JP2016182874A - リエントリ宇宙機誘導制御システム - Google Patents

リエントリ宇宙機誘導制御システム Download PDF

Info

Publication number
JP2016182874A
JP2016182874A JP2015064055A JP2015064055A JP2016182874A JP 2016182874 A JP2016182874 A JP 2016182874A JP 2015064055 A JP2015064055 A JP 2015064055A JP 2015064055 A JP2015064055 A JP 2015064055A JP 2016182874 A JP2016182874 A JP 2016182874A
Authority
JP
Japan
Prior art keywords
ablator
wear
spacecraft
reentry
guidance control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015064055A
Other languages
English (en)
Inventor
鈴木 啓介
Keisuke Suzuki
鈴木  啓介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015064055A priority Critical patent/JP2016182874A/ja
Publication of JP2016182874A publication Critical patent/JP2016182874A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】リエントリ宇宙機の大気圏再突入時において、アブレータの損耗状態を把握し空力特性値を最新化することによって、リエントリ宇宙機を所望の落下点に誘導可能なリエントリ宇宙機誘導制御システムを提供する。
【解決手段】損耗レート測定器6は、アブレータ損耗センサ2からアブレータの損耗情報を入力して損耗レートを算出し、アブレータ損耗センサ2の配置位置と共に空力特性演算部11に出力する。空力特性演算部11は、入力した姿勢情報と配置された位置毎のアブレータの損耗レートを用いて、リエントリ宇宙機の空力特性値を更新し、最新のものとする。誘導制御演算部10は最新化した空力特性値と、目標落下位置情報50と、現在位置情報51を用いて、リエントリ宇宙機の誘導計算を実行する。誘導制御演算部10は誘導計算の結果をもとに、スラスタ等のアクチュエータ5を動作させる。
【選択図】図2

