JP2016199668A - 光湿気硬化型樹脂組成物 - Google Patents

光湿気硬化型樹脂組成物 Download PDF

Info

Publication number
JP2016199668A
JP2016199668A JP2015080366A JP2015080366A JP2016199668A JP 2016199668 A JP2016199668 A JP 2016199668A JP 2015080366 A JP2015080366 A JP 2015080366A JP 2015080366 A JP2015080366 A JP 2015080366A JP 2016199668 A JP2016199668 A JP 2016199668A
Authority
JP
Japan
Prior art keywords
meth
acrylate
resin composition
moisture curable
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015080366A
Other languages
English (en)
Inventor
彰 結城
Akira Yuki
彰 結城
高橋 徹
Toru Takahashi
徹 高橋
拓身 木田
Takumi Kida
拓身 木田
高志 三木
Takashi Miki
高志 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015080366A priority Critical patent/JP2016199668A/ja
Publication of JP2016199668A publication Critical patent/JP2016199668A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

【課題】接着性、断熱性、軽量性、及び、応力緩和性に優れる光湿気硬化型樹脂組成物を提供する。
【解決手段】ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤と、中空粒子とを含有する光湿気硬化型樹脂組成物。
【選択図】なし

Description

本発明は、接着性、断熱性、軽量性、及び、応力緩和性に優れる光湿気硬化型樹脂組成物に関する。
一般的に、電子機器において、半導体チップ等の熱源から発生した熱を外部へ逃すために熱伝導性に優れた放熱材を導入する方法が用いられている。しかしながら、近年、電子機器の小型化が進んでいることから、発生した熱を瞬時に放熱させることが困難となっている。そのため、このような放熱材を用いるとともに、断熱シート等の断熱材を用いて、熱に弱い電子部品等に熱源から発生した熱が伝わり難くすることが行われている。
このような断熱材として、例えば、特許文献1には、繊維状物質、無機質発泡粒子、熱硬化性樹脂、及び、発泡剤を含有する断熱材用組成物が開示されている。しかしながら、特許文献1に開示されているような従来の断熱材は、接着性や応力緩和性が充分でないという問題があった。
国際公開第2013/108796号
本発明は、接着性、断熱性、軽量性、及び、応力緩和性に優れる光湿気硬化型樹脂組成物を提供することを目的とする。
本発明は、ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤と、中空粒子とを含有する光湿気硬化型樹脂組成物である。
以下に本発明を詳述する。
本発明者らは、驚くべきことに、ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤と、中空粒子とを含有する光湿気硬化型樹脂組成物は、接着性、断熱性、軽量性、及び、応力緩和性の全てに優れることを見出し、本発明を完成させるに至った。
本発明の光湿気硬化型樹脂組成物は、ラジカル重合性化合物を含有する。
上記ラジカル重合性化合物としては、光重合性を有するラジカル重合性化合物であればよく、分子中にラジカル反応性官能基を有する化合物であれば特に限定されないが、ラジカル反応性官能基として不飽和二重結合を有する化合物が好適であり、特に反応性の面から(メタ)アクリロイル基を有する化合物(以下、「(メタ)アクリル化合物」ともいう)が好適である。
なお、本明細書において、上記「(メタ)アクリロイル」は、アクリロイル又はメタクリロイルを意味し、上記「(メタ)アクリル」は、アクリル又はメタクリルを意味する。
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。
なお、本明細書において、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。また、上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物のイソシアネート基は、全てウレタン結合の形成に用いられ、上記ウレタン(メタ)アクリレートは、残存イソシアネート基を有さない。
上記エステル化合物のうち単官能のものとしては、例えば、N−アクリロイルオキシエチルヘキサヒドロフタルイミド等のフタルイミドアクリレート類や各種イミドアクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−ブトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2−フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3−テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H−オクタフルオロペンチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2−(メタ)アクリロイロキシエチルコハク酸、2−(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2−(メタ)アクリロイロキシエチル2−ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2−(メタ)アクリロイロキシエチルホスフェート等が挙げられる。
