JP2016186382A - Fire grate type waste incinerator and waste incineration method - Google Patents

Fire grate type waste incinerator and waste incineration method Download PDF

Info

Publication number
JP2016186382A
JP2016186382A JP2015065941A JP2015065941A JP2016186382A JP 2016186382 A JP2016186382 A JP 2016186382A JP 2015065941 A JP2015065941 A JP 2015065941A JP 2015065941 A JP2015065941 A JP 2015065941A JP 2016186382 A JP2016186382 A JP 2016186382A
Authority
JP
Japan
Prior art keywords
combustion
combustion chamber
grate
blowing
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015065941A
Other languages
Japanese (ja)
Other versions
JP6465351B2 (en
Inventor
江梨 渡辺
Eri Watanabe
江梨 渡辺
中山 剛
Takeshi Nakayama
剛 中山
知広 傳田
Tomohiro Denda
知広 傳田
北川 尚男
Hisao Kitagawa
尚男 北川
翔太 川崎
Shota KAWASAKI
翔太 川崎
太一 薄木
Taichi Usuki
太一 薄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2015065941A priority Critical patent/JP6465351B2/en
Publication of JP2016186382A publication Critical patent/JP2016186382A/en
Application granted granted Critical
Publication of JP6465351B2 publication Critical patent/JP6465351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To provide a fire grate type waste incinerator and a waste incineration method that can stably combust waste.SOLUTION: A fire grate type waste incinerator comprises: a combustion chamber 2 for combusting waste on a fire grate 5; a secondary combustion chamber 10 for secondarily combusting combustible gas from the combustion chamber; primary air blowing means 7a-7c and 9 for blowing primary air for combustion into the combustion chamber from below the fire grate; hot gas blowing means 21 and 23 for blowing hot gas H into the combustion chamber; and secondary combustion air blowing means 12 and 17 provided in a gas outlet of the combustion chamber to blow secondary combustion air. The hot gas blowing means comprises: hot gas blowing ports 13a and 13b provided in a ceiling 2A of the combustion chamber; hot gas supply means 21 and 23 for supplying the hot gas to the hot gas blowing ports; monitoring means 31 for monitoring a flame visual recognition situation in the combustion chamber; and hot gas blowing control means 20 for controlling the amount of oxygen to be supplied by the hot gas from the hot gas blowing means on the basis of a flame visual recognition situation signal from the monitoring means.SELECTED DRAWING: Figure 1

Description

本発明は、都市ごみ等の廃棄物を焼却する火格子式廃棄物焼却炉及び廃棄物焼却方法に関する。   The present invention relates to a grate-type waste incinerator and a waste incineration method for incinerating waste such as municipal waste.

都市ごみ等の廃棄物を焼却処理する焼却炉として、火格子式廃棄物焼却炉が広く用いられている。その代表的なものの構成の概要を以下に説明する。   Grate-type waste incinerators are widely used as incinerators for incinerating waste such as municipal waste. The outline of the configuration of the representative one will be described below.

火格子式廃棄物焼却炉は、廃棄物を燃焼する燃焼室の下部に廃棄物の移動方向に配置され三段から成る火格子(乾燥火格子、燃焼火格子そして後燃焼火格子)を有し、後燃焼火格子の上方に位置する燃焼室の出口に二次燃焼室が連設されている。上記燃焼室には乾燥火格子の上方に位置して廃棄物投入口が設けられている。そして後燃焼火格子の廃棄物の移動方向下流側下方には灰落下口が設けられている。通常、上記二次燃焼室は廃熱回収用の廃熱ボイラの一部でもあり、その入口近傍部分である。また、乾燥火格子、燃焼火格子そして後燃焼火格子それぞれの火格子下から燃焼用一次空気を吹き込む燃焼用一次空気吹込み機構が設けられている。   The grate-type waste incinerator has a three-stage grate (dry grate, combustion grate, and post-combustion grate) that is arranged in the direction of waste movement at the bottom of the combustion chamber that burns the waste. The secondary combustion chamber is connected to the outlet of the combustion chamber located above the post-combustion grate. The combustion chamber is provided with a waste inlet located above the dry grate. An ash drop port is provided at the downstream side of the post-combustion grate waste in the moving direction. Usually, the secondary combustion chamber is also a part of a waste heat boiler for waste heat recovery, and is in the vicinity of the inlet. Further, a combustion primary air blowing mechanism for blowing combustion primary air from below the grate of each of the dry grate, the combustion grate, and the post-combustion grate is provided.

このような火格子式廃棄物焼却炉において、廃棄物投入口から燃焼室内に投入された廃棄物は、乾燥火格子上に堆積され、乾燥火格子の下からの空気と炉内の輻射熱により乾燥されると共に、昇温されて着火する。すなわち、上記乾燥火格子の直上方では、廃棄物の移動方向の上流側空間で乾燥領域が形成され、乾燥火格子の直上方の下流側空間から燃焼火格子の直上方の上流側空間にかけて燃焼開始領域が形成される。燃焼開始領域で着火して燃焼を開始した廃棄物は、乾燥火格子から燃焼火格子上に送られ、廃棄物が熱分解されて可燃性ガスが発生し、燃焼火格子の下から送られる燃焼用一次空気により可燃性ガスと固形分が燃焼し、燃焼火格子の直上方空間で主燃焼領域が形成される。そして、更に後燃焼火格子上で、固定炭素など未燃分が完全に燃焼し、該後燃焼火格子の直上方空間で後燃焼領域が形成される。しかる後、燃焼後に残った灰は、灰落下口より外部に排出される。   In such a grate-type waste incinerator, waste thrown into the combustion chamber from the waste inlet is deposited on the dry grate and dried by air from the bottom of the dry grate and radiant heat in the furnace. At the same time, the temperature is raised and ignition occurs. That is, immediately above the dry grate, a dry region is formed in the upstream space in the waste movement direction, and combustion occurs from the downstream space directly above the dry grate to the upstream space directly above the combustion grate. A starting region is formed. The waste that ignites in the combustion start area and starts combustion is sent from the dry grate onto the combustion grate, and the waste is pyrolyzed to generate combustible gas, and the combustion sent from the bottom of the combustion grate The primary air for combustion burns combustible gas and solid content, and a main combustion region is formed in the space immediately above the combustion grate. Further, unburned components such as fixed carbon are completely burned on the post-combustion grate, and a post-combustion region is formed in a space immediately above the post-combustion grate. Thereafter, the ash remaining after combustion is discharged to the outside from the ash drop opening.

かくして、火格子式廃棄物焼却炉では、廃棄物は燃焼室にて三段の火格子の下から吹き込まれる燃焼用一次空気により燃焼する。さらに、燃焼室からの燃焼ガスに含まれている可燃性ガスの未燃分(未燃ガスという)は、廃熱ボイラの一部である二次燃焼室で二次燃焼用空気を受けて燃焼(二次燃焼という)する。二次燃焼の後に燃焼排ガスは廃熱ボイラで熱回収される。   Thus, in the grate-type waste incinerator, the waste is burned by the primary combustion air blown from below the three-stage grate in the combustion chamber. Furthermore, unburned combustible gas contained in the combustion gas from the combustion chamber (referred to as unburned gas) receives and burns secondary combustion air in the secondary combustion chamber that is part of the waste heat boiler. (Called secondary combustion). After the secondary combustion, the combustion exhaust gas is recovered by a waste heat boiler.

従来の火格子式廃棄物焼却炉では、実際に焼却炉内に供給する空気量を廃棄物の燃焼に必要な理論空気量で除した比(空気比)は、通常、1.6程度である。これは、一般燃料の燃焼に必要な空気比である1.05〜1.2に比べて大きくなっている。その理由は、廃棄物には、一般燃料としての液体燃料や気体燃料に比べて不燃分が多く、かつ不均質なため、空気の利用効率が低く、燃焼を行うには多量の空気が必要となるためである。しかし、単に供給空気を多くすると、空気比が大きくなるにしたがって排ガス量も多くなるので、これに伴ってより大きな排ガス処理設備が必要となる。   In a conventional grate-type waste incinerator, the ratio (air ratio) obtained by dividing the amount of air actually supplied into the incinerator by the theoretical amount of air necessary for combustion of the waste is usually about 1.6. . This is larger than 1.05 to 1.2 which is an air ratio necessary for combustion of general fuel. The reason for this is that waste has a higher incombustibility than liquid fuel or gaseous fuel as a general fuel and is inhomogeneous, so the efficiency of air utilization is low, and a large amount of air is required for combustion. Because it becomes. However, if the supply air is simply increased, the amount of exhaust gas increases as the air ratio increases, and accordingly, a larger exhaust gas treatment facility is required.

火格子式廃棄物焼却炉において空気比を小さくした状態で、支障なく廃棄物を燃焼することができれば、排ガス量は低減し、排ガス処理設備がコンパクトになり、その結果、廃棄物焼却施設全体が小型化して設備費を低減できる。これに加えて、排ガス処理のための薬剤使用量も低減するので、運転費を低減できる。さらには、排ガス量の低減により廃熱ボイラの熱回収率を向上できるので、熱回収できずに大気に捨てられる熱量を低減させ、これに伴って廃棄物焼却廃熱を利用する発電の効率を上げることができる。   If waste can be burned without hindrance with a reduced air ratio in a grate-type waste incinerator, the amount of exhaust gas will be reduced, and the exhaust gas treatment facility will be compact. As a result, the entire waste incineration facility will be The equipment cost can be reduced by downsizing. In addition, since the amount of chemicals used for exhaust gas treatment is reduced, the operating cost can be reduced. Furthermore, since the heat recovery rate of the waste heat boiler can be improved by reducing the amount of exhaust gas, the amount of heat that can not be recovered and discarded to the atmosphere is reduced, and the efficiency of power generation using waste incineration waste heat is reduced accordingly. Can be raised.

