JP2016192519A - Replica mold and manufacturing method thereof - Google Patents

Replica mold and manufacturing method thereof Download PDF

Info

Publication number
JP2016192519A
JP2016192519A JP2015072652A JP2015072652A JP2016192519A JP 2016192519 A JP2016192519 A JP 2016192519A JP 2015072652 A JP2015072652 A JP 2015072652A JP 2015072652 A JP2015072652 A JP 2015072652A JP 2016192519 A JP2016192519 A JP 2016192519A
Authority
JP
Japan
Prior art keywords
soft material
replica mold
mold
residual stress
fine structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015072652A
Other languages
Japanese (ja)
Other versions
JP6491928B2 (en
Inventor
秀雄 大井
Hideo Oi
秀雄 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO INTERNATIONAL KK
Original Assignee
KYODO INTERNATIONAL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO INTERNATIONAL KK filed Critical KYODO INTERNATIONAL KK
Priority to JP2015072652A priority Critical patent/JP6491928B2/en
Priority to CN201510671174.5A priority patent/CN106003880B/en
Priority to TW104133925A priority patent/TWI576658B/en
Publication of JP2016192519A publication Critical patent/JP2016192519A/en
Application granted granted Critical
Publication of JP6491928B2 publication Critical patent/JP6491928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0007Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
    • B32B37/003Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality to avoid air inclusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0007Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
    • B32B37/0015Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality to avoid warp or curl

Abstract

PROBLEM TO BE SOLVED: To provide a replica mold capable of preventing a defect (transfer defective region) of a microstructure transferred to a mask material by entrainment of air bubbles or the like during contact of a transferred body and the replica mold via the mask material without requiring a complicated transfer device, and a manufacturing method thereof.SOLUTION: A replica mold 101 is formed from a soft material 103 and has the microstructure on a surface. A surface having the microstructure is curved so as to be projected by a residual stress. In the case where the replica mold is supported by jigs 104a and 104b including openings that are fixed horizontally, in addition to curvature X caused by the residual stress of the replica mold 101 itself, deadweight deflection W is generated that is deflection caused by a deadweight. A sum of the curvature X caused by the residual stress and the deadweight deflection W is from 2.0% to 6.0% with respect to a diameter of the opening.SELECTED DRAWING: Figure 1

Description

本発明はナノインプリント用レプリカモールドに関する。   The present invention relates to a nanoimprint replica mold.

ナノインプリント法による微細加工技術は、高精度の半導体集積回路、光反射防止性付与、LED基板における光取り出し効率向上等の光学・照明用途、2次電池、太陽電池、燃料電池等のエネルギー開発、及びバイオテクノロジーなどの多岐に渡る分野で導入が検討されている。   The microfabrication technology based on the nanoimprint method is used for optical and lighting applications such as high-precision semiconductor integrated circuits, imparting anti-reflection properties, and improving the light extraction efficiency of LED substrates, and developing energy for secondary batteries, solar cells, and fuel cells. Introduction is being considered in a wide range of fields such as biotechnology.

従来のナノインプリント法において、モールドの作成方法は、Siや石英などの基板に対してフォトリソグラフィー法で微細構造を形成する方法があるが製造コストが非常に高額となる問題がある。   In a conventional nanoimprint method, there is a method for forming a mold by forming a fine structure on a substrate such as Si or quartz by a photolithography method, but there is a problem that the manufacturing cost is very high.

近年、ナノインプリント法は、製造コストが高額なフォトリソグラフィー技術に替わる安価な微細構造形成技術として注目されている。そこで、フォトリソグラフィー法などで形成したモールドをマスターモールドとして用い、前記マスターモールドの表面の微細構造をナノインプリント法にて樹脂等の材料に転写し、この樹脂等の材料をレプリカモールドとして用いることが行われている。   In recent years, the nanoimprint method has attracted attention as an inexpensive fine structure forming technique that replaces a photolithographic technique with a high manufacturing cost. Therefore, a mold formed by a photolithography method or the like is used as a master mold, a fine structure on the surface of the master mold is transferred to a material such as a resin by a nanoimprint method, and the material such as the resin is used as a replica mold. It has been broken.

このナノインプリント法を詳述すると、微細構造を形成した型(マスターモールド)を作製し、このマスターモールドから微細構造を転写させたレプリカモールドを形成し、そのレプリカモールドをスタンパとして使用して微細構造を被転写体にプリントするものである。レプリカモールドの微細構造を被転写体にプリントする方法としては、マスク材として光硬化樹脂が積層された被転写体をスタンパたるレプリカモールドで押圧することで、微細構造を積層された光硬化樹脂に転写する。その状態で紫外線などの光照射を行い光硬化樹脂を硬化させる。硬化された光硬化樹脂をマスクとしてエッチング等の方式で被転写体にパターニングするものである。   The nanoimprint method will be described in detail. A mold (master mold) having a microstructure is formed, a replica mold is formed by transferring the microstructure from the master mold, and the microstructure is formed using the replica mold as a stamper. It prints on the transfer medium. As a method for printing the microstructure of the replica mold on the transfer object, the transfer object on which the photocurable resin is laminated as a mask material is pressed with a replica mold as a stamper, so that the fine structure is applied to the laminated photocurable resin. Transcript. In this state, the photo-curing resin is cured by irradiating light such as ultraviolet rays. Patterning is performed on the transfer object by a method such as etching using the cured photo-curing resin as a mask.

従来、ナノインプリント法では平坦なレプリカモールドを、マスク材が積層された平坦な被転写体に押し当て、マスク材を押し広げて、その状態で例えばマスク材が光硬化樹脂の場合には紫外線などの光照射を行い硬化させモールドを剥離しマスク材に微細構造が転写される。微細構造が転写されたマスク材を用いて被転写体をエッチングすることにより被転写体に微細構造を転写することができる。このような転写方法ではレプリカモールドとマスク材を介した被転写体との接触時に、マスク材に気泡が巻き込まれる場合がある。マスク材に気泡が巻き込まれると、マスク材に転写される微細構造に欠陥(転写不良領域)が生まれ製品の不良となる問題があった。近年、製造コスト削減の要請に伴い、一度により広い面積の被転写体に微細構造を転写できる転写面積の大きなレプリカモールドの必要が生じている。しかし気泡の巻き込みの傾向は、転写面積が拡大すればするほど顕著となる。   Conventionally, in the nanoimprint method, a flat replica mold is pressed against a flat transfer target on which a mask material is laminated, and the mask material is spread out. Light irradiation is cured, the mold is peeled off, and the fine structure is transferred to the mask material. The fine structure can be transferred to the transfer object by etching the transfer object using the mask material to which the fine structure has been transferred. In such a transfer method, bubbles may be caught in the mask material at the time of contact between the replica mold and the transferred material via the mask material. When bubbles are involved in the mask material, there is a problem that a defect (transfer defective area) is generated in the fine structure transferred to the mask material, resulting in a defective product. In recent years, with the demand for manufacturing cost reduction, there has been a need for a replica mold having a large transfer area capable of transferring a fine structure to a transfer target having a larger area. However, the tendency of entrainment of bubbles becomes more prominent as the transfer area increases.

そこで、本願発明者は平坦なレプリカモールドを被転写体に向かって微細構造を有する面が凸状となるように湾曲させるとともに、凸状となるように湾曲したレプリカモールドを被転写体と接触させる転写方法を見いだした。この転写方法では、モールドの微細構造を有する面の凸状が被転写体の中心部に接触した後、徐々に外周部へ向かってその接触領域が一様に広げられていくこととなる。その結果、この転写方法では、マスク材が微細構造を充填しつつ外周部へ向かって一様に流動していく。これによってマスク材への気泡の巻き込みが防止され、マスク材に転写される微細構造の欠陥(転写不良領域)を防止することができる。   Therefore, the inventor of the present application curves the flat replica mold toward the transferred body so that the surface having the fine structure is convex, and brings the replica mold curved so as to be convex into contact with the transferred body. I found a transcription method. In this transfer method, after the convex shape of the surface having the microstructure of the mold comes into contact with the central portion of the transferred body, the contact area is gradually expanded uniformly toward the outer peripheral portion. As a result, in this transfer method, the mask material flows uniformly toward the outer peripheral portion while filling the fine structure. As a result, entrainment of bubbles in the mask material is prevented, and defects in the fine structure (transfer defective areas) transferred to the mask material can be prevented.

しかしながら、そのような凸状となるように湾曲したレプリカモールドを転写装置にて実現するためには、例えば平坦なレプリカモールドを圧力により凸状に湾曲化させることが考えられるが装置の構成が複雑となる。また、平坦なレプリカモールドを圧力で湾曲化させているためレプリカモールドにかかる負荷が大きく、レプリカモールド自体が破損する場合がある。さらに外圧によって湾曲化させているために圧力のかかり方がレプリカモールド全面において均等になされず、すなわち凸形状にムラが生じ、湾曲の曲率が面内で異なるために被転写体に転写される微細構造に欠陥(転写不良領域)が生じる。   However, in order to realize a replica mold curved to have such a convex shape with a transfer device, for example, it may be possible to curve a flat replica mold into a convex shape by pressure, but the configuration of the device is complicated. It becomes. Further, since the flat replica mold is curved with pressure, the load applied to the replica mold is large, and the replica mold itself may be damaged. Furthermore, since the surface is curved by the external pressure, the pressure is not applied uniformly over the entire surface of the replica mold. That is, unevenness occurs in the convex shape, and the curvature of the curve is different within the surface. Defects (transfer defective areas) occur in the structure.

また、従来の硬質なレプリカモールドでは、被転写体の反り、突起や異物が存在する場合、マスク材を介した被転写体とレプリカモールドとの接触時に突起や異物を中心とした広範囲に樹脂に転写される微細構造の欠陥(転写不良領域)を生じる場合がある。   Also, in the case of conventional hard replica molds, if there is warping, protrusions or foreign objects in the transferred object, the resin can be applied to a wide range of resin centering on the protrusions and foreign objects when the transferred object is contacted with the replica mold via the mask material. In some cases, defects in the transferred fine structure (transfer defective area) may occur.

そこで、本発明は、複雑な転写装置を必要とせず、マスク材を介した被転写体とレプリカモールドとの接触時に、気泡の巻き込みなどによるマスク材に転写される微細構造の欠陥(転写不良領域)を防止することのできるレプリカモールド及びその製造方法を提供するものである。   Therefore, the present invention does not require a complicated transfer device, and a fine structure defect (transfer defective area) transferred to the mask material due to entrainment of bubbles or the like when the transferred object and the replica mold are contacted via the mask material. The present invention provides a replica mold and a method for manufacturing the same.