また、上記エステル化合物のうち2官能のものとしては、例えば、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、2−n−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2−ヒドロキシ−3−(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。
また、上記エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’−ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828EL、jER1001、jER1004(いずれも三菱化学社製)、エピクロン850−S(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’−ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE−810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP−4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX−201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jER YX−4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV−50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV−80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP−4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA−4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN−770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN−670−EXP−S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC−3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN−165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD−X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX−1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX−611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR−450、YR−207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX−147(ナガセケムテックス社製)等が挙げられる。
上記ビスフェノールA型エピスルフィド樹脂のうち市販されているものとしては、例えば、jER YL−7000(三菱化学社製)等が挙げられる。
上記エポキシ化合物のうちその他に市販されているものとしては、例えば、YDC−1312、YSLV−80XY、YSLV−90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA−7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182(いずれもダイセル・オルネクス社製)、EA−1010、EA−1020、EA−5323、EA−5520、EA−CHD、EMA−1020(いずれも新中村化学工業社製)、エポキシエステルM−600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA−141、デナコールアクリレートDA−314、デナコールアクリレートDA−911(いずれもナガセケムテックス社製)等が挙げられる。
上記ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に対して、水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5−ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,11−ウンデカントリイソシアネート等が挙げられる。
また、上記イソシアネート化合物としては、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート等が挙げられる。
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M−1100、M−1200、M−1210、M−1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8411、EBECRYL8412、EBECRYL8413、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9260、EBECRYL1290、EBECRYL5129、EBECRYL4842、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220、KRM7735、KRM−8295(いずれもダイセル・オルネクス社製)、アートレジンUN−9000H、アートレジンUN−9000A、アートレジンUN−7100、アートレジンUN−1255、アートレジンUN−330、アートレジンUN−3320HB、アートレジンUN−1200TPK、アートレジンSH−500B(いずれも根上工業社製)、U−2HA、U−2PHA、U−3HA、U−4HA、U−6H、U−6LPA、U−6HA、U−10H、U−15HA、U−122A、U−122P、U−108、U−108A、U−324A、U−340A、U−340P、U−1084A、U−2061BA、UA−340P、UA−4100、UA−4000、UA−4200、UA−4400、UA−5201P、UA−7100、UA−7200、UA−W2A(いずれも新中村化学工業社製)、AI−600、AH−600、AT−600、UA−101I、UA−101T、UA−306H、UA−306I、UA−306T(いずれも共栄社化学社製)等が挙げられる。