Description

本発明は、宇宙船等の宇宙機が宇宙空間から大気圏に進入する際に、宇宙機を目標地点に誘導する誘導制御システムに関する。
地上から打ち上げられ、地球の周回軌道を周回した後、周回軌道から地球に帰還する宇宙機(以下、リエントリ宇宙機という)は、宇宙空間から大気圏へ再突入する際に高温状態に晒される。この高温状態は、宇宙空間を飛行していたリエントリ宇宙機の運動エネルギーが大気抵抗によって熱エネルギーに変わることによって生じる。
リエントリ宇宙機は宇宙機の内部を適切な温度に保つため、アブレータを備えている。 アブレータは表面の化学反応によるエネルギーの置き換えによって内部への熱の侵入を防ぐものであり、化学反応を伴った損耗によって熱防御の機能を果たしている(例えば、特許文献1、非特許文献1参照)。
米国特許第8,069,001号公報
George W.Brandon,Jr. Heat-Shield Ablation Measurements Using Radioisotope Techniques, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON,D.C. MARCH 1966
大気圏へ再突入したリエントリ宇宙機は、アブレータの損耗によって、空気力学特性において無視できない程度の表面上の変化を生じる。表面上の変化は空気力学的特性の変化をもたらし、リエントリ宇宙機を所望の目標地点へ落下させる際の障害となる。
従来のリエントリ宇宙機の目標落下点は、アブレータの損耗による誘導制御の誤差によるズレなどを考慮し、数メートル規模のリエントリ宇宙機の大きさに対して、直径数十キロにもわたる落下範囲を確保している。
このように目標の落下点に対し、実際に起こり得る落下点が広い範囲に分布していると、リエントリ宇宙機を回収するための車両、航空機、人員等を広く配置せねばならず、費用を要す。
また、落下点の地表の状況によってはリエントリ宇宙機が想定外の衝撃を受け大破することもある。また、広大な海域に着水した場合、リエントリ宇宙機の発見が遅れ、リエントリ宇宙機が海中に沈んでしまい回収不能となることも想定される。
リエントリ宇宙機を目標地点に落下させるためには、リエントリ宇宙機の誘導制御部でアブレータの損耗による空気力学的特性の変化を把握し、リエントリ宇宙機の誘導制御計算機に登録されている空力特性値を飛行中に最新化する必要がある。
空力特性値の最新化が必要となる理由は、アブレータの損耗が進むと形状変化に伴い質量や重心の変化が生じるためである。空力特性値を最新化しない場合には、異なる空力特性値により制御することになるため、落下点への誘導制御に誤差が生じる。
このように、目標地点に落下させるためには最新化された空力特性値を使い誘導制御を実施する必要がある。リエントリ宇宙機の誘導制御としては、例えばスラスターを用いた推進剤の噴射により、姿勢の制御や降下軌道の微調整を行うことが可能である。
従来、アブレータの損耗状態を計測するアブレータ内蔵型センサが提案されている。しかしながら、リエントリ宇宙機を所望の落下点に落下させるためには、アブレータの損耗状態を飛行中に誘導制御部に反映する誘導制御システムが必要となる。
本発明は係る課題を解決するためになされたものであり、アブレータの損耗状態を把握し空力特性値を最新化することによって、リエントリ宇宙機を所望の落下点に誘導可能なリエントリ宇宙機誘導制御システムを提供することを目的とする。
この発明に係るリエントリ宇宙機誘導制御システムは、宇宙空間から大気圏へ再突入する宇宙機を目標落下点に誘導するリエントリ宇宙機誘導制御システムであって、大気圏突入時のヒートシールド機能を有するアブレータに内臓され、前記アブレータの損耗度合を計測するアブレータ損耗センサと、前記アブレータ損耗センサが出力する前記アブレータの損耗度合をもとに、アブレータの損耗レートを算出し、前記損耗レートと前記アブレータの配置位置とを関連付けして出力する損耗レート測定器と、リエントリ宇宙機の姿勢情報と前記アブレータの損耗レートと前記消耗レートに関連付けされた前記配置位置をもとに、リエントリ宇宙機の空力特性を演算し更新する空力特性演算部と、更新されたリエントリ宇宙機の空力特性と目標落下点と現在位置情報から、リエントリ宇宙機の誘導制御を行う誘導制御演算部を備える。
この発明によれば、大気圏再突入時のアブレータの損耗状態を誘導制御部に反映し、アブレータの損耗状態を基にリエントリ宇宙機の空力特性値を最新化しながら誘導制御を実施することができる。これにより、大気圏再突入時において、リエントリ宇宙機は飛行中に絶えずアブレータの損耗状態を確認しながら降下軌道を微調整できるので、目標落下点への誘導制御の精度が向上し、より確実に落下点の制御を実現することができる。
本発明の実施の形態によるリエントリ宇宙機誘導制御システムの構成を説明する概略図である。 本発明の実施の形態によるリエントリ宇宙機誘導制御システムの構成を示すブロック図である。 本発明の実施の形態によるリエントリ宇宙機誘導制御システムの動作の一例を示すフローチャートである。
実施の形態.
