JP2016178899A - Determination method for risk of onset of esophageal achalasia, and oligonucleotide kits for its determination - Google Patents
Determination method for risk of onset of esophageal achalasia, and oligonucleotide kits for its determination Download PDFInfo
- Publication number
- JP2016178899A JP2016178899A JP2015061460A JP2015061460A JP2016178899A JP 2016178899 A JP2016178899 A JP 2016178899A JP 2015061460 A JP2015061460 A JP 2015061460A JP 2015061460 A JP2015061460 A JP 2015061460A JP 2016178899 A JP2016178899 A JP 2016178899A
- Authority
- JP
- Japan
- Prior art keywords
- gene
- snp
- risk
- human chromosome
- nucleotide polymorphism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本発明は、遺伝子多型の検出を含む食道アカラシアの発症リスクの判定方法、並びに該判定用のオリゴヌクレオチドキットに関する。 The present invention relates to a method for determining the risk of developing esophageal achalasia including detection of a gene polymorphism, and an oligonucleotide kit for the determination.
食道アカラシアは、下部食道括約筋(Lower Esophageal Sphincter、LES)の機能障害の一種であり、食道X線検査又は上部消化管内視鏡検査において観察される、LESの異常収縮及び弛緩不全による食道下部の狭窄と口側の拡張を特徴とする疾患である。組織学的にアウエルバッハ神経叢の減少又は消失が認められる。 Esophageal achalasia is a type of dysfunction of the lower esophageal sphincter (LES), which is observed in esophageal X-ray examination or upper gastrointestinal endoscopy, and stenosis of the lower esophagus due to abnormal contraction of LES and insufficiency Is a disease characterized by oral expansion. Histologically, there is a decrease or disappearance of the Auerbach plexus.
食道アカラシアは、食物などを飲み込んでもLESが弛緩せずに通過障害を起こすので、患者は、物を飲み込みにくい、つかえた感じがする、嘔吐してしまうなどの症状を訴えるようになる。また、食道自体の運動機能も障害されているため、食道が異常収縮を起こし心筋梗塞と間違えるほどの強い胸の痛みを訴えることもしばしばである。 In esophageal achalasia, even if food is swallowed, the LES does not relax and the passage is obstructed, so the patient complains of symptoms such as difficulty in swallowing, feeling gripped, and vomiting. In addition, because the motor function of the esophagus itself is also impaired, the esophagus often complains of severe chest pain that is mistaken for myocardial infarction due to abnormal contraction.
アカラシアの発症率は人口10万人あたりに1人程度といわれているが、その症状、特に通過障害は患者に対して深刻な問題となる。しかし、その発症原因は解明されておらず、食道やLESの神経細胞の変性、ウイルス感染、ストレスその他の多数の原因が関与する多因性の疾患であると理解されている。また、上記の外的要因の他に、遺伝子多型特に一塩基多型(Single Nucleotide Polymorphism、SNP)などの内的要因の関与も指摘されている。 The incidence of achalasia is said to be about 1 per 100,000 population, but its symptoms, especially passage disorders, are a serious problem for patients. However, the cause of its onset has not been elucidated, and it is understood that this is a multifactorial disease involving many causes such as degeneration of esophagus and LES nerve cells, viral infection, stress and the like. In addition to the above external factors, the involvement of internal factors such as gene polymorphism, particularly single nucleotide polymorphism (SNP), has been pointed out.
食道アカラシアに関連するとされるSNPとして、tyrosine phosphatase N22遺伝子(非特許文献1)、vasoactive intestinal peptide receptor 1遺伝子(非特許文献2)、IL23 receptor遺伝子(非特許文献3)、IL10のプロモータ領域(非特許文献4)、c−kit遺伝子(非特許文献5)、lymphotoxin−α(LTA)遺伝子及びTNF−α locus(非特許文献6)、IL33遺伝子(非特許文献7)などにおけるSNPが報告されている。 Examples of SNPs related to esophageal achalasia include tyrosine phosphatase N22 gene (Non-patent document 1), vasoactive peptide receptor receptor 1 gene (Non-patent document 2), IL23 receptor gene (Non-patent document 3), and IL10 promoter region (Non-patent document 3). SNPs in patent document 4), c-kit gene (non-patent document 5), lymphotoxin-α (LTA) gene, TNF-α locus (non-patent document 6), IL33 gene (non-patent document 7), etc. have been reported. Yes.