また、上述した以外のその他のラジカル重合性化合物も適宜使用することができる。
上記その他のラジカル重合性化合物としては、例えば、N,N−ジメチル(メタ)アクリルアミド、N−(メタ)アクリロイルモルホリン、N−ヒドロキシエチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物や、スチレン、α−メチルスチレン、N−ピロピドン、N−ビニルカプロラクトン等のビニル化合物等が挙げられる。
上記ラジカル重合性化合物は、硬化性を調整する等の観点から、単官能ラジカル重合性化合物と多官能ラジカル重合性化合物とを含有することが好ましい。単官能ラジカル重合性化合物のみを用いた場合、得られる光湿気硬化型樹脂組成物が硬化性に劣るものとなることがあり、多官能ラジカル重合性化合物のみを用いた場合、得られる光湿気硬化型樹脂組成物がタック性に劣るものとなることがある。なかでも、上記単官能ラジカル重合性化合物として分子中に窒素原子を有する化合物と、上記多官能ラジカル重合性化合物としてウレタン(メタ)アクリレートとを組み合わせて用いることがより好ましい。また、上記多官能ラジカル重合性化合物は、2官能又は3官能であることが好ましく、2官能であることがより好ましい。
上記ラジカル重合性化合物が、上記単官能ラジカル重合性化合物と上記多官能ラジカル重合性化合物とを含有する場合、上記多官能ラジカル重合性化合物の含有量は、上記単官能ラジカル重合性化合物と上記多官能ラジカル重合性化合物との合計100重量部に対して、好ましい下限が2重量部、好ましい上限が30重量部である。上記多官能ラジカル重合性化合物の含有量が2重量部未満であると、得られる光湿気硬化型樹脂組成物が硬化性に劣るものとなることがある。上記多官能ラジカル重合性化合物の含有量が30重量部を超えると、得られる光湿気硬化型樹脂組成物がタック性に劣るものとなることがある。上記多官能ラジカル重合性化合物の含有量のより好ましい下限は5重量部、より好ましい上限は20重量部である。
本発明の光湿気硬化型樹脂組成物は、湿気硬化型ウレタン樹脂を含有する。上記湿気硬化型ウレタン樹脂は、分子内のイソシアネート基が空気中又は被着体中の水分と反応して硬化する。また、湿気硬化成分として架橋性シリル基を有する化合物等を用いる場合と比べ、得られる光湿気硬化型樹脂組成物が速硬化性に優れるものとなる。
上記湿気硬化型ウレタン樹脂は、1分子中にイソシアネート基を1個のみ有していてもよいし、2個以上有していてもよい。なかでも、両末端にイソシアネート基を有するウレタンプレポリマーであることが好ましい。
上記ウレタンプレポリマーは、1分子中に2個以上の水酸基を有するポリオール化合物と、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより、得ることができる。
上記ポリオール化合物とポリイソシアネート化合物との反応は、通常、ポリオール化合物中の水酸基(OH)とポリイソシアネート化合物中のイソシアネート基(NCO)のモル比で[NCO]/[OH]=2.0〜2.5の範囲で行われる。
上記ポリオール化合物としては、ポリウレタンの製造に通常用いられている公知のポリオール化合物を使用することができ、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリアルキレンポリオール、ポリカーボネートポリオール等が挙げられる。これらのポリオール化合物は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
上記ポリエステルポリオールとしては、例えば、多価カルボン酸とポリオールとの反応により得られるポリエステルポリオールや、ε−カプロラクトンを開環重合して得られるポリ−ε−カプロラクトンポリオール等が挙げられる。
上記ポリエステルポリオールの原料となる上記多価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、1,5−ナフタル酸、2,6−ナフタル酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカメチレンジカルボン酸、ドデカメチレンジカルボン酸等が挙げられる。
上記ポリエステルポリオールの原料となる上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール等が挙げられる。
上記ポリエーテルポリオールとしては、例えば、エチレングリコール、プロピレングリコール、テトラヒドロフラン、3−メチルテトラヒドロフランの開環重合物、及び、これらやその誘導体のランダム共重合体又はブロック共重合体や、ビスフェノール型のポリオキシアルキレン変性体等が挙げられる。
上記ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の活性水素部分にアルキレンオキシド(例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、イソブチレンオキシド等)を付加反応させて得られるポリエーテルポリオールであり、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。
