JP2016189383A - 光電変換素子およびその製造方法 - Google Patents

光電変換素子およびその製造方法 Download PDF

Info

Publication number
JP2016189383A
JP2016189383A JP2015068300A JP2015068300A JP2016189383A JP 2016189383 A JP2016189383 A JP 2016189383A JP 2015068300 A JP2015068300 A JP 2015068300A JP 2015068300 A JP2015068300 A JP 2015068300A JP 2016189383 A JP2016189383 A JP 2016189383A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
type semiconductor
substrate
coating
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015068300A
Other languages
English (en)
Other versions
JP6104973B2 (ja
Inventor
大岡 青日
Seijitsu Oka
青日 大岡
飯田 敦子
Atsuko Iida
敦子 飯田
中尾 英之
Hideyuki Nakao
英之 中尾
都鳥 顕司
Kenji Todori
顕司 都鳥
五反田 武志
Takeshi Gotanda
武志 五反田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015068300A priority Critical patent/JP6104973B2/ja
Priority to US15/079,562 priority patent/US20160293874A1/en
Publication of JP2016189383A publication Critical patent/JP2016189383A/ja
Application granted granted Critical
Publication of JP6104973B2 publication Critical patent/JP6104973B2/ja
Priority to US15/679,286 priority patent/US10468616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】使用中の光電変換効率の低下が抑制された光電変換素子を提供する。【解決手段】実施形態の光電変換素子の製造方法は、塗布工程および乾燥工程を有する。塗布工程は、p型半導体、n型半導体、および下記式(1)で表される化合物を含む塗液を基板上に塗布する。乾燥工程は、100Pa以下の圧力、かつ基板の温度が40〜200℃となる条件で、基板上の塗液を乾燥させる。R1−(CH2)n−R2……(1)(式中、nは1〜20であり、R1、R2はそれぞれハロゲンまたはSHである。)【選択図】図1