本発明のレプリカモールドは、軟質材料から形成され、表面に微細構造をもつレプリカモールドであって、微細構造を有する面が残留応力により凸状となるように湾曲しており、このレプリカモールドは、開口部を有する治具に微細構造を有する面を下方に向けて載せ、開口部の縁によって支持させた場合に、レプリカモールドの自重たわみと残留応力による湾曲との和が治具の開口部の直径に対して2.0%乃至6.0%であることを特徴とする。   The replica mold of the present invention is a replica mold that is formed of a soft material and has a fine structure on the surface, and is curved so that the surface having the fine structure becomes convex due to residual stress. When a surface having a fine structure is placed downward on a jig having an opening and supported by the edge of the opening, the sum of the deflection of the replica mold due to its own weight and the bending due to residual stress is the sum of the opening of the jig. It is characterized by being 2.0% to 6.0% with respect to the diameter.

図1(a)は本発明に係るレプリカモールドの模式図である。図1(b)はレプリカモ―ルド自体の持つ残留応力による湾曲(X)、図1(c)はレプリカモールド自体の持つ残留応力による湾曲(X)と自重たわみ(W)との和を示す。FIG. 1A is a schematic view of a replica mold according to the present invention. FIG. 1 (b) shows the curve (X) due to the residual stress of the replica mold itself, and FIG. 1 (c) shows the sum of the curve (X) due to the residual stress of the replica mold itself and its own deflection (W). 図2(a)〜(e)は本発明に係るレプリカモールドの製造工程を模式的に示す断面図である。2A to 2E are cross-sectional views schematically showing the manufacturing process of the replica mold according to the present invention. 図3(a)〜(e)は本発明に係るレプリカモールドの製造工程を模式的に示す断面図である。3A to 3E are cross-sectional views schematically showing the manufacturing process of the replica mold according to the present invention. 図4(a)〜(c)は本発明に係るレプリカモールドの製造工程を模式的に示す断面図である。4A to 4C are cross-sectional views schematically showing the manufacturing process of the replica mold according to the present invention. 図5は、本発明に係るレプリカモ―ルド自体の持つ残留応力による湾曲(X)及び自重たわみ(W)の測定方法の模式図である。FIG. 5 is a schematic diagram of a method of measuring curvature (X) and deflection due to self-weight (W) due to residual stress of the replica mold itself according to the present invention. 図6(a)〜(d)は本発明に係るレプリカモールドの微細構造を被転写体に積層されたマスク材に転写する工程を示す断面図である。FIGS. 6A to 6D are cross-sectional views showing a process of transferring the microstructure of the replica mold according to the present invention to a mask material laminated on the transfer target. 図7(a)〜(c)は本発明に係るレプリカモールドを用いた被転写体に対する微細構造の転写結果を示す模式図である。(a)は本発明の実施例1〜6、(b)は比較例1、2、3、5、(c)は比較例4の結果を示す。FIGS. 7A to 7C are schematic views showing the transfer results of the fine structure on the transfer object using the replica mold according to the present invention. (A) Examples 1 to 6 of the present invention, (b) shows the results of Comparative Examples 1, 2, 3, 5, and (c) shows the results of Comparative Example 4. 図8は本発明に係るレプリカモールドを用いて形成した微細構造の転写結果の一例を示す模式図である。FIG. 8 is a schematic view showing an example of a transfer result of a fine structure formed using the replica mold according to the present invention.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1(a)は本発明の一実施例に係るレプリカモールド101の一部を抜き出して拡大した模式図である。このレプリカモールドは、軟質材料から形成され表面に微細構造を有し、この微細構造を有する面が残留応力により凸状となるように湾曲している。レプリカモールド101は、軟質材料から形成されるため可撓性をもち、表面にナノメートルオーダーからマイクロメートルオーダーの微細構造を有する。   FIG. 1A is a schematic diagram of a part extracted from a replica mold 101 according to an embodiment of the present invention. This replica mold is formed of a soft material, has a fine structure on the surface, and is curved so that the surface having the fine structure becomes convex due to residual stress. Since the replica mold 101 is formed of a soft material, the replica mold 101 has flexibility and has a fine structure on the surface of nanometer order to micrometer order.

軟質材料には、有機樹脂材料又はゴム材料が用いられる。例示としては、シリコーンゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、PVC(ポリ塩化ビニル)ゴム、ニトリルゴム、ブチルゴム、エチレンプロピレンゴム、スチレンブタジエンゴム、熱収縮性フィルム、熱収縮性樹脂等を用いることができる。これらの軟質材料は、他の材料との共重合体であってもよいし、スコーチ防止剤、補強材、充填剤、軟化剤、着色剤等の各種配合剤を含んでもよい。   As the soft material, an organic resin material or a rubber material is used. Examples include using silicone rubber, fluorine rubber, urethane rubber, acrylic rubber, PVC (polyvinyl chloride) rubber, nitrile rubber, butyl rubber, ethylene propylene rubber, styrene butadiene rubber, heat shrinkable film, heat shrinkable resin, etc. Can do. These soft materials may be copolymers with other materials, or may contain various compounding agents such as scorch inhibitors, reinforcing materials, fillers, softeners, and colorants.

上述した軟質材料は、例示であり、マスターモールドの有する微細構造を精密に転写することができ、微細構造を有する面が残留応力により凸状に湾曲したレプリカモールドの形状を、複数回の被転写体に対する転写にわたって保持できる軟質材料であれば特に限定されない。軟質材料としては、シリコーンゴム、例えばジメチルシロキサンを含むものが特に好ましい。   The above-mentioned soft material is an example, and the fine structure of the master mold can be accurately transferred, and the shape of the replica mold in which the surface having the fine structure is curved in a convex shape due to residual stress can be transferred multiple times. There is no particular limitation as long as it is a soft material that can be held over the transfer to the body. As the soft material, a silicone rubber such as one containing dimethylsiloxane is particularly preferable.

シリコーンゴムは、ケイ素−酸素結合を骨格としたシロキサン結合からなり側鎖にメチル基、フェニル基などの有機基を有するため、一般の主鎖が炭素鎖である有機材料と異なり、優れた耐熱性、耐寒性、及び耐薬品性などの特性を持つ。更に、シリコーンゴムは、ガスの透過性が高いため、空気やガス化したマスク材の溶媒を容易に透過することができる。そのため、マスク材に溶媒が含まれている場合でも、気体を透過させることによって気泡による転写形状の欠陥を防ぎ、積層されたマスク材の硬化速度を速めることができる。さらに、マスク材に光硬化性樹脂を用いる際には、軟質材料は高い光(可視光、紫外線等)透過性を持つことが好ましい。   Silicone rubber is composed of a siloxane bond with a silicon-oxygen bond as a skeleton and has an organic group such as a methyl group or a phenyl group in its side chain. Therefore, unlike conventional organic materials whose main chain is a carbon chain, it has excellent heat resistance. It has characteristics such as cold resistance and chemical resistance. Furthermore, since the silicone rubber has a high gas permeability, it can easily pass through the air and the solvent of the gasified mask material. Therefore, even when a solvent is contained in the mask material, defects in the transfer shape due to bubbles can be prevented by allowing gas to permeate, and the curing speed of the laminated mask material can be increased. Furthermore, when using a photocurable resin for the mask material, the soft material preferably has high light (visible light, ultraviolet light, etc.) permeability.

本発明のレプリカモールドに発生する残留応力とは、第2の軟質材料102を第1の軟質材料103と比較し収縮率が大きくなるよう構成することで、レプリカモールド内部に発生する弾性力をいう。軟質材料に生ずる収縮には、軟質材料の液体状態から固体状態の硬化に起因する収縮(成型収縮)や固体状態での温度変化に起因する収縮がある。   The residual stress generated in the replica mold of the present invention refers to the elastic force generated in the replica mold by configuring the second soft material 102 to have a higher shrinkage rate than the first soft material 103. . The shrinkage that occurs in the soft material includes shrinkage (molding shrinkage) caused by the hardening of the soft material from the liquid state to the solid state and shrinkage caused by the temperature change in the solid state.

本発明のレプリカモールドは、収縮率が異なる第1の軟質材料103と第2の軟質材料102とによる2層の軟質材料を具備する。第1の軟質材料103を第2の軟質材料102と比較し収縮率が大きくなるよう構成することで、微細構造を有する面が残留応力により凸状となるように湾曲する。本明細書では、レプリカモールドの構造は、第1の軟質材料103及び第2の軟質材料102からなる2層構造のみ記載しているが、微細構造を有する面が残留応力により凸状となる湾曲が保たれるならば、3層以上の構造にしてもよい。   The replica mold of the present invention includes a two-layer soft material composed of a first soft material 103 and a second soft material 102 having different shrinkage rates. By configuring the first soft material 103 to have a higher shrinkage rate than the second soft material 102, the surface having a fine structure is curved so as to be convex due to residual stress. In this specification, only the two-layer structure of the first soft material 103 and the second soft material 102 is described as the structure of the replica mold. However, the curved surface in which the surface having the fine structure becomes convex due to the residual stress. If it is maintained, a structure of three or more layers may be used.

一般に、軟質材料、例えばシリコーンゴムの収縮率を決定する重要因子としては、硬化温度が挙げられる。一般にシリコーンゴムは、ベースポリマーとなるオルガノポリシロキサンに硬化剤や充填剤等を配合し、更に触媒などの添加剤を加え架橋し硬化することにより作製する。まず、硬化温度の影響であるが、一般には硬化温度が高いほど収縮率が大きくなる。例えば、同じ付加反応系シリコーンゴムであっても、触媒等の違いにより室温硬化型であり80℃で30分の弱い加熱で成型されるゴム(例えば、信越化学工業製のポリジメチルシロキサン(PDMS)「SIM−360」と硬化剤「CAT-360」の10:1(重量比)の混合物)と加熱硬化型であり150℃で30分の強い加熱で成型されるゴム(例えば、信越化学工業製のポリジメチルシロキサン(PDMS)「KE−106」と硬化剤「RG」の10:1(重量比)の混合物)がある。この場合室温硬化型シリコーンゴムは、加熱硬化型のものよりも約70度低い温度で成形できるので、成形温度の観点からは室温硬化型のシリコーンゴムの方が収縮率を低く成形できる。   In general, an important factor that determines the shrinkage ratio of a soft material such as silicone rubber is a curing temperature. Generally, silicone rubber is prepared by blending a curing agent, a filler, or the like with an organopolysiloxane serving as a base polymer, adding an additive such as a catalyst, and crosslinking and curing. First, regarding the influence of the curing temperature, generally, the higher the curing temperature, the greater the shrinkage rate. For example, even if the same addition reaction silicone rubber is used, it is a room temperature curable type rubber due to differences in the catalyst and the like and is molded by weak heating at 80 ° C. for 30 minutes (for example, polydimethylsiloxane (PDMS) manufactured by Shin-Etsu Chemical) 10: 1 (weight ratio) mixture of “SIM-360” and curing agent “CAT-360” and a heat-curing type rubber (for example, manufactured by Shin-Etsu Chemical Co., Ltd.) molded by strong heating at 150 ° C. for 30 minutes Polydimethylsiloxane (PDMS) “KE-106” and curing agent “RG” in a 10: 1 (weight ratio) mixture). In this case, since the room temperature curable silicone rubber can be molded at a temperature about 70 degrees lower than that of the heat curable type, the room temperature curable silicone rubber can be molded with a lower shrinkage rate from the viewpoint of the molding temperature.