上記ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の両末端に、1種又は2種以上のアルキレンオキシドが付加されていることが好ましい。ビスフェノール型としては特に限定されず、A型、F型、S型等が挙げられ、好ましくはビスフェノールA型である。
上記ポリアルキレンポリオールとしては、例えば、ポリブタジエンポリオール、水素化ポリブタジエンポリオール、水素化ポリイソプレンポリオール等が挙げられる。
上記ポリカーボネートポリオールとしては、例えば、ポリヘキサメチレンカーボネートポリオール、ポリシクロヘキサンジメチレンカーボネートポリオール等が挙げられる。
上記ポリイソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、ジフェニルメタンジイソシアネートの液状変性物、ポリメリックMDI、トリレンジイソシアネート、ナフタレン−1,5−ジイソシアネート等が挙げられる。なかでも、蒸気圧や毒性の低い点、扱いやすさの点からジフェニルメタンジイソシアネート及びその変性物が好ましい。上記ポリイソシアネート化合物は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
また、上記湿気硬化型ウレタン樹脂は、下記式(1)で表される構造を有するポリオール化合物を用いて得られたものであることが好ましい。下記式(1)で表される構造を有するポリオール化合物を用いることにより、接着性に優れる組成物や、柔軟で伸びがよい硬化物を得ることができ、上記ラジカル重合性化合物との相溶性に優れるものとなる。
なかでも、プロピレングリコールや、テトラヒドロフラン(THF)化合物の開環重合化合物や、メチル基等の置換基を有するテトラヒドロフラン化合物の開環重合化合物からなるポリエーテルポリオールを用いることが好ましい。
Figure 2016199668
式(1)中、Rは、水素、メチル基、又は、エチル基を表し、nは、1〜10の整数、Lは、0〜5の整数、mは、1〜500の整数である。nは、1〜5であることが好ましく、Lは、0〜4であることが好ましく、mは、50〜200であることが好ましい。
なお、Lが0の場合とは、Rと結合した炭素が直接酸素と結合している場合を意味する。
更に、上記湿気硬化型ウレタン樹脂は、ラジカル重合性官能基を有していてもよい。
上記湿気硬化型ウレタン樹脂が有していてもよいラジカル重合性官能基としては、不飽和二重結合を有する基が好ましく、特に反応性の面から(メタ)アクリロイル基がより好ましい。
なお、ラジカル重合性官能基を有する湿気硬化型ウレタン樹脂は、ラジカル重合性化合物には含まず、湿気硬化型ウレタン樹脂として扱う。
上記湿気硬化型ウレタン樹脂の重量平均分子量の好ましい下限は800、好ましい上限は1万である。上記湿気硬化型ウレタン樹脂の重量平均分子量が800未満であると、架橋密度が高くなり、柔軟性が損なわれることがある。上記湿気硬化型ウレタン樹脂の重量平均分子量が1万を超えると、得られる光湿気硬化型樹脂組成物が塗布性に劣るものとなることがある。上記湿気硬化型ウレタン樹脂の重量平均分子量のより好ましい下限は2000、より好ましい上限は8000、更に好ましい下限は3000、更に好ましい上限は6000である。
なお、本明細書において上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際のカラムとしては、例えば、Shodex LF−804(昭和電工社製)等が挙げられる。また、GPCで用いる溶媒としては、テトラヒドロフラン等が挙げられる。
上記湿気硬化型ウレタン樹脂の含有量は、上記ラジカル重合性化合物と上記湿気硬化型ウレタン樹脂との合計100重量部に対して、好ましい下限が20重量部、好ましい上限が90重量部である。上記湿気硬化型ウレタン樹脂の含有量が20重量部未満であると、得られる光湿気硬化型樹脂組成物が湿気硬化性に劣るものとなることがある。上記湿気硬化型ウレタン樹脂の含有量が90重量部を超えると、得られる光湿気硬化型樹脂組成物が光硬化性に劣るものとなることがある。上記湿気硬化型ウレタン樹脂の含有量のより好ましい下限は30重量部、より好ましい上限は75重量部、更に好ましい下限は41重量部、更に好ましい上限は70重量部である。
本発明の光湿気硬化型樹脂組成物は、光ラジカル重合開始剤を含有する。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE784、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、ルシリンTPO(いずれもBASF社製)、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。
上記光ラジカル重合開始剤の含有量は、上記ラジカル重合性化合物100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記光ラジカル重合開始剤の含有量が0.01重量部未満であると、得られる光湿気硬化型樹脂組成物を充分に光硬化させることができないことがある。上記光ラジカル重合開始剤の含有量が10重量部を超えると、得られる光湿気硬化型樹脂組成物の保存安定性が低下することがある。上記光ラジカル重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。
本発明の光湿気硬化型樹脂組成物は、中空粒子を含有する。上記中空粒子を含有することにより、本発明の光湿気硬化型樹脂組成物は、断熱性や軽量性に優れるものとなる。
なお、本明細書において上記「中空粒子」は、内部に空洞部を有する粒子を意味する。
上記中空粒子は、内部に少なくとも1つの空洞部を有するものであればよく、内部に複数の空洞部を有していてもよい。また、上記空洞部は、一部が粒子の表面に露出していてもよい。
上記中空粒子の空隙率の好ましい下限は10%、好ましい上限は95%である。上記中空粒子の空隙率が10%以上であることにより、得られる光湿気硬化型樹脂組成物の硬化物が柔軟性に優れるものとなる。上記中空粒子の空隙率が95%以下であることにより、上記中空粒子の強度が高くなって割れ等が生じ難いものとなる。上記中空粒子の空隙率のより好ましい下限は20%、より好ましい上限は90%、更に好ましい下限は40%、更に好ましい上限は80%である。