しかし、上記のSNPを有しない食道アカラシア患者も存在することから、これら以外にも新しい食道アカラシアに関連する遺伝子(アカラシア感受性遺伝子)のSNPの存在が示唆されていたが、発見されていなかった。 However, since there are patients with esophageal achalasia that do not have the above SNP, it has been suggested that there is a new esophageal achalasia-related gene (Achalasia susceptibility gene) SNP other than these.
本発明は、食道アカラシアの感受性遺伝子とそのSNPの検出を利用した発症リスクの判定技術の確立を目的とするものである。 The object of the present invention is to establish an onset risk determination technique using detection of a susceptibility gene for esophageal achalasia and its SNP.
本発明者らは、食道アカラシアと臨床的に診断された複数の患者について遺伝子多型の存在を解析することで、食道アカラシアの発症と関連性のある複数のSNPを見いだし、下記の各発明を完成させた。 By analyzing the presence of genetic polymorphisms in a plurality of patients clinically diagnosed with esophageal achalasia, the present inventors have found a plurality of SNPs associated with the development of esophageal achalasia. Completed.
(1)米国バイオテクノロジー情報センター(NCBI)SNPデータベースに登録されているrs番号で示されるSNPであって、ヒト第2番染色体上のALK遺伝子におけるrs1881420並びにrs3795850、ヒト第6番染色体上のPSORS1C1遺伝子におけるrs1063646、ヒト第7番染色体上のABCB1遺伝子におけるrs2032582、ヒト第17番染色体上のRP5−1171I10.4又はRNF43遺伝子におけるrs2526374、ヒト第20番染色体上のITPA遺伝子におけるrs1127354、ヒトX染色体上のTIMP1遺伝子又はSYN1遺伝子におけるrs4898遺伝子よりなる群から選択される一以上のSNP及び/又は該SNPと連鎖不平衡にあるSNPを検出する工程を含む、食道アカラシアの発症リスクの判定方法。
(2)rs3795850、rs1063646、rs2032582及び/若しくはrs2526374の塩基がチミンの場合に、rs1881420及び/若しくはrs4898の塩基がシトシンの場合に、並びに/又はrs1127354の塩基がアデニンの場合に、食道アカラシアの発症リスクが高いと判定する工程をさらに含む、(1)に記載の判定方法。
(3)前記SNPがrs4898である、(1)又は(2)に記載の判定方法。
(4)以下のa)又はb)のオリゴヌクレオチドの一種以上を含む、食道アカラシアの発症リスクの判定用キット。
a)(1)〜(3)のいずれかに記載のSNP及び/又は該SNPと連鎖不平衡にあるSNPを含む塩基配列を選択的に増幅することができるプライマー用オリゴヌクレオチド
b)(1)〜(3)のいずれかに記載のSNP及び/又は該SNPと連鎖不平衡にあるSNPを含む連続する少なくとも10塩基対からなる塩基配列に相補的な塩基配列を有するプローブ用オリゴヌクレオチド
(1) SNPs indicated by rs numbers registered in the National Center for Biotechnology Information (NCBI) SNP database, rs18881420 and rs3795850 in the ALK gene on human chromosome 2, PSORS1C1 on human chromosome 6 Rs1036646 in the gene, rs2032582 in the ABCB1 gene on the human chromosome 7, RP5-1171I10.4 on the human chromosome 17, or rs2526374 in the RNF43 gene, rs1127354 in the ITPA gene on the human chromosome 20, on the human X chromosome A method for detecting one or more SNPs selected from the group consisting of rs4898 gene in TIMP1 gene or SYN1 gene and / or SNP in linkage disequilibrium with the SNP Including method of determining the risk of developing esophageal achalasia.