Description

本発明の実施形態は、光電変換素子およびその製造方法に関する。
近年、製造プロセスの簡便化から、有機半導体膜を有する有機薄膜太陽電池が検討されている。有機半導体薄膜は塗布法により成膜できることから、製造プロセスの簡便化および発電コストの削減などが期待される。
有機薄膜太陽電池として、電子供与性有機半導体(p型有機半導体)と、電子受容性有機半導体(n型有機半導体)とが混合され、電荷分離を起こすpn接合界面の面積が増大されたバルクヘテロ接合型の光電変換活性層を有するものが知られている。
バルクヘテロ接合型の光電変換活性層を塗布法により成膜する場合、p型有機半導体、n型有機半導体、および溶媒を主成分として含有する塗液が用いられる。光電変換効率に優れる光電変換活性層が得られることから、1,8−ジヨードオクタンなどの末端がハロゲンなどにより置換されたアルカン化合物が塗液に添加されている。
特開2014−3255号公報
従来、光電変換効率に優れる光電変換活性層が得られることから、1,8−ジヨードオクタンのような末端がハロゲンなどにより置換されたアルカン化合物などが塗液に添加されている。しかしながら、このような化合物は光電変換活性層を製造するときには必要であるが、光電変換活性層に過度に残留するとその後の使用において光電変換効率の低下をもたらす。
本発明が解決しようとする課題は、使用中の光電変換効率の低下が抑制された光電変換素子を提供することである。
実施形態の光電変換素子の製造方法は、塗布工程と乾燥工程とを有する。塗布工程は、p型半導体、n型半導体、および下記式(1)で表される化合物を含む塗液を基板上に塗布する。乾燥工程は、100Pa以下の圧力、かつ基板の温度が40〜200℃となる条件で、基板上の塗液を乾燥させる。
−(CH−R ……(1)
(式中、nは1〜20であり、R、RはそれぞれハロゲンまたはSHである。)
実施形態の光電変換素子を示す断面図である。 メニスカス法による塗布方法を説明する外観図である。 メニスカス法における塗液の供給方法を説明する図である。 メニスカス法による塗布方法を説明する拡大図である。
以下、本発明を実施するための形態について説明する。
まず、実施形態の光電変換素子について説明する。
図1は、実施形態の光電変換素子としての有機薄膜太陽電池を示す断面図である。
有機薄膜太陽電池10は、支持基板11を有する。支持基板11上には、一対の第1電極層12が形成されている。図中右側の第1電極層12上には、光電変換層13が形成されている。光電変換層13上には、第2電極層14が形成されている。第2電極層14は、図中左側の第1電極層12と電気的に接続されている。また、支持基板11上には、光電変換層13および第2電極層14を覆うようにして封止基板18が設けられている。封止基板18は、支持基板11上に接着層19により固定されている。
光電変換層13は、第1電極層12側から順に、第1中間層15、光電変換活性層としての有機活性層16、および第2中間層17を有する。有機活性層16は、p型半導体、n型半導体、および下記式(1)で表される化合物を含む。
−(CH−R ……(1)
(式中、nは1〜20であり、R、RはそれぞれハロゲンまたはSHである。)
光電変換層13には、例えば、支持基板11側から太陽光や照明光等の光が照射される。光電変換層13に照射された光は有機活性層16に吸収される。これにより、p型半導体とn型半導体との相界面で電荷分離が生じて、電子とこれと対になる正孔とが生成される。有機活性層16で生成された電子と正孔のうち、例えば、電子は第1電極層12で捕集され、正孔は第2電極層14で捕集される。
支持基板11側から光が照射される場合、支持基板11は、光透過性を有する材料により構成される。支持基板11の構成材料としては、無アルカリガラス、石英ガラス、サファイアなどの無機材料、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリアミド、ポリアミドイミド、液晶ポリマーなどの有機材料が挙げられる。
支持基板11側から光が照射される場合、第1電極層12は、光透過性と導電性とを有する材料により構成される。第1電極層12の構成材料としては、酸化インジウム、酸化亜鉛、酸化錫、酸化インジウム錫(ITO)、フッ素がドープされた酸化錫(FTO)、インジウム−亜鉛酸化物(IZO)、インジウム−ガリウム−亜鉛酸化物(IGZO)等の導電性金属酸化物、金、白金、銀、銅、チタン、ジルコニウム、コバルト、ニッケル、インジウム、アルミニウム等の金属やそれら金属を含む合金、あるいはポリ(3,4−エチレンジオキシチオフェン)/ポリ(4−スチレンスルホン酸)(PEDOT/PSS)のような導電性高分子等が挙げられる。第1電極層12は、例えば真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法、塗布法などにより形成される。
有機活性層16は、照射された光により電荷分離を行う機能を有し、p型半導体、n型半導体、および式(1)で表される化合物を含んでいる。p型半導体には、電子供与性を有する材料が用いられる。n型半導体には、電子受容性を有する材料が用いられる。有機活性層16を構成するp型半導体およびn型半導体は、これらがともに有機材料であってもよいし、一方が有機材料であってもよい。