上記中空粒子は、得られる光湿気硬化型樹脂組成物の硬化物が柔軟性に優れるものとなることから、内部に空洞部を形成するように発泡させた発泡粒子であることが好ましく、熱発泡性を有する粒子を発泡させた発泡粒子であることがより好ましく、熱膨張性マイクロカプセルを熱膨張させて発泡させた発泡粒子であることが更に好ましい。
上記中空粒子の外殻部の形状は、球状であることが好ましい。
上記中空粒子は、アスペクト比の好ましい上限が2である。上記中空粒子のアスペクト比が2以下であることにより、得られる光湿気硬化型樹脂組成物中の分散性に優れるものとなる。上記中空粒子のアスペクト比のより好ましい上限は1.5、更に好ましい上限は1.2である。
なお、本明細書において上記「アスペクト比」とは、粒子の短径の長さに対する粒子の長径の長さの比(長径の長さ/短径の長さ)を意味する。アスペクト比の値が1に近いほど中空粒子の外殻部の形状は真球に近くなる。
上記中空粒子は、平均粒子径の好ましい下限が0.01μm、好ましい上限が100μmである。上記中空粒子の平均粒子径がこの範囲であることにより、得られる光湿気硬化型樹脂組成物が断熱性や軽量性に優れ、かつ、塗布性にも優れるものとなる。上記中空粒子の平均粒子径のより好ましい下限は0.1μm、より好ましい上限は60μmである。
なお、上記中空粒子の平均粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)等の粒度分布測定装置を用いて、上記中空粒子を溶媒(水、有機溶媒等)に分散させて測定することができる。
得られる光湿気硬化型樹脂組成物の断熱性を高める観点から、上記中空粒子の熱伝導率の好ましい上限は0.1W/m・K、より好ましい上限は0.02W/m・Kである。
上記中空粒子の熱伝導率の好ましい下限は特にないが、実質的な下限は0.05W/m・Kである。
上記中空粒子は、有機中空粒子であってもよいし、無機中空粒子であってもよいし、有機無機ハイブリッド中空粒子であってもよい。
上記中空粒子が上記有機中空粒子又は上記有機無機ハイブリッド中空粒子である場合、上記中空粒子を構成する有機化合物としては、例えば、エポキシ化合物、アクリル化合物、ビニル化合物、シリコーン化合物、アクリロニトリル化合物、フェノール化合物等が挙げられる。なかでも、シリコーン化合物、アクリロニトリル化合物、フェノール化合物が好ましい。
上記中空粒子が上記無機中空粒子又は上記有機無機ハイブリッド中空粒子である場合、上記中空粒子を構成する無機化合物としては、例えば、アルミナ、合成マグネサイト、シリカ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛、酸化マグネシウム、タルク、マイカ、ハイドロタルサイト等が挙げられる。なかでも、アルミナ、合成マグネサイト、結晶性シリカ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛、酸化マグネシウムが好ましい。
上記中空粒子の含有量は、上記ラジカル重合性化合物と上記湿気硬化型ウレタン樹脂との合計100重量部に対して、好ましい下限が40重量部、好ましい上限が200重量部である。上記中空粒子の含有量が40重量部未満であると、得られる光湿気硬化型樹脂組成物に充分に断熱性を付与できないことがある。上記中空粒子の含有量が200重量部を超えると、得られる光湿気硬化型樹脂組成物が接着性に劣るものとなることがある。上記中空粒子の含有量のより好ましい下限は60重量部、より好ましい上限は180重量部である。
本発明の光湿気硬化型樹脂組成物は、上記中空粒子に加えて、他の充填剤を含有してもよい。上記他の充填剤を含有することにより、本発明の光湿気硬化型樹脂組成物は、好適なチクソ性を有するものとなり、塗布後の形状を充分に保持することができる。
上記他の充填剤は、平均粒子径の好ましい下限が1nm、好ましい上限が100nmである。上記他の充填剤の平均粒子径が1nm未満であると、得られる光湿気硬化型樹脂組成物が塗布性に劣るものとなることがある。上記他の充填剤の平均粒子径が100nmを超えると、得られる光湿気硬化型樹脂組成物が塗布後の形状保持性に劣るものとなることがある。上記他の充填剤の平均粒子径のより好ましい下限は5nm、より好ましい上限は50nmである。
なお、上記他の充填剤の平均粒子径は、上記中空粒子と同様にして測定することができる。
上記他の充填剤としては、無機充填剤が好ましく、例えば、シリカ、タルク、酸化チタン、酸化亜鉛、炭酸カルシウム等が挙げられる。なかでも、タルクが好ましい。これらの他の充填剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
上記他の充填剤は、疎水性表面処理がなされていることが好ましい。上記疎水性表面処理により、得られる光湿気硬化型樹脂組成物が塗布後の形状保持性により優れるものとなる。
上記疎水性表面処理としては、シリル化処理、アルキル化処理、エポキシ化処理等が挙げられる。なかでも、形状保持性を向上させる効果に優れることから、シリル化処理が好ましく、トリメチルシリル化処理がより好ましい。
上記他の充填剤を疎水性表面処理する方法としては、例えば、シランカップリング剤等の表面処理剤を用いて、上記他の充填剤の表面を処理する方法等が挙げられる。
具体的には例えば、上記トリメチルシリル化処理シリカは、例えば、シリカをゾルゲル法等の方法で合成し、シリカを流動させた状態でヘキサメチルジシラザンを噴霧する方法や、アルコール、トルエン等の有機溶媒中にシリカを加え、更に、ヘキサメチルジシラザンと水とを加えた後、水と有機溶媒とをエバポレーターで蒸発乾燥させる方法等により作製することができる。