このように、低空気比燃焼を行う利点は大きいが、一方で、空気比が1.5以下の低空気比燃焼では燃焼が不安定になるという問題が生じる。すなわち、低空気比で廃棄物を燃焼させると、燃焼が不安定となり、COの発生量が増加したり、火炎温度が局所的に上昇してNOxが急増したり、煤が大量に発生したりして排ガス中の有害物が増加するという問題が生じ、また、局所的な高温により廃棄物や灰が溶融して炉壁に付着してクリンカが発生したり、炉壁の耐火物の寿命が短くなるという問題点がある。   Thus, the advantage of performing the low air ratio combustion is great, but on the other hand, the low air ratio combustion with the air ratio of 1.5 or less causes a problem that the combustion becomes unstable. In other words, when waste is burned at a low air ratio, combustion becomes unstable, the amount of CO generated increases, the flame temperature rises locally, NOx increases rapidly, and a large amount of soot is generated. As a result, there is a problem that harmful substances in the exhaust gas increase, and waste and ash are melted and adhered to the furnace wall due to local high temperatures, and clinker is generated. There is a problem of shortening.

このような状況のもとで、空気比が1.5以下の低空気比で安定して燃焼することができる火格子式廃棄物焼却炉が検討されており、特許文献1に開示されている。この特許文献1では、火格子式廃棄物焼却炉の燃焼室の天井から高温ガスを燃焼室内に吹き込むことにより、以下の効果が得られるとしている。   Under such circumstances, a grate-type waste incinerator that can stably burn at a low air ratio of 1.5 or less has been studied, and is disclosed in Patent Document 1. . According to Patent Document 1, the following effects are obtained by blowing high temperature gas into the combustion chamber from the ceiling of the combustion chamber of the grate-type waste incinerator.

即ち、高温ガスの顕熱と輻射により廃棄物の熱分解を促進すること、酸素を含んだ高温ガスの吹込みにより廃棄物の熱分解により発生した可燃性ガスの燃焼を促進すること、さらに高温ガスを燃焼室の天井に設けたノズルから燃焼室内に吹き込み、この高温ガスの流れと、廃棄物から発生した可燃性ガスと燃焼ガスとの上昇流とを衝突させ、廃棄物層直上に流れの遅いよどみ領域を形成することにより、可燃性ガスの流れが緩やかになり、可燃性ガスが酸化剤成分と十分に混合されるため安定した燃焼が行われ、平面状火炎を形成し定在させることなどの効果があり、高温ガスを燃焼室内に吹き込むことにより、低空気比燃焼操業下で廃棄物の燃焼を安定して行わせることができるとしている。   That is, promoting the thermal decomposition of waste by sensible heat and radiation of high temperature gas, promoting the combustion of combustible gas generated by thermal decomposition of waste by blowing high temperature gas containing oxygen, Gas is blown into the combustion chamber from the nozzle provided on the ceiling of the combustion chamber, and the flow of this high-temperature gas collides with the upward flow of combustible gas and combustion gas generated from waste, and the flow of gas flows directly above the waste layer. By forming a slow stagnation region, the flow of combustible gas becomes gentle, and the combustible gas is sufficiently mixed with the oxidant component, so that stable combustion is performed, and a flat flame is formed and kept standing. It is said that by burning high temperature gas into the combustion chamber, waste can be stably burned under low air ratio combustion operation.

このような火格子式廃棄物焼却炉において、炉内は、廃棄物の移動方向で上流側から、乾燥領域、燃焼開始領域、主燃焼領域と後燃焼領域が順に形成される。主燃焼領域において燃焼火格子上の廃棄物は熱分解そして部分酸化が行われ、可燃性ガスが発生し、その可燃性ガスと廃棄物の固形分が燃焼する。可燃性ガスが燃焼する際に火炎を形成して燃焼する。しかる後、後燃焼領域において、残った廃棄物中の固定炭素などの固形分の未燃分が後燃焼火格子上で完全に燃焼される。固形分が燃焼する際には火炎は発生せず熾燃焼する。   In such a grate-type waste incinerator, a dry region, a combustion start region, a main combustion region, and a post-combustion region are sequentially formed in the furnace from the upstream side in the waste movement direction. In the main combustion zone, the waste on the combustion grate is pyrolyzed and partially oxidized to generate a combustible gas, and the combustible gas and the solid content of the waste are combusted. When combustible gas burns, it forms a flame and burns. Thereafter, in the post-combustion region, unburned solids such as fixed carbon in the remaining waste are completely burned on the post-combustion grate. When solids burn, no flame is generated and soot burns.

主燃焼領域とは、廃棄物の熱分解、部分酸化が行われ可燃性ガスが発生し、その可燃性ガスが火炎を伴って燃焼しているとともに廃棄物の固形分が燃焼する燃焼領域である。火炎を伴う燃焼が実質的に完了する点を燃切点と言い、主燃焼領域と後燃焼領域との境界となる。燃切点より後の領域では、廃棄物中の固形分の未燃分が燃焼する熾燃焼領域(後燃焼領域)となる。   The main combustion region is a combustion region in which waste is thermally decomposed and partially oxidized to generate a combustible gas, and the combustible gas is combusted with a flame and the solid content of the waste is combusted. . The point at which combustion with a flame is substantially completed is called a burnout point, and becomes a boundary between the main combustion region and the post-combustion region. In the area after the burn-off point, a soot combustion area (post-combustion area) in which the unburned solid content in the waste is combusted.

特開2013−213652号公報JP2013-213652A

廃棄物焼却炉による廃棄物の燃焼においては、廃棄物が熱分解されて発生する可燃性ガスの燃焼を安定して行うことが、燃焼によって発生するCO,NOxなどの有害物質の発生量を抑制することに大きく寄与する。そこで、特許文献1に記載の廃棄物焼却炉では、燃焼室天井に設けたノズルから高温ガスを燃焼室内に吹き込むようにして燃焼の安定を図っている。   In the combustion of waste in a waste incinerator, stable combustion of combustible gas generated by thermal decomposition of the waste suppresses the generation of harmful substances such as CO and NOx generated by the combustion. To make a big contribution. Therefore, in the waste incinerator described in Patent Document 1, high temperature gas is blown into the combustion chamber from a nozzle provided on the ceiling of the combustion chamber to stabilize combustion.

このような特許文献1の廃棄物焼却炉によれば、焼却炉天井から吹き込んだ高温ガスが、
廃棄物の熱分解または燃焼により発生した熱分解ガス(可燃性ガス)と燃焼ガスとの上昇流と衝突して効果的に対向流場を形成し、淀み領域または上下方向の循環領域が広域にわたって生成されるようになる。これにより、該淀み領域または該循環領域において可燃性ガスの流れが緩やかになり安定した燃焼が行われ、火炎が平面状に定在し極めて安定した燃焼状態が保たれる。
According to such a waste incinerator of Patent Document 1, high-temperature gas blown from the ceiling of the incinerator is
It collides with the upward flow of pyrolysis gas (combustible gas) generated by pyrolysis or combustion of waste and combustion gas, effectively forms a counter flow field, and the stagnation region or the vertical circulation region covers a wide area Will be generated. As a result, the flow of the combustible gas becomes gentle in the stagnation region or the circulation region, and stable combustion is performed. The flame is fixed in a flat shape, and an extremely stable combustion state is maintained.

また、特許文献1の廃棄物焼却炉は、二次燃焼用空気を二次燃焼室に吹込む二次燃焼用空気吹込み手段を備え、燃焼室から排出されるガスに含まれる可燃性ガスの未燃分(未燃ガス)を二次燃焼している。このように、燃焼室への高温ガスの吹込みにより燃焼を安定化し、さらに、二次燃焼室で未燃ガスを二次燃焼することにより、焼却炉から排出される排ガスの酸素、NOx、COの濃度を適正な範囲に制御し、CO,NOxなどの有害物質の排出を規制値以下とするようにしている。   The waste incinerator of Patent Document 1 includes secondary combustion air blowing means for blowing secondary combustion air into the secondary combustion chamber, and the combustible gas contained in the gas discharged from the combustion chamber. Secondary combustion of unburned gas (unburned gas). In this way, combustion is stabilized by blowing high-temperature gas into the combustion chamber, and further, unburned gas is secondary-combusted in the secondary combustion chamber, so that oxygen, NOx, CO in exhaust gas discharged from the incinerator The concentration of NO is controlled within an appropriate range so that emission of harmful substances such as CO and NOx is less than the regulation value.

廃棄物焼却炉の実際の操業では標準的な操業基準で操業していても、焼却炉内の燃焼状況が変化し、排出される排ガス中の有害物質量が変動することがある。そこで、特許文献1の廃棄物焼却炉では、予め定めた一次燃焼用空気と高温ガスの供給量は維持したまま、廃棄物焼却炉内の状況を監視する因子に基づいて二次燃焼用空気供給量を増減するように調節することで排ガス中の有害物質量を所定範囲内とするように制御している。このような燃焼制御方法をとることにより、焼却炉内の燃焼状況が変化して有害物質の発生量が増大しても、最終的に廃棄物焼却炉から排出される排ガス中の有害物質量を所定範囲内とするように制御しやすくなり、さらに、焼却炉の燃焼制御系を簡単にすることができるとしている。ここで、廃棄物焼却炉内の状況を監視する因子としては、特許文献1では、例えば、燃焼室から排出される未燃ガスの二次燃焼を行う二次燃焼領域出口近傍又はボイラ出口における排ガス中の酸素濃度、CO濃度、NOx濃度のガス成分濃度とすることが好ましいとしている。   In actual operation of a waste incinerator, even if it operates with standard operating standards, the combustion status in the incinerator may change and the amount of harmful substances in the exhaust gas discharged may change. Therefore, in the waste incinerator of Patent Document 1, secondary combustion air supply is performed based on a factor for monitoring the situation in the waste incinerator while maintaining the predetermined supply amounts of primary combustion air and high-temperature gas. The amount of harmful substances in the exhaust gas is controlled to be within a predetermined range by adjusting the amount to increase or decrease. By adopting such a combustion control method, even if the combustion status in the incinerator changes and the amount of harmful substances generated increases, the amount of harmful substances in the exhaust gas finally discharged from the waste incinerator is reduced. It is easy to control to be within a predetermined range, and furthermore, the combustion control system of the incinerator can be simplified. Here, as a factor for monitoring the situation in the waste incinerator, in Patent Document 1, for example, the exhaust gas in the vicinity of the outlet of the secondary combustion region where the secondary combustion of the unburned gas discharged from the combustion chamber is performed or in the boiler outlet It is preferable to use gas component concentrations of oxygen concentration, CO concentration, and NOx concentration.