本発明では、特に軟質材料の硬化温度に着目し、第1の軟質材料103の硬化温度よりも第2の軟質材料102の硬化温度を高めることで収縮率を変化させ、微細構造を有する面が残留応力により凸状となるように湾曲させることができることを見出した。   In the present invention, particularly focusing on the curing temperature of the soft material, the shrinkage rate is changed by raising the curing temperature of the second soft material 102 over the curing temperature of the first soft material 103, and the surface having a fine structure It has been found that it can be curved so as to be convex due to residual stress.

また、上述の方法の他にも、第2の軟質材料102を第1の軟質材料103と比較し収縮率が大きくなるよう材料を選択することで、微細構造を有する面が残留応力により凸状となるように湾曲するレプリカモールドを得ることができる。   In addition to the above-described method, the second soft material 102 is selected so that the contraction rate is higher than that of the first soft material 103, so that the surface having a fine structure is convex due to residual stress. It is possible to obtain a replica mold that is curved so that

また、第2の軟質材料として熱収縮性樹脂を塗布し熱収縮すること、熱収縮性フィルムを貼り合わせ熱収縮させることによっても、微細構造を有する面が残留応力により凸状となるように湾曲するレプリカモールドを得ることができる。   Also, by applying a heat-shrinkable resin as the second soft material and heat-shrinking, or by bonding a heat-shrinkable film and heat-shrinking, the surface having a fine structure is curved so as to be convex due to residual stress. A replica mold can be obtained.

図1(b)、(c)に本発明のレプリカモールド101の残留応力による湾曲(X)及び自重たわみ(W)に関する模式図を示す。図1(b)、(c)は、図1(a)のレプリカモールド101の全体を模式的に示したものである。図1(b)に示すように本発明のレプリカモールド101は、微細構造を有する面が残留応力により凸状となるように湾曲している。この湾曲を、残留応力による湾曲(X)とする。   FIGS. 1B and 1C are schematic diagrams relating to bending (X) and deflection due to self-weight (W) due to residual stress of the replica mold 101 of the present invention. FIGS. 1B and 1C schematically show the entire replica mold 101 of FIG. As shown in FIG. 1B, the replica mold 101 of the present invention is curved so that the surface having a fine structure becomes convex due to residual stress. This curvature is defined as a curvature (X) due to residual stress.

図1(c)に示すように、レプリカモールド101は軟質材料で形成されているため、開口部を有する治具に微細構造を有する第1の軟質材料103の面を下方に向けて載せ開口部の縁によって支持させた場合、レプリカモールド101自体の残留応力による湾曲(X)に加えて、自重によるたわみである自重たわみ(W)が生じ、残留応力による湾曲(X)と自重たわみ(W)との和のたわみをもつ。   As shown in FIG. 1C, since the replica mold 101 is formed of a soft material, the surface of the first soft material 103 having a fine structure is placed downward on a jig having an opening and the opening. In addition to the curvature (X) due to the residual stress of the replica mold 101 itself, a self-weight deflection (W) which is a deflection due to its own weight occurs, and the curvature (X) due to the residual stress and its own-weight deflection (W). With the sag of the sum.

本発明者が、従来のモールドの前記問題点を解消すべく種々検討をしたところ、転写の際にレプリカモールド101の残留応力による湾曲(X)と自重たわみ(W)との和が治具の開口の直径に対して2.0%乃至6.0%であるとき効果的に気泡巻き込みを防げることを見出した。従来の硬質のレプリカモールドを、治具の開口の直径に対して2.0%乃至6.0%湾曲させることは、変形量が大きくなり過ぎ転写の際にレプリカモールドに与える負荷が大きく破損に繋がるため困難である。また平坦なレプリカモールドを用い、外圧及び自重たわみ(W)のみにより治具の開口の直径に対して2.0%乃至6.0%のたわみを与えた場合、凸形状の面内にムラがあり、すなわち各面内の湾曲状態の曲率に差異が生じており、この差異が転写される微細構造の欠陥(転写不良領域)を引き起こす。従って、本発明者はレプリカモールド自体の内部的な応力による湾曲によって初めて凸形状の面内のムラが無く、各面内の湾曲状態の曲率に差異が無く、良好な転写が実現できることを見出した。   The inventor has made various studies to solve the above-described problems of the conventional mold, and as a result, the sum of the curvature (X) due to the residual stress of the replica mold 101 and the self-weight deflection (W) of the jig is determined during the transfer. It has been found that when the content is 2.0% to 6.0% with respect to the diameter of the opening, the bubble entrainment can be effectively prevented. If a conventional hard replica mold is bent by 2.0% to 6.0% with respect to the diameter of the opening of the jig, the amount of deformation becomes too large, and the load applied to the replica mold during transfer is greatly damaged. It is difficult to connect. In addition, when a flat replica mold is used and a deflection of 2.0% to 6.0% with respect to the diameter of the opening of the jig is given only by external pressure and self-weight deflection (W), unevenness is generated in the convex surface. Yes, that is, there is a difference in the curvature of the curved state in each plane, and this difference causes a defect in the microstructure (transfer defective area) to be transferred. Therefore, the present inventors have found that there is no unevenness in the surface of the convex shape for the first time due to the bending due to the internal stress of the replica mold itself, there is no difference in the curvature of the curved state in each surface, and good transfer can be realized. .

残留応力による湾曲は、第1の軟質材料の厚みが薄いほど、第2の軟質材料の厚みが厚いほど大きくなる。   The curvature due to the residual stress increases as the thickness of the first soft material decreases and as the thickness of the second soft material increases.

(レプリカモールドの製造方法)
(実施形態1)
図面を参照して、本発明の実施形態1によるレプリカモールド101の製造方法を説明する。図2(a)〜(e)は、本発明の好ましい実施形態1によるレプリカモールド101の製造方法の手順を説明する模式図である。
(Replica mold manufacturing method)
(Embodiment 1)
A method for manufacturing the replica mold 101 according to the first embodiment of the present invention will be described with reference to the drawings. 2A to 2E are schematic views for explaining the procedure of the method for manufacturing the replica mold 101 according to the preferred embodiment 1 of the present invention.

まず、図2(a)に示すように、目的に応じて所定の微細構造が形成されたマスターモールド201上に、第1の軟質材料103を積層する。マスターモールド201を構成する材料の具体例としては、石英ガラス、ニッケルや加工性に優れたSi基板などが挙げられる。   First, as shown in FIG. 2A, a first soft material 103 is laminated on a master mold 201 on which a predetermined microstructure is formed according to the purpose. Specific examples of the material constituting the master mold 201 include quartz glass, nickel, and a Si substrate excellent in workability.

第1の軟質材料103の積層方法は特に限定されるものではなく、例えば、スピンコート、ディップコート、バーコート、スクリーン印刷、グラビア印刷などの一般的な積層方法を第1の軟質材料の粘度や厚みに応じて用いることができる。簡易的には、マスターモールドに液状の第1の軟質材料103を流し入れることで積層することができる。積層された第1の軟質材料103は、マスターモールド201の表面に広がってマスターモールド201の微細構造に充填される。   The lamination method of the first soft material 103 is not particularly limited. For example, a general lamination method such as spin coating, dip coating, bar coating, screen printing, and gravure printing may be used. It can be used depending on the thickness. In a simple manner, lamination can be performed by pouring the liquid first soft material 103 into the master mold. The laminated first soft material 103 spreads on the surface of the master mold 201 and fills the microstructure of the master mold 201.

次に、図2(b)に示すように、マスターモールド201の表面の微細構造に第1の軟質材料103が充填された状態で、第1の軟質材料103を室温硬化、熱硬化、または紫外線硬化させる。硬化の方法としては、特に限定されない。その結果、マスターモールド201に形成された微細構造が第1の軟質材料103に転写され、当該微細構造が固定される。ここで用いられる第1の軟質材料103としては、例示としては信越化学工業製のポリジメチルシロキサン(PDMS)「SIM−360」と硬化剤「CAT-360」の10:1(重量比)の混合物などの市販品を用いることができる。この製品は液体シリコーンゴムであり、室温硬化型の付加反応系の材料である。ここでは、80℃で30分間の加熱処理を行いシリコーンゴムの硬化を行った。   Next, as shown in FIG. 2B, the first soft material 103 is cured at room temperature, thermoset, or ultraviolet light in a state where the fine structure of the surface of the master mold 201 is filled with the first soft material 103. Harden. The curing method is not particularly limited. As a result, the fine structure formed in the master mold 201 is transferred to the first soft material 103, and the fine structure is fixed. The first soft material 103 used here is, for example, a 10: 1 (weight ratio) mixture of polydimethylsiloxane (PDMS) “SIM-360” manufactured by Shin-Etsu Chemical Co., Ltd. and a curing agent “CAT-360”. Commercial products such as can be used. This product is a liquid silicone rubber and is a room temperature curable addition reaction material. Here, the silicone rubber was cured by heat treatment at 80 ° C. for 30 minutes.

次に、図2(c)に示すように、硬化された第1の軟質材料の前記微細構造の反対側の面上に、第2の軟質材料を積層する。積層方法は限定されるものではないが、例えば、スピンコート、ディップコート、バーコート、スクリーン印刷、グラビア印刷などの一般的な積層方法を積層する第2の軟質材料の粘度や厚みに応じて用いることができる。簡易的には、第1の軟質材料103上に液状の第2の軟質材料102を流し入れることで積層を行うことができる。   Next, as shown in FIG. 2C, a second soft material is laminated on the surface of the cured first soft material opposite to the microstructure. Although the lamination method is not limited, for example, a general lamination method such as spin coating, dip coating, bar coating, screen printing, and gravure printing is used according to the viscosity and thickness of the second soft material to be laminated. be able to. In a simple manner, lamination can be performed by pouring the liquid second soft material 102 over the first soft material 103.

