is possible to eliminate the shortage of lubricating oil in the compressor.

上記多段圧縮機において、前記電動モータ内を流通後に前記高段側圧縮機構へと吸入される前記中間圧冷媒ガス中に含まれる潤滑油を遠心分離する第2の油分離板が、前記回転軸の一端部に前記回転軸を貫通させて設けられているとさらに好適である。   In the multistage compressor, the second oil separation plate that centrifuges the lubricating oil contained in the intermediate pressure refrigerant gas that is sucked into the high-stage compression mechanism after flowing through the electric motor includes the rotating shaft. It is more preferable that the rotary shaft is provided through one end of the shaft.

このような多段圧縮機によれば、低段側圧縮機構から吐き出され、電動モータ内を流通後に高段側圧縮機構へと吸い込まれる中間圧冷媒ガス中に溶け込んでいる潤滑油を、回転軸の一端部を軸受け支持する軸受を貫通させて設けられ、ロータと共に回転する第1の油分離板、および回転軸の一端部にこの回転軸を貫通させて設けられ、ロータと共に回転する第2の油分離板により遠心分離し、中間圧冷媒ガス中に含まれる潤滑油量を低減した後、高段側圧縮機構へと吸入させることができる。これにより、中間圧冷媒ガスに伴われて高段側圧縮機構に吸入され、高圧圧縮ガスと共に外部に吐き出される潤滑油の量をさらに低減することができる。従って、冷凍サイクル側に循環される潤滑油の油循環率(OCR)[全質量流量(冷媒流量+潤滑油流量)に対する潤滑油の質量流量の比]をさらに低減し、システム効率をさらに向上させることができるとともに、圧縮機における潤滑油不足の発生を解消することができる。   According to such a multistage compressor, the lubricating oil dissolved in the intermediate pressure refrigerant gas discharged from the low stage compression mechanism and sucked into the high stage compression mechanism after flowing through the electric motor is supplied to the rotary shaft. A first oil separating plate that is provided through a bearing that supports a bearing at one end and rotates with the rotor, and a second oil that is provided at one end of the rotating shaft through the rotating shaft and rotates with the rotor. After the centrifugal separation by the separation plate and the amount of lubricating oil contained in the intermediate pressure refrigerant gas is reduced, the oil can be sucked into the high-stage compression mechanism. As a result, the amount of lubricating oil that is sucked into the high-stage compression mechanism along with the intermediate-pressure refrigerant gas and discharged together with the high-pressure compressed gas can be further reduced. Therefore, the oil circulation rate (OCR) [ratio of the mass flow rate of the lubricating oil to the total mass flow rate (refrigerant flow rate + lubricating oil flow rate)] of the lubricating oil circulated to the refrigeration cycle side is further reduced, and the system efficiency is further improved. And the occurrence of a lack of lubricating oil in the compressor can be eliminated.

上記多段圧縮機において、前記電動モータ内を流通後に前記高段側圧縮機構へと吸入される前記中間圧冷媒ガスが衝突する衝突板が、前記回転軸の一端部を軸受け支持する軸受を貫通させて設けられているとさらに好適である。   In the multistage compressor, a collision plate that collides with the intermediate-pressure refrigerant gas sucked into the high-stage compression mechanism after flowing through the electric motor passes through a bearing that supports one end of the rotating shaft. More preferably.

このような多段圧縮機によれば、低段側圧縮機構から吐き出され、電動モータ内を流通後に高段側圧縮機構へと吸い込まれる中間圧冷媒ガス中に溶け込んでいる潤滑油を、回転軸の一端部を軸受け支持する軸受を貫通させて設けられた衝突板に衝突させた後、さらに回転軸の一端部を軸受け支持する軸受を貫通させて設けられ、ロータと共に回転する第1の油分離板により遠心分離し、中間圧冷媒ガス中に含まれる潤滑油量を低減した後、高段側圧縮機構へと吸入させることができる。これにより、中間圧冷媒ガスに伴われて高段側圧縮機構に吸入され、高圧圧縮ガスと共に外部に吐き出される潤滑油の量をさらに低減することができる。従って、冷凍サイクル側に循環される潤滑油の油循環率(OCR)[全質量流量(冷媒流量+潤滑油流量)に対する潤滑油の質量流量の比]をさらに低減し、システム効率をさらに向上させることができるとともに、圧縮機における潤滑油不足の発生を解消することができる。   According to such a multistage compressor, the lubricating oil dissolved in the intermediate pressure refrigerant gas discharged from the low stage compression mechanism and sucked into the high stage compression mechanism after flowing through the electric motor is supplied to the rotary shaft. A first oil separation plate that is provided with a bearing that supports the bearing at one end of the rotating shaft and then rotates together with the rotor after colliding with a collision plate that is provided through the bearing that supports the bearing at one end. And then reducing the amount of lubricating oil contained in the intermediate-pressure refrigerant gas, and then sucking it into the high-stage compression mechanism. As a result, the amount of lubricating oil that is sucked into the high-stage compression mechanism along with the intermediate-pressure refrigerant gas and discharged together with the high-pressure compressed gas can be further reduced. Therefore, the oil circulation rate (OCR) [ratio of the mass flow rate of the lubricating oil to the total mass flow rate (refrigerant flow rate + lubricating oil flow rate)] of the lubricating oil circulated to the refrigeration cycle side is further reduced, and the system efficiency is further improved. And the occurrence of a lack of lubricating oil in the compressor can be eliminated.

本発明に係る多段圧縮機は、密閉ハウジング内のほぼ中央部に電動モータを設置し、該電動モータにより回転軸を介して駆動される低段側圧縮機構および高段側圧縮機構を、前記電動モータを挟んでその下部および上部に設置するとともに、前記低段側圧縮機構で圧縮された中間圧冷媒ガスを前記密閉ハウジング内に吐き出し、該中間圧冷媒ガスを前記高段側圧縮機構により吸入して2段圧縮する多段圧縮機において、前記電動モータ内を流通後に前記高段側圧縮機構へと吸入される前記中間圧冷媒ガス中に含まれる潤滑油を遠心分離する油分離板が、前記回転軸の一端部に前記回転軸を貫通させて設けられている。   In the multistage compressor according to the present invention, an electric motor is installed at a substantially central portion in the hermetic housing, and the low-stage compression mechanism and the high-stage compression mechanism driven by the electric motor via a rotating shaft are connected to the electric compressor. The intermediate pressure refrigerant gas compressed by the low-stage compression mechanism is discharged into the sealed housing, and the intermediate-pressure refrigerant gas is sucked by the high-stage compression mechanism. In the multi-stage compressor that compresses in two stages, an oil separation plate that centrifuges the lubricating oil contained in the intermediate-pressure refrigerant gas that is sucked into the high-stage compression mechanism after flowing through the electric motor is The rotating shaft is provided through one end of the shaft.