しかしながら、特許文献1に記載のような燃焼制御方法では、以下のような問題がある。すなわち、排ガス中のガス成分濃度をガス濃度計により計測するが、ガス濃度計の応答時間を要するため、焼却炉内の燃焼状況が変化した時刻と計測値を得る時刻との間に時間遅れが生じ、実際の焼却炉内の燃焼状況の変動に対して、タイムリーな二次燃焼用空気供給量の増減制御ができないことがある。   However, the combustion control method described in Patent Document 1 has the following problems. That is, the gas component concentration in the exhaust gas is measured with a gas concentration meter, but since a response time of the gas concentration meter is required, there is a time delay between the time when the combustion state in the incinerator changes and the time when the measured value is obtained. As a result, timely increase / decrease control of the secondary combustion air supply amount may not be possible with respect to fluctuations in the actual combustion state in the incinerator.

本発明は、かかる事情に鑑み、炉天井から高温ガスを吹き込む火格子式廃棄物焼却炉において、廃棄物の燃焼を安定して行うことができ、CO、NOx等の有害物質の発生量を抑制でき、低空気比燃焼操業を問題なく行うことが可能であり、さらに、実際の焼却炉内の燃焼状況の変動に対して、タイムリーな燃焼制御を実現できる火格子式廃棄物焼却炉及び廃棄物焼却方法を提供することを課題とする。   In view of such circumstances, the present invention can stably burn waste in a grate-type waste incinerator that blows high-temperature gas from the furnace ceiling, and suppresses the generation of harmful substances such as CO and NOx. It is possible to perform low-air ratio combustion operation without any problems, and furthermore, a grate-type waste incinerator and waste that can realize timely combustion control against fluctuations in the actual combustion state in the incinerator It is an object to provide a method for incineration.

本発明において、上述の課題は、次のように構成される火格子式廃棄物焼却炉もしくは火格子式廃棄物焼却炉による廃棄物焼却方法により解決される。   In the present invention, the above-described problems are solved by a waste incineration method using a grate-type waste incinerator or a grate-type waste incinerator configured as follows.

火格子式廃棄物焼却炉の燃焼室内での廃棄物燃焼の際、不完全燃焼が生じると一酸化炭素の発生量が増大し、排ガスを大気中に放散する際の規制値を超えてしまう。発明者等は、不完全燃焼時には燃焼室内で煤が発生していて炉外から燃焼室内の火炎の視認による燃焼状況の把握ができなくなることに着目し、適切かつ迅速な燃焼制御を実現できる火格子式廃棄物焼却炉及び廃棄物焼却方法を創案するに至った。   When incomplete combustion occurs during the combustion of waste in the combustion chamber of a grate-type waste incinerator, the amount of carbon monoxide generated increases and exceeds the regulation value when exhaust gas is released into the atmosphere. The inventors focused on the fact that soot is generated in the combustion chamber during incomplete combustion, and it becomes impossible to grasp the combustion status by visually observing the flame in the combustion chamber from the outside of the furnace. We have come up with a grid-type waste incinerator and waste incineration method.

<火格子式廃棄物焼却炉>
本発明の火格子式廃棄物焼却炉は、火格子を備え該火格子上の廃棄物を燃焼する燃焼室と、燃焼室に連設されて燃焼室からの可燃性ガスを二次燃焼する二次燃焼室と、燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む一次空気吹込手段と、高温ガスを上記燃焼室の天井から下向きに吹き込む高温ガス吹込手段と、燃焼室のガス出口に設けられ二次燃焼空気を吹き込む二次燃焼空気吹込手段とを有する火格子式廃棄物焼却炉において、高温ガス吹込手段は、燃焼室の天井に設けられた高温ガス吹込口と、高温ガス吹込口へ高温ガスを供給する高温ガス供給手段と、燃焼室内の火炎視認状況を監視する監視手段と、監視手段からの火炎視認状況信号に基づき上記高温ガス吹込手段からの高温ガスにより供給する酸素量を制御する高温ガス吹込制御手段とを備えることを特徴とする。
<Grate-type waste incinerator>
A grate-type waste incinerator according to the present invention includes a combustion chamber that includes a grate and burns waste on the grate, and is connected to the combustion chamber to secondary-combust combustible gas from the combustion chamber. A primary combustion chamber, primary air blowing means for blowing combustion primary air from under the grate into the combustion chamber, hot gas blowing means for blowing hot gas downward from the ceiling of the combustion chamber, and a gas outlet of the combustion chamber In the grate-type waste incinerator having a secondary combustion air blowing means for blowing secondary combustion air, the hot gas blowing means includes a hot gas blowing port provided on a ceiling of the combustion chamber, and a hot gas blowing High temperature gas supply means for supplying high temperature gas to the mouth, monitoring means for monitoring the flame visibility status in the combustion chamber, and the amount of oxygen supplied by the high temperature gas from the high temperature gas blowing means based on the flame visibility status signal from the monitoring means To control the high temperature Characterized in that it comprises a scan blow control means.

かかる本発明においては、監視手段からの火炎視認状況信号に基づき上記二次燃焼空気吹込手段からの二次燃焼空気により供給する酸素量を制御する二次燃焼空気吹込制御手段を、さらに備えるようにすることができる。   In the present invention, secondary combustion air blowing control means for controlling the amount of oxygen supplied by the secondary combustion air from the secondary combustion air blowing means based on the flame visual recognition status signal from the monitoring means is further provided. can do.

かかる本発明においては、燃焼室内の火炎視認状況を監視する監視手段が、燃焼室内の燃焼状況を撮像する撮像手段であって、火炎視認状況信号が撮像手段からの画像信号を数値化し所定値と比較した差分であるようにすることができる。   In the present invention, the monitoring means for monitoring the flame visibility status in the combustion chamber is an imaging means for imaging the combustion status in the combustion chamber, and the flame visibility status signal quantifies the image signal from the imaging means as a predetermined value. It can be made to be the difference compared.

<火格子式廃棄物焼却炉による廃棄物焼却方法>
本発明の火格子式廃棄物焼却炉による廃棄物焼却方法は、火格子を備え該火格子上の廃棄物を燃焼する燃焼室と、燃焼室に連設されて燃焼室からの可燃性ガスを二次燃焼する二次燃焼室と、燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む一次空気吹込手段と、高温ガスを上記燃焼室の天井から下向きに吹き込む高温ガス吹込手段と、燃焼室のガス出口に設けられ二次燃焼空気を吹き込む二次燃焼空気吹込手段とを有する火格子式廃棄物焼却炉による廃棄物焼却方法において、燃焼室の天井に設けられた高温ガス吹込口から高温ガスを燃焼室へ供給し、燃焼室内の火炎視認状況を監視手段により監視し、監視手段からの火炎視認状況信号に基づき上記高温ガス吹込手段からの高温ガスにより供給する酸素量を制御することを特徴とする。
<Waste incineration method with grate-type waste incinerator>
A waste incineration method using a grate-type waste incinerator according to the present invention includes a combustion chamber having a grate and burning the waste on the grate, and a combustible gas from the combustion chamber connected to the combustion chamber. A secondary combustion chamber for secondary combustion, primary air blowing means for blowing combustion primary air into the combustion chamber from under the grate, and hot gas blowing means for blowing high temperature gas downward from the ceiling of the combustion chamber; In a waste incineration method using a grate-type waste incinerator having a secondary combustion air blowing means for blowing secondary combustion air provided at a gas outlet of a combustion chamber, from a high temperature gas blowing port provided on the ceiling of the combustion chamber Supply high temperature gas to the combustion chamber, monitor the flame visibility in the combustion chamber by monitoring means, and control the amount of oxygen supplied by the high temperature gas from the high temperature gas blowing means based on the flame visibility status signal from the monitoring means Features To.

かかる本発明において、監視手段からの火炎視認状況信号に基づき、記二次燃焼空気吹込手段からの二次燃焼空気により供給する酸素量を制御することができる。   In the present invention, the amount of oxygen supplied by the secondary combustion air from the secondary combustion air blowing means can be controlled on the basis of the flame visibility status signal from the monitoring means.

かかる本発明において、燃焼室内の火炎視認状況を監視する監視手段が、燃焼室内の燃焼状況を撮像する撮像手段であって、火炎視認状況信号が撮像手段からの画像信号を数値化し所定値と比較した差分であるようにすることができる。   In the present invention, the monitoring means for monitoring the flame visibility status in the combustion chamber is an imaging means for imaging the combustion status in the combustion chamber, and the flame visibility status signal digitizes the image signal from the imaging means and compares it with a predetermined value. The difference can be made.

このような本発明の火格子式廃棄物焼却炉そしてこれによる廃棄物焼却方法にあっては、監視手段により燃焼室内の火炎視認状況を監視し、監視手段からの火炎視認状況信号に基づき、高温ガス吹込手段、また選択的にこれに加えて二次燃焼空気吹込手段により供給される酸素量が高温ガス吹込制御手段また二次燃焼空気吹込制御手段により制御される。   In such a grate-type waste incinerator and a waste incineration method according to the present invention, the monitoring means monitors the flame visibility in the combustion chamber, and based on the flame visibility signal from the monitoring means, the high temperature The amount of oxygen supplied by the gas blowing means and, optionally, the secondary combustion air blowing means is controlled by the high temperature gas blowing control means or the secondary combustion air blowing control means.

さらに、燃焼室内の火炎視認状況を監視する監視手段が、燃焼室内の燃焼状況を撮像する撮像手段であって、火炎視認状況信号が撮像手段からの画像信号を数値化し所定値と比較した差分であるようにすることができる。撮像手段により燃焼室内の燃焼状況を撮像した画像を処理し、その明るさ、色彩、火炎形状等が数値化され、正常燃焼時の撮像で得られた所定値と比較されて、その差分にもとづき、高温ガス吹込制御手段また二次燃焼空気吹込制御手段により供給される酸素量が制御される。   Further, the monitoring means for monitoring the flame visibility status in the combustion chamber is an imaging means for imaging the combustion status in the combustion chamber, and the flame visibility status signal is a difference obtained by quantifying the image signal from the imaging means and comparing it with a predetermined value. Can be. An image obtained by imaging the combustion state in the combustion chamber is processed by the imaging means, and the brightness, color, flame shape, etc. are digitized and compared with predetermined values obtained by imaging during normal combustion, and based on the difference. The amount of oxygen supplied by the high temperature gas injection control means or the secondary combustion air injection control means is controlled.