有機活性層16に含まれるp型半導体には、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェンおよびその誘導体、ポリビニルカルバゾールおよびその誘導体、ポリシランおよびその誘導体、側鎖または主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリンおよびその誘導体、フタロシアニン誘導体、ポルフィリンおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体等を用いることができ、またこれらを併用してもよい。
有機活性層16に含まれるn型半導体としては、フラーレンまたはフラーレン誘導体を用いることが好ましい。フラーレン誘導体は、フラーレン骨格を有するものであればよい。フラーレンおよびフラーレン誘導体としては、C60、C70、C76、C78、C84等のフラーレン、これらフラーレンの炭素原子の少なくとも一部が酸化された酸化フラーレン、フラーレン骨格の一部の炭素原子を任意の官能基で修飾した化合物、これら官能基同士が互いに結合して環を形成した化合物等が挙げられる。
有機活性層16に含まれる式(1)で表される化合物としては、光電変換効率の観点から、nが2〜13であるものが好ましく、nが5〜10であるものがより好ましい。式(1)で表される化合物としては、オクタンジチオール、ジブロモオクタン、ジヨードオクタン、ジヨードヘキサン、ジヨードブタンなどが挙げられる。これらは、1種のみを用いてもよいし、2種以上を混合して用いてもよい。これらの中でも、光電変換効率の観点から、オクタンジチオール、ジブロモオクタン、ジヨードオクタンが好ましい。
有機活性層16における式(1)で表される化合物の濃度は0.1質量%未満である。濃度が0.1質量%未満になると、光電変換素子使用中の光電変換効率の低下が抑制される。使用中の光電変換効率の低下を抑制する観点から、式(1)で表される化合物の濃度は0.095質量%以下が好ましく、0.09質量%以下がより好ましい。ここで、式(1)で表される化合物の濃度の調整は、後述するように有機活性層16を成膜するときの圧力や温度などの乾燥条件の調整により行うことができる。
また、有機活性層16における式(1)で表される化合物の濃度は0.001質量%以上である。濃度が0.001質量%以上になると、初期の光電変換効率、すなわち製造直後の光電変換効率が高くなる。初期の光電変換効率を高くする観点から、濃度は0.01質量%以上がより好ましい。
有機活性層16は、例えば、p型半導体とn型半導体との混合物を含むバルクヘテロ接合構造を有する。バルクヘテロ接合型の有機活性層16は、p型半導体とn型半導体とのミクロ相分離構造を有する。p型半導体相とn型半導体相とは互いに相分離しており、ナノオーダーのpn接合を形成している。有機活性層16が光を吸収すると、これらの相界面で正電荷(正孔)と負電荷(電子)とが分離され、各半導体を通って第1電極層12および第2電極層14に輸送される。p型半導体とn型半導体との組成比は、質量比で、p型半導体:n型半導体=1〜99:99〜1が好ましく、より好ましくは20〜80:80〜20である。
有機活性層16の厚さは、通常、10〜1000nmが好ましく、50〜500nmがさらに好ましい。有機活性層16の厚さが10nm以上になると、p型半導体とn型半導体とが均一に混ざり合って短絡が起こりにくくなる。また、有機活性層16の厚さが1000nm以下になると、内部抵抗が小さくなり、また第1電極層12と第2電極層14との距離が近くなるために電荷の拡散が良好になる。有機活性層16は、p型半導体とn型半導体とを含む塗液の塗布により好適に形成される。
第1中間層15は、必要に応じて設けられる。第1中間層15を電子輸送層として用いる場合、有機活性層16で生成された正孔をブロックし、電子を選択的にかつ効率的に第1電極層12に輸送する。第1中間層15は、酸化亜鉛、酸化チタン、酸化ガリウムのような金属酸化物、ポリエチレンイミンのような有機材料などからなる。
第2中間層17は、必要に応じて設けられる。第2中間層17を正孔輸送層として用いる場合、有機活性層16で生成された電子をブロックし、正孔を選択的にかつ効率的に第2電極層14に輸送する。第2中間層17は、PEDOT/PSS、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミンポリピロール、ポリアニリンのような有機導電性ポリマー、酸化モリブデン、酸化バナジウムのような金属酸化物などからなる。
第1中間層15および第2中間層17は、例えば、真空蒸着法やスパッタ法のような真空成膜法、ゾルゲル法、塗布法などにより形成される。
第2電極層14は、導電性を有し、場合によっては光透過性を有する材料により構成される。第2電極層14の構成材料としては、白金、金、銀、銅、ニッケル、コバルト、鉄、マンガン、タングステン、チタン、ジルコニウム、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、カルシウム、マグネシウム、バリウム、サマリウム、テルビウムのような金属、それらを含む合金、インジウム−亜鉛酸化物(IZO)のような導電性金属酸化物、PEDOT/PSSのような導電性高分子、あるいはグラフェン、カーボンナノチューブのような炭素材料などが挙げられる。第2電極層14は、例えば、真空蒸着法やスパッタ法のような真空成膜法、ゾルゲル法、塗布法などにより形成される。