本発明に係る多段圧縮機によれば、低段側圧縮機構から吐き出され、電動モータ内を流通後に高段側圧縮機構へと吸い込まれる中間圧冷媒ガス中に溶け込んでいる潤滑油を、前記回転軸の一端部に前記回転軸を貫通させて設けられ、ロータと共に回転する油分離板により遠心分離し、中間圧冷媒ガス中に含まれる潤滑油量を低減した後、高段側圧縮機構へと吸入させることができる。これにより、中間圧冷媒ガスに伴われて高段側圧縮機構に吸入され、高圧圧縮ガスと共に外部に吐き出される潤滑油の量を低減することができる。従って、冷凍サイクル側に循環される潤滑油の油循環率(OCR)[全質量流量(冷媒流量+潤滑油流量)に対する潤滑油の質量流量の比]を低減し、システム効率を向上させることができるとともに、圧縮機における潤滑油不足の発生を解消することができる。   According to the multi-stage compressor according to the present invention, the lubricating oil dissolved in the intermediate pressure refrigerant gas discharged from the low-stage compression mechanism and sucked into the high-stage compression mechanism after flowing through the electric motor is supplied to the rotary compressor. The shaft is provided at one end of the shaft so as to penetrate the rotary shaft, and is centrifuged by an oil separation plate that rotates together with the rotor to reduce the amount of lubricating oil contained in the intermediate-pressure refrigerant gas, and then to the high-stage compression mechanism. Can be inhaled. As a result, the amount of lubricating oil sucked into the high-stage compression mechanism along with the intermediate-pressure refrigerant gas and discharged to the outside together with the high-pressure compressed gas can be reduced. Therefore, the oil circulation rate (OCR) [ratio of the mass flow rate of the lubricating oil to the total mass flow rate (refrigerant flow rate + lubricating oil flow rate)] of the lubricating oil circulated to the refrigeration cycle side can be reduced, and the system efficiency can be improved. In addition, it is possible to eliminate the shortage of lubricating oil in the compressor.

本発明に係る多段圧縮機によれば、中間圧冷媒ガスに伴われて高段側圧縮機構に吸入され、高圧圧縮ガスと共に外部に吐き出される潤滑油の量を低減することができるため、冷凍サイクル側に循環される潤滑油の油循環率(OCR)を低減し、システム効率を向上させることができるとともに、圧縮機における潤滑油不足の発生を解消することができるという効果を奏する。   According to the multistage compressor of the present invention, the amount of lubricating oil that is sucked into the high-stage compression mechanism along with the intermediate-pressure refrigerant gas and discharged to the outside together with the high-pressure compressed gas can be reduced. The oil circulation rate (OCR) of the lubricating oil circulated to the side can be reduced, the system efficiency can be improved, and the occurrence of the lack of lubricating oil in the compressor can be eliminated.

以下、本発明に係る多段圧縮機の第1実施形態について、図1および図2を参照しながら説明する。
図1には、低段側圧縮機構2と高段側圧縮機構3とを備えた冷凍空調用の多段圧縮機1の縦断面図が示されている。本実施形態では、便宜上、低段側圧縮機構2にロータリ圧縮機構、高段側圧縮機構3にスクロール圧縮機構を用いて構成した多段圧縮機1を一具体例として説明するが、低段側圧縮機構2および高段側圧縮機構3は、上記圧縮機構に限定されるものでない。
Hereinafter, a first embodiment of a multistage compressor according to the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 shows a longitudinal sectional view of a multi-stage compressor 1 for refrigeration and air conditioning that includes a low-stage compression mechanism 2 and a high-stage compression mechanism 3. In the present embodiment, for the sake of convenience, a multistage compressor 1 configured using a rotary compression mechanism as the low-stage compression mechanism 2 and a scroll compression mechanism as the high-stage compression mechanism 3 will be described as a specific example. The mechanism 2 and the high-stage compression mechanism 3 are not limited to the above compression mechanism.

図1または図2に示すように、多段圧縮機1は、密閉ハウジング10を備えている。密閉ハウジング10内のほぼ中央部には、ステータ5とロータ6とから構成される電動モータ4が固定設置されている。ロータ6には、回転軸(クランク軸)7が一体に結合されている。この電動モータ4の下部には、低段側ロータリ圧縮機構2が設置されている。低段側ロータリ圧縮機構2は、シリンダ室20を備え、密閉ハウジング10に固定設置されるシリンダ本体21と、シリンダ本体21の上下に固定設置され、シリンダ室20の上部および下部を密閉する上部軸受22および下部軸受23と、回転軸7のクランク部7Aに嵌合され、シリンダ室20の内周面を回動するロータ24と、シリンダ室20内を吸入側と吐出側とに仕切る図示省略のブレードおよびブレード押えバネ等とを備えた公知のロータリ圧縮機構により構成される。   As shown in FIG. 1 or FIG. 2, the multistage compressor 1 includes a hermetic housing 10. An electric motor 4 including a stator 5 and a rotor 6 is fixedly installed at a substantially central portion in the hermetic housing 10. A rotating shaft (crankshaft) 7 is integrally coupled to the rotor 6. A low-stage rotary compression mechanism 2 is installed below the electric motor 4. The low-stage rotary compression mechanism 2 includes a cylinder chamber 20, a cylinder main body 21 fixedly installed in the hermetic housing 10, and an upper bearing fixedly installed above and below the cylinder main body 21 and sealing the upper and lower portions of the cylinder chamber 20. 22 and the lower bearing 23, a rotor 24 that is fitted to the crank portion 7A of the rotating shaft 7 and rotates on the inner peripheral surface of the cylinder chamber 20, and the inside of the cylinder chamber 20 is divided into a suction side and a discharge side (not shown). It is comprised by the well-known rotary compression mechanism provided with the braid | blade and the blade pressing spring.