次に、図2(d)に示すように、硬化された第1の軟質材料の前記微細構造の反対側の面上に、第2の軟質材料を積層した状態で第1の軟質材料を硬化させた温度よりも高い温度で熱硬化させる。例示としては信越化学工業製のポリジメチルシロキサン(PDMS)「KE−106」と硬化剤「RG」の10:1(重量比)の混合物などが挙げられる。この製品は液体シリコーンゴムであり、汎用の加熱硬化型の付加反応系の材料である。ここでは、150℃で30分間の加熱処理を行いシリコーンゴムの硬化を行った。ここで、前述したように軟質材料、例えばシリコーンゴムは一般には加硫温度(成形温度)が高いほど収縮率が大きくなる。今回の例の場合、第2の軟質材料102の軟質材料は第1の軟質材料103よりも約70度高い温度で成形しているので、成形温度の観点から第2の軟質材料102はより収縮率が大きく成形される。ここで、第1の軟質材料103と第2の軟質材料102との積層となったものをレプリカモールド101とする。   Next, as shown in FIG. 2D, the first soft material is cured in a state where the second soft material is laminated on the surface of the cured first soft material opposite to the microstructure. Heat cure at a temperature higher than the applied temperature. Examples include a 10: 1 (weight ratio) mixture of polydimethylsiloxane (PDMS) “KE-106” and curing agent “RG” manufactured by Shin-Etsu Chemical Co., Ltd. This product is a liquid silicone rubber and a general-purpose heat-curing addition reaction material. Here, the silicone rubber was cured by heat treatment at 150 ° C. for 30 minutes. Here, as described above, soft materials such as silicone rubber generally have a higher shrinkage rate as the vulcanization temperature (molding temperature) is higher. In the case of this example, since the soft material of the second soft material 102 is molded at a temperature about 70 degrees higher than that of the first soft material 103, the second soft material 102 is more contracted from the viewpoint of the molding temperature. The rate is greatly increased. Here, a replica mold 101 is a laminate of the first soft material 103 and the second soft material 102.

ここにおける第1の軟質材料と第2の軟質材料とは、前記第1の軟質材料の物性値としての硬化温度よりも第2の軟質材料の物性値としての硬化温度が高い、異なる種類の軟質材料を用いても良い。また、第1の軟質材料と前記第2の軟質材料が、全く同一の軟質材料を用い硬化温度を高くしても良い。   Here, the first soft material and the second soft material are different types of soft materials having a curing temperature as a physical property value of the second soft material higher than a curing temperature as a physical property value of the first soft material. A material may be used. Further, the first soft material and the second soft material may be the same soft material and the curing temperature may be increased.

レプリカモールド101は冷却又は自然放冷され、第1の軟質材料103と第2の軟質材料102との熱収縮率の違いによってレプリカモールド101に残留応力が生じる。   The replica mold 101 is cooled or naturally cooled, and residual stress is generated in the replica mold 101 due to the difference in thermal shrinkage between the first soft material 103 and the second soft material 102.

次に、図2(e)に示すように、レプリカモールド101をマスターモールド201から分離する。マスターモールド201のもつ微細構造は、レプリカモールド101の第1の軟質材料103の表面に精度良く転写される。第2の軟質材料102は第1の軟質材料103よりも収縮率が大きく成形されているため、レプリカモールド101は残留応力により微細構造を有する面が凸状となるように湾曲する。   Next, the replica mold 101 is separated from the master mold 201 as shown in FIG. The fine structure of the master mold 201 is accurately transferred to the surface of the first soft material 103 of the replica mold 101. Since the second soft material 102 is formed to have a larger shrinkage rate than the first soft material 103, the replica mold 101 is curved so that the surface having a fine structure becomes convex due to residual stress.

また、図3(a)〜(e)に示すように、第1の軟質材料103を形成した後に、第1の軟質材料103をマスターモールド201から分離し、載置代301上で第2の軟質材料を形成してもよい。   Further, as shown in FIGS. 3A to 3E, after the first soft material 103 is formed, the first soft material 103 is separated from the master mold 201, and the second softening material 103 is placed on the mounting allowance 301. A soft material may be formed.

(実施形態2)
図4(a)〜(c)は、本発明の好ましい実施形態2によるレプリカモールド101の製造方法の手順を説明する模式図である。
(Embodiment 2)
4A to 4C are schematic views for explaining the procedure of the method for manufacturing the replica mold 101 according to the preferred embodiment 2 of the present invention.

まず、図4(a)に示すように、目的に応じて所定の微細構造が形成されたマスターモールド201上に、軟質材料401を積層する。マスターモールド201を構成する材料の具体例としては、石英ガラス、ニッケルや加工性に優れたSi基板などが挙げられる。軟質材料401の積層方法は特に限定されるものではなく、例えば、スピンコート、ディップコート、バーコート、スクリーン印刷、グラビア印刷などの一般的な積層する方法を軟質材料401の粘度や厚みに応じて用いることができる。簡易的には、マスターモールドに液状の軟質材料401を流し入れることで積層することができる。積層された軟質材料401は、マスターモールド201の表面に広がってマスターモールド201の微細構造に充填される。   First, as shown in FIG. 4A, a soft material 401 is laminated on a master mold 201 on which a predetermined microstructure is formed according to the purpose. Specific examples of the material constituting the master mold 201 include quartz glass, nickel, and a Si substrate excellent in workability. The method of laminating the soft material 401 is not particularly limited. For example, a general laminating method such as spin coating, dip coating, bar coating, screen printing, and gravure printing is performed according to the viscosity and thickness of the soft material 401. Can be used. In a simple manner, lamination can be performed by pouring a liquid soft material 401 into a master mold. The laminated soft material 401 spreads on the surface of the master mold 201 and fills the fine structure of the master mold 201.

次に、図4(b)に示すように、マスターモールド201の表面の微細構造に軟質材料401が充填された状態で、軟質材料401をマスターモールド側及び背面側の両面より加熱を行う。軟質材料401、例えばシリコーンゴムの加熱温度は、マスターモールド側よりも背面側の70度以上高いものとする。ここでの熱硬化は、マスターモールド側又は背面側のいずれを先に行っても良く、また同時に行っても良い。熱硬化の方法は特に限定されないが、好適には、マスターモールド背面とシリコーンゴム401の背面を2枚のホットプレートで同時に挟み込みそれぞれの狙い温度に調整し加熱することなどが挙げられる。   Next, as shown in FIG. 4B, the soft material 401 is heated from both the master mold side and the back side while the soft material 401 is filled in the fine structure of the surface of the master mold 201. The heating temperature of the soft material 401, for example, silicone rubber, is 70 degrees or more higher on the back side than on the master mold side. The thermosetting here may be performed first on the master mold side or the back surface side, or may be performed simultaneously. Although the method of thermosetting is not particularly limited, preferably, the back surface of the master mold and the back surface of the silicone rubber 401 are sandwiched simultaneously by two hot plates and adjusted to the respective target temperatures and heated.

ここで用いられる軟質材料401としては、例示としては信越化学工業製のポリジメチルシロキサン(PDMS)「KE−106」と硬化剤「RG」の10:1(重量比)の混合物などが挙げられる。この製品は液体シリコーンゴムであり、汎用の加熱硬化型の付加反応系の材料である。ここで、マスターモールド側からは80℃で背面側からは150℃でそれぞれ6時間の加熱処理を行い軟質材料401の硬化を行った。ここで、前述したように軟質材料401、例えばシリコーンゴムは一般には加硫温度(成形温度)が高いほど収縮率が大きくなる。今回の例の場合、背面側の軟質材料はマスターモールド側よりも70度低い温度で成形しているので、マスターモールド側は成形温度の観点から背面側はより収縮率が大きく成形される。ここで硬化条件の違いにより収縮率の違いが生じたマスターモールド側、及びその背面側の層状の領域をそれぞれ第1の軟質材料103’及び第2の軟質材料102’とする。   Examples of the soft material 401 used here include a 10: 1 (weight ratio) mixture of polydimethylsiloxane (PDMS) “KE-106” and a curing agent “RG” manufactured by Shin-Etsu Chemical Co., Ltd., and the like. This product is a liquid silicone rubber and a general-purpose heat-curing addition reaction material. Here, the soft material 401 was cured by heat treatment for 6 hours at 80 ° C. from the master mold side and 150 ° C. from the back side. Here, as described above, the soft material 401, for example, silicone rubber generally has a higher shrinkage rate as the vulcanization temperature (molding temperature) is higher. In the case of this example, the soft material on the back side is molded at a temperature 70 degrees lower than that on the master mold side, so that the master mold side is molded with a larger shrinkage rate from the viewpoint of molding temperature. Here, the layer regions on the master mold side and the back side where the difference in shrinkage occurs due to the difference in curing conditions are defined as a first soft material 103 ′ and a second soft material 102 ′, respectively.

硬化処理により、軟質材料中のベースポリマーが硬化剤及び触媒により架橋し硬化する。その結果、マスターモールド201に形成された微細構造が軟質材料401に転写され、かつ、当該微細構造が固定される。ここで、この硬化した軟質材料401をレプリカモールド101’とする。   By the curing treatment, the base polymer in the soft material is crosslinked and cured by a curing agent and a catalyst. As a result, the fine structure formed in the master mold 201 is transferred to the soft material 401, and the fine structure is fixed. Here, the hardened soft material 401 is referred to as a replica mold 101 ′.

レプリカモールド101’は冷却又は自然放冷され、第1の軟質材料103’と第2の軟質材料102’との熱収縮率の違いによってレプリカモールドに残留応力が生じる。   The replica mold 101 ′ is cooled or naturally cooled, and residual stress is generated in the replica mold due to a difference in thermal shrinkage between the first soft material 103 ′ and the second soft material 102 ′.

次に、図2(c)に示すように、レプリカモールド101’をマスターモールド201より分離する。マスターモールド201のもつ微細構造は、レプリカモールド101’の第1の軟質材料103’の表面に精度良く転写される。レプリカモールド内部の収縮率の違いにより、レプリカモールド101’は微細構造を有する面が残留応力により凸状となるように湾曲する。   Next, as shown in FIG. 2C, the replica mold 101 ′ is separated from the master mold 201. The fine structure of the master mold 201 is accurately transferred to the surface of the first soft material 103 ′ of the replica mold 101 ′. Due to the difference in shrinkage rate inside the replica mold, the replica mold 101 ′ is curved so that the surface having a fine structure becomes convex due to residual stress.

(残留応力による湾曲(X)及び自重たわみ(W)の測定方法)
残留応力による湾曲(X)及び自重たわみ(W)の測定方法の概略図を図5に示す。残留応力による湾曲(X)及び自重たわみ(W)の測定は以下の手順で行った。
(Measuring method of bending due to residual stress (X) and deflection of own weight (W))
FIG. 5 shows a schematic diagram of a method for measuring the curvature (X) and the self-weight deflection (W) due to the residual stress. Measurement of curvature (X) and deflection due to self-weight (W) due to residual stress was performed according to the following procedure.