本発明は、以上のように、燃焼室内の燃焼状況を燃焼室内の火炎視認状況を監視する監視手段により監視し、監視手段からの火炎視認状況信号に基づき、正常燃焼時の撮像で得られた所定値と比較して、吹き込まれる高温ガスあるいはこれに加え二次燃焼空気により供給される酸素量を制御することとしたので、適切かつ迅速に対応して供給酸素量を制御することができる、という効果を得る。   As described above, the present invention is obtained by monitoring the combustion status in the combustion chamber by the monitoring means for monitoring the flame visibility status in the combustion chamber, and obtained by imaging during normal combustion based on the flame visibility status signal from the monitoring means. Since the amount of oxygen supplied by the hot gas to be injected or the secondary combustion air in addition to this is controlled as compared with the predetermined value, the amount of oxygen supplied can be controlled appropriately and quickly. The effect is obtained.

本発明の一実施形態に係る火格子式廃棄物焼却炉の概要構成を示す縦断面図である。It is a longitudinal section showing a schematic structure of a grate type waste incinerator concerning one embodiment of the present invention.

以下、本発明の実施形態を添付図面にもとづき説明する。なお、本発明の技術的範囲は、これらの実施形態によって限定されるものではなく、発明の要旨を変更することなく様々な形態で実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶものである。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The technical scope of the present invention is not limited by these embodiments, and can be implemented in various forms without changing the gist of the invention. Further, the technical scope of the present invention extends to an equivalent range.

以下、本発明の一実施形態の火格子式廃棄物焼却炉の基本構成、各構成装置そして作用について説明する。   Hereinafter, the basic configuration, each component device, and operation of a grate-type waste incinerator according to an embodiment of the present invention will be described.

<火格子式廃棄物焼却炉の基本構成>
図1は本発明の一実施形態に係る火格子式廃棄物焼却炉の概要構成を示している。まず、本発明の一実施形態に係る火格子式廃棄物焼却炉の基本構成と焼却方法の概要を説明し、次いで各構成装置の詳細を説明する。この実施形態において、燃焼室内での廃棄物の移動方向(炉長方向)における燃焼室の上流側(図1にて左側)を前部、下流側を後部という。
<Basic configuration of grate-type waste incinerator>
FIG. 1 shows a schematic configuration of a grate-type waste incinerator according to an embodiment of the present invention. First, the basic configuration of the grate-type waste incinerator and the outline of the incineration method according to one embodiment of the present invention will be described, and then the details of each component device will be described. In this embodiment, the upstream side (left side in FIG. 1) of the combustion chamber in the movement direction (furnace length direction) of the waste in the combustion chamber is referred to as a front portion, and the downstream side is referred to as a rear portion.

本実施形態に係る火格子式廃棄物焼却炉1は、燃焼室2と、この燃焼室2の廃棄物の流れ方向の上流側(図1の左側)上方に配置され、廃棄物を燃焼室2内に投入するための廃棄物投入口3と、燃焼室2の廃棄物の流れ方向の下流側(図1の右側)の上方に連設される廃熱ボイラ4とを備える火格子式廃棄物焼却炉である。   The grate-type waste incinerator 1 according to the present embodiment is disposed on the combustion chamber 2 and on the upstream side (left side in FIG. 1) in the waste flow direction of the combustion chamber 2, and the waste is disposed in the combustion chamber 2. A grate-type waste provided with a waste inlet 3 for charging into the inside, and a waste heat boiler 4 provided continuously above the downstream side (right side in FIG. 1) in the flow direction of the waste in the combustion chamber 2 It is an incinerator.

燃焼室2の底部には、廃棄物を移動させながら燃焼させる火格子(ストーカ)5が設けられている。この火格子5は、廃棄物投入口3に近い方から、すなわち、上流側から乾燥火格子5a、燃焼火格子5b、後燃焼火格子5cの順に設けられていて、乾燥火格子5aと燃焼火格子5bの上に廃棄物層Wが形成されている。   At the bottom of the combustion chamber 2, there is provided a grate (stoker) 5 that burns while moving the waste. The grate 5 is provided in the order of the dry grate 5a, the combustion grate 5b, and the post-combustion grate 5c from the side closer to the waste inlet 3, that is, from the upstream side. A waste layer W is formed on the lattice 5b.

乾燥火格子5aでは主として廃棄物の乾燥と着火が行われる。燃焼火格子5bでは主として廃棄物の熱分解、部分酸化が行われ、熱分解により発生した可燃性ガスと固形分の燃焼が行われ、可燃性ガスが燃焼する際に火炎を形成する。後燃焼火格子5c上では、残った廃棄物中の固形分の未燃分を完全に燃焼させる。廃棄物中の固形分が燃焼する際には火炎は発生せず熾燃焼する。完全に燃焼した後の燃焼灰は、灰落下口6より排出される。   In the dry grate 5a, waste is mainly dried and ignited. In the combustion grate 5b, waste is thermally decomposed and partially oxidized, and the combustible gas and solid matter generated by the thermal decomposition are combusted. When the combustible gas burns, a flame is formed. On the post-combustion grate 5c, the unburned solids in the remaining waste are completely burned. When the solids in the waste burn, no flame is generated and the soot burns. The combustion ash after complete combustion is discharged from the ash drop opening 6.

このような本実施形態の火格子式廃棄物焼却炉では、燃焼室2内の空間に、廃棄物層の直上の空間に、下記のような諸領域が形成される。   In such a grate-type waste incinerator of this embodiment, the following regions are formed in the space in the combustion chamber 2 and in the space immediately above the waste layer.

乾燥火格子5aの直上方で廃棄物投入口3の下方に対応して位置する、該乾燥火格子5aの廃棄物の流れ方向の上流側範囲(前部)の上方には乾燥領域が形成される。   A drying region is formed directly above the drying grate 5a and below the waste input port 3 and above the upstream range (front) in the waste flow direction of the drying grate 5a. The

乾燥火格子5aの下流側範囲(後部)から燃焼火格子5bの上流側範囲(前部)の上方には燃焼開始領域が形成される。すなわち、乾燥火格子5aの廃棄物は、上流側範囲で乾燥され、下流側範囲で着火して、燃焼火格子5bの上流側範囲(前部)までの範囲で燃焼が開始する。   A combustion start region is formed above the upstream range (front) of the combustion grate 5b from the downstream range (rear) of the dry grate 5a. That is, the waste in the dry grate 5a is dried in the upstream range, ignited in the downstream range, and combustion starts in the range up to the upstream range (front) of the combustion grate 5b.

燃焼火格子5b上の廃棄物はここで熱分解そして部分酸化が行われ、可燃性ガスが発生し、その可燃性ガスと廃棄物の固形分が燃焼する。廃棄物はこの燃焼火格子5b上で実質的に殆んど燃焼される。こうして、上記燃焼火格子5bの上方に主燃焼領域が形成される。   The waste on the combustion grate 5b is thermally decomposed and partially oxidized here to generate a combustible gas, and the combustible gas and the solid content of the waste are combusted. The waste is substantially burned on the combustion grate 5b. Thus, a main combustion region is formed above the combustion grate 5b.

しかる後、僅かに残った廃棄物中の固定炭素など未燃分が後燃焼火格子5c上で完全に燃焼される。この後燃焼火格子5cの上方に後燃焼領域が形成される。   Thereafter, the unburned matter such as fixed carbon in the remaining waste is completely burned on the post-burning grate 5c. A post-combustion region is formed above the post-combustion grate 5c.

廃棄物が焼却される場合、まず水分の蒸発が起こり、次いで熱分解と部分酸化反応が起こり、可燃性ガスが生成し始める。燃焼開始領域で廃棄物の燃焼が始まり、廃棄物の熱分解、部分酸化により可燃性ガスが生成し始める。主燃焼領域で廃棄物の熱分解、部分酸化が行われ可燃性ガスが発生し、その可燃性ガスが火炎を伴って燃焼しているとともに廃棄物の固形分が燃焼する。主燃焼領域は火炎を伴う燃焼が完了する点(燃切点)までの領域である。燃切点より後の領域では、廃棄物中の固形未燃分が燃焼する熾燃焼領域(後燃焼領域)となる。   When the waste is incinerated, water evaporation occurs first, followed by thermal decomposition and partial oxidation reaction, and combustible gas begins to be generated. Combustion of waste begins in the combustion start region, and combustible gas begins to be generated by thermal decomposition and partial oxidation of the waste. In the main combustion area, the waste is thermally decomposed and partially oxidized to generate a combustible gas. The combustible gas is burned with a flame and the solid content of the waste is burned. The main combustion region is a region up to a point (combustion point) where combustion with a flame is completed. In the area after the burnout point, it becomes a soot combustion area (post-combustion area) in which solid unburned matter in the waste burns.

上記燃焼室2内の乾燥火格子5a、燃焼火格子5b及び後燃焼火格子5cの下部には、それぞれ風箱7a,7b,7cが設けられている。ブロワ8により供給される燃焼用一次空気Pは、燃焼用一次空気供給管9を通って前記各風箱7a,7b,7cに供給され、各火格子5a,5b,5cを通って燃焼室2内に供給される。なお、火格子下から供給される燃焼用一次空気Pは、火格子5a,5b,5c上の廃棄物の乾燥及び燃焼に使われるほか、火格子5a,5b,5cの冷却作用、廃棄物の攪拌作用を有する。   Wind boxes 7a, 7b, and 7c are provided below the dry grate 5a, the combustion grate 5b, and the post-combustion grate 5c in the combustion chamber 2, respectively. The primary combustion air P supplied by the blower 8 is supplied to the wind boxes 7a, 7b, 7c through the primary air supply pipe 9 for combustion, and the combustion chamber 2 through the grate 5a, 5b, 5c. Supplied in. The primary combustion air P supplied from below the grate is used for drying and burning the waste on the grate 5a, 5b, 5c, cooling action of the grate 5a, 5b, 5c, Has a stirring action.