上記他の充填剤の含有量は、上記ラジカル重合性化合物と上記湿気硬化型ウレタン樹脂との合計100重量部に対して、好ましい下限が1重量部、好ましい上限が20重量部である。上記他の充填剤の含有量が1重量部未満であると、得られる光湿気硬化型樹脂組成物が塗布後の形状保持性に劣るものとなることがある。上記他の充填剤の含有量が20重量部を超えると、得られる光湿気硬化型樹脂組成物が塗布性に劣るものとなることがある。上記他の充填剤の含有量のより好ましい下限は2重量部、より好ましい上限は15重量部であり、更に好ましい下限は3重量部、更に好ましい上限は10重量部、特に好ましい下限は4重量部である。
本発明の光湿気硬化型樹脂組成物は、イソシアネート基、イソチオシアネート基、及び、カルボジイミド基からなる群より選択される少なくとも1種の基を有する化合物を含有することが好ましい。上記イソシアネート基、イソチオシアネート基、及び、カルボジイミド基からなる群より選択される少なくとも1種の基を有する化合物は、水分との反応性が高く、保存時における湿気硬化型ウレタン樹脂と水分との反応を防止する役割を有する。なお、ウレタン結合とイソシアネート基とを有する化合物は、上記湿気硬化型ウレタン樹脂として扱う。
上記イソシアネート基、イソチオシアネート基、及び、カルボジイミド基からなる群より選択される少なくとも1種の基を有する化合物は、系中を移動して水分と迅速に反応させる必要があるため、分子量が小さいことが好ましく、特に、イソシアネート基やイソチオシアネート基を有する化合物の場合、分子量の好ましい上限は500、より好ましい上限は300である。また、水分との反応速度を速くして効果的に水分を除去する観点から、芳香族環を有するイソシアネート基や、芳香族環を有するイソチオシアネート基を有する化合物が好適である。なお、カルボジイミド基を有する化合物には、特に制限はない。また、水分と反応しなかったイソシアネート基、イソチオシアネート基、及び、カルボジイミド基からなる群より選択される少なくとも1種の基を有する化合物は、湿気硬化型ウレタン樹脂の硬化に寄与し、架橋密度が向上することで、得られる光湿気硬化型樹脂組成物の硬化物が接着性に優れるものとなる。
上記イソシアネート基、イソチオシアネート基、及び、カルボジイミド基からなる群より選択される少なくとも1種の基を有する化合物は、単官能であってもよいし、多官能であってもよいが、水分に対して適度な反応性を有することから2官能であることが好ましい。
なお、上記イソシアネート基、イソチオシアネート基、及び、カルボジイミド基からなる群より選択される少なくとも1種の基を有する化合物は、化学的に水分を除去するものであるが、本発明の光湿気硬化型樹脂組成物に使用する各材料を配合する前に、予め、必要に応じて、各材料に物理的な処理(ゼオライトのような水分吸着剤による水分の除去)を行っておいてもよい。
上記イソシアネート基、イソチオシアネート基、及び、カルボジイミド基からなる群より選択される少なくとも1種の基を有する化合物のなかでも、架橋密度を向上させ、得られる光湿気硬化型樹脂組成物の硬化物を接着性に優れるものとする効果に優れることから、イソシアネート基を有する化合物が好ましい。
上記イソシアネート基を有する化合物は、上記湿気硬化型ウレタン樹脂の原料となるポリイソシアネート化合物と同様の化合物であってもよいし、異なっていてもよい。
上記イソシアネート基を有する化合物としては、具体的には例えば、イソホロンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5−ナフタレンジイソシアネート(NDI)、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,11−ウンデカントリイソシアネート等が挙げられる。
また、イソチオシアネート基を有する化合物としては、具体的には例えば、ベンジルイソチオシアネート、フェニルイソチオシアネート、4−フェニルブチルイソチオシアネート、3−フェニルプロピルイソチオシアネート等が挙げられる。
また、カルボジイミド基を有する化合物としては、具体的には例えば、N,N−ジシクロヘキシルカルボジイミド、N,N−ジイソプロピルカルボジイミド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、ビス(2,6−ジイソプロピルフェニル)カルボジイミド等が挙げられ、市販されているものとしては、例えば、カルボジライトLA−1(日清紡社製)等が挙げられる。
これらは、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
上記イソシアネート基、イソチオシアネート基、及び、カルボジイミド基からなる群より選択される少なくとも1種の基を有する化合物の含有量は、本発明の光湿気硬化型樹脂組成物全体100重量部中において、好ましい下限が0.05重量部、好ましい上限が10重量部である。上記イソシアネート基、イソチオシアネート基、及び、カルボジイミド基からなる群より選択される少なくとも1種の基を有する化合物の含有量が0.05重量部未満であると、得られる光湿気硬化型樹脂組成物が保存安定性や接着性に劣るものとなることがある。上記イソシアネート基、イソチオシアネート基、及び、カルボジイミド基からなる群より選択される少なくとも1種の基を有する化合物の含有量が10重量部を超えると、湿気硬化型ウレタン樹脂の硬化時の架橋度が上がりすぎて、硬くもろくなることがある。上記イソシアネート基、イソチオシアネート基、及び、カルボジイミド基からなる群より選択される少なくとも1種の基を有する化合物の含有量のより好ましい下限は0.1重量部、より好ましい上限は3.0重量部、更に好ましい下限は0.2重量部、更に好ましい上限は1.5重量部である。
本発明の光湿気硬化型樹脂組成物は、更に、必要に応じて、着色剤、イオン液体、溶剤、反応性希釈剤等の添加剤を含有してもよい。
本発明の光湿気硬化型樹脂組成物を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤と、中空粒子と、必要に応じて添加する添加剤とを混合する方法等が挙げられる。
本発明の光湿気硬化型樹脂組成物は、含有する水分量が100ppm以下であることが好ましい。上記水分量が100ppmを超えると、保存中に上記湿気硬化型ウレタン樹脂と水分が反応しやすくなり、光湿気硬化型樹脂組成物が保存安定性に劣るものとなる。上記水分量は80ppm以下であることがより好ましい。