まず、レプリカモールドは、水平に固定された開口部を有する治具(104a及び104b)に凸状となるよう湾曲している微細構造を有する面を下方に向けて載せ開口部の縁によって支持させた(Aの状態)。この際、開口部を有する治具に、レプリカモールドを、レプリカモールドの直径に対して最外周から1〜5%の位置を係合させるものとする。   First, the replica mold is mounted on a jig (104a and 104b) having a horizontally fixed opening with a finely curved surface facing downward and supported by the edge of the opening. (State A). At this time, the replica mold is engaged with a jig having an opening at a position of 1 to 5% from the outermost periphery with respect to the diameter of the replica mold.

次に、水平に固定された開口部を有する治具(104a及び104b)とレプリカモールド101の最も撓んだ部分の変位を非接触式の測定方法、例えばレーザー変位計で測定した。この時の変位を、残留応力による湾曲(X)及び自重たわみ(W)の和(X+W)とした。   Next, the displacement of the jig (104a and 104b) having the horizontally fixed opening and the most bent portion of the replica mold 101 was measured by a non-contact measurement method, for example, a laser displacement meter. The displacement at this time was defined as the sum (X + W) of the curvature (X) and the self-weight deflection (W) due to the residual stress.

次に、レプリカモールド101の表裏を反転して水平に固定された開口部を有する治具(104a及び104b)に凸状となるよう湾曲している微細構造を有する面の反対面を下方に向けて載せ開口部の縁によって支持させた(Bの状態)。この際、開口部を有する治具に、レプリカモールドを、レプリカモールドの直径に対して最外周から1〜5%の位置を係合させるものとする。   Next, the surface opposite to the surface having a microstructure that is curved so as to be convex to the jig (104a and 104b) having an opening fixed horizontally by inverting the front and back of the replica mold 101 is directed downward. And supported by the edge of the opening (state B). At this time, the replica mold is engaged with a jig having an opening at a position of 1 to 5% from the outermost periphery with respect to the diameter of the replica mold.

次に、水平に固定された開口部を有する治具(104a及び104b)とレプリカモールド101の最もたわんだ部分の変位を非接触式の測定方法で測定した。この時の変位を、自重たわみ(W)と残留応力による湾曲(X)の差(W-X)とした。   Next, the displacement of the most bent portion of the jig (104a and 104b) having the horizontally fixed opening and the replica mold 101 was measured by a non-contact measurement method. The displacement at this time was defined as the difference (W−X) between the deflection due to its own weight (W) and the curvature (X) due to the residual stress.

Aの状態での測定値(X+W)とBの状態での測定値(W−X)の差の1/2の値をレプリカモールドの残留応力による湾曲(X)とする。また、Aの状態での測定値(X+W)とBの状態での測定値(W−X)和の1/2の値をレプリカモールド101の自重たわみ(W)とする。   The value (1/2) of the difference between the measured value (X + W) in the state A and the measured value (W−X) in the state B is defined as the curvature (X) due to the residual stress of the replica mold. Further, a value ½ of the sum of the measured value (X + W) in the state A and the measured value (W−X) in the state B is defined as a self-weight deflection (W) of the replica mold 101.

開口部を有する治具(104a及び104b)の開口部の形状は円形に限定されるものではなく、レプリカモールドの形状に合わせ平面視で楕円形、多角形等の形状であってもよい。治具が多角形の際の開口部を有する治具の直径は、多角形に対して内接する最大の円の直径を指すものとする。   The shape of the opening of the jig (104a and 104b) having the opening is not limited to a circle, and may be an ellipse, a polygon, or the like in plan view according to the shape of the replica mold. The diameter of the jig having an opening when the jig is a polygon is the diameter of the largest circle inscribed in the polygon.

残留応力による湾曲(X)及び自重たわみ(W)の測定方法は上記方法に限られず、例えばレプリカモールドをレプリカモールドと比重の等しい液体中に浸漬するなど重力による変形を生じない環境の中で、残留応力による湾曲(X)を非接触式の測定方法で測定するなどの方法でも測定され得る。   The method of measuring the curvature (X) and the self-weight deflection (W) due to the residual stress is not limited to the above method. For example, in an environment where the replica mold is immersed in a liquid having a specific gravity equal to that of the replica mold, the deformation due to gravity does not occur. It can also be measured by a method such as measuring the curvature (X) due to residual stress by a non-contact measurement method.

(微細構造転写装置)
次に、本実施形態に係るレプリカモールド101を備える微細構造転写装置を用いた微細構造転写方法について、主に図6(a)〜(d)を参照しながら説明する。以下の説明における上下の方向は、図6(a)に示す上下の方向を基準とする。
(Microstructure transfer device)
Next, a fine structure transfer method using a fine structure transfer apparatus including the replica mold 101 according to the present embodiment will be described mainly with reference to FIGS. The vertical direction in the following description is based on the vertical direction shown in FIG.

図6(a)に示すように、微細構造転写装置は、レプリカモールド101を被転写体602に接触させて、被転写体602の表面にレプリカモールド101の微細構造を転写するように構成されている。   As shown in FIG. 6A, the microstructure transfer device is configured to transfer the microstructure of the replica mold 101 onto the surface of the transfer target 602 by bringing the replica mold 101 into contact with the transfer target 602. Yes.

レプリカモールド101は、図6(a)に示すように、被転写体602の上方に配置されており保持治具604a及び604bにより端部を保持されている。保持治具604a及び604bは、レプリカモールド101の外周の全周(外周部)を保持することが好ましいが、レプリカモールド101の端部を数点保持するものでもよい。   As shown in FIG. 6A, the replica mold 101 is disposed above the transfer target 602 and is held at its ends by holding jigs 604a and 604b. The holding jigs 604a and 604b preferably hold the entire circumference (outer peripheral portion) of the outer periphery of the replica mold 101, but may hold several end portions of the replica mold 101.

レプリカモールド101は、紫外光を透過することが望ましい。レプリカモールド101が紫外線透過性である場合、マスク材として光硬化性樹脂を使用することができる。レプリカモールド101は、被転写体602と対向する面に微細構造が形成された転写領域をもつ。レプリカモールド101は下側に(被転写体602側に)凸状となるように湾曲している。   The replica mold 101 desirably transmits ultraviolet light. When the replica mold 101 is UV transmissive, a photocurable resin can be used as a mask material. The replica mold 101 has a transfer region in which a fine structure is formed on a surface facing the transfer target 602. The replica mold 101 is curved so as to be convex downward (to the transfer target 602).

本実施形態でのレプリカモールド101は、円盤状であるが、レプリカモールド101の形状はこれに限定されるものではなく、平面視で楕円形、多角形等の形状であってもよい。なお、レプリカモールド101は、被転写体602の所定の領域に微細構造を転写することができれば、被転写体602と異なった形状、及び表面積のものであってもよい。またレプリカモールド101の表面に離型処理を施すこともできる。   The replica mold 101 in the present embodiment has a disk shape, but the shape of the replica mold 101 is not limited to this, and may be an ellipse, a polygon, or the like in plan view. Note that the replica mold 101 may have a shape and surface area different from those of the transfer target 602 as long as the fine structure can be transferred to a predetermined region of the transfer target 602. Moreover, a mold release process can be performed on the surface of the replica mold 101.

ステージ601は、図示しない昇降装置によって上下動が可能となっており、被転写体1をレプリカモールド101に押し付け、又は被転写体602をレプリカモールド101から分離するように構成されている。   The stage 601 can be moved up and down by a lifting device (not shown), and is configured to press the transferred body 1 against the replica mold 101 or separate the transferred body 602 from the replica mold 101.

ステージ601上には、光硬化性樹脂603を滴下した被転写体602を配置する。   On the stage 601, a transfer target 602 to which a photocurable resin 603 is dropped is disposed.

光硬化性樹脂603としては、公知のものでよく、樹脂材料に感光性物質を添加したものが挙げられる。この樹脂材料としては、ラジカル重合性材料、カチオン重合性材料、アニオン重合性材料等を用いることができる。これらの材料は、例えばシクロオレフィンポリマー、ポリメチルメタクリレート、ポリスチレンポリカーボネート、ポリエチレンテレフタレート(PET)、ポリ乳酸、ポリプロピレン、ポリエチレン、ポリビニルアルコール等が挙げられる。また、光硬化性樹脂603は、ビニル基、エポキシ基、オキセタニル基、メタクリレート基、アクリレート基等を有するモノマーを適宜混合したものでもよい。光硬化性樹脂603を滴下した被転写体602と記載したが、予め被転写体上に光硬化性樹脂を積層してもよい。光硬化性樹脂の積層方法としては、特に限定されないが例えばディスペンス法、又はスピンコート法を使用することができる。   The photocurable resin 603 may be a known one, and includes a resin material added with a photosensitive substance. As this resin material, a radical polymerizable material, a cationic polymerizable material, an anion polymerizable material, or the like can be used. Examples of these materials include cycloolefin polymer, polymethyl methacrylate, polystyrene polycarbonate, polyethylene terephthalate (PET), polylactic acid, polypropylene, polyethylene, and polyvinyl alcohol. The photocurable resin 603 may be a mixture of monomers having a vinyl group, an epoxy group, an oxetanyl group, a methacrylate group, an acrylate group, or the like as appropriate. Although described as the transferred object 602 to which the photocurable resin 603 is dropped, the photocurable resin may be laminated on the transferred object in advance. The method for laminating the photocurable resin is not particularly limited, and for example, a dispensing method or a spin coating method can be used.

次に、図6(b)に示すように、ステージ601を上昇させて被転写体1にレプリカモールドを押し当てると、滴下された光硬化性樹脂は、レプリカモールド101の微細構造に充填される。このときレプリカモールド101は被転写体602に倣うように変形して平坦となる。   Next, as shown in FIG. 6B, when the stage 601 is raised and the replica mold is pressed against the transfer target 1, the dropped photocurable resin is filled into the microstructure of the replica mold 101. . At this time, the replica mold 101 is deformed so as to follow the transfer target 602 and becomes flat.

そして、図6(c)に示すように、紫外光(UV)を照射すると、その紫外光はレプリカモールド101を通過して光硬化性樹脂603を照射し、それによって光硬化性樹脂603が硬化する。   Then, as shown in FIG. 6C, when ultraviolet light (UV) is irradiated, the ultraviolet light passes through the replica mold 101 and irradiates the photocurable resin 603, whereby the photocurable resin 603 is cured. To do.