上記燃焼室2の下流側における出口には廃熱ボイラ4が連設され、廃熱ボイラ4の入口近傍が燃焼室2から排出されるガス中の可燃性ガスの未燃分(未燃ガス)を燃焼する二次燃焼室10となっている。廃熱ボイラの一部である二次燃焼室10内で二次燃焼用ガスを吹き込み、未燃ガスを二次燃焼し、この二次燃焼の後に燃焼排ガスは廃熱ボイラ4で熱回収される。熱回収された後、廃熱ボイラから排出された燃焼排ガスは、図示しない排ガス処理装置系で消石灰等による酸性ガスの中和と、活性炭によるダイオキシン類の吸着
が行われ、さらに図示しない除塵装置に送られ、中和反応生成物、活性炭、ダストなどが回収される。前記除塵装置で除塵され、無害化された後の燃焼排ガスは、図示しない誘引ファンにより誘引され、煙突から大気中に放出される。また、除塵装置で除塵された後の燃焼排ガスの一部が、後述する返送排ガスとして用いられる。
A waste heat boiler 4 is connected to an outlet on the downstream side of the combustion chamber 2, and an unburned portion (unburned gas) of the combustible gas in the gas discharged from the combustion chamber 2 near the inlet of the waste heat boiler 4. It becomes the secondary combustion chamber 10 which burns. The secondary combustion gas is blown into the secondary combustion chamber 10 which is a part of the waste heat boiler, the unburned gas is secondarily burned, and the combustion exhaust gas is recovered by the waste heat boiler 4 after this secondary combustion. . After heat recovery, the combustion exhaust gas discharged from the waste heat boiler is neutralized with acid gas by slaked lime, etc. and dioxins are adsorbed by activated carbon in an exhaust gas treatment system (not shown), and further to a dust removal equipment (not shown). The neutralized reaction product, activated carbon, dust and the like are collected. The combustion exhaust gas that has been dedusted and detoxified by the dust removing device is attracted by an attraction fan (not shown) and released from the chimney into the atmosphere. Further, a part of the combustion exhaust gas after being dust-removed by the dust removing device is used as a return exhaust gas to be described later.

このような基本構成である火格子式廃棄物焼却炉において、本実施形態に係る火格子式廃棄物焼却炉1は、以下のように燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む一次空気吹込手段と、燃焼室の天井に炉長方向で複数位置に高温ガス吹込口を備え高温ガスをこの高温ガス吹込口から下向きに吹き込む高温ガス吹込手段と、燃焼室の天井に炉長方向で複数位置に返送排ガス吹込口を備え返送排ガスをこの返送排ガス吹込口から下向きに吹き込む返送排ガス吹込手段と、さらには廃熱ボイラの入口部に設けられた二次燃焼室へ二次燃焼空気を吹き込む二次燃焼空気吹込手段とを具備している。上記高温ガス吹込手段は高温ガス吹込制御装置により、そして二次燃焼空気吹込手段は二次燃焼空気吹込制御装置によりそれぞれ吹込み量が制御されている。   In the grate-type waste incinerator having such a basic configuration, the grate-type waste incinerator 1 according to the present embodiment sends the primary combustion air from below the grate into the combustion chamber as follows. Primary air blowing means for blowing, hot gas blowing means for blowing hot gas downward from this hot gas blowing opening provided at multiple positions in the furnace length direction on the ceiling of the combustion chamber, and furnace length on the ceiling of the combustion chamber Return exhaust gas blowing means provided with return exhaust gas inlets at a plurality of positions in the direction and blowing the return exhaust gas downward from the return exhaust gas inlet, and further, secondary combustion air to the secondary combustion chamber provided at the inlet of the waste heat boiler Secondary combustion air blowing means. The hot gas blowing means is controlled by a hot gas blowing control apparatus, and the secondary combustion air blowing means is controlled by a secondary combustion air blowing control apparatus.

<一次空気吹込手段>
本実施形態では、火格子式廃棄物焼却炉1は、燃焼用空気となる一次空気の一次空気吹込手段を備えている。一次空気吹込手段は、空気供給源からの一次空気Pを燃焼用一次空気供給管9を経て、乾燥火格子5a、燃焼火格子5b及び後燃焼火格子5cのそれぞれの風箱7a,7b,7cに分岐供給管から送り込むようになっており、上記燃焼用一次空気供給管9には、ブロワ8そして流量調整機構としてのダンパ11が設けられている。
<Primary air blowing means>
In the present embodiment, the grate-type waste incinerator 1 includes primary air blowing means for primary air serving as combustion air. The primary air blowing means passes the primary air P from the air supply source through the primary air supply pipe 9 for combustion, and the wind boxes 7a, 7b, 7c of the dry grate 5a, the combustion grate 5b, and the post-combustion grate 5c, respectively. The combustion primary air supply pipe 9 is provided with a blower 8 and a damper 11 as a flow rate adjusting mechanism.

燃焼用の一次空気Pは、ブロワ8から燃焼用一次空気供給管9を通って乾燥火格子5a、燃焼火格子5b及び後燃焼火格子5cのそれぞれの下部に設けられた風箱7a,7b,7cに供給された後、各火格子5a,5b,5cを通って燃焼室2内に供給される。燃焼室2内に供給される燃焼用一次空気Pの流量は、燃焼用一次空気供給管9に設けられた流量調整用のダンパ11により調整される。また、風箱7a,7b,7c及び燃焼用一次空気Pを供給するための燃焼用一次空気供給管9等の構成は図示したものに限定されず、焼却炉の規模、形状、用途等により適宜選択され得る。   The primary air P for combustion passes through the primary air supply pipe 9 for combustion from the blower 8 and wind boxes 7a, 7b, provided in the lower portions of the dry grate 5a, the combustion grate 5b, and the post-combustion grate 5c, respectively. After being supplied to 7c, it is supplied into the combustion chamber 2 through each grate 5a, 5b, 5c. The flow rate of the combustion primary air P supplied into the combustion chamber 2 is adjusted by a flow rate adjusting damper 11 provided in the combustion primary air supply pipe 9. Further, the configurations of the air boxes 7a, 7b, 7c and the combustion primary air supply pipe 9 for supplying the combustion primary air P are not limited to those shown in the drawings, and may be appropriately determined depending on the scale, shape, use, etc. of the incinerator. Can be selected.

<高温ガス吹込手段>
本実施形態では、火格子式廃棄物焼却炉1は、高温ガスを上記燃焼室2の天井2Aから下向きに吹き込む高温ガス吹込装置21を備えている。高温ガス吹込装置21は、流量調整機構としてのダンパ23を介して、火格子5上の廃棄物の移動方向である炉長方向の複数位置で燃焼室の天井2Aに高温ガス吹込口13a,13bに接続されている。
<High-temperature gas blowing means>
In the present embodiment, the grate-type waste incinerator 1 includes a high-temperature gas blowing device 21 that blows a high-temperature gas downward from the ceiling 2 </ b> A of the combustion chamber 2. The hot gas blowing device 21 is provided with hot gas blowing ports 13a and 13b on the ceiling 2A of the combustion chamber at a plurality of positions in the furnace length direction, which is the moving direction of waste on the grate 5, via a damper 23 as a flow rate adjusting mechanism. It is connected to the.

高温ガス吹込口13aは乾燥火格子5aの上方位置に、他方の高温ガス吹込口13bは燃焼火格子5bの上流側範囲(前部)の上方位置に設けられている。   The hot gas inlet 13a is provided above the dry grate 5a, and the other hot gas inlet 13b is provided above the upstream range (front) of the combustion grate 5b.

高温ガス吹込装置21は、後に詳説するように、高温空気HAと返送排ガスEとを受け、これらを混合して高温ガスHとして、ダンパ23による流量調整のもとに、上記高温ガス吹込口13a,13bから炉内へ吹き込むようになっている。   As will be described in detail later, the hot gas blowing device 21 receives the hot air HA and the return exhaust gas E, and mixes them into the hot gas H to adjust the flow rate by the damper 23. , 13b is blown into the furnace.

高温ガス吹込装置21は、返送排ガスEと高温空気HAとを混合して高温ガスを調製し、該高温ガスHを高温ガス吹込口13a,13bから炉内へ吹き込む。ここで、「返送排ガス」とは、焼却炉から排出された排ガスを排ガス処理系で中和処理し除塵装置で除塵した後の排ガスの一部である。また、上記「高温空気」は、空気を加熱器により加熱して生成される。高温ガス吹込装置21は、返送排ガスEと高温空気HAのそれぞれの流量を調整することにより混合割合を調整して高温ガスの温度、酸素濃度を調整する。また、高温ガス吹込装置21は、高温空気HAのみ又は返送排ガスEのみを高温ガスHとして供給してもよい。   The high-temperature gas blowing device 21 mixes the return exhaust gas E and the high-temperature air HA to prepare a high-temperature gas, and blows the high-temperature gas H into the furnace through the high-temperature gas blowing ports 13a and 13b. Here, the “returned exhaust gas” is a part of the exhaust gas after the exhaust gas discharged from the incinerator is neutralized by the exhaust gas treatment system and removed by the dust removing device. The “hot air” is generated by heating air with a heater. The hot gas blowing device 21 adjusts the mixing ratio by adjusting the flow rates of the return exhaust gas E and the hot air HA to adjust the temperature and oxygen concentration of the hot gas. The high temperature gas blowing device 21 may supply only the high temperature air HA or only the return exhaust gas E as the high temperature gas H.

本実施形態では、上記高温ガス吹込装置21で返送排ガスEと高温空気HAを混合して高温ガスを調製する際に、返送排ガスEと高温空気HAのそれぞれの流量を調整することにより混合割合を調整して高温ガス中の酸素濃度を調整すること、上記ダンパ23で高温ガスの流量を調整することのうち少なくとも一つにより、燃焼室2内へ高温ガスにより供給される酸素量を調整できる。   In this embodiment, when mixing the return exhaust gas E and the high temperature air HA by the high temperature gas blowing device 21 to prepare the high temperature gas, the mixing ratio is adjusted by adjusting the flow rates of the return exhaust gas E and the high temperature air HA. By adjusting at least one of adjusting the oxygen concentration in the high temperature gas and adjusting the flow rate of the high temperature gas with the damper 23, the amount of oxygen supplied by the high temperature gas into the combustion chamber 2 can be adjusted.