封止基板18は、光電変換層13を水分などから保護して、その特性を長期間にわたって発揮させるために設けられる。封止基板18は、無機材料および有機材料のいずれからなるものでもよい。封止基板18としては、例えば、金属基板、ガラス基板、樹脂フィルムに金属膜を蒸着した複合基板などが挙げられる。封止基板18側から入射する光を利用する場合、透光性を有する材料を用いる。
次に、実施形態の光電変換素子の製造方法について説明する。
実施形態の光電変換素子の製造方法は、特に有機活性層の製造に好適に用いられる。
実施形態の光電変換素子の製造方法は、塗布工程および乾燥工程を有する。塗布工程は、p型半導体、n型半導体、および下記式(1)で表される化合物を含む塗液を基板上に塗布する。乾燥工程は、100Pa以下の圧力、かつ基板の温度が40〜200℃となる条件で、基板上の塗液を乾燥させる。以下、各工程について具体的に説明する。
−(CH−R ……(1)
(式中、nは1〜20であり、R、RはそれぞれハロゲンまたはSHである。)
塗布工程では、まず、p型半導体、n型半導体、および式(1)で表される化合物を含む塗液を調製する。塗液は、溶媒に、p型半導体、n型半導体、および式(1)で表される化合物を添加して混合することにより調製できる。p型半導体、n型半導体、および式(1)で表される化合物の具体例については、既に説明したことから説明を省略する。
溶媒としては、テトラヒドロフラン、1,2−ジクロロエタン、シクロヘキサン、クロロホルム、ブロモホルム、ベンゼン、トルエン、o−キシレン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、o−ジクロロベンゼン、アニソール、メトキシベンゼン、トリクロロベンゼン、ピリジンなどが挙げられる。これらの溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。これらの中でも、p型半導体およびn型半導体のそれぞれについて溶解度が高い、o−ジクロロベンゼン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、クロロホルム、およびこれらの混合物が好ましく、o−ジクロロベンゼン、クロロベンゼン、およびこれらの混合物がより好ましい。
p型半導体およびn型半導体の合計した添加量は、溶媒乾燥工程で消費するエネルギーの低減や乾燥速度の高速化等の観点から、塗液100質量%中、0.5質量%以上が好ましく、0.9質量%以上がより好ましい。また、p型半導体およびn型半導体の合計した添加量は、溶解性や分散性、塗布液粘度の上昇抑制等の観点から、塗液100質量%中、4.2質量%以下が好ましく、2.6質量%以下がより好ましい。
式(1)で表される化合物の添加量は、初期の光電変換効率、すなわち製造直後の光電変換効率を高くする観点から、p型半導体とn型半導体と式(1)で表される化合物の合計100質量%に対して21.6質量%以上が好ましく、47.9質量%以上がより好ましい。また、式(1)で表される化合物の添加量は、残留による使用中の光電変換効率の低下を抑制する観点から、p型半導体とn型半導体と式(1)で表される化合物の合計100質量%に対して94.8質量%以下が好ましく、90.2質量%以下がより好ましい。
塗液は各種の塗布方法を用いて基板上に塗布される。基板としては、例えば、有機薄膜太陽電池における第1電極層を有する支持基板が挙げられる。なお、支持基板は、第1電極層に加えて第1中間層を有してもよい。
塗布方法としては、従来から知られている方法を採用できる。例えば、浸漬コーティング法、スプレーコーティング法、インクジェット法、エアロゾルジェット法、スピンコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、カーテンコーティング法、スリットダイコーター法、グラビアコーター法、スリットリバースコーター法、マイクログラビア法、コンマコーター法、メニスカス法などの塗布方法を採用できる。これらの中でも、メニスカス法により塗布することが好ましい。
図2〜図4は、メニスカス法による塗液の塗布方法を説明する図である。
メニスカス法では、図2に示すようなメニスカス塗布装置20が用いられる。メニスカス塗布装置20は、例えば、板状のステージ21と、このステージ21に対向して配置される円柱状の塗布ヘッド22とを有し、塗布ヘッド22の位置が固定され、塗布ヘッド22に対してステージ21が水平方向に移動できるように構成されている。
塗布対象物23としての基板は、ステージ21上に配置される。ここで、塗布対象物23である基板としては、有機薄膜太陽電池における支持基板上に第1電極層が設けられたもの、または支持基板上に第1電極層および第1中間層が設けられたものが挙げられる。
図3に示すように、塗布ヘッド22にはその幅方向の全体に拡がるように供給装置24から塗液25が供給される。そして、図4に示すように、塗布ヘッド22の位置を固定した状態でステージ21を水平方向に移動させる。これにより、ステージ21上に配置された塗布対象物23が塗布ヘッド22に対して移動され、塗布ヘッド22により塗液25が延ばされるようにして塗布対象物23に塗布される。なお、塗布ヘッド22は、通常、非回転の状態で用いられる。