この低段側ロータリ圧縮機構2は、吸入管25を介してシリンダ室20内に低圧の冷媒ガス(作動ガス)を吸入し、この冷媒ガスをロータ24の回動により中間圧まで圧縮した後、吐出チャンバ26を介して密閉ハウジング10内に吐き出すように構成されている。この中間圧冷媒ガスは、電動モータ4のロータ6に設けられているガス通路孔6A等を流通して電動モータ4の上部空間に流動し、さらに高段側スクロール圧縮機構3へと吸入されて2段圧縮されるようになっている。   The low-stage rotary compression mechanism 2 sucks low-pressure refrigerant gas (working gas) into the cylinder chamber 20 through the suction pipe 25 and compresses the refrigerant gas to an intermediate pressure by the rotation of the rotor 24. It is configured to discharge into the sealed housing 10 through the discharge chamber 26. This intermediate-pressure refrigerant gas flows through the gas passage hole 6A provided in the rotor 6 of the electric motor 4 and flows into the upper space of the electric motor 4, and is further sucked into the high-stage scroll compression mechanism 3. It is designed to be compressed in two stages.

高段側スクロール圧縮機構3は、回転軸(クランク軸)7を支持する軸受30が設けられ、密閉ハウジング10に固定設置される支持部材31(フレーム部材または軸受部材とも云う。)と、それぞれ端板32A,33A上に立設される渦巻き状ラップ32B,33Bを備え、渦巻き状ラップ32B,33B同士を互いに噛み合わせて支持部材31上に組み付けることにより一対の圧縮室34を構成する固定スクロール部材32および旋回スクロール部材33と、旋回スクロール部材33と回転軸7の軸端に設けられる偏心ピン7Bとを結合し、旋回スクロール部材33を公転旋回駆動する旋回ボス部35と、旋回スクロール部材33と支持部材31との間に設けられ、旋回スクロール部材33をその自転を阻止しつつ公転旋回させるオルダムリング等の自転阻止機構36と、固定スクロール部材32の背面に設けられる吐出弁40と、固定スクロール部材32の背面に固定設置され、固定スクロール部材32との間に吐出チャンバ41を形成する吐出カバー42等とを備えた公知のスクロール圧縮機構により構成される。   The high-stage scroll compression mechanism 3 is provided with a bearing 30 that supports a rotating shaft (crankshaft) 7, and a support member 31 (also referred to as a frame member or a bearing member) that is fixedly installed on the hermetic housing 10. A fixed scroll member that includes spiral wraps 32B and 33B standing on the plates 32A and 33A, and that forms a pair of compression chambers 34 by engaging the spiral wraps 32B and 33B with each other and assembling them on the support member 31. 32, the orbiting scroll member 33, the orbiting scroll member 33 and the eccentric pin 7B provided at the shaft end of the rotary shaft 7, and the orbiting boss portion 35 for driving the orbiting scroll member 33 to revolve and rotate. An orderer that is provided between the support member 31 and revolves while preventing the rotation of the orbiting scroll member 33. A rotation prevention mechanism 36 such as a ring, a discharge valve 40 provided on the back surface of the fixed scroll member 32, and a discharge cover that is fixedly installed on the back surface of the fixed scroll member 32 and forms a discharge chamber 41 between the fixed scroll member 32. 42 or the like, and a known scroll compression mechanism.

上記の高段側スクロール圧縮機構3は、低段側ロータリ圧縮機構2により圧縮されて密閉ハウジング10に吐き出された中間圧の冷媒ガスを圧縮室34内に吸入し、この中間圧冷媒ガスを旋回スクロール部材33の公転旋回駆動により高温高圧状態に圧縮した後、吐出弁40を経て吐出チャンバ41に吐き出すように構成されている。この高温高圧冷媒ガスは、吐出チャンバ41から吐出管43を経て圧縮機外部、すなわち冷凍サイクル側に導出されるようになっている。また、高段側スクロール圧縮機構3を構成する上記支持部材31は、密閉ハウジング10内に設けられたブラケット44にネジによって固定設置されている。   The high-stage scroll compression mechanism 3 sucks the intermediate-pressure refrigerant gas compressed by the low-stage rotary compression mechanism 2 and discharged into the sealed housing 10 into the compression chamber 34, and swirls the intermediate-pressure refrigerant gas. The scroll member 33 is configured to be compressed into a high temperature and high pressure state by a revolving turning drive and then discharged to the discharge chamber 41 through the discharge valve 40. This high-temperature and high-pressure refrigerant gas is led out from the discharge chamber 41 through the discharge pipe 43 to the outside of the compressor, that is, to the refrigeration cycle side. Further, the support member 31 constituting the high-stage scroll compression mechanism 3 is fixedly installed on a bracket 44 provided in the hermetic housing 10 with screws.

また、回転軸(クランク軸)7の最下端部と低段側ロータリ圧縮機構2の下部軸受23との間には、公知の容積形給油ポンプ11が組み込まれている。この給油ポンプ11は、密閉ハウジング10の底部に充填されている潤滑油12を汲み上げ、回転軸7内に設けられている給油孔13を介して低段側ロータリ圧縮機構2および高段側スクロール圧縮機構3の軸受部等の所要潤滑箇所に潤滑油12を強制給油できるように構成されている。   A known positive displacement oil pump 11 is incorporated between the lowermost end of the rotary shaft (crankshaft) 7 and the lower bearing 23 of the low-stage rotary compression mechanism 2. The oil pump 11 pumps up the lubricating oil 12 filled in the bottom of the hermetic housing 10, and the low-stage rotary compression mechanism 2 and the high-stage scroll compression through an oil supply hole 13 provided in the rotary shaft 7. The lubricating oil 12 can be forcibly supplied to a required lubricating portion such as a bearing portion of the mechanism 3.

さらに、電動モータ4を構成するロータ6の上端側には、ロータ6と一体に回転される油分離板(第1の油分離板)45が設けられている。この油分離板45は、ロータ6の上端に設けられたバランスウェイト46に設置(バランスウェイトがない場合は、間座等を介して設置)される円板により構成されている。また、この油分離板45の外径は、電動モータ4のステータコイルエンド5Aの内周面と僅かな隙間G1を保つ程度の大きさとされ、油分離板45の内径は、支持部材31の中央部から下方(ロータ6の側)に突出する軸受30の外周面と僅かな隙間G2を保つ程度の大きさとされている。また、バランスウェイト46の高さは、その上端に油分離板45が取り付けられた状態で、油分離板45が軸受30の下端よりも上方で、かつ、ステータコイルエンド5Aの上端よりも下方に位置するように設定されている。   Furthermore, an oil separation plate (first oil separation plate) 45 that rotates integrally with the rotor 6 is provided on the upper end side of the rotor 6 that constitutes the electric motor 4. The oil separation plate 45 is constituted by a disc installed on a balance weight 46 provided at the upper end of the rotor 6 (installed via a spacer or the like when no balance weight is provided). Further, the outer diameter of the oil separation plate 45 is large enough to maintain a slight gap G1 with the inner peripheral surface of the stator coil end 5A of the electric motor 4, and the inner diameter of the oil separation plate 45 is the center of the support member 31. The size is such that a slight gap G2 is maintained from the outer peripheral surface of the bearing 30 protruding downward (from the rotor 6 side) from the portion. Further, the balance weight 46 has a height that is higher than the lower end of the bearing 30 and lower than the upper end of the stator coil end 5A in a state where the oil separation plate 45 is attached to the upper end thereof. It is set to be located.