<返送排ガス吹込手段>
また、火格子式廃棄物焼却炉1は、排ガス管4aから排出された除塵後の排ガスの一部を返送する返送排ガス吹込装置22を備えている。返送ガス吹込装置22は流量調整機構としてのダンパ24を介して返送ガス吹込口14a,14bに接続されている。
返送ガスの吹込口14aは上記燃焼火格子5bの下流側範囲(後部)の上方位置に、他方の返送ガス吹込口14bは後燃焼火格子5cの上方位置に設けられている。
<Returning exhaust gas blowing means>
Moreover, the grate-type waste incinerator 1 includes a return exhaust gas blowing device 22 that returns a part of the exhaust gas after dust discharged from the exhaust gas pipe 4a. The return gas blowing device 22 is connected to the return gas blowing ports 14a and 14b via a damper 24 as a flow rate adjusting mechanism.
The return gas inlet 14a is provided above the downstream range (rear part) of the combustion grate 5b, and the other return gas inlet 14b is provided above the rear combustion grate 5c.

返送排ガス吹込装置22は排ガス管4aから排出され集塵装置(図示せず)で除塵された排ガスの一部を受け、ダンパ24による流量調整のもとに、返送排ガス吹込口14a,14bから炉内へ吹き込むようになっている。   The return exhaust gas blowing device 22 receives a part of the exhaust gas discharged from the exhaust gas pipe 4a and dedusted by a dust collector (not shown), and adjusts the flow rate by the damper 24 from the return exhaust gas injection ports 14a and 14b. It comes to blow in.

<二次燃焼用ガス供給手段>
また、本実施形態の火格子式廃棄物焼却炉1は、二次燃焼用空気を廃熱ボイラ4の入口近傍に相当する二次燃焼室10の上流側に吹き込む二次燃焼用空気供給系を備えている。二次燃焼用空気供給系は、二次燃焼空気供給源からの二次燃焼空気Qを管路12を経て、二次燃焼室10の上流側に設けられた二次燃焼空気吹込口17に送り込むようになっており、上記管路12には、ブロワ18そして流量調整機構としてのダンパ19が設けられている。二次燃焼空気吹込口17は、廃熱ボイラ4の入口近傍にある二次燃焼室10の上流側に二次燃焼空気Qを吹き込むように、燃焼室2のガス出口に設けられている。燃焼室2内で発生した可燃性ガスはそのほとんどが燃焼室2内で燃焼され、残存する未燃ガスは、後燃焼火格子5cの上方に連接される廃熱ボイラ4の入口近傍に相当する二次燃焼室10に流入し、ここで二次燃焼空気により二次燃焼される。二次燃焼空気Qを二次燃焼空気吹込口17から水平方向に吹き込むことにより、未燃ガス二次燃焼空気Qとの混合攪拌が促進され、未燃ガスの燃焼が確実に行われるので、吹き込み方向をこのように定めることが好ましい。
<Secondary combustion gas supply means>
Further, the grate-type waste incinerator 1 of the present embodiment has a secondary combustion air supply system for blowing the secondary combustion air to the upstream side of the secondary combustion chamber 10 corresponding to the vicinity of the inlet of the waste heat boiler 4. I have. The secondary combustion air supply system feeds the secondary combustion air Q from the secondary combustion air supply source to the secondary combustion air inlet 17 provided on the upstream side of the secondary combustion chamber 10 via the pipe 12. The pipe 12 is provided with a blower 18 and a damper 19 as a flow rate adjusting mechanism. The secondary combustion air blowing port 17 is provided at the gas outlet of the combustion chamber 2 so as to blow the secondary combustion air Q upstream of the secondary combustion chamber 10 in the vicinity of the inlet of the waste heat boiler 4. Most of the combustible gas generated in the combustion chamber 2 is combusted in the combustion chamber 2, and the remaining unburned gas corresponds to the vicinity of the inlet of the waste heat boiler 4 connected above the post-combustion grate 5c. It flows into the secondary combustion chamber 10 where it is subjected to secondary combustion with secondary combustion air. Since the secondary combustion air Q is blown in the horizontal direction from the secondary combustion air blowing port 17, mixing and stirring with the unburned gas secondary combustion air Q is promoted, and combustion of the unburned gas is surely performed. The direction is preferably determined in this way.

なお、本発明において、上記燃焼用一次空気、高温ガス、返送排ガスそして二次燃焼空気を供給するための管路等の構成は図示したものに限定されず、焼却炉の規模、形状、用途等により適宜選択され得る。   In the present invention, the configuration of the pipeline for supplying the primary air for combustion, the high-temperature gas, the return exhaust gas, and the secondary combustion air is not limited to the illustrated one, and the scale, shape, application, etc. of the incinerator Can be appropriately selected.

<高温ガス吹込制御装置及び二次燃焼空気吹込制御装置>
本実施形態では、高温ガス吹込制御装置20と二次燃焼空気吹込制御装置30とを有していて、高温ガス吹込制御装置20は高温ガス吹込装置21へ高温空気HAと返送排ガスEとの混合比の調整のための指令を発することと、ダンパ23での流量調整のための指令を発することとの少なくとも一つを行う。一方、二次燃焼空気吹込制御装置30は、二次燃焼室10に設けられた二次燃焼空気吹込口17から吹き込まれる二次燃焼空気の吹込量を調整すべくダンパ19に指令を発する。
<High-temperature gas injection control device and secondary combustion air injection control device>
In this embodiment, it has the high temperature gas blowing control apparatus 20 and the secondary combustion air blowing control apparatus 30, and the high temperature gas blowing control apparatus 20 mixes the high temperature air HA and the return exhaust gas E to the high temperature gas blowing apparatus 21. At least one of issuing a command for adjusting the ratio and issuing a command for adjusting the flow rate at the damper 23 is performed. On the other hand, the secondary combustion air blowing control device 30 issues a command to the damper 19 to adjust the amount of secondary combustion air blown from the secondary combustion air blowing port 17 provided in the secondary combustion chamber 10.

本実施形態では、燃焼室2の後壁に監視窓32が設けられていて、炉外には該監視窓32を透して燃焼室2内の燃焼状況を撮像して火炎視認状況を監視する監視手段としてのカメラ31が配設されており、該カメラ31はその撮像を画像処理し画像情報としての明るさ、色彩、火炎形状等を数値化する手段に接続もしくは該手段を具備していて数値化処理された画像情報信号を発する。この画像処理及び数値化処理は後述の高温ガス吹込制御装置20そして二次燃焼空気吹込制御装置30で行ってもよい。この画像情報信号が火炎視認状況信号として用いられる。   In the present embodiment, a monitoring window 32 is provided on the rear wall of the combustion chamber 2, and the flame visibility state is monitored by imaging the combustion state in the combustion chamber 2 through the monitoring window 32 outside the furnace. A camera 31 is provided as a monitoring unit, and the camera 31 is connected to or includes a unit that performs image processing of the captured image and digitizes brightness, color, flame shape, and the like as image information. A digitized image information signal is generated. The image processing and the digitization processing may be performed by a hot gas injection control device 20 and a secondary combustion air injection control device 30 described later. This image information signal is used as a flame visual recognition status signal.

上記監視手段は、上述の高温ガス吹込制御装置20と二次燃焼空気吹込制御装置30へ上記火炎視認状況信号を送るように接続されている。高温ガス吹込制御装置20と二次燃焼空気吹込制御装置30は、燃焼室2内での燃焼が正常な状態、すなわち煤が発生せず火炎が視認可能な状況における撮像をもとに得られた火炎視認状況信号の所定値をそれぞれ有しあるいは共有していて、監視手段からの時々刻々変化する実際の燃焼状態の撮像から得れる火炎視認状況信号の数値と比較して、その差分にもとづいて高温ガス吹込制御装置20は高温ガス吹込装置21とダンパ23を制御し、二次燃焼空気吹込制御装置30は後述の管路12のダンパ19を制御する。これらの制御要領は後述する。   The said monitoring means is connected so that the said flame visual recognition status signal may be sent to the above-mentioned hot gas blowing control apparatus 20 and the secondary combustion air blowing control apparatus 30. FIG. The high-temperature gas injection control device 20 and the secondary combustion air injection control device 30 were obtained on the basis of imaging in a state where combustion in the combustion chamber 2 is normal, that is, no flame is generated and a flame is visible. Each has or shares a predetermined value of the flame visibility signal and compares it with the numerical value of the flame visibility signal obtained from imaging of the actual combustion state that changes every moment from the monitoring means. The hot gas blowing control device 20 controls the hot gas blowing device 21 and the damper 23, and the secondary combustion air blowing control device 30 controls the damper 19 of the pipe 12 described later. These control points will be described later.

次に、このように構成される本実施形態の装置での焼却状況の概要、高温ガス吹込制御及び二次燃焼空気吹込制御について順次説明する。   Next, an outline of the incineration status, high temperature gas injection control, and secondary combustion air injection control in the apparatus of the present embodiment configured as described above will be sequentially described.

<焼却状況の概要>
先ず、廃棄物投入口3へ廃棄物を投入すると、落下した廃棄物は図示しない廃棄物供給装置により燃焼室2内に供給され、乾燥火格子5a上に堆積され、各火格子5a〜5cの動作により、燃焼火格子5b上そして後燃焼火格子5c上へと移動し、各火格子上に廃棄物Wの層を形成する。各火格子は、風箱7a,7b,7cを経て、燃焼用の一次空気を受けており、これにより各火格子の廃棄物は乾燥そして燃焼される。
<Overview of incineration>
First, when waste is input into the waste input port 3, the dropped waste is supplied into the combustion chamber 2 by a waste supply device (not shown) and deposited on the dry grate 5a. The operation moves on the combustion grate 5b and onto the post-combustion grate 5c, and forms a layer of waste W on each grate. Each grate receives the primary air for combustion via wind boxes 7a, 7b, 7c, whereby the waste in each grate is dried and burned.