以下、本発明の実施の形態によるリエントリ宇宙機誘導制御システム100について、図を用いて説明する。以下では、リエントリ宇宙機誘導制御システム100を地球の大気圏再突入時のリエントリ宇宙機に適用した場合について説明する。
図1は、本実施の形態によるリエントリ宇宙機1の概略構成を示すものである。リエントリ宇宙機1は、大気圏突入時の熱環境からリエントリ宇宙機1を保護するヒートシールドの機能を有するアブレータ(ablator)3と、アブレータ3の損耗度合を測定するアブレータ損耗センサ2と、リエントリ宇宙機1の姿勢角を測定する姿勢センサ7(図示せず)と、目標落下位置情報、現在位置情報、アブレータ3の損耗情報、リエントリ宇宙機1の姿勢情報等を入力して、リエントリ宇宙機1を目標落下位置に誘導する誘導制御計算機4(以下、計算機4とよぶ)とを備える。
アブレータ3はリエントリ宇宙機1の底面部全体に設けられる。底面部を地上側に向けて大気圏に突入した際に、底面部に設けられたアブレータ3の材質が変化することで熱を吸収し、機体本体への熱の流入を防ぐ。
アブレータ損耗センサ2はアブレータ3に埋め込まれたセンサで、アブレータ3の損耗度合を計測する。図1では、アブレータ損耗センサ2は底面部に1個設置されているが、アブレータ損耗センサ2の配置数、配置場所、配置方向は用途に応じて変えることができる。例えば、センサ2の配置数を増やすことで、より多くの位置でアブレータ3の損耗を測定することが可能となり、飛行中のリエントリ宇宙機1の空気力学的特性の変化をより正確に測定することができる。
誘導制御計算機4はリエントリ宇宙機の誘導制御の計算を行う。
図2は、本実施の形態によるリエントリ宇宙機誘導制御システム100の構成を示すブロック図である。
誘導制御計算機4は、誘導制御演算部10と空力特性演算部11を備える。空力特性演算部11は、姿勢センサ7からリエントリ宇宙機1の姿勢情報を入力する。損耗レート測定器6は、アブレータ損耗センサ2からアブレータ3の損耗情報を入力して損耗レートを算出し、アブレータ損耗センサ2の配置位置と共に空力特性演算部11に出力する。空力特性演算部11は、入力した姿勢情報と配置された位置毎のアブレータ3の損耗レートを用いて、リエントリ宇宙機1の空力特性値を更新し、最新のものとする。
誘導制御演算部10は最新化した空力特性値と、目標落下位置情報50と、現在位置情報51を用いて、リエントリ宇宙機の誘導計算を実行する。
誘導制御演算部10は誘導計算の結果をもとに、スラスタ等のアクチュエータ5を動作させる。
図3は、リエントリ宇宙機1がアブレータの損耗状態を誘導制御へ反映するまでの流れを示したフローチャートである。以下、フローチャートに従って、リエントリ宇宙機誘導制御システムが行う誘導制御の動作を説明する。
リエントリ宇宙機1のアブレータ3の表面がリエントリ時に損耗すると(S100)、アブレータ3に内蔵されているアブレータ損耗センサ2が外部環境に晒される。
外部環境に晒されたアブレータ損耗センサ2は、アブレータ3と同様に外部の熱環境により損耗する。
この際、アブレータ損耗センサ2は、アブレータ3と同速度で損耗する物質を使用する。アブレータ損耗センサ2はアブレータ3と同速度で損耗しながらアブレータ3の損耗を測定する(S101)。
アブレータ損耗センサ2の測定値は、例えばケーブルや無線電波を用いて損耗レート測定器6に伝送され、損耗レート測定器6においてアブレータ3の損耗レートが算出される。損耗レート測定器6は、前述の通り、アブレータ3の損耗レートをアブレータ3の配置位置と関連付けして誘導制御計算機4に出力する。
誘導制御計算機4はアブレータ損耗センサ2の測定値をもとに、リエントリ宇宙機1の空力特性値を演算し最新のものとする(S102)。
誘導制御計算機4は最新化された空力特性値を用い、リエントリ宇宙機1の誘導制御を実行する(S103)。
このように本実施の形態に係るリエントリ宇宙機誘導制御システムは、大気圏突入時のヒートシールドの機能を有するアブレータ3に内臓されるアブレータ損耗センサ2と、アブレータ損耗センサ3の損耗度合によりアブレータ3の損耗レートを算出し、損耗レートをアブレータ3の配置位置と関連付けして出力する損耗レート測定器6と、リエントリ宇宙機の姿勢情報とアブレータ3の損耗レートとアブレータ3の配置位置をもとにリエントリ宇宙機1の空力特性の最新状態を演算し更新する空力特性演算部11と、最新のリエントリ宇宙機1の空力特性と目標落下位置情報と現在位置情報から、リエントリ宇宙機1の誘導制御を行う誘導制御演算部10を備え、リエントリ宇宙機1のヒートシールドであるアブレータ3の飛行中の損耗状態をリアルタイムに計測して、空力特性の演算に反映できるようにした。
これにより、最新のアブレータ3の形状をもとにリエントリ宇宙機1の空力特性を演算し誘導制御を行うことができるので、目標落下点への誘導制御の精度が向上し、より精度よくリエントリ宇宙機1を目標落下点に落下させることができる。
1 リエントリ宇宙機、2 アブレータ損耗センサ、3 アブレータ、4 誘導制御計算機、5 アクチュエータ、6 損耗レート測定器、7 姿勢センサ、10 誘導制御演算部、11 空力特性演算部、50 目標落下位置情報、51 現在位置情報、100 リエントリ宇宙機誘導制御システム