以上説明の構成により、本実施形態によると、以下の作用効果を奏する。
吸入管25を介して低段側ロータリ圧縮機構2のシリンダ室20に吸入された低温低圧の冷媒ガスは、ロータ24の回動により中間圧まで圧縮された後、吐出チャンバ26に吐き出される。この中間圧冷媒ガスは、吐出チャンバ26から電動モータ4の下部空間内に吐き出された後、電動モータ4のロータ6に設けられているガス通路孔6A等を流通して電動モータ4の上部空間に流動される。
With the configuration described above, according to the present embodiment, the following operational effects are obtained.
The low-temperature and low-pressure refrigerant gas sucked into the cylinder chamber 20 of the low-stage-side rotary compression mechanism 2 through the suction pipe 25 is compressed to the intermediate pressure by the rotation of the rotor 24 and then discharged to the discharge chamber 26. The intermediate-pressure refrigerant gas is discharged from the discharge chamber 26 into the lower space of the electric motor 4, and then flows through the gas passage hole 6 </ b> A provided in the rotor 6 of the electric motor 4 and the upper space of the electric motor 4. Fluidized.

電動モータ4の上部空間に流動した中間圧冷媒ガスは、高段側スクロール圧縮機構3を構成する支持部材31と密閉ハウジング10との間の隙間等を通り固定スクロール部材32に設けられている高段側スクロール圧縮機構3の吸入口に導かれ、圧縮室34内に吸入される。この中間圧冷媒ガスは、高段側スクロール圧縮機構3により高温高圧状態に2段圧縮された後、吐出弁40から吐出チャンバ41内に吐き出され、吐出管43を介して圧縮機外部、すなわち冷凍サイクル側に導出される。   The intermediate-pressure refrigerant gas that has flowed into the upper space of the electric motor 4 passes through the gap between the support member 31 and the hermetic housing 10 constituting the high-stage scroll compression mechanism 3, and is provided in the fixed scroll member 32. It is guided to the suction port of the stage side scroll compression mechanism 3 and sucked into the compression chamber 34. This intermediate-pressure refrigerant gas is compressed into a high-temperature and high-pressure state by the high-stage side scroll compression mechanism 3 and then discharged into the discharge chamber 41 from the discharge valve 40, and is discharged to the outside of the compressor, that is, the refrigeration through the discharge pipe 43. Derived on the cycle side.

上記の2段圧縮過程において、低段側ロータリ圧縮機構2の潤滑に供された潤滑油12の一部は、冷媒ガス中に溶け込み、中間圧冷媒ガスと共に密閉ハウジング10内に吐き出される。さらに、この中間圧冷媒ガスには、高段側スクロール圧縮機構3に給油孔13を介して給油され、高段側スクロール圧縮機構3を潤滑した後、密閉ハウジング10内の底部に流下される潤滑油12の一部が巻き込まれて溶け込む。潤滑油12が溶け込んだ中間圧冷媒ガスは、ロータ6のガス通路孔6A内を流通して電動モータ4の上部空間に流動する際に、ロータ6と共に回転している油分離板45に衝突し、その遠心分離作用によって中間圧冷媒ガス中から潤滑油12が分離される。   In the above-described two-stage compression process, part of the lubricating oil 12 used for the lubrication of the low-stage rotary compression mechanism 2 is dissolved in the refrigerant gas and discharged into the sealed housing 10 together with the intermediate pressure refrigerant gas. Further, the intermediate pressure refrigerant gas is supplied to the high-stage scroll compression mechanism 3 through the oil supply hole 13, lubricates the high-stage scroll compression mechanism 3, and then flows down to the bottom in the hermetic housing 10. Part of the oil 12 is caught and melted. The intermediate pressure refrigerant gas in which the lubricating oil 12 has melted collides with the oil separation plate 45 rotating together with the rotor 6 when flowing into the upper space of the electric motor 4 through the gas passage hole 6A of the rotor 6. The centrifugal separation action separates the lubricating oil 12 from the intermediate pressure refrigerant gas.

上記により遠心分離された潤滑油12は、電動モータ4のステータコイルエンド5Aの隙間を通ってその外周側に導かれ、密閉ハウジング10の内周面に沿って底部へと流下される。一方、潤滑油12が分離された中間圧冷媒ガスは、油分離板45の外周側(半径方向外側)の隙間G1から電動モータ4の上部空間に流動され、そこから高段側スクロール圧縮機構3の吸入口へと導かれ、圧縮室34内に吸入されて2段圧縮される。   The lubricating oil 12 centrifuged as described above is guided to the outer peripheral side through the gap of the stator coil end 5 </ b> A of the electric motor 4, and flows down to the bottom along the inner peripheral surface of the sealed housing 10. On the other hand, the intermediate pressure refrigerant gas from which the lubricating oil 12 has been separated flows from the gap G1 on the outer peripheral side (radially outer side) of the oil separation plate 45 to the upper space of the electric motor 4, and from there the high-stage scroll compression mechanism 3 Is sucked into the compression chamber 34 and compressed in two stages.

一方、高段側スクロール圧縮機構3に給油孔13を介して供給された潤滑油12の一部は、軸受30を潤滑しながら回転軸7と軸受30との間を通ってロータ6の上端面に向かって落下するようになっている。そして、ロータ6の上端面に向かって落下した潤滑油12の一部は、ロータ6の上端面に衝突し、その遠心分離作用によって遠心分離された潤滑油12は、電動モータ4のステータコイルエンド5Aの隙間を通ってその外周側に導かれ、密閉ハウジング10の内周面に沿って底部へと流下される。また、ロータ6の上端面に向かって落下した潤滑油12の一部は、ロータ6のガス通路孔6A内を流通してきた中間圧冷媒ガスに溶け込んで、ロータ6と共に回転している油分離板45に衝突し、その遠心分離作用によって中間圧冷媒ガス中から潤滑油12が分離される。   On the other hand, a part of the lubricating oil 12 supplied to the high-stage scroll compression mechanism 3 through the oil supply hole 13 passes between the rotary shaft 7 and the bearing 30 while lubricating the bearing 30, and the upper end surface of the rotor 6. It comes to fall toward. Then, a part of the lubricating oil 12 that has dropped toward the upper end surface of the rotor 6 collides with the upper end surface of the rotor 6, and the lubricating oil 12 that has been centrifuged by the centrifugal action acts as a stator coil end of the electric motor 4. It is guided to the outer peripheral side through the gap of 5A and flows down to the bottom along the inner peripheral surface of the sealed housing 10. Further, a part of the lubricating oil 12 that has dropped toward the upper end surface of the rotor 6 is dissolved in the intermediate pressure refrigerant gas that has circulated through the gas passage hole 6 </ b> A of the rotor 6, and the oil separation plate that rotates with the rotor 6. The lubricating oil 12 is separated from the intermediate-pressure refrigerant gas by the centrifugal separation action.