乾燥火格子5a上では主として廃棄物の乾燥と着火が行われる。すなわち、乾燥火格子5aの廃棄物は、乾燥火格子5aの上流側範囲で乾燥され、乾燥火格子5aの下流側範囲で着火して、燃焼火格子5bの上流側範囲(前部)までの範囲で燃焼が開始する。燃焼火格子5b上では主として廃棄物の熱分解、部分酸化が行われ可燃性ガスが発生し、その可燃性ガスが火炎を伴って燃焼するとともに、廃棄物中の固形分の燃焼が行われる。燃焼火格子5b上において廃棄物の燃焼は実質的に完了する。後燃焼火格子5c上では、僅かに残った廃棄物中の固定炭素など未燃分を完全燃焼させる。燃切点より後の領域では、廃棄物中の固形未燃分(チャー)が燃焼され、完全燃焼した後の燃焼灰は、灰落下口6より排出される。   Wastes are mainly dried and ignited on the dry grate 5a. That is, the waste of the dry grate 5a is dried in the upstream range of the dry grate 5a, ignited in the downstream range of the dry grate 5a, and up to the upstream range (front part) of the combustion grate 5b. Combustion starts in the range. On the combustion grate 5b, pyrolysis and partial oxidation of waste are mainly performed to generate a combustible gas. The combustible gas burns with a flame, and solids in the waste are combusted. The combustion of the waste is substantially completed on the combustion grate 5b. On the post-combustion grate 5c, unburned components such as fixed carbon in the remaining waste are completely burned. In the region after the burnout point, the solid unburned portion (char) in the waste is burned, and the burned ash after complete combustion is discharged from the ash drop opening 6.

既述のごとく、燃焼室2の出口に、廃熱ボイラ4が連設されていて、廃熱ボイラ4の入口近傍が二次燃焼室10となっている。したがって、燃焼室2内で発生した未燃ガスは、二次燃焼室10に導かれ、そこで二次燃焼空気Qと混合・攪拌され、二次燃焼する。二次燃焼の後に排ガスは廃熱ボイラ4で熱回収される。熱回収された後、廃熱ボイラ4から排出された排ガスは、消石灰等による酸性ガスの中和と、活性炭によるダイオキシン類の吸着が行われ、さらに除塵装置(図示せず)に送られ、中和反応生成物、活性炭、ダストなどが回収される。上記除塵装置で除塵され、無害化された後の排ガスは、誘引ファン(図示せず)により誘引され、煙突から大気中に放出される。なお、上記除塵装置としては、例えば、バグフィルタ方式、電気集塵方式等の除塵装置を用いることができる。また、除塵装置で除塵された後の排ガスの一部が、返送排ガスEとして用いられる。   As described above, the waste heat boiler 4 is connected to the outlet of the combustion chamber 2, and the vicinity of the inlet of the waste heat boiler 4 is the secondary combustion chamber 10. Therefore, the unburned gas generated in the combustion chamber 2 is guided to the secondary combustion chamber 10 where it is mixed and stirred with the secondary combustion air Q to undergo secondary combustion. After the secondary combustion, the exhaust gas is recovered by the waste heat boiler 4. After heat recovery, the exhaust gas discharged from the waste heat boiler 4 is neutralized with acid gas by slaked lime, adsorbed dioxins with activated carbon, and sent to a dust removal device (not shown). The reaction product, activated carbon, dust, etc. are recovered. The exhaust gas that has been dedusted and detoxified by the dust remover is attracted by an attracting fan (not shown) and released from the chimney into the atmosphere. In addition, as said dust removal apparatus, dust removal apparatuses, such as a bag filter system and an electrostatic dust collection system, can be used, for example. A part of the exhaust gas after being removed by the dust removing device is used as the return exhaust gas E.

<高温ガス吹込制御及び二次燃焼空気吹込制御>
火格子式廃棄物焼却炉の燃焼室内の燃焼状況を撮像するカメラ31により得られ数値化された火炎視認状況信号に基づき、燃焼室内の燃焼を良好な状態とするように、すなわち、不完全燃焼が生じないように、高温ガス吹込制御装置20そして二次燃焼空気吹込制御装置30により次の要領のもとで、高温ガスそして二次燃焼空気の供給量を制御する。
<High-temperature gas injection control and secondary combustion air injection control>
Based on the flame visualizing status signal obtained by the camera 31 that images the combustion status in the combustion chamber of the grate-type waste incinerator and digitized, so that the combustion in the combustion chamber is in a good state, that is, incomplete combustion In order to prevent the occurrence of the problem, the supply amount of the high-temperature gas and the secondary combustion air is controlled by the high-temperature gas injection control device 20 and the secondary combustion air injection control device 30 under the following procedure.

火格子式廃棄物焼却炉の燃焼室内での廃棄物燃焼の際、不完全燃焼が生じると一酸化炭素の発生量が増大し、排ガスを大気中に放散する際の規制値を超えてしまう。不完全燃焼時には燃焼室内で煤が発生していて炉外から燃焼室内の火炎の視認による燃焼状況の把握ができなくなる。   When incomplete combustion occurs during the combustion of waste in the combustion chamber of a grate-type waste incinerator, the amount of carbon monoxide generated increases and exceeds the regulation value when exhaust gas is released into the atmosphere. At the time of incomplete combustion, soot is generated in the combustion chamber, and it becomes impossible to grasp the combustion state by visually checking the flame in the combustion chamber from the outside of the furnace.

本発明では、燃焼室内のこのような燃焼状況をカメラ31で直接撮像し、その撮像を画像処理し画像情報としての明るさ、色彩、火炎形状等を数値化してその火炎視認状況を示す数値を、正常燃焼時の撮像で得られた所定値と比較して、その差分にもとづき、吹き込まれる高温ガスあるいはこれに加え二次燃焼空気の供給量を制御する。   In the present invention, such a combustion state in the combustion chamber is directly captured by the camera 31, and the captured image is image-processed, and the brightness, color, flame shape, and the like as image information are converted into numerical values indicating the flame visibility state. Compared with a predetermined value obtained by imaging at the time of normal combustion, the supply amount of the hot gas to be blown in or secondary combustion air in addition to this is controlled based on the difference.

瞬時の実際の燃焼状況においてカメラ31で得られる撮像は、判定しやすいように、明るさ、色彩、火炎形状等で数値化し、例えばその時間平均値を算出し、火炎視認状況を示す数値として、予め正常燃焼時に撮像して得られた基準値と比較し、その差分が許容範囲内にあるかどうかを判定する。例えば、不完全燃焼で煤(煙)が多く発生していれば暗い画像が得られるので、その場合、上記数値が基準値範囲に収まるまで、その差分にもとづいて高温ガスの供給量を増加し、例えば通常状態の1.2〜1.5倍に増加し、あるいはこれとともに、二次燃焼空気の供給量をも増加し、例えば通常状態の1.5〜3倍に増加する。   The imaging obtained by the camera 31 in the actual actual combustion situation is digitized by brightness, color, flame shape, etc. so as to be easy to determine, for example, calculating the time average value thereof, It is compared with a reference value obtained in advance during normal combustion, and it is determined whether or not the difference is within an allowable range. For example, if a large amount of soot (smoke) is generated due to incomplete combustion, a dark image can be obtained. In this case, the supply amount of hot gas is increased based on the difference until the above value falls within the reference value range. For example, it increases 1.2 to 1.5 times the normal state, or at the same time, the supply amount of the secondary combustion air is also increased, for example, 1.5 to 3 times the normal state.

火炎視認状況を示す数値と基準値と比較した差分が許容範囲内になれば、燃焼室内での燃焼状況が改善され正常燃焼状態となったと判定して、高温ガス及び二次燃焼空気の供給量を通常状態に戻すように制御する。   If the difference between the numerical value indicating the flame visibility and the reference value is within the allowable range, it is determined that the combustion state in the combustion chamber has been improved and the normal combustion state has been achieved, and the supply amount of high-temperature gas and secondary combustion air Is controlled to return to the normal state.

このように、火格子式廃棄物焼却炉への廃棄物の供給量や質の変動により燃焼室内での燃焼状況が変動した場合、カメラ撮像から得る画像の明るさや色彩も変わってくるので、画像情報を数値化した数値を所定の基準値と比較判定して、高温ガス及び二次燃焼空気の供給量を加減して、燃焼を好ましい状態とするように制御する。   In this way, when the combustion situation in the combustion chamber changes due to fluctuations in the amount and quality of waste supplied to the grate-type waste incinerator, the brightness and color of the image obtained from the camera imaging also changes, so the image A numerical value obtained by digitizing information is compared with a predetermined reference value, and the supply amount of the high-temperature gas and secondary combustion air is adjusted to control the combustion to be in a preferable state.

また、燃焼室内の燃焼状況をカメラで撮像し、撮像した画像から火炎視認状況を示す情報を得て、高温ガス及び二次燃焼空気の供給量を制御することの代わりに、カメラで撮像した画面を運転員が監視し火炎を視認できない状況になったと判定したときに、高温ガス及び二次燃焼空気の供給量を制御するようにしてもよい。   In addition, the camera captures the combustion status in the combustion chamber, obtains information indicating the flame viewing status from the captured image, and controls the supply amount of the high-temperature gas and secondary combustion air. When the operator monitors and determines that the flame cannot be visually recognized, the supply amount of the high-temperature gas and the secondary combustion air may be controlled.