乾燥工程では、圧力が100Pa以下、かつ基板の温度が40〜200℃となる条件で、基板上に塗布された塗液を乾燥させる。
基板の温度が40℃以上となるように加熱することで、式(1)で表される化合物に対するp型半導体およびn型半導体の拘束力が低下して、基板上の塗液(塗膜)から式(1)で表される化合物が除去しやすくなる。これにより、有機活性層における式(1)で表される化合物の濃度を0.1質量%未満にできる。式(1)で表される化合物を除去する観点から、基板の温度が45℃以上となるように加熱することが好ましい。
なお、基板の温度が200℃を超えると、p型半導体とn型半導体のミクロ層分離構造、いわゆるバルクヘテロ構造が劣化したり、p型半導体およびn型半導体の材料が劣化して光電変換効率が低下する。このため、基板の温度が200℃以下となるように加熱する。好ましくは基板の温度が160℃以下となるように加熱し、より好ましくは基板の温度が100℃以下となるように加熱する。
また、圧力を100Pa以下に減圧することで、加熱により式(1)で表される化合物が除去しやすくなることと合わせて、基板上の塗液(塗膜)から式(1)で表される化合物を十分に除去できる。式(1)で表される化合物を除去する観点から、圧力は1Pa以下が好ましく、1×10−3Pa以下がより好ましい。なお、圧力が低くなるほど式(1)で表される化合物が除去しやすくなるが、減圧にかかる時間が長くなることなどから、通常は1×10−4もあれば十分である。
減圧は、ロータリーポンプ、ターボポンプ、クライオポンプなどを用いて行うことができる。例えば、ロータリーポンプなどにより粗めに減圧した後、ターボポンプ、クライオポンプなどにより本格的に減圧することで、効率的な減圧を行うことができる。ターボポンプ、クライオポンプなどによれば、1×10−4Pa以下に減圧できる。
乾燥工程の時間、すなわち上記した温度条件と圧力条件とを同時に満たしている時間は、式(1)で表される化合物を除去する観点から、1分以上が好ましく、10分以上がより好ましい。一方、生産性の低下、p型半導体およびn型半導体の劣化による光電変換効率の低下を抑制する観点から、乾燥工程の時間は、180分以下が好ましく、60分以下がより好ましい。
以下、実施例を参照して本発明をより具体的に説明する。
なお、本発明はこれらの実施例に限定されない。
(実施例1)
有機活性層の形成に用いる塗液を以下のように調製した。溶媒としてのモノクロロベンゼン 1.94mlに、式(1)で表される化合物としての1,8−ジヨードオクタン 0.06ml、p型半導体としてのポリマーであるPTB7([ポリ{4,8−ビス[(2−エチルヘキシル)オキシ]ベンゾ[1,2−b:4,5−b’]ジチオフェン−2,6−ジイル−lt−alt−3−フルオロ−2−[(2−エチルへキシル)カルボニル]チエノ[3,4−b]チオフェン−4,6−ジイル}]) 16mg、n型半導体としてのフラーレン誘導体であるPC70BM([6,6]フェニルC71ブチル酸メチルエスター) 24mgを加えた。これを80℃で20分間撹拌分散させた後、室温に戻して有機活性層の形成に用いる塗液とした。
別途、支持基板としての無アルカリガラス板上に第1電極層としてのITO膜が設けられたものを用意し、前処理としてUVオゾン洗浄を行った。次に、第1中間層として厚さ約1nmのPEIE(ポリエチレンイミン、80%エトキシレート)を成膜した。以下、このITO膜とPEIEを有した無アルカリガラス板を被処理基板と記す。
次に、図2に示すようなメニスカス塗布装置20におけるステージ21上に塗布対象物23として上記被処理基板を配置した。また、この塗布対象物23である被処理基板に対して0.88mmの間隔となるように塗布ヘッド22を配置した。
その後、図3に示すように、塗布ヘッド22の幅方向の全体に拡がるように供給装置24を用いて塗液25を供給した。そして、図4に示すように、塗布ヘッド22の位置を固定した状態でステージ21を水平方向に10mm/sの速度で移動させて、塗布対象物23である被処理基板上に塗液25を塗布した。
次に、この塗液(塗膜)を有する被処理基板を真空蒸着機に入れて、ロータリーポンプを用いて20分間で圧力を60Paに低下させた。さらに、クライオポンプを用いて15分間で圧力を5×10−5Paに低下させた。この状態で、被処理基板の温度が25℃から47℃になるまで10分間で加熱し、さらにこの温度で1分間維持した。これにより、塗膜を乾燥させて有機活性層を形成した。有機活性層の厚さは約90nmであった。なお、圧力は、イオンゲージを用いて確認した。また、被処理基板の温度は、熱電対を用いて確認した。
この有機活性層を有する被処理基板を真空蒸着機から取り出した後、蒸着マスクをセッティングして再度真空蒸着機に入れた。その後、第2中間層として約10nmの厚さを有するV膜、および第2電極層として約100nmの厚さを有するAg膜を順に蒸着した。蒸着後、真空蒸着機から基板を取り出した。
別途、封止基板として、中央部に凹部を有するガラス、いわゆるザグリガラスを用意した。このザグリガラスにおけるザグリ部(凹部)に乾燥剤を貼り付けるとともに、周囲の非ザグリ部に接着層となるUV硬化型エポキシ接着剤を塗布した。この封止基板を有機活性層を有する被処理基板に貼り合わせて有機薄膜太陽電池を製造した。