上記により遠心分離された潤滑油12は、電動モータ4のステータコイルエンド5Aの隙間を通ってその外周側に導かれ、密閉ハウジング10の内周面に沿って底部へと流下される。一方、潤滑油12が分離された中間圧冷媒ガスは、油分離板45の外周側(半径方向外側)の隙間G1から電動モータ4の上部空間に流動され、そこから高段側スクロール圧縮機構3の吸入口へと導かれ、圧縮室34内に吸入されて2段圧縮される。   The lubricating oil 12 centrifuged as described above is guided to the outer peripheral side through the gap of the stator coil end 5 </ b> A of the electric motor 4, and flows down to the bottom along the inner peripheral surface of the sealed housing 10. On the other hand, the intermediate pressure refrigerant gas from which the lubricating oil 12 has been separated flows from the gap G1 on the outer peripheral side (radially outer side) of the oil separation plate 45 to the upper space of the electric motor 4, and from there the high-stage scroll compression mechanism 3 Is sucked into the compression chamber 34 and compressed in two stages.

このように、潤滑油12を分離した中間圧冷媒ガスを高段側スクロール圧縮機構3へと吸入させることができるため、中間圧冷媒ガスに伴われて高段側スクロール圧縮機構3に吸入され、高圧圧縮ガスと共に外部に吐き出される潤滑油12の量を低減することができる。これにより、冷凍サイクル側に循環される潤滑油12の油循環率(OCR)[全質量流量(冷媒流量+潤滑油流量)に対する潤滑油の質量流量の比]を低減し、システム効率を向上させることができるとともに、圧縮機における潤滑油不足の発生を解消することができる。
また、軸受30の下端部の一部が油分離板45よりも下方に位置することとなる、すなわち、軸受30の下端部の一部が油分離板45の内周側に形成された穴45a内に挿入されることとなるので、回転軸7の全長を短くすることができて、多段圧縮機1の高さ方向の寸法を減少させることができる。
Thus, since the intermediate pressure refrigerant gas from which the lubricating oil 12 has been separated can be sucked into the high-stage scroll compression mechanism 3, the intermediate pressure refrigerant gas is sucked into the high-stage scroll compression mechanism 3, It is possible to reduce the amount of the lubricating oil 12 discharged to the outside together with the high-pressure compressed gas. This reduces the oil circulation rate (OCR) [ratio of the mass flow rate of the lubricating oil to the total mass flow rate (refrigerant flow rate + lubricating oil flow rate)] of the lubricating oil 12 circulated to the refrigeration cycle side, and improves the system efficiency. And the occurrence of a lack of lubricating oil in the compressor can be eliminated.
Further, a part of the lower end portion of the bearing 30 is located below the oil separation plate 45, that is, a hole 45 a in which a part of the lower end portion of the bearing 30 is formed on the inner peripheral side of the oil separation plate 45. Since it will be inserted in, the full length of the rotating shaft 7 can be shortened, and the dimension of the height direction of the multistage compressor 1 can be reduced.

本発明に係る多段圧縮機の第2実施形態について、図3を参照しながら説明する。図3は本発明の第2実施形態に係る多段圧縮機の要部拡大縦断面図である。
本実施形態に係る多段圧縮機51は、油分離板(第2の油分離板)52がさらに設けられているという点で上述した第1実施形態のものと異なる。その他の構成要素については上述した第1実施形態のものと同じであるので、ここではそれら構成要素についての説明は省略する。
A second embodiment of the multistage compressor according to the present invention will be described with reference to FIG. FIG. 3 is an enlarged vertical cross-sectional view of a main part of a multistage compressor according to the second embodiment of the present invention.
The multistage compressor 51 according to the present embodiment is different from that of the first embodiment described above in that an oil separation plate (second oil separation plate) 52 is further provided. Since other components are the same as those of the first embodiment described above, description of these components is omitted here.

図3に示すように、本実施形態に係る多段圧縮機51は、油分離板45とともに油分離板52が設けられている。この油分離板52は、ロータ6の上端面よりも上方で、かつ、軸受30の下端よりも下方に位置する回転軸7に設置される円板により構成されている。また、この油分離板52の外径は、バランスウェイト46の内周面と僅かな隙間G3を保つ程度の大きさとされ、油分離板45の内径は、回転軸7の外周面と同じ大きさとされている。そして、この油分離板52は、その内周面が回転軸7の外周面と接する(密着する)ようにして取り付けられている。   As shown in FIG. 3, the multistage compressor 51 according to the present embodiment is provided with an oil separation plate 52 together with an oil separation plate 45. The oil separation plate 52 is configured by a disc installed on the rotary shaft 7 located above the upper end surface of the rotor 6 and below the lower end of the bearing 30. Further, the outer diameter of the oil separation plate 52 is set to a size that maintains a slight gap G3 with the inner peripheral surface of the balance weight 46, and the inner diameter of the oil separation plate 45 is the same size as the outer peripheral surface of the rotary shaft 7. Has been. The oil separation plate 52 is attached such that its inner peripheral surface is in contact with (is in close contact with) the outer peripheral surface of the rotating shaft 7.