1 火格子式廃棄物焼却炉
2 燃焼室
2A 天井
7a〜7c 一次空気吹込手段(風箱)
9 一次空気吹込手段(燃焼用一次空気供給管)
10 二次燃焼室
12 二次燃焼空気吹込手段(管路)
13a,13b 高温ガス吹込口
17 二次燃焼空気吹込手段(二次燃焼空気吹込口)
20 高温ガス吹込制御装置
30 二次燃焼空気吹込制御装置
DESCRIPTION OF SYMBOLS 1 Grate-type waste incinerator 2 Combustion chamber 2A Ceiling 7a-7c Primary air blowing means (wind box)
9 Primary air blowing means (combustion primary air supply pipe)
10 Secondary combustion chamber 12 Secondary combustion air blowing means (pipe)
13a, 13b Hot gas inlet 17 Secondary combustion air injection means (secondary combustion air inlet)
20 High-temperature gas injection control device 30 Secondary combustion air injection control device

Claims (6)

火格子式廃棄物焼却炉であって、火格子を備え該火格子上の廃棄物を燃焼する燃焼室と、燃焼室に連設されて燃焼室からの可燃性ガスを二次燃焼する二次燃焼室と、燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む一次空気吹込手段と、高温ガスを上記燃焼室の天井から下向きに吹き込む高温ガス吹込手段と、燃焼室のガス出口に設けられ二次燃焼空気を吹き込む二次燃焼空気吹込手段とを有する火格子式廃棄物焼却炉において、
高温ガス吹込手段は、燃焼室の天井に設けられた高温ガス吹込口と、高温ガス吹込口へ高温ガスを供給する高温ガス供給手段と、燃焼室内の火炎視認状況を監視する監視手段と、監視手段からの火炎視認状況信号に基づき上記高温ガス吹込手段からの高温ガスにより供給する酸素量を制御する高温ガス吹込制御手段とを備えることを特徴とする火格子式廃棄物焼却炉。
A grate-type waste incinerator comprising a grate and a combustion chamber that burns waste on the grate, and a secondary that is connected to the combustion chamber and secondary burns combustible gas from the combustion chamber A combustion chamber, primary air blowing means for blowing combustion primary air into the combustion chamber from below the grate, hot gas blowing means for blowing high temperature gas downward from the ceiling of the combustion chamber, and a gas outlet of the combustion chamber In a grate-type waste incinerator having secondary combustion air blowing means provided and blowing in secondary combustion air,
The high-temperature gas blowing means includes a high-temperature gas blow-in opening provided on the ceiling of the combustion chamber, a high-temperature gas supply means for supplying high-temperature gas to the high-temperature gas blow-in opening, a monitoring means for monitoring the flame visibility in the combustion chamber, and a monitoring A grate-type waste incinerator comprising: high-temperature gas blowing control means for controlling the amount of oxygen supplied by the high-temperature gas from the high-temperature gas blowing means based on a flame visibility signal from the means.
監視手段からの火炎視認状況信号に基づき上記二次燃焼空気吹込手段からの二次燃焼空気により供給する酸素量を制御する二次燃焼空気吹込制御手段を、さらに備えることとする請求項1に記載の火格子式廃棄物焼却炉。   The secondary combustion air blowing control means for controlling the amount of oxygen supplied by the secondary combustion air from the secondary combustion air blowing means based on the flame visibility status signal from the monitoring means is further provided. Grate-type waste incinerator. 燃焼室内の火炎視認状況を監視する監視手段が、燃焼室内の燃焼状況を撮像する撮像手段であって、火炎視認状況信号が撮像手段からの画像信号を数値化し所定値と比較した差分であることとする請求項1又は請求項2に記載の火格子式廃棄物焼却炉。   The monitoring means for monitoring the flame visibility status in the combustion chamber is an imaging means for imaging the combustion status in the combustion chamber, and the flame visibility status signal is a difference obtained by quantifying the image signal from the imaging means and comparing it with a predetermined value. The grate-type waste incinerator according to claim 1 or 2. 火格子式廃棄物焼却炉による廃棄物焼却方法であって、火格子を備え該火格子上の廃棄物を燃焼する燃焼室と、燃焼室に連設されて燃焼室からの可燃性ガスを二次燃焼する二次燃焼室と、燃焼用一次空気を上記火格子の下から上記燃焼室内に吹き込む一次空気吹込手段と、高温ガスを上記燃焼室の天井から下向きに吹き込む高温ガス吹込手段と、燃焼室のガス出口に設けられ二次燃焼空気を吹き込む二次燃焼空気吹込手段とを有する火格子式廃棄物焼却炉による廃棄物焼却方法において、
燃焼室の天井に設けられた高温ガス吹込口から高温ガスを燃焼室へ供給し、燃焼室内の火炎視認状況を監視手段により監視し、監視手段からの火炎視認状況信号に基づき上記高温ガス吹込手段からの高温ガスにより供給する酸素量を制御することを特徴とする火格子式廃棄物焼却炉による廃棄物焼却方法。
A waste incineration method using a grate-type waste incinerator comprising a combustion chamber provided with a grate and burning waste on the grate, and a combustible gas from the combustion chamber connected to the combustion chamber. A secondary combustion chamber for subsequent combustion, primary air blowing means for blowing combustion primary air from below the grate into the combustion chamber, hot gas blowing means for blowing high temperature gas downward from the ceiling of the combustion chamber, and combustion In a waste incineration method by a grate-type waste incinerator having secondary combustion air blowing means for blowing secondary combustion air provided at a gas outlet of the chamber,
High temperature gas is supplied to the combustion chamber from a high temperature gas injection port provided on the ceiling of the combustion chamber, and the flame visibility status in the combustion chamber is monitored by monitoring means, and the high temperature gas injection means is based on the flame visibility status signal from the monitoring means A waste incineration method using a grate-type waste incinerator characterized by controlling the amount of oxygen supplied by high-temperature gas from the grate.
監視手段からの火炎視認状況信号に基づき、上記二次燃焼空気吹込手段からの二次燃焼空気により供給する酸素量を制御することとする請求項4に記載の火格子式廃棄物焼却炉による廃棄物焼却方法。   5. The disposal by the grate-type waste incinerator according to claim 4, wherein the amount of oxygen supplied by the secondary combustion air from the secondary combustion air blowing means is controlled based on a flame visibility status signal from the monitoring means. Incineration method. 燃焼室内の火炎視認状況を監視する監視手段が、燃焼室内の燃焼状況を撮像する撮像手段であって、火炎視認状況信号が撮像手段からの画像信号を数値化し所定値と比較した差分であることとする請求項4又は請求項5に記載の火格子式廃棄物焼却炉による廃棄物焼却方法。   The monitoring means for monitoring the flame visibility status in the combustion chamber is an imaging means for imaging the combustion status in the combustion chamber, and the flame visibility status signal is a difference obtained by quantifying the image signal from the imaging means and comparing it with a predetermined value. A waste incineration method using a grate-type waste incinerator according to claim 4 or 5.
JP2015065941A 2015-03-27 2015-03-27 Grate-type waste incinerator and waste incineration method Active JP6465351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015065941A JP6465351B2 (en) 2015-03-27 2015-03-27 Grate-type waste incinerator and waste incineration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015065941A JP6465351B2 (en) 2015-03-27 2015-03-27 Grate-type waste incinerator and waste incineration method

Publications (2)

Publication Number Publication Date
JP2016186382A true JP2016186382A (en) 2016-10-27
JP6465351B2 JP6465351B2 (en) 2019-02-06

Family

ID=57203069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015065941A Active JP6465351B2 (en) 2015-03-27 2015-03-27 Grate-type waste incinerator and waste incineration method

Country Status (1)

Country Link
JP (1) JP6465351B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009171A (en) * 2018-07-09 2020-01-16 東京瓦斯株式会社 Burning evaluation system, information processing apparatus and program
CN113087327A (en) * 2021-04-22 2021-07-09 中关村至臻环保股份有限公司 Oil sludge treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201553A (en) * 2004-01-16 2005-07-28 Jfe Engineering Kk Combustion control method and device for waste incinerator, and waste incinerator with the combustion control device
JP2013213652A (en) * 2012-03-05 2013-10-17 Jfe Engineering Corp Waste incinerator and waste incineration method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201553A (en) * 2004-01-16 2005-07-28 Jfe Engineering Kk Combustion control method and device for waste incinerator, and waste incinerator with the combustion control device
JP2013213652A (en) * 2012-03-05 2013-10-17 Jfe Engineering Corp Waste incinerator and waste incineration method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009171A (en) * 2018-07-09 2020-01-16 東京瓦斯株式会社 Burning evaluation system, information processing apparatus and program
JP7158188B2 (en) 2018-07-09 2022-10-21 東京瓦斯株式会社 Combustion evaluation system, information processing device and program
CN113087327A (en) * 2021-04-22 2021-07-09 中关村至臻环保股份有限公司 Oil sludge treatment system

Also Published As

Publication number Publication date
JP6465351B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP6429039B2 (en) Grate-type waste incinerator and waste incineration method using grate-type waste incinerator
JP4479655B2 (en) Grate-type waste incinerator and its combustion control method
JP6011295B2 (en) Waste incinerator and waste incineration method
JP6824642B2 (en) Waste incineration equipment and waste incineration method
JP2016191539A (en) Stoker type waste incinerator and waste incineration method
JP5818093B2 (en) Waste incinerator and waste incineration method
JP6146673B2 (en) Waste incinerator and waste incineration method
JP2004084981A (en) Waste incinerator
JP5861880B2 (en) Waste incinerator and waste incineration method
JP6465351B2 (en) Grate-type waste incinerator and waste incineration method
JP5800237B2 (en) Waste incinerator and waste incineration method
JP2007163078A (en) Waste disposal method and device
JP6256859B2 (en) Waste incineration method
JP5871207B2 (en) Waste incinerator and waste incineration method
JP3956862B2 (en) Combustion control method for waste incinerator and waste incinerator
JP6455717B2 (en) Grate-type waste incinerator and waste incineration method
JP6146671B2 (en) Waste incinerator and waste incineration method
JP6218117B2 (en) Grate-type waste incinerator and waste incineration method
JP6443758B2 (en) Grate-type waste incinerator and waste incineration method
JP6090578B2 (en) Waste incinerator and waste incineration method
JP3989333B2 (en) Operation method of waste incinerator
JP6183787B2 (en) Grate-type waste incinerator and waste incineration method
JP5818094B2 (en) Waste incinerator
JP2005069542A (en) Vertical refuse incinerating furnace and combustion control method for higher heating value waste in furnace thereof
JP2015209992A (en) Waste incineration treatment equipment and waste incineration treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181226

R150 Certificate of patent or registration of utility model

Ref document number: 6465351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350