図6(d)に示すように、ステージを下降させて被転写体602をレプリカモールド101から剥離すると、被転写体602の表面には、硬化した光硬化性樹脂603にレプリカモールド101の微細構造が転写されたパターン形成層(マスク層)603が得られる。   As shown in FIG. 6D, when the transferred object 602 is peeled from the replica mold 101 by lowering the stage, the surface of the transferred object 602 has a hardened photocurable resin 603 and a microstructure of the replica mold 101. A pattern forming layer (mask layer) 603 to which is transferred is obtained.

なお、上述の微細構造転写装置については、マスク材として光硬化性樹脂603を使用しているが、溶媒希釈させた熱可塑性樹脂を被転写体上に塗布しマスク材として用いるのでもよい。   In the fine structure transfer device described above, the photocurable resin 603 is used as a mask material. However, a solvent-diluted thermoplastic resin may be applied on a transfer target and used as a mask material.

次に、本実施形態に係る微細構造転写装置の作用効果について説明する。   Next, functions and effects of the microstructure transfer device according to the present embodiment will be described.

この微細構造転写装置に設置された、本発明のレプリカモールド101は被転写体側に凸状となるように湾曲している。そして、微細構造の転写時には、湾曲したレプリカモールド101の頂上部が被転写体603の中心部に接触した後にその接触領域が徐々に被転写体602の外周部へ向かって一様に広げられていく。その結果、この微細構造転写装置では、被転写体602上に積層された光硬化性樹脂603が微細構造を充填しつつ外周部へ向かって一様に流動していく。これによって、光硬化性樹脂603への気泡の巻き込みが防止される。したがって、この微細構造転写装置によれば、形成された気泡の巻き込みのないパターン形成層(マスク層)603を形成することができる。   The replica mold 101 of the present invention installed in this fine structure transfer apparatus is curved so as to be convex toward the transfer target. During the transfer of the fine structure, after the top of the curved replica mold 101 comes into contact with the central portion of the transfer body 603, the contact area is gradually expanded uniformly toward the outer periphery of the transfer body 602. Go. As a result, in this fine structure transfer apparatus, the photocurable resin 603 laminated on the transfer target 602 uniformly flows toward the outer peripheral portion while filling the fine structure. This prevents entrainment of bubbles in the photocurable resin 603. Therefore, according to this fine structure transfer apparatus, it is possible to form the pattern formation layer (mask layer) 603 that does not involve the formation of bubbles.

また、本発明のレプリカモールド101は、軟質材料からなるレプリカモールドを内部応力により湾曲させているので、マスク材の硬化後にレプリカモールド101を剥離する際に剥離しやすいため、従来の装置と比較してレプリカモールド101端部に掛かる負荷が小さく破損がしにくい。   In addition, since the replica mold 101 of the present invention is formed by bending a replica mold made of a soft material due to internal stress, it is easy to peel off when the replica mold 101 is peeled after the mask material is cured. Thus, the load applied to the end of the replica mold 101 is small and is not easily damaged.

以下実施例により詳しく本発明を説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

[実施例1〜5、比較例1〜4]
図2(a)〜(d)に示す実施形態1の手順で、実施例1〜5、比較例1〜4に係るレプリカモールドを作製した。レプリカモールドの作製に使用するマスターモールド201は、直径150mm、厚さ1.0mm、材料単結晶シリコンの円板形状のものを用いた。このマスターモールドの表面には、中央より外径74mmの範囲に、フォトリソグラフィーにより形成したドットパターン(直径1.8μm、高さ3μm)の微細構造が形成されている。まず図2(a)のように、マスターモールドの微細構造を有する面上に、表1及び表2中に示す各々の第1の軟質材料103を実施例1、3〜5、比較例1〜4では0.5mm、実施例2では1.0mmの厚さに積層した。次に、図2(b)のようにこの第1の軟質材料103は、表1及び表2中に示す各々の硬化条件により硬化を行い第1の軟質材料103を形成した。実施例4及び比較例3の第1の軟質材料103は、室温23℃において、200mJの紫外線を照射し形成した。
[Examples 1 to 5, Comparative Examples 1 to 4]
Replica molds according to Examples 1 to 5 and Comparative Examples 1 to 4 were produced by the procedure of Embodiment 1 shown in FIGS. As the master mold 201 used for the production of the replica mold, a disk shape having a diameter of 150 mm, a thickness of 1.0 mm, and a material single crystal silicon was used. On the surface of the master mold, a fine structure of a dot pattern (diameter 1.8 μm, height 3 μm) formed by photolithography is formed in the outer diameter range of 74 mm from the center. First, as shown in FIG. 2 (a), each of the first soft materials 103 shown in Tables 1 and 2 is placed on the surface having the fine structure of the master mold in Examples 1, 3 to 5, and Comparative Examples 1 to 3. In Example 4, the thickness was 0.5 mm, and in Example 2, the thickness was 1.0 mm. Next, as shown in FIG. 2B, the first soft material 103 was cured under the respective curing conditions shown in Tables 1 and 2 to form the first soft material 103. The first soft material 103 of Example 4 and Comparative Example 3 was formed by irradiating with 200 mJ ultraviolet rays at a room temperature of 23 ° C.

次に図2(c)のように、第1の軟質材料103の上に第2の軟質材料102を実施例1、3〜5、比較例1〜4では1.5mm、実施例2に関しては1.0mmの厚さに積層した。次に図2(d)のように、この第2の軟質材料102は表1及び表2中に示す硬化条件により各々硬化を行い第2の軟質材料102を形成した。次に図2(e)のように、第1の軟質材料103と第2の軟質材料102とが積層となった厚み2.0mmのレプリカモールド101をマスターモールド201より分離した。レプリカモールド101は、直径150mm、厚さ2.0mmに作製された。   Next, as shown in FIG. 2C, the second soft material 102 is placed on the first soft material 103 in Examples 1 and 3 to 5 and Comparative Examples 1 to 4 is 1.5 mm. Laminated to a thickness of 1.0 mm. Next, as shown in FIG. 2D, the second soft material 102 was cured under the curing conditions shown in Tables 1 and 2 to form the second soft material 102. Next, as shown in FIG. 2E, the replica mold 101 having a thickness of 2.0 mm in which the first soft material 103 and the second soft material 102 are laminated is separated from the master mold 201. The replica mold 101 was produced with a diameter of 150 mm and a thickness of 2.0 mm.

[実施例6、比較例5]
図4(a)〜(c)に示す実施形態2の手順で、実施例6、比較例5に係るレプリカモールドを作製した。まず図4(a)のように、マスターモールドの微細構造を有する面上に、表1及び表2中に示す軟質材料を2.0mmの厚さに積層した。レプリカモールドの製造に使用するマスターモールド201は実施例1〜5、比較例1〜4に使用したものと同様のものを使用した。ここで、軟質材料401のマスターモールド側、及びその背面側の領域をそれぞれ第1の軟質材料103’及び第2の軟質材料102’とする。
[Example 6, Comparative Example 5]
Replica molds according to Example 6 and Comparative Example 5 were manufactured according to the procedure of Embodiment 2 shown in FIGS. First, as shown in FIG. 4A, the soft materials shown in Tables 1 and 2 were laminated to a thickness of 2.0 mm on the surface of the master mold having a fine structure. The master mold 201 used for manufacturing the replica mold was the same as that used in Examples 1 to 5 and Comparative Examples 1 to 4. Here, the areas of the soft material 401 on the master mold side and the back surface side thereof are defined as a first soft material 103 ′ and a second soft material 102 ′, respectively.

次に図4(b)のように、この軟質材料401をマスターモールド側及び背面側双方をホットプレートで挟み込み表1及び表2中に示す硬化条件により加熱し、第1の軟質材料103’ 及び第2の軟質材料102’を熱硬化した。次に図4(c)のように第1の軟質材料103’と第2の軟質材料102’とが積層となった厚み2.0mmのレプリカモールド101’をマスターモールド201から分離した。レプリカモールド101’は、直径150mm、厚さ2.0mmに作製された。   Next, as shown in FIG. 4B, the soft material 401 is sandwiched between the master mold side and the back side by a hot plate and heated under the curing conditions shown in Tables 1 and 2, and the first soft material 103 ′ and The second soft material 102 ′ was heat cured. Next, as shown in FIG. 4C, the replica mold 101 ′ having a thickness of 2.0 mm in which the first soft material 103 ′ and the second soft material 102 ′ are laminated is separated from the master mold 201. The replica mold 101 ′ was manufactured to have a diameter of 150 mm and a thickness of 2.0 mm.

[実施例1〜6及び比較例1〜5の結果]
表1及び表2に、実施例1〜6及び比較例1〜5に係るレプリカモールドの作製に用いた第1の軟質材料及び第2の軟質材料の製品名、架橋型、硬化温度、硬化時間、厚みを示す。また表1及び表2に、実施例1〜6及び比較例1〜5に係るレプリカモールドの残留応力による湾曲(X)、自重たわみ(W)、残留応力による湾曲と自重たわみの和(X+W)、転写性を示す。
[Results of Examples 1 to 6 and Comparative Examples 1 to 5]
Tables 1 and 2 show the product names, the crosslinking type, the curing temperature, and the curing time of the first soft material and the second soft material used in the production of the replica molds according to Examples 1 to 6 and Comparative Examples 1 to 5. , Indicating thickness. Tables 1 and 2 also show that the replica molds according to Examples 1 to 6 and Comparative Examples 1 to 5 are curved due to residual stress (X), self-weight deflection (W), and the sum of curvature due to residual stress and self-weight deflection (X + W). , Showing transferability.

レプリカモールドの残留応力による湾曲(X)、自重たわみ(W)、残留応力による湾曲と自重たわみの和(X+W)は、上述の残留応力による湾曲(X)及び自重たわみ(W)の測定方法により測定した。これらの値は表1及び表2中に、開口部を有する治具の開口の直径に対する百分率(%)で示した。実施例1〜6及び比較例1〜5に係るレプリカモールドの測定に用いた開口部を有する治具の開口の直径は、145mmであった。   Curvature due to residual stress (X), self-weight deflection (W) of replica mold, and sum of curvature due to residual stress and self-weight deflection (X + W) are determined by the method for measuring curvature (X) and self-weight deflection (W) due to residual stress described above. It was measured. These values are shown in Tables 1 and 2 as a percentage (%) to the diameter of the opening of the jig having the opening. The diameter of the opening of the jig having the opening used for measurement of the replica molds according to Examples 1 to 6 and Comparative Examples 1 to 5 was 145 mm.