本実施形態に係る多段圧縮機51によれば、ロータ6のガス通路孔6A内を流通してきた中間圧冷媒ガスは、ロータ6と共に回転している油分離板52,45に衝突し、その遠心分離作用によって中間圧冷媒ガス中から潤滑油12が分離される。そして、油分離板52,45の遠心分離作用によって遠心分離された潤滑油12は、電動モータ4のステータコイルエンド5Aの隙間を通ってその外周側に導かれ、密閉ハウジング10の内周面に沿って底部へと流下される。一方、潤滑油12が分離された中間圧冷媒ガスは、油分離板45の外周側(半径方向外側)の隙間G1から電動モータ4の上部空間に流動され、そこから高段側スクロール圧縮機構3の吸入口へと導かれ、圧縮室34内に吸入されて2段圧縮される。   According to the multistage compressor 51 according to the present embodiment, the intermediate pressure refrigerant gas that has circulated through the gas passage hole 6A of the rotor 6 collides with the oil separation plates 52 and 45 rotating together with the rotor 6, and the centrifugal separation is performed. The lubricating oil 12 is separated from the intermediate pressure refrigerant gas by the separation action. The lubricating oil 12 centrifuged by the centrifugal separation action of the oil separation plates 52 and 45 is guided to the outer peripheral side through the gap of the stator coil end 5 </ b> A of the electric motor 4 and is applied to the inner peripheral surface of the sealed housing 10. Along the bottom. On the other hand, the intermediate pressure refrigerant gas from which the lubricating oil 12 has been separated flows from the gap G1 on the outer peripheral side (radially outer side) of the oil separation plate 45 to the upper space of the electric motor 4, and from there the high-stage scroll compression mechanism 3 Is sucked into the compression chamber 34 and compressed in two stages.

このように、潤滑油12を分離した中間圧冷媒ガスを高段側スクロール圧縮機構3へと吸入させることができるため、中間圧冷媒ガスに伴われて高段側スクロール圧縮機構3に吸入され、高圧圧縮ガスと共に外部に吐き出される潤滑油12の量を低減することができる。これにより、冷凍サイクル側に循環される潤滑油12の油循環率(OCR)[全質量流量(冷媒流量+潤滑油流量)に対する潤滑油の質量流量の比]を低減し、システム効率を向上させることができるとともに、圧縮機における潤滑油不足の発生を解消することができる。
また、軸受30の下端部の一部が油分離板45よりも下方に位置することとなる、すなわち、軸受30の下端部の一部が油分離板45の内周側に形成された穴45a内に挿入されることとなるので、回転軸7の全長を短くすることができて、多段圧縮機1の高さ方向の寸法を減少させることができる。
さらに、トルク変動の大きい回転軸7に油分離板52が取り付けられることとなるので、回転体の慣性力を大きくすることができて、トルク変動を低減させることができる。
Thus, since the intermediate pressure refrigerant gas from which the lubricating oil 12 has been separated can be sucked into the high-stage scroll compression mechanism 3, the intermediate pressure refrigerant gas is sucked into the high-stage scroll compression mechanism 3, It is possible to reduce the amount of the lubricating oil 12 discharged to the outside together with the high-pressure compressed gas. This reduces the oil circulation rate (OCR) [ratio of the mass flow rate of the lubricating oil to the total mass flow rate (refrigerant flow rate + lubricating oil flow rate)] of the lubricating oil 12 circulated to the refrigeration cycle side, and improves the system efficiency. And the occurrence of a lack of lubricating oil in the compressor can be eliminated.
Further, a part of the lower end portion of the bearing 30 is located below the oil separation plate 45, that is, a hole 45 a in which a part of the lower end portion of the bearing 30 is formed on the inner peripheral side of the oil separation plate 45. Since it will be inserted in, the full length of the rotating shaft 7 can be shortened, and the dimension of the height direction of the multistage compressor 1 can be reduced.
Furthermore, since the oil separation plate 52 is attached to the rotating shaft 7 having a large torque fluctuation, the inertial force of the rotating body can be increased and the torque fluctuation can be reduced.

本発明に係る多段圧縮機の第3実施形態について、図4を参照しながら説明する。図4は本発明の第3実施形態に係る多段圧縮機の要部拡大縦断面図である。
本実施形態に係る多段圧縮機61は、軸受30の下端部に衝突板62が設けられているという点で上述した第2実施形態のものと異なる。その他の構成要素については上述した第2実施形態のものと同じであるので、ここではそれら構成要素についての説明は省略する。
A third embodiment of the multistage compressor according to the present invention will be described with reference to FIG. FIG. 4 is an enlarged vertical cross-sectional view of a main part of a multistage compressor according to the third embodiment of the present invention.
The multistage compressor 61 according to the present embodiment is different from that of the second embodiment described above in that a collision plate 62 is provided at the lower end portion of the bearing 30. Since other components are the same as those of the second embodiment described above, description of these components is omitted here.

図4に示すように、本実施形態に係る多段圧縮機61は、油分離板45とともに衝突板62が設けられている。この衝突板62は、軸受30の下端面よりも上方で、かつ、油分離板45よりも下方に位置する軸受30に設置される円板により構成されている。また、この衝突板62の外径は、バランスウェイト46の内周面と僅かな隙間G4を保つ程度の大きさとされ、衝突板62の内径は、軸受30下端部の外周面と同じ大きさとされている。そして、この衝突板62は、その内周面が軸受30下端部の外周面と接する(密着する)ようにして取り付けられている。
なお、本実施形態において衝突板62は、軸受30の最下端部に取り付けられている。
As shown in FIG. 4, the multistage compressor 61 according to the present embodiment is provided with a collision plate 62 together with the oil separation plate 45. The collision plate 62 is configured by a disc installed on the bearing 30 located above the lower end surface of the bearing 30 and below the oil separation plate 45. Further, the outer diameter of the collision plate 62 is set to a size that maintains a slight gap G4 with the inner peripheral surface of the balance weight 46, and the inner diameter of the collision plate 62 is set to be the same size as the outer peripheral surface of the lower end portion of the bearing 30. ing. The collision plate 62 is attached such that its inner peripheral surface is in contact with (in close contact with) the outer peripheral surface of the lower end portion of the bearing 30.
In the present embodiment, the collision plate 62 is attached to the lowermost end portion of the bearing 30.