Claims (3)

  1. 宇宙空間から大気圏へ再突入する宇宙機を目標落下点に誘導するリエントリ宇宙機誘導制御システムであって、
    大気圏突入時のヒートシールド機能を有するアブレータに内臓され、前記アブレータの損耗度合を計測するアブレータ損耗センサと、
    前記アブレータ損耗センサが出力する前記アブレータの損耗度合をもとに、アブレータの損耗レートを算出し、前記損耗レートと前記アブレータの配置位置とを関連付けして出力する損耗レート測定器と、
    リエントリ宇宙機の姿勢情報と前記アブレータの損耗レートと前記消耗レートに関連付けされた前記配置位置をもとに、リエントリ宇宙機の空力特性を演算し更新する空力特性演算部と、
    更新されたリエントリ宇宙機の空力特性と目標落下点と現在位置情報から、リエントリ宇宙機の誘導制御を行う誘導制御演算部と、
    を備えることを特徴とするリエントリ宇宙機誘導制御システム。
  2. 前記アブレータ損耗センサは、前記アブレータと同速度で損耗する物質からなり、
    前記アブレータ損耗センサの損耗度合を、前記アブレータの損耗度合として計測することを特徴とする請求項1記載のリエントリ宇宙機誘導制御システム。
  3. 前記空力特性演算部は、前記リエントリ宇宙機が大気圏に突入し地上に落下するまでの間、前記リエントリ宇宙機の空力特性を繰り返し演算して最新の空力特性に更新し、
    前記誘導制御演算部は、更新された最新の空力特性を用いて誘導制御を行うことを特徴とする請求項1、2いずれか記載のリエントリ宇宙機誘導制御システム。
JP2015064055A 2015-03-26 2015-03-26 リエントリ宇宙機誘導制御システム Pending JP2016182874A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015064055A JP2016182874A (ja) 2015-03-26 2015-03-26 リエントリ宇宙機誘導制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015064055A JP2016182874A (ja) 2015-03-26 2015-03-26 リエントリ宇宙機誘導制御システム

Publications (1)

Publication Number Publication Date
JP2016182874A true JP2016182874A (ja) 2016-10-20

Family

ID=57242304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015064055A Pending JP2016182874A (ja) 2015-03-26 2015-03-26 リエントリ宇宙機誘導制御システム

Country Status (1)