なお、上記水分量は、カールフィッシャー水分測定装置により測定することができる。
本発明の光湿気硬化型樹脂組成物における、コーンプレート型粘度計を用いて25℃、1rpmの条件で測定した粘度の好ましい下限は50Pa・s、好ましい上限は1000Pa・sである。上記粘度が50Pa・s未満であったり、1000Pa・sを超えたりすると、光湿気硬化型樹脂組成物を塗布する際の作業性が悪くなることがある。上記粘度のより好ましい下限は80Pa・s、より好ましい上限は500Pa・s、更に好ましい上限は400Pa・sである。
なお、本発明の光湿気硬化型樹脂組成物の粘度が高すぎる場合は、塗布時に加温することで塗布性を向上させることができる。
本発明の光湿気硬化型樹脂組成物のチクソトロピックインデックスの好ましい下限は1.3、好ましい上限は5.0である。上記チクソトロピックインデックスが1.3未満であったり、5.0を超えたりすると、光湿気硬化型樹脂組成物を塗布する際の作業性が悪くなることがある。上記チクソトロピックインデックスのより好ましい下限は1.5、より好ましい上限は4.0である。
なお、本明細書において上記チクソトロピックインデックスとは、コーンプレート型粘度計を用いて25℃、1rpmの条件で測定した粘度を、コーンプレート型粘度計を用いて25℃、10rpmの条件で測定した粘度で除した値を意味する。
本発明によれば、接着性、断熱性、軽量性、及び、応力緩和性に優れる光湿気硬化型樹脂組成物を提供することができる。
(a)は、接着性評価用サンプルを上から見た場合を示す模式図であり、(b)は、接着性評価用サンプルを横から見た場合を示す模式図である。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(ウレタンプレポリマーAの作製)
ポリオールとして100重量部のポリテトラメチレンエーテルグリコール(三菱化学社製、「PTMG−2000」)と、0.01重量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ジイソシアネートとして26.5重量部のPure MDI(日曹商事社製)を入れ、80℃で3時間撹拌し、反応させ、ウレタンプレポリマーA(重量平均分子量2700)を得た。
(シリカ系中空粒子の作製)
粒子径3μmのジビニルベンゼン粒子(積水化学工業社製、ミクロパールSP)を20%エタノール水溶液中に分散させ、粒子径450nmのシリカ粒子(日産化学社製、MP−4540M)を添加し、ジビニルベンゼン粒子表面にヘテロ凝集させた。得られた粒子を水洗後、80%エタノール水溶液200gに分散させ、28%アンモニア水1gを添加した後、20%テトラエトキシシラン−エタノール水溶液100gを12時間かけて滴下し、ゾルゲル反応をさせることにより、シリカ層が形成された被覆粒子を得た。
得られたシリカ被覆粒子を、電気炉にて500℃で3時間加熱することにより、ジビニルベンゼンの分解とシリカ層の焼結とを行い、シリカ系中空粒子を得た。
得られたシリカ系中空粒子の平均粒子径は5.0μmであった。
(実施例1〜4、比較例1)
表1に記載された配合比に従い、各材料を、遊星式撹拌装置(シンキー社製、「あわとり練太郎」)にて撹拌した後、セラミック3本ロールにて均一に混合して実施例1〜4、比較例1の光湿気硬化型樹脂組成物を得た。
<評価>
実施例及び比較例で得られた各光湿気硬化型樹脂組成物について以下の評価を行った。結果を表1に示した。
(接着性)
実施例及び比較例で得られた各光湿気硬化型樹脂組成物を、ディスペンス装置を用いて、アルミ基板上に約2mmの幅で塗布した。次いで、UV−LED(波長365nm)を用いて、紫外線を3000mJ/cm照射することによって、光湿気硬化型樹脂組成物を光硬化させた後、別のアルミ基板を重ね、20gの重りを置き、一晩放置することにより湿気硬化させて、接着性評価用サンプルを得た。
図1に接着性評価用サンプルを上から見た場合を示す模式図(図1(a))、及び、接着性評価用サンプルを横から見た場合を示す模式図(図1(b))を示した。
得られた各接着性評価用サンプルを85℃、85RH%の恒温恒湿オーブンに入れ、地面に対して50gの重りを垂直につるし、24時間静置した。24時間静置後のズレが1mm以下であった場合を「○」、1mmを超え3mm以下であった場合を「△」、3mmを超えた場合を「×」として、光湿気硬化型樹脂組成物の接着性を評価した。
(柔軟性)
実施例及び比較例で得られた各光湿気硬化型樹脂組成物について、UV−LED(波長365nm)を用いて、紫外線を3000mJ/cm照射することによって光硬化させ、その後、一晩放置することにより湿気硬化させた。得られた各硬化物について、A型硬度計(アスカー高分子計器社製)により、硬度の測定を行った。硬度が40以下であった場合を「○」、40を超えた場合を「×」として、柔軟性を評価した。
(軽量性)
実施例及び比較例で得られた各光湿気硬化型樹脂組成物について、UV−LED(波長365nm)を用いて、紫外線を3000mJ/cm照射することによって光硬化させ、その後、一晩放置することにより湿気硬化させた。得られた硬化物をカットし、長さ50mm、幅50mm、厚さ2mmのシートを得た。
得られた各シートについて、比重を測定し、比重が1.0以下であった場合を「○」、比重が1.0を超え1.1以下であった場合を「△」、比重が1.1を超えた場合を「×」として軽量性を評価した。
(断熱性)
上記「(軽量性)」と同様にして得られた各シートについて、レーザーフラッシュ法熱定数測定装置(アルバック理工社製、「TC−9000」)を用いて熱伝導率を測定した。
熱伝導率が、0.1W/m・K以下であった場合を「○」、0.1W/m・Kを超え0.2W/m・K以下であった場合を「△」、0.2W/m・Kを超えた場合を「×」として断熱性を評価した。
Figure 2016199668
本発明によれば、接着性、断熱性、軽量性、及び、応力緩和性に優れる光湿気硬化型樹脂組成物を提供することができる。
1 アルミ基板
2 光湿気硬化型樹脂組成物