本実施形態に係る多段圧縮機61によれば、ロータ6のガス通路孔6A内を流通してきた中間圧冷媒ガスは、軸受30の下端部に取り付けられた衝突板62に衝突した後、ロータ6と共に回転している油分離板45に衝突し、その遠心分離作用によって中間圧冷媒ガス中から潤滑油12が分離される。そして、油分離板45の遠心分離作用によって遠心分離された潤滑油12は、電動モータ4のステータコイルエンド5Aの隙間を通ってその外周側に導かれ、密閉ハウジング10の内周面に沿って底部へと流下される。一方、潤滑油12が分離された中間圧冷媒ガスは、油分離板45の外周側(半径方向外側)の隙間G1から電動モータ4の上部空間に流動され、そこから高段側スクロール圧縮機構3の吸入口へと導かれ、圧縮室34内に吸入されて2段圧縮される。   According to the multistage compressor 61 according to the present embodiment, the intermediate-pressure refrigerant gas that has flowed through the gas passage hole 6A of the rotor 6 collides with the collision plate 62 attached to the lower end portion of the bearing 30, and then the rotor 6 At the same time, it collides with the rotating oil separation plate 45, and the lubricating oil 12 is separated from the intermediate pressure refrigerant gas by its centrifugal separation action. The lubricating oil 12 centrifuged by the centrifugal separation action of the oil separation plate 45 is guided to the outer peripheral side through the gap of the stator coil end 5 </ b> A of the electric motor 4 and along the inner peripheral surface of the sealed housing 10. It flows down to the bottom. On the other hand, the intermediate pressure refrigerant gas from which the lubricating oil 12 has been separated flows from the gap G1 on the outer peripheral side (radially outer side) of the oil separation plate 45 to the upper space of the electric motor 4, and from there the high-stage scroll compression mechanism 3 Is sucked into the compression chamber 34 and compressed in two stages.

このように、潤滑油12を分離した中間圧冷媒ガスを高段側スクロール圧縮機構3へと吸入させることができるため、中間圧冷媒ガスに伴われて高段側スクロール圧縮機構3に吸入され、高圧圧縮ガスと共に外部に吐き出される潤滑油12の量を低減することができる。これにより、冷凍サイクル側に循環される潤滑油12の油循環率(OCR)[全質量流量(冷媒流量+潤滑油流量)に対する潤滑油の質量流量の比]を低減し、システム効率を向上させることができるとともに、圧縮機における潤滑油不足の発生を解消することができる。
また、軸受30の下端部の一部が油分離板45よりも下方に位置することとなる、すなわち、軸受30の下端部の一部が油分離板45の内周側に形成された穴45a内に挿入されることとなるので、回転軸7の全長を短くすることができて、多段圧縮機1の高さ方向の寸法を減少させることができる。
Thus, since the intermediate pressure refrigerant gas from which the lubricating oil 12 has been separated can be sucked into the high-stage scroll compression mechanism 3, the intermediate pressure refrigerant gas is sucked into the high-stage scroll compression mechanism 3, It is possible to reduce the amount of the lubricating oil 12 discharged to the outside together with the high-pressure compressed gas. This reduces the oil circulation rate (OCR) [ratio of the mass flow rate of the lubricating oil to the total mass flow rate (refrigerant flow rate + lubricating oil flow rate)] of the lubricating oil 12 circulated to the refrigeration cycle side, and improves the system efficiency. And the occurrence of a lack of lubricating oil in the compressor can be eliminated.
Further, a part of the lower end portion of the bearing 30 is located below the oil separation plate 45, that is, a hole 45 a in which a part of the lower end portion of the bearing 30 is formed on the inner peripheral side of the oil separation plate 45. Since it will be inserted in, the full length of the rotating shaft 7 can be shortened, and the dimension of the height direction of the multistage compressor 1 can be reduced.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲で、適宜必要に応じて変形実施、変更実施することができる。
例えば、図3に示す第2実施形態において、油分離板45は必須の構成要素ではなく、油分離板45の代わりに油分離板52のみを設けるようにすることもできる。
It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately modified and changed as necessary without departing from the technical idea of the present invention.
For example, in the second embodiment shown in FIG. 3, the oil separation plate 45 is not an essential component, and only the oil separation plate 52 can be provided instead of the oil separation plate 45.

本発明の第1実施形態に係る多段圧縮機の縦断面図である。1 is a longitudinal sectional view of a multistage compressor according to a first embodiment of the present invention. 図1に示す多段圧縮機の要部拡大縦断面図である。It is a principal part expanded longitudinal cross-sectional view of the multistage compressor shown in FIG. 本発明の第2実施形態に係る多段圧縮機の要部拡大縦断面図である。It is a principal part expanded longitudinal cross-sectional view of the multistage compressor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る多段圧縮機の要部拡大縦断面図である。It is a principal part expanded longitudinal cross-sectional view of the multistage compressor which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 多段圧縮機
2 低段側圧縮機構(低段側ロータリ圧縮機構)
3 高段側圧縮機構(高段側スクロール圧縮機構)
4 電動モータ
7 回転軸
10 密閉ハウジング
12 潤滑油
30 軸受
45 油分離板(第1の油分離板)
51 多段圧縮機
52 油分離板(第2の油分離板)
61 多段圧縮機
62 衝突板
1 Multistage compressor 2 Low stage compression mechanism (Low stage rotary compression mechanism)
3 High stage compression mechanism (High stage scroll compression mechanism)
4 Electric motor 7 Rotating shaft 10 Sealed housing 12 Lubricating oil 30 Bearing 45 Oil separating plate (first oil separating plate)
51 Multistage compressor 52 Oil separator (second oil separator)
61 Multistage compressor 62 Collision plate

Claims (4)