この有機薄膜太陽電池について、製造直後の光電変換効率(表中、初期の光電変換効率)を測定したところ6.50%であった。また、窒素雰囲気下、85℃、1000時間の耐熱試験後の有機薄膜太陽電池の光電変換効率(表中、試験後の光電変換効率)を測定したところ6.25%であった。また、これらの測定結果から耐熱試験後の光電変換効率の低下率を求めたところ3.8%であった。なお、光電変換効率の測定は、ソーラーシミュレータを用いて、100mW/cmの放射照度、AM1.5Gの基準スペクトルで行った。
別途、製造直後の有機薄膜太陽電池、すなわち耐熱試験が行われていない有機薄膜太陽電池について、有機活性層中の1,8−ジヨードオクタンの濃度を測定した。濃度の測定は、以下のように行った。まず、封止基板であるザグリガラスを取り外すとともに、第2中間層であるV膜および第2電極層であるAg膜をエッチングにより除去して有機活性層を露出させた。その後、XPS分析と、有機活性層のエッチングとを繰り返して行い、有機活性層における1,8−ジヨードオクタンのモル%での濃度を厚さ方向の全域について測定した。この厚さ方向におけるモル%での濃度を平均して、さらに質量%での濃度に換算した。なお、XPS分析による1,8−ジヨードオクタンの検出限界は0.001質量%と考えられる。
(実施例2)
実施例1と同様にして塗膜を有する基板を製造した。その後、20分間で圧力を15Paに低下させてから、被処理基板の温度が46℃になるまで10分間で加熱し、さらにこの温度で1分間維持して有機活性層を形成した。なお、有機活性層の厚さは実施例1と同様とした。その後、実施例1と同様にして有機薄膜太陽電池の製造および評価を行った。
(実施例3)
実施例1と同様にして塗膜を有する基板を製造した。その後、20分間で圧力を15Paに低下させてから、被処理基板の温度が150℃になるまで10分間で加熱し、さらにこの温度で1分間維持して有機活性層を形成した。なお、有機活性層の厚さは実施例1と同様とした。その後、実施例1と同様にして有機薄膜太陽電池の製造および評価を行った。
(比較例1)
実施例1と同様にして塗膜を有する基板を製造した。その後、常圧で、被処理基板の温度が70℃になるまで20秒間で加熱し、さらにこの温度で30分間維持して有機活性層を形成した。なお、有機活性層の厚さは実施例1と同様とした。その後、実施例1と同様にして有機薄膜太陽電池の製造および評価を行った。
(比較例2)
実施例1と同様にして塗膜を有する基板を製造した。その後、実施例1と同様にして圧力を5×10−5Paに低下させてから、被処理基板の温度が30℃になるまで10分間で加熱し、さらにこの温度で1分間維持して有機活性層を形成した。なお、有機活性層の厚さは実施例1と同様とした。その後、実施例1と同様にして有機薄膜太陽電池の製造および評価を行った。
(比較例3)
実施例1と同様にして塗膜を有する基板を製造した。その後、20分間で圧力を15Paに低下させてから、被処理基板の温度が39℃になるまで10分間で加熱し、さらにこの温度で1分間維持して有機活性層を形成した。なお、有機活性層の厚さは実施例1と同様とした。その後、実施例1と同様にして有機薄膜太陽電池の製造および評価を行った。
Figure 2016189383
表1から明らかなように、100Pa以下の圧力、かつ基板の温度が40〜200℃となる条件で乾燥させた実施例1〜3については、耐熱試験後の光電変換効率の低下率が5%以下になる。特に実施例1は、初期の光電変換効率が高く、かつ耐熱試験後の光電変換効率の低下率が低くなる。
また、有機活性層中の1,8−ジヨードオクタンの濃度が0.1質量%未満である実施例1〜3は、耐熱試験後の光電変換効率の低下率が5%以下になる。ここで、JIS C8990「地上設置の結晶シリコン太陽電池(PV)モジュール−設計適格性確認及び形式認証のための要求事項」の10.13高温高湿試験の要求事項として、85℃、85%RH、1000hでの低下率が5%以下というものがある。このようなことから、有機薄膜太陽電池についても、85℃、1000hの耐熱試験における低下率が5%以下であることは大きな意義を有する。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10…有機薄膜太陽電池、11…支持基板、12…第1電極層、13…光電変換層、14…第2電極層、15…第1中間層、16…有機活性層、17…第2中間層、18…封止基板、19…接着層、20…メニスカス塗布装置、21…ステージ、22…塗布ヘッド、23…塗布対象物、24…塗液、25…供給装置。
実施形態の光電変換素子の製造方法は、塗布工程と乾燥工程とを有する。塗布工程は、p型半導体、n型半導体、および下記式(1)で表される化合物を含む塗液を基板上に塗布する。乾燥工程は、100Pa以下の圧力、かつ基板の温度が40〜200℃となる条件で、基板上の塗液を乾燥させて光電変換層における有機活性層を形成する。有機活性層は、下記式(1)で表される化合物の濃度が0.001質量%以上0.1質量%未満である。光電変換素子は、JIS C8990「地上設置の結晶シリコン太陽電池(PV)モジュール−設計適格性確認及び形式認証のための要求事項」の「10.13高温高湿試験」に規定される出力の低下が5%以下である。
−(CH−R ……(1)
(式中、nは1〜20であり、R、RはそれぞれハロゲンまたはSHである。)