表1及び表2の転写性に関しては、図6(a)〜(d)の手順に従い、実施例1〜6、比較例1〜5に係るレプリカモールドを用いて被転写体上の光硬化性樹脂に対して転写を行った際の転写結果を示す。被転写体は、厚さ0.65mm、直径100mmのものを用いた。光硬化性樹脂(東洋合成工業株式会社製、製品名PAK−01)は0.5g用い、1000mJの紫外線を照射した。転写性は、被転写体上の光硬化性樹脂に良好な転写が得られたものに対してはマル印(○)、気泡の巻き込みが発生したものに対しては、バツ印(×)を印した。   Regarding the transferability of Tables 1 and 2, according to the procedure of FIGS. 6A to 6D, photocurability on the transfer object using the replica molds according to Examples 1 to 6 and Comparative Examples 1 to 5. The transfer result at the time of performing transfer with respect to resin is shown. The transfer target was 0.65 mm thick and 100 mm in diameter. The photocurable resin (product name PAK-01, manufactured by Toyo Gosei Co., Ltd.) was used in an amount of 0.5 g and irradiated with 1000 mJ ultraviolet rays. The transferability is indicated by a circle (○) for those in which good transfer was obtained to the photo-curing resin on the transferred material, and a cross (×) for those in which bubbles were involved. Marked.

図7(a)〜(c)は本発明に係るレプリカモールドを用いた被転写体に対する微細構造の転写結果を示す模式図を示す。図7(b)〜(c)中の斜線部は、マスク材に気泡が巻き込まれ、転写結果の微細構造に欠陥(転写不良領域)が生じた箇所を示す。(a)は本発明の実施例1〜6、(b)は比較例1、2、3、5、(c)は比較例4に係る転写結果を示す。   FIGS. 7A to 7C are schematic views showing the transfer results of the fine structure on the transfer object using the replica mold according to the present invention. 7 (b) to 7 (c) indicate a portion where bubbles are involved in the mask material and a defect (transfer defective region) occurs in the fine structure of the transfer result. (A) Examples 1 to 6 of the present invention, (b) shows Comparative Examples 1, 2, 3, 5, and (c) shows the transfer results according to Comparative Example 4.

実施例及び比較例において、第1の軟質材料及び第2の軟質材料は、以下製品名のシリコーンゴムを用いた。   In the examples and comparative examples, the first soft material and the second soft material used the following product name silicone rubber.

SIM−360(信越化学工業社製)、硬化型:付加反応、室温硬化型。   SIM-360 (manufactured by Shin-Etsu Chemical Co., Ltd.), curing type: addition reaction, room temperature curing type.

KE−106(信越化学工業社製)、硬化型:付加反応、加熱硬化型。   KE-106 (manufactured by Shin-Etsu Chemical Co., Ltd.), curing type: addition reaction, heat curing type.

X−34−4184A/B(信越化学工業社製)、硬化型:付加反応、紫外線硬化型。

Figure 2016192519
X-34-4184A / B (manufactured by Shin-Etsu Chemical Co., Ltd.), curing type: addition reaction, ultraviolet curing type.
Figure 2016192519

Figure 2016192519
Figure 2016192519

表1の及び図7(a)に示す実施例1〜6においては、被転写体上の光硬化性樹脂に気泡の巻き込みが発生せず、レプリカモールドの微細構造がマスク材に対して全面に良好に転写された。このことから、レプリカモールドの自重たわみと残留応力による湾曲との和が治具の開口の直径に対して2.0%乃至6.0%の範囲内にある場合(実施例1〜6)、気泡の巻き込みなどによるマスク材に転写される微細構造の欠陥(転写不良領域)が生じないことがわかる。   In Examples 1 to 6 shown in Table 1 and FIG. 7A, bubbles are not entrained in the photocurable resin on the transfer target, and the replica mold has a fine structure on the entire surface of the mask material. Transferred well. From this, when the sum of the self-weight deflection of the replica mold and the curvature due to the residual stress is in the range of 2.0% to 6.0% with respect to the diameter of the opening of the jig (Examples 1 to 6), It can be seen that there is no fine structure defect (transfer defect region) transferred to the mask material due to entrainment of bubbles or the like.

また、表1より実施例1〜6は、第2の軟質材料は第1の軟質材料を硬化させた温度よりも70℃以上高い温度で熱硬化している。第2の軟質材料102を第1の軟質材料103と比較し収縮率が大きくなるよう硬化することで、レプリカモールドに治具の開口の直径に対して1.0%乃至5.0%の範囲内の残留応力による湾曲が生ずる。   In Tables 1 to 6, in Examples 1 to 6, the second soft material is thermally cured at a temperature that is 70 ° C. higher than the temperature at which the first soft material is cured. The second soft material 102 is cured so as to have a larger shrinkage rate than the first soft material 103, so that the replica mold has a range of 1.0% to 5.0% with respect to the diameter of the opening of the jig. Curvature occurs due to the residual stress inside.

表2及び図7(b)、(c)に示す比較例1〜5においては、被転写体上の光硬化性樹脂に気泡の巻き込みが発生した。このことから、レプリカモールドの自重たわみと残留応力による湾曲との和が治具の開口の直径に対して2.0%未満である場合(比較例1〜5)、気泡の巻き込みが発生することがわかる。   In Comparative Examples 1 to 5 shown in Table 2 and FIGS. 7B and 7C, bubbles were involved in the photocurable resin on the transfer target. From this, when the sum of the self weight deflection of the replica mold and the curvature due to the residual stress is less than 2.0% with respect to the diameter of the opening of the jig (Comparative Examples 1 to 5), entrainment of bubbles occurs. I understand.

また、表2に示すように比較例1〜5では、第2の軟質材料は第1の軟質材料の熱硬化温度の差が70℃未満の温度で熱硬化している。それにより、第2の軟質材料102が第1の軟質材料103と比較し十分に収縮率が大きくなるよう硬化しなかった。その結果、比較例1〜5に係るレプリカモールドは、治具の開口の直径に対して1.0%未満の残留応力による湾曲が形成された。   Further, as shown in Table 2, in Comparative Examples 1 to 5, the second soft material is thermoset at a temperature difference of less than 70 ° C. than the first soft material. As a result, the second soft material 102 did not cure so as to have a sufficiently high shrinkage rate as compared with the first soft material 103. As a result, the replica molds according to Comparative Examples 1 to 5 were curved by a residual stress of less than 1.0% with respect to the diameter of the opening of the jig.

図7(c)に示す比較例4の転写結果は、図(b)に示す比較例1、2、3、5の転写結果よりも多くの気泡の巻き込みが発生した。これは、表2に示す残留応力による湾曲と自重たわみの和が、比較例1、2、3、5では治具の開口の直径に対して1.5%乃至1.7%であるのに対し、比較例4では1.0%であることに起因する。比較例4に係るレプリカモールドは、微細構造を有する面の凸状の湾曲が少ないため、より気泡の巻き込みを防ぐことができなかった。   In the transfer result of Comparative Example 4 shown in FIG. 7C, more bubbles were involved than in the transfer results of Comparative Examples 1, 2, 3, and 5 shown in FIG. This is because, in Comparative Examples 1, 2, 3, and 5, the sum of the bending due to the residual stress and the self-weight deflection shown in Table 2 is 1.5% to 1.7% with respect to the diameter of the opening of the jig. On the other hand, in Comparative Example 4, it is 1.0%. In the replica mold according to Comparative Example 4, since the convex curvature of the surface having the fine structure is small, it was not possible to prevent the entrainment of bubbles.

なお、実施例1〜6及び比較例1〜5では、第1の軟質材料及び第2の軟質材料にシリコーンゴムを用いた例を述べたが、本発明はこれに限定されない。例えば、他の第1及び第2の軟質材料にシリコーンゴム以外のゴム材料を用いて、第2の軟質材料を第1の軟質材料を硬化させた温度よりも高い温度で熱硬化させるのでもよい。また、第2の軟質材料102を第1の軟質材料103と比較し収縮率が大きい材料を選択し、熱硬化させるのでもよい。また、第2の軟質材料として熱収縮性樹脂を塗布し熱収縮させるのでもよいし、熱収縮性フィルムを貼り合わせ熱収縮させるのでもよい。また実施例1〜6及び比較例1〜5でのレプリカモールドの構造は、第1の軟質材料103及び第2の軟質材料102からなる2層構造のみ記載しているが、微細構造を有する面が残留応力により凸状となる湾曲が保たれるならば、3層以上の構造にしてもよい。   In Examples 1 to 6 and Comparative Examples 1 to 5, examples in which silicone rubber is used for the first soft material and the second soft material are described, but the present invention is not limited to this. For example, a rubber material other than silicone rubber may be used for the other first and second soft materials, and the second soft material may be thermally cured at a temperature higher than the temperature at which the first soft material is cured. . Alternatively, the second soft material 102 may be compared with the first soft material 103 and a material having a large shrinkage rate may be selected and thermally cured. Alternatively, a heat-shrinkable resin may be applied as the second soft material and heat-shrinked, or a heat-shrinkable film may be bonded and heat-shrinked. Moreover, although the structure of the replica mold in Examples 1-6 and Comparative Examples 1-5 has described only the two-layer structure which consists of the 1st soft material 103 and the 2nd soft material 102, the surface which has a fine structure However, if a curved shape that is convex due to residual stress is maintained, a structure of three or more layers may be used.

実施例1〜6で述べた、第1の軟質材料及び第2の軟質材料がシリコーンゴムであるレプリカモールドは、紫外線透過性、耐熱性、耐薬品性、気体透過性などの面から特に好ましい。   The replica molds described in Examples 1 to 6 in which the first soft material and the second soft material are silicone rubber are particularly preferable from the viewpoints of ultraviolet ray permeability, heat resistance, chemical resistance, gas permeability, and the like.

図8に、実施例1に係るレプリカモールドによって作成された被転写体上の微細構造を示す断面SEM写真の模式図を示す。このようにマスターモールドの微細構造を精密に転写したドットパターン(直径1.8μm、高さ3.0μm)が得られた。   FIG. 8 is a schematic diagram of a cross-sectional SEM photograph showing the fine structure on the transfer body created by the replica mold according to Example 1. FIG. Thus, a dot pattern (diameter 1.8 μm, height 3.0 μm) in which the fine structure of the master mold was precisely transferred was obtained.

従って、本発明によれば、被転写体に対する転写に複雑な転写装置を必要とせず、マスク材を介した被転写体とモールドとの接触時に、気泡の巻き込みなどによるマスク材に転写される微細構造の欠陥(転写不良領域)を防止することのできるレプリカモールドを提供できる。   Therefore, according to the present invention, a complicated transfer device is not required for transfer to the transfer object, and a fine transfer that is transferred to the mask material by entrainment of bubbles or the like at the time of contact between the transfer object and the mold via the mask material. It is possible to provide a replica mold capable of preventing structural defects (transfer defective regions).