密閉ハウジング内のほぼ中央部に電動モータを設置し、該電動モータにより回転軸を介して駆動される低段側圧縮機構および高段側圧縮機構を、前記電動モータを挟んでその下部および上部に設置するとともに、前記低段側圧縮機構で圧縮された中間圧冷媒ガスを前記密閉ハウジング内に吐き出し、該中間圧冷媒ガスを前記高段側圧縮機構により吸入して2段圧縮する多段圧縮機において、
前記電動モータ内を流通後に前記高段側圧縮機構へと吸入される前記中間圧冷媒ガス中に含まれる潤滑油を遠心分離する第1の油分離板を、前記回転軸の一端部を軸受け支持する軸受を貫通させて設けたことを特徴とする多段圧縮機。
An electric motor is installed at a substantially central portion in the hermetic housing, and a low-stage compression mechanism and a high-stage compression mechanism that are driven by the electric motor via a rotating shaft are provided at the lower and upper portions with the electric motor interposed therebetween. A multi-stage compressor that is installed and discharges the intermediate-pressure refrigerant gas compressed by the low-stage side compression mechanism into the hermetic housing, and sucks the intermediate-pressure refrigerant gas by the high-stage side compression mechanism to perform two-stage compression. ,
A first oil separation plate for centrifuging the lubricating oil contained in the intermediate pressure refrigerant gas sucked into the high-stage compression mechanism after flowing through the electric motor is supported by one end of the rotating shaft as a bearing. A multi-stage compressor characterized in that a bearing to be penetrated is provided.
前記電動モータ内を流通後に前記高段側圧縮機構へと吸入される前記中間圧冷媒ガス中に含まれる潤滑油を遠心分離する第2の油分離板を、前記回転軸の一端部に前記回転軸を貫通させて設けたことを特徴とする請求項1に記載の多段圧縮機。   A second oil separation plate for centrifuging the lubricating oil contained in the intermediate pressure refrigerant gas sucked into the high-stage compression mechanism after passing through the electric motor is rotated at one end of the rotating shaft. The multistage compressor according to claim 1, wherein the multi-stage compressor is provided with a shaft passing therethrough. 前記電動モータ内を流通後に前記高段側圧縮機構へと吸入される前記中間圧冷媒ガスが衝突する衝突板を、前記回転軸の一端部を軸受け支持する軸受を貫通させて設けたことを特徴とする請求項1に記載の多段圧縮機。   A collision plate that collides with the intermediate-pressure refrigerant gas sucked into the high-stage compression mechanism after flowing through the electric motor is provided through a bearing that supports a bearing of one end of the rotating shaft. The multistage compressor according to claim 1. 密閉ハウジング内のほぼ中央部に電動モータを設置し、該電動モータにより回転軸を介して駆動される低段側圧縮機構および高段側圧縮機構を、前記電動モータを挟んでその下部および上部に設置するとともに、前記低段側圧縮機構で圧縮された中間圧冷媒ガスを前記密閉ハウジング内に吐き出し、該中間圧冷媒ガスを前記高段側圧縮機構により吸入して2段圧縮する多段圧縮機において、
前記電動モータ内を流通後に前記高段側圧縮機構へと吸入される前記中間圧冷媒ガス中に含まれる潤滑油を遠心分離する油分離板を、前記回転軸の一端部に前記回転軸を貫通させて設けたことを特徴とする多段圧縮機。
An electric motor is installed at a substantially central portion in the hermetic housing, and a low-stage compression mechanism and a high-stage compression mechanism that are driven by the electric motor via a rotating shaft are provided at the lower and upper portions with the electric motor interposed therebetween. A multi-stage compressor that is installed and discharges the intermediate-pressure refrigerant gas compressed by the low-stage side compression mechanism into the hermetic housing, and sucks the intermediate-pressure refrigerant gas by the high-stage side compression mechanism to perform two-stage compression. ,
An oil separating plate for centrifuging the lubricating oil contained in the intermediate pressure refrigerant gas sucked into the high-stage compression mechanism after flowing through the electric motor passes through the rotating shaft at one end of the rotating shaft. A multi-stage compressor characterized by being provided.
JP2008274752A 2008-10-24 2008-10-24 Multistage compressor Active JP5232595B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008274752A JP5232595B2 (en) 2008-10-24 2008-10-24 Multistage compressor
PCT/JP2009/068199 WO2010047371A1 (en) 2008-10-24 2009-10-22 Multiple-stage compressor
EP09822068.4A EP2339180B1 (en) 2008-10-24 2009-10-22 Multiple-stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008274752A JP5232595B2 (en) 2008-10-24 2008-10-24 Multistage compressor

Publications (2)

Publication Number Publication Date
JP2010101272A JP2010101272A (en) 2010-05-06
JP5232595B2 true JP5232595B2 (en) 2013-07-10

Family

ID=42119409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274752A Active JP5232595B2 (en) 2008-10-24 2008-10-24 Multistage compressor

Country Status (3)

Country Link
EP (1) EP2339180B1 (en)
JP (1) JP5232595B2 (en)
WO (1) WO2010047371A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182688B (en) * 2011-04-26 2013-05-29 苏州英华特制冷设备技术有限公司 Two-stage compression compressor
CN103635696B (en) * 2011-07-01 2016-04-27 东芝开利株式会社 Multi-cylinder rotary compressor and refrigerating circulatory device
JP2013167201A (en) * 2012-02-15 2013-08-29 Mitsubishi Heavy Ind Ltd Rotary compressor
CN103492716B (en) * 2012-04-10 2016-03-02 松下电器产业株式会社 Compressor
JP6109542B2 (en) * 2012-11-20 2017-04-05 三菱重工業株式会社 Compressor having rotary compression mechanism
CN105332888A (en) * 2014-07-22 2016-02-17 珠海格力节能环保制冷技术研究中心有限公司 Compressor and air conditioner with same
CN111249772B (en) * 2020-02-29 2021-12-14 烟台沃尔姆真空技术有限公司 Vacuum pump system with oil-water separation function
JP2023076187A (en) * 2021-11-22 2023-06-01 三菱重工サーマルシステムズ株式会社 compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587074A (en) 1991-07-30 1993-04-06 Mitsubishi Heavy Ind Ltd Two stage compressor
MY126636A (en) * 1994-10-24 2006-10-31 Hitachi Ltd Scroll compressor
JPH11107967A (en) * 1997-09-30 1999-04-20 Sanyo Electric Co Ltd Sealed compressor
US7044717B2 (en) * 2002-06-11 2006-05-16 Tecumseh Products Company Lubrication of a hermetic carbon dioxide compressor
JP4696530B2 (en) * 2004-11-04 2011-06-08 ダイキン工業株式会社 Fluid machinery
JP4799437B2 (en) * 2007-02-06 2011-10-26 サンデン株式会社 Fluid machinery

Also Published As

Publication number Publication date
JP2010101272A (en) 2010-05-06
WO2010047371A1 (en) 2010-04-29
EP2339180A4 (en) 2016-08-31
EP2339180B1 (en) 2018-07-04
EP2339180A1 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP5232595B2 (en) Multistage compressor
JP2009047039A (en) Multistage compressor
AU776646B2 (en) Horizontal scroll compressor
JP5427892B2 (en) Multistage compressor
JP5112090B2 (en) Scroll compressor
US20200003199A1 (en) Compressor
US8118563B2 (en) Tandem compressor system and method
JP5709544B2 (en) Compressor
US20070140885A1 (en) Scroll compressor
JP5244407B2 (en) Hermetic scroll compressor and manufacturing method thereof
JP5276332B2 (en) Hermetic compressor
JP2006144660A (en) Compressor
EP2685106B1 (en) Two-stage compressor and two-stage compression system
JP4720649B2 (en) Electric compressor
EP2960513B1 (en) Hermetic compressor
JP5916309B2 (en) Hermetic compressor
JP5999922B2 (en) Scroll compressor
JP6440927B2 (en) Hermetic scroll compressor
JP5863263B2 (en) Multistage compressor
KR100297177B1 (en) Fluid apparatus
JP6738174B2 (en) Refrigerant compressor
JPH11125193A (en) Fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5232595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350