Claims (7)

  1. p型半導体、n型半導体、および下記式(1)で表される化合物を含む塗液を基板上に塗布する塗布工程と、
    −(CH−R ……(1)
    (式中、nは1〜20であり、R、RはそれぞれハロゲンまたはSHである。)
    100Pa以下の圧力、かつ前記基板の温度が40〜200℃となる条件で、前記基板上の前記塗液を乾燥させる乾燥工程と、
    を有することを特徴とする光電変換素子の製造方法。
  2. 前記乾燥工程は、1×10−3Pa以下の圧力、かつ前記基板の温度が40〜160℃となる条件で行うことを特徴とする請求項1記載の光電変換素子の製造方法。
  3. 前記p型半導体がポリマーからなり、かつ前記n型半導体がフラーレン誘導体からなるバルクヘテロ型の有機薄膜太陽電池の製造に用いられることを特徴とする請求項1または2記載の光電変換素子の製造方法。
  4. 前記式(1)で表される化合物が1、8−ジヨードオクタンであることを特徴とする請求項1乃至3のいずれか1項記載の光電変換素子の製造方法。
  5. 第1電極層と、
    第2電極層と、
    前記第1電極層と前記第2電極層との間に配置され、p型半導体、n型半導体、および下記式(1)で表される化合物を含み、前記式(1)で表される化合物の濃度が0.001質量%以上0.1質量%未満である有機活性層を有する光電変換層と、
    −(CH−R ……(1)
    (式中、nは1〜20であり、R、RはそれぞれハロゲンまたはSHである。)
    を有する光電変換素子。
  6. 前記p型半導体がポリマーからなり、前記n型半導体がフラーレン誘導体からなるバルクヘテロ型の有機薄膜太陽電池であることを特徴とする請求項5記載の光電変換素子。
  7. 前記式(1)で表される化合物が1、8−ジヨードオクタンであることを特徴とする請求項5または6記載の光電変換素子。
JP2015068300A 2015-03-30 2015-03-30 光電変換素子およびその製造方法 Active JP6104973B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015068300A JP6104973B2 (ja) 2015-03-30 2015-03-30 光電変換素子およびその製造方法
US15/079,562 US20160293874A1 (en) 2015-03-30 2016-03-24 Photoelectric conversion device and method of manufacturing the same
US15/679,286 US10468616B2 (en) 2015-03-30 2017-08-17 Photoelectric conversion device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015068300A JP6104973B2 (ja) 2015-03-30 2015-03-30 光電変換素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2016189383A true JP2016189383A (ja) 2016-11-04
JP6104973B2 JP6104973B2 (ja) 2017-03-29