Country Link
JP (1) JP2016182874A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941087A (zh) * 2017-10-18 2018-04-20 北京航空航天大学 一种基于阻力剖面的高升阻比高超平稳滑翔再入制导方法
CN109941460A (zh) * 2019-04-09 2019-06-28 北京空间技术研制试验中心 航天器亚轨道返回再入过载降低设计方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330503A (en) * 1964-08-10 1967-07-11 Trw Inc Re-entry guidance system
US4577812A (en) * 1973-09-26 1986-03-25 The United States Of America As Represented By The Secretary Of The Air Force Centrifugally operated moving-mass roll control system
US4662580A (en) * 1985-06-20 1987-05-05 The United States Of America As Represented By The Secretary Of The Navy Simple diver reentry method
US5413859A (en) * 1992-10-28 1995-05-09 Lockhead Corporation Sublimitable carbon-carbon structure for nose tip for re-entry space vehicle
JPH07149299A (ja) * 1993-11-29 1995-06-13 Mitsubishi Electric Corp 大気圏再突入航空機
JPH07294200A (ja) * 1994-04-28 1995-11-10 Daikin Ind Ltd 高速飛翔体
JPH08175499A (ja) * 1994-12-27 1996-07-09 Mitsubishi Electric Corp 大気圏再突入カプセル
US6076771A (en) * 1998-02-25 2000-06-20 Kistler Aerospace Corporation System and method for controlling a re-entry vehicle
US20130169293A1 (en) * 2011-12-29 2013-07-04 The Johns Hopkins University Carbon Nanotube High Temperature Length Sensor
JP2013212761A (ja) * 2012-04-02 2013-10-17 Mitsubishi Electric Corp 重心制御装置、宇宙機の重心制御方法及び宇宙機の重心制御プログラム
JP2014034366A (ja) * 2012-08-10 2014-02-24 Mitsubishi Heavy Ind Ltd 飛行制御装置、宇宙機、及び飛行制御方法
JP2015004484A (ja) * 2013-06-21 2015-01-08 株式会社Ihiエアロスペース 飛翔体の動翼装置
JP2015197237A (ja) * 2014-03-31 2015-11-09 三菱重工業株式会社 飛しょう体、及び、飛しょう体の動作方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330503A (en) * 1964-08-10 1967-07-11 Trw Inc Re-entry guidance system
US4577812A (en) * 1973-09-26 1986-03-25 The United States Of America As Represented By The Secretary Of The Air Force Centrifugally operated moving-mass roll control system
US4662580A (en) * 1985-06-20 1987-05-05 The United States Of America As Represented By The Secretary Of The Navy Simple diver reentry method
US5413859A (en) * 1992-10-28 1995-05-09 Lockhead Corporation Sublimitable carbon-carbon structure for nose tip for re-entry space vehicle
JPH07149299A (ja) * 1993-11-29 1995-06-13 Mitsubishi Electric Corp 大気圏再突入航空機
JPH07294200A (ja) * 1994-04-28 1995-11-10 Daikin Ind Ltd 高速飛翔体
JPH08175499A (ja) * 1994-12-27 1996-07-09 Mitsubishi Electric Corp 大気圏再突入カプセル
US6076771A (en) * 1998-02-25 2000-06-20 Kistler Aerospace Corporation System and method for controlling a re-entry vehicle
US20130169293A1 (en) * 2011-12-29 2013-07-04 The Johns Hopkins University Carbon Nanotube High Temperature Length Sensor
JP2013212761A (ja) * 2012-04-02 2013-10-17 Mitsubishi Electric Corp 重心制御装置、宇宙機の重心制御方法及び宇宙機の重心制御プログラム
JP2014034366A (ja) * 2012-08-10 2014-02-24 Mitsubishi Heavy Ind Ltd 飛行制御装置、宇宙機、及び飛行制御方法
JP2015004484A (ja) * 2013-06-21 2015-01-08 株式会社Ihiエアロスペース 飛翔体の動翼装置
JP2015197237A (ja) * 2014-03-31 2015-11-09 三菱重工業株式会社 飛しょう体、及び、飛しょう体の動作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941087A (zh) * 2017-10-18 2018-04-20 北京航空航天大学 一种基于阻力剖面的高升阻比高超平稳滑翔再入制导方法
CN109941460A (zh) * 2019-04-09 2019-06-28 北京空间技术研制试验中心 航天器亚轨道返回再入过载降低设计方法

Similar Documents

Publication Publication Date Title
JP4372754B2 (ja) 加速度計及びgps受信器を用いた発射体案内
US20150143982A1 (en) Anti-rocket system
US8146401B2 (en) Method and apparatus for in-flight calibration of gyroscope using magnetometer reference
EP3243756B1 (en) Orbit control device and satellite
JP5690127B2 (ja) 飛行制御装置およびこれを備える飛行体
CN110015446B (zh) 一种半解析的火星进入制导方法
Juliano et al. HIFiRE-1 boundary-layer transition: ground test results and stability analysis
CN103064423A (zh) 多约束多航天器飞行间距预示及碰撞规避方法
JP2016182874A (ja) リエントリ宇宙機誘導制御システム
JP5338464B2 (ja) 慣性航法装置、飛翔体及び航法データ算出方法
US11815335B2 (en) Guided munition systems for detecting off-axis targets
EP2594890B1 (en) Ratio-metric horizon sensing using an array of thermopiles
Dong et al. Mission profile and design challenges of Mars landing exploration
Shirouzu et al. Overview of the aero-and aerothermodynamic research in HOPE-X and related activities in Japan
Krasilshchikov et al. Development of high speed flying vehicle on-board integrated navigation, control and guidance system
CN104483974A (zh) 输电线路巡线无人机导航装置
Adam et al. In-flight roll angle estimation for a guided high spin projectile
JP2015168315A (ja) 誘導装置、誘導装置搭載宇宙機
RU2676775C1 (ru) Способ управления планирующей авиабомбой
JP7465531B2 (ja) ロケット制御システム、及びロケットの着陸動作の制御方法
Smith et al. Closed-loop aeromaneuvering for a mars precision landing
Mazzucato et al. Vision system for tether tip-mass detection during deployment on high-eccentricity orbit
Eggers et al. Aerodynamic analysis of the DLR flight experiment SHEFEX
VP et al. Optimization approach to the platform inertial system alignment under the impact of noise
RU2662371C2 (ru) Способ определения плотности атмосферы на высоте полета космического аппарата

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180417