Claims (4)

軟質材料から形成され、表面に微細構造をもつレプリカモールドであって、
前記レプリカモールドは、前記微細構造を有する面が残留応力により凸状となるように湾曲しており、
前記レプリカモールドは、開口部を有する治具に前記微細構造を有する面を下方に向けて載せ、前記開口部の縁によって支持させた場合に、前記レプリカモールドの自重たわみと前記残留応力による前記湾曲との和が前記治具の開口部の直径に対して2.0%乃至6.0%であることを特徴とするレプリカモールド。
A replica mold made of a soft material and having a fine structure on its surface,
The replica mold is curved so that the surface having the microstructure is convex due to residual stress,
When the replica mold is placed on a jig having an opening with the surface having the fine structure facing downward and supported by an edge of the opening, the replica mold is bent by its own weight and the residual stress. The replica mold is characterized in that the sum is 2.0% to 6.0% with respect to the diameter of the opening of the jig.
前記軟質材料が、ポリジメチルシロキサンを原料とするシリコーンゴムを含むことを特徴とする請求項1に記載のレプリカモールド。   The replica mold according to claim 1, wherein the soft material includes a silicone rubber made of polydimethylsiloxane. 前記レプリカモールドの前記残留応力による前記湾曲は、前記直径に対して1.0乃至5.0%であることを特徴とする請求項1に記載のレプリカモールド。   The replica mold according to claim 1, wherein the curvature of the replica mold due to the residual stress is 1.0 to 5.0% with respect to the diameter. 被転写体に接触させて微細構造を転写させるレプリカモールドの製造方法であって、
前記微細構造が形成されたマスターモールド上に第1の軟質材料を積層する工程と、
前記第1の軟質材料を室温硬化、熱硬化、または紫外線硬化させて前記微細構造が転写された第1の軟質材料を形成する工程と、
前記硬化された第1の軟質材料の微細構造と反対側の面上に、第2の軟質材料を積層する工程と、
前記第2の軟質材料を、前記第1の軟質材料を硬化させた温度よりも高い温度で熱硬化させる工程と、
前記第1及び第2の軟質材料からなるレプリカモールドを冷却又は自然放冷し、前記第1の軟質材料と前記第2の軟質材料との熱収縮率の違いによって前記レプリカモールドに残留応力を生じさせる工程とを具備し、
前記残留応力によって前記レプリカモールドの前記第1の軟質材料側が凸状を有するレプリカモールドの製造方法。
A replica mold manufacturing method for transferring a fine structure in contact with a transfer object,
Laminating a first soft material on the master mold on which the microstructure is formed;
Forming the first soft material to which the fine structure is transferred by curing the first soft material at room temperature, thermosetting, or ultraviolet curing;
Laminating a second soft material on a surface opposite the microstructure of the cured first soft material;
Thermally curing the second soft material at a temperature higher than the temperature at which the first soft material is cured;
The replica mold made of the first and second soft materials is cooled or allowed to cool naturally, and residual stress is generated in the replica mold due to the difference in thermal shrinkage between the first soft material and the second soft material. Comprising the steps of:
A method of manufacturing a replica mold, wherein the first soft material side of the replica mold has a convex shape due to the residual stress.
JP2015072652A 2015-03-31 2015-03-31 Replica mold and manufacturing method thereof Active JP6491928B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015072652A JP6491928B2 (en) 2015-03-31 2015-03-31 Replica mold and manufacturing method thereof
CN201510671174.5A CN106003880B (en) 2015-03-31 2015-10-13 Duplicating film and its manufacturing method
TW104133925A TWI576658B (en) 2015-03-31 2015-10-15 Copying die and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072652A JP6491928B2 (en) 2015-03-31 2015-03-31 Replica mold and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016192519A true JP2016192519A (en) 2016-11-10
JP6491928B2 JP6491928B2 (en) 2019-03-27

Family

ID=57082361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072652A Active JP6491928B2 (en) 2015-03-31 2015-03-31 Replica mold and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6491928B2 (en)
CN (1) CN106003880B (en)
TW (1) TWI576658B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019010776A (en) * 2017-06-29 2019-01-24 国立研究開発法人産業技術総合研究所 Stamper for forming pattern structure, manufacturing method of the same, and manufacturing method of the pattern structure
JP2019522337A (en) * 2017-02-13 2019-08-08 エルジー・ケム・リミテッド Insulating member for cylindrical secondary battery
WO2023008086A1 (en) * 2021-07-29 2023-02-02 信越ポリマー株式会社 Method for producing adhesive holding jig

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113456A (en) * 1988-10-20 1990-04-25 Mitsubishi Electric Corp Disk substrate manufacturing device
JP2001068411A (en) * 1999-07-28 2001-03-16 Lucent Technol Inc Lithography process for fabrication of device
JP2003326547A (en) * 2002-05-10 2003-11-19 Matsushita Electric Works Ltd Deformation estimating method in molding of thermosetting resin molding material, and manufacturing method for mold
US6814898B1 (en) * 2000-10-17 2004-11-09 Seagate Technology Llc Imprint lithography utilizing room temperature embossing
US20040241049A1 (en) * 2003-04-04 2004-12-02 Carvalho Bruce L. Elastomeric tools for the fabrication of elastomeric devices and uses thereof
JP2007099907A (en) * 2005-10-05 2007-04-19 Sumitomo Chemical Co Ltd Method for producing propylene-based polymer
JP2007245684A (en) * 2006-03-20 2007-09-27 Sekisui Chem Co Ltd Manufacturing process of replica mold
JP2009220351A (en) * 2008-03-14 2009-10-01 National Printing Bureau Pattern forming body and duplication method using same
JP2010064328A (en) * 2008-09-10 2010-03-25 Hitachi Cable Ltd Stamper for fine structure transfer and method of manufacturing the same
US20100213637A1 (en) * 2009-02-20 2010-08-26 Api Group Plc Machine head for production of a surface relief
JP2010194733A (en) * 2009-02-23 2010-09-09 Toppan Printing Co Ltd Method for producing mold for nano-imprints
JP2013055097A (en) * 2011-09-01 2013-03-21 Hitachi High-Technologies Corp Microstructure transfer device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007099907A1 (en) * 2006-03-03 2009-07-16 パイオニア株式会社 Imprint mold and imprint method
JP5282510B2 (en) * 2008-09-29 2013-09-04 大日本印刷株式会社 Manufacturing method of stamp for micro contact printing (μCP)
WO2012157636A1 (en) * 2011-05-19 2012-11-22 綜研化学株式会社 Nanoimprint mold and curved body
US20150020959A1 (en) * 2013-07-17 2015-01-22 Suntek Precision Corp. Multi-layer 3d pattern manufacturing method and manufacturing apparatus thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113456A (en) * 1988-10-20 1990-04-25 Mitsubishi Electric Corp Disk substrate manufacturing device
JP2001068411A (en) * 1999-07-28 2001-03-16 Lucent Technol Inc Lithography process for fabrication of device
US6814898B1 (en) * 2000-10-17 2004-11-09 Seagate Technology Llc Imprint lithography utilizing room temperature embossing
JP2003326547A (en) * 2002-05-10 2003-11-19 Matsushita Electric Works Ltd Deformation estimating method in molding of thermosetting resin molding material, and manufacturing method for mold
US20040241049A1 (en) * 2003-04-04 2004-12-02 Carvalho Bruce L. Elastomeric tools for the fabrication of elastomeric devices and uses thereof
JP2007099907A (en) * 2005-10-05 2007-04-19 Sumitomo Chemical Co Ltd Method for producing propylene-based polymer
JP2007245684A (en) * 2006-03-20 2007-09-27 Sekisui Chem Co Ltd Manufacturing process of replica mold
JP2009220351A (en) * 2008-03-14 2009-10-01 National Printing Bureau Pattern forming body and duplication method using same
JP2010064328A (en) * 2008-09-10 2010-03-25 Hitachi Cable Ltd Stamper for fine structure transfer and method of manufacturing the same
US20100213637A1 (en) * 2009-02-20 2010-08-26 Api Group Plc Machine head for production of a surface relief
JP2010194733A (en) * 2009-02-23 2010-09-09 Toppan Printing Co Ltd Method for producing mold for nano-imprints
JP2013055097A (en) * 2011-09-01 2013-03-21 Hitachi High-Technologies Corp Microstructure transfer device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019522337A (en) * 2017-02-13 2019-08-08 エルジー・ケム・リミテッド Insulating member for cylindrical secondary battery
JP2019010776A (en) * 2017-06-29 2019-01-24 国立研究開発法人産業技術総合研究所 Stamper for forming pattern structure, manufacturing method of the same, and manufacturing method of the pattern structure
WO2023008086A1 (en) * 2021-07-29 2023-02-02 信越ポリマー株式会社 Method for producing adhesive holding jig

Also Published As

Publication number Publication date
CN106003880B (en) 2019-05-03
CN106003880A (en) 2016-10-12
TWI576658B (en) 2017-04-01
TW201635012A (en) 2016-10-01
JP6491928B2 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
JP4580411B2 (en) Soft mold and manufacturing method thereof
US7704425B2 (en) Pattern replication with intermediate stamp
Zhang et al. Fabrication of hierarchical pillar arrays from thermoplastic and photosensitive SU‐8
US10189203B2 (en) Method for forming micropattern of polyimide using imprinting
KR101416625B1 (en) Manufacturing method of polymer mold for forming fine pattern, polymer mold manufactured by the same, and method for forming fine pattern using the smae
JP2012183642A (en) Mold and method for manufacturing the same
JP6491928B2 (en) Replica mold and manufacturing method thereof
EP3025195B1 (en) Patterned stamp manufacturing method, patterned stamp and patterned stamp imprinting method
JP5212463B2 (en) Wafer lens manufacturing method
KR100922574B1 (en) Apparatus for fixing plastic sheet and Fabrication method of nanopattern on plastic sheet using this same
TWI476093B (en) Resin mold core, and the production of a molded article of the method as
JP6578883B2 (en) Film mold and imprint method
JP5343682B2 (en) Imprint mold and manufacturing method thereof
TW201000954A (en) Method for manufacturing microlens array
JP2013116577A (en) Transfer sheet for transfer printing, and method for manufacturing the same
CN108196425B (en) Nano-imprinting substrate curing device
WO2020194816A1 (en) Production method for uneven structure and uneven structure
WO2022189313A1 (en) Method for facilitating demolding upon pattern transfer
JP2013022929A (en) Fine structure transfer device
JP2000246738A (en) Molding die for resin mold
JP2006113339A (en) Molding method of diffraction optical element and diffraction optical element molded by using the method
JP2014073682A (en) Manufacturing method of uneven structure, manufacturing method of mold for pattern formation, and mold for pattern formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6491928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250