Family

ID=57017480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068300A Active JP6104973B2 (ja) 2015-03-30 2015-03-30 光電変換素子およびその製造方法

Country Status (2)

Country Link
US (2) US20160293874A1 (ja)
JP (1) JP6104973B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM556022U (zh) * 2017-09-04 2018-02-21 Nanobit Tech Co Ltd 一種光伏電池結構

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039097A (ja) * 2010-07-14 2012-02-23 Toray Ind Inc 光起電力素子
JP2013021070A (ja) * 2011-07-08 2013-01-31 National Institute Of Advanced Industrial & Technology 有機薄膜太陽電池の製造方法
JP2013187501A (ja) * 2012-03-09 2013-09-19 Mitsubishi Chemicals Corp 光電変換素子及び太陽電池モジュール
JP2015026716A (ja) * 2013-07-26 2015-02-05 株式会社クラレ 光電変換素子の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066933A2 (en) * 2006-12-01 2008-06-05 The Regents Of The University Of California Enhancing performance characteristics of organic semiconducting films by improved solution processing
US9000423B2 (en) 2007-10-31 2015-04-07 The Regents Of The University Of California Processing additive for single-component solution processed organic field-effect transistors
US8227691B2 (en) 2007-10-31 2012-07-24 The Regents Of The University Of California Processing additives for fabricating organic photovoltaic cells
CN103459456A (zh) * 2011-03-11 2013-12-18 可乐丽股份有限公司 π电子共轭的嵌段共聚物及光电转换元件
JP5779234B2 (ja) 2011-03-31 2015-09-16 株式会社クラレ ブロック共重合体および光電変換素子
EP2711400B1 (en) * 2011-05-19 2016-04-06 DIC Corporation Phthalocyanine nanorods and photoelectric conversion element
WO2012174561A2 (en) 2011-06-17 2012-12-20 The Regents Of The University Of California REGIOREGULAR PYRIDAL[2,1,3]THIADIAZOLE π-CONJUGATED COPOLYMERS FOR ORGANIC SEMICONDUCTORS
JP5658633B2 (ja) 2011-08-19 2015-01-28 株式会社クラレ 有機半導体用組成物及びそれを用いた光電変換素子
JP5859872B2 (ja) * 2012-02-17 2016-02-16 富士フイルム株式会社 有機光電変換素子組成物、これを含む薄膜、光電池、これに用いられる有機半導体ポリマー、化合物およびポリマーの製造方法
EP2831934B1 (en) * 2012-03-26 2021-08-11 Jawaharlal Nehru Centre For Advanced Scientific Research An organic solar cell and methods thereof
JP2014003255A (ja) 2012-06-21 2014-01-09 Kuraray Co Ltd 有機薄膜およびそれを用いた光電変換素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039097A (ja) * 2010-07-14 2012-02-23 Toray Ind Inc 光起電力素子
JP2013021070A (ja) * 2011-07-08 2013-01-31 National Institute Of Advanced Industrial & Technology 有機薄膜太陽電池の製造方法
JP2013187501A (ja) * 2012-03-09 2013-09-19 Mitsubishi Chemicals Corp 光電変換素子及び太陽電池モジュール
JP2015026716A (ja) * 2013-07-26 2015-02-05 株式会社クラレ 光電変換素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016008731; 落合鎮康: 'PBDTTT-CF-PCBM複合膜を用いた有機太陽電池の特性評価' 愛知工業大学総合技術研究所研究報告 第15号, 20130930, 第21-25頁 *

Also Published As

Publication number Publication date
US20160293874A1 (en) 2016-10-06
JP6104973B2 (ja) 2017-03-29
US10468616B2 (en) 2019-11-05
US20180026216A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP5680286B2 (ja) 光電変換素子
JP5949335B2 (ja) タンデム型の光電変換素子およびこれを用いた太陽電池
WO2012132828A1 (ja) 有機光電変換素子の製造方法
Barreiro-Argüelles et al. PTB7: PC $ _ {\text {71}} $ BM-Based Solar Cells Fabricated With the Eutectic Alloy Field's Metal as an Alternative Cathode and the Influence of an Electron Extraction Layer
JP2016157777A (ja) 太陽電池とその製造方法
EP3477721A1 (fr) Dispositif électronique organique ou hybride et son procede de fabrication
JP5862189B2 (ja) 有機光電変換素子およびこれを用いた太陽電池
JP5772836B2 (ja) 有機光電変換層材料組成物、有機光電変換素子、有機光電変換素子の製造方法及び太陽電池
JP5673343B2 (ja) 有機光電変換素子およびその製造方法
JP5444743B2 (ja) 有機光電変換素子
JP5585066B2 (ja) 有機薄膜型太陽電池及びその製造方法
JP2014053383A (ja) タンデム型の有機光電変換素子およびこれを用いた太陽電池
JP2016113538A (ja) 金属酸化物含有層形成用組成物、電子デバイス、及び電子デバイスの製造方法
Nam Ambient air processing causes light soaking effects in inverted organic solar cells employing conjugated polyelectrolyte electron transfer layer
KR20110063486A (ko) 유기 광전 변환 소자 및 그의 제조 방법
JP2010192863A (ja) 有機光電変換素子およびその製造方法
JP2013219190A (ja) 有機光電変換素子
JP2012234877A (ja) 有機光電変換素子及び太陽電池
JP5298961B2 (ja) 有機光電変換素子の製造方法
JP6104973B2 (ja) 光電変換素子およびその製造方法
JP2011119700A (ja) 有機光電変換素子及びその製造方法
JP2015099810A (ja) 有機光電変換素子の製造方法
WO2014086778A1 (en) Carbon nanotube material, devices and methods
JP2013077760A (ja) 有機光電変換素子およびこれを用いた太陽電池
JP6032284B2 (ja) 有機光電変換素子の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170301

R151 Written notification of patent or utility model registration

Ref document number: 6104973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151