Claims (2)

  1. ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤と、中空粒子とを含有することを特徴とする光湿気硬化型樹脂組成物。
  2. 中空粒子の含有量が、ラジカル重合性化合物と湿気硬化型ウレタン樹脂との合計100重量部に対して、40〜200重量部であることを特徴とする請求項1記載の光湿気硬化型樹脂組成物。
JP2015080366A 2015-04-09 2015-04-09 光湿気硬化型樹脂組成物 Pending JP2016199668A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015080366A JP2016199668A (ja) 2015-04-09 2015-04-09 光湿気硬化型樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015080366A JP2016199668A (ja) 2015-04-09 2015-04-09 光湿気硬化型樹脂組成物

Publications (1)

Publication Number Publication Date
JP2016199668A true JP2016199668A (ja) 2016-12-01

Family

ID=57423456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015080366A Pending JP2016199668A (ja) 2015-04-09 2015-04-09 光湿気硬化型樹脂組成物

Country Status (1)

Country Link
JP (1) JP2016199668A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112673031A (zh) * 2018-10-23 2021-04-16 积水化学工业株式会社 固化性树脂组合物和固化体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112673031A (zh) * 2018-10-23 2021-04-16 积水化学工业株式会社 固化性树脂组合物和固化体
CN112673031B (zh) * 2018-10-23 2024-04-05 积水化学工业株式会社 固化性树脂组合物和固化体

Similar Documents

Publication Publication Date Title
KR102352334B1 (ko) 광 습기 경화형 수지 조성물, 전자 부품용 접착제, 및 표시 소자용 접착제
KR102260532B1 (ko) 경화체, 전자 부품, 표시 소자 및 광 습기 경화형 수지 조성물
JP6703409B2 (ja) 光湿気硬化型樹脂組成物及び熱伝導性接着剤
JP5989902B2 (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
TWI673571B (zh) 光與濕氣硬化型樹脂組成物、電子零件用接著劑、及顯示元件用接著劑
JP6434890B2 (ja) 光湿気硬化型樹脂組成物
JP6499561B2 (ja) 光湿気硬化型樹脂組成物
JP2016074783A (ja) 光湿気硬化型樹脂組成物
JP2016199743A (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP2016074781A (ja) 光湿気硬化型樹脂組成物
WO2016163353A1 (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP5824597B1 (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP2016199669A (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
TW202031850A (zh) 光與濕氣硬化性胺酯系化合物、光與濕氣硬化性胺酯預聚物、及光與濕氣硬化性樹脂組成物
JP2016147969A (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP2016199668A (ja) 光湿気硬化型樹脂組成物
JP2016199671A (ja) 光湿気硬化型樹脂組成物
JP6510789B2 (ja) 湿気硬化型樹脂組成物
JP6622465B2 (ja) 狭額縁設計表示素子用光湿気硬化型樹脂組成物硬化体
JP2016199670A (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP2017190360A (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