(2) Risk of developing esophageal achalasia when the base of rs3795850, rs1036646, rs2032582 and / or rs2526374 is thymine, the base of rs18881420 and / or rs4898 is cytosine, and / or the base of rs1127354 is adenine The determination method according to (1), further including a step of determining that is high.
(3) The determination method according to (1) or (2), wherein the SNP is rs4898.
(4) A kit for determining the risk of developing esophageal achalasia, comprising one or more of the following oligonucleotides a) or b).
a) Oligonucleotide for primer capable of selectively amplifying a base sequence containing the SNP according to any one of (1) to (3) and / or SNP in linkage disequilibrium with the SNP b) (1) The oligonucleotide for a probe which has a base sequence complementary to the base sequence which consists of a continuous at least 10 base pair containing SNP in any one of-(3) and / or SNP which is a linkage disequilibrium with this SNP
本発明におけるSNP及び/又は該SNPと連鎖不平衡にあるSNPは、食道アカラシアの発症リスクを判定するためのマーカーとして利用可能である。これにより、早期に食道アカラシアの発症リスクを判定することが可能となり、リスクが高い人に関してより早期に医療上の指導を与える又は治療を開始することができるものと期待される。また、前記SNP及び/又は該SNPと連鎖不平衡にあるSNPを有する各遺伝子は、食道アカラシア感受性遺伝子としてこれらの疾患の検出用マーカー遺伝子として利用可能である。 The SNP and / or SNP in linkage disequilibrium with the SNP in the present invention can be used as a marker for determining the risk of developing esophageal achalasia. Thereby, it becomes possible to determine the risk of developing esophageal achalasia at an early stage, and it is expected that medical guidance or treatment can be started at an earlier stage for a person with high risk. Each gene having the SNP and / or SNP in linkage disequilibrium with the SNP can be used as a marker gene for detecting these diseases as an esophageal achalasia susceptibility gene.
本発明における一塩基多型(Single Nucleotide Polymorphism、SNP)は、ヒトのゲノム配列において、国際標準配列(GRCh37、http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/、又はhg19、https://genome.ucsc.edu/cgi−bin/hgGateway?db=hg19)と比較して母集団中1%以上の頻度で存在する、一塩基の多様性をいう。本明細書では、SNPは、NCBIのSNPデータベース(http://www.ncbi.nlm.nih.gov/snp)のリファレンス番号であるrs番号によって特定される。また、連鎖不均衡とは2つの密に連鎖した遺伝子座における特定の対立遺伝子の組み合わせ出現頻度が、それぞれの遺伝子頻度から推定される期待値と異なる場合をいい、本発明において連鎖不平衡にあるSNPとは、本発明においてrs番号で特定されるいずれかのSNPとの間の連鎖不平衡係数(r2)が0.8以上であるSNPをいう。 The single nucleotide polymorphism (Single Nucleotide Polymorphism, SNP) in the present invention is an international standard sequence (GRCh37, http://www.ncbi.nlm.nih.gov/projects/genome/assomely/grc/grc/human). Or hg19, https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19), which refers to the diversity of single nucleotides present at a frequency of 1% or more in the population. In the present specification, the SNP is specified by an rs number that is a reference number of the NCBI SNP database (http://www.ncbi.nlm.nih.gov/snp). Linkage disequilibrium refers to the case where the frequency of occurrence of a particular allele combination at two closely linked loci differs from the expected value estimated from the respective gene frequencies, and is in linkage disequilibrium in the present invention. SNP refers to an SNP having a linkage disequilibrium coefficient (r 2 ) of 0.8 or more with any SNP specified by the rs number in the present invention.
本発明は、ヒト第2番染色体上のALK遺伝子におけるrs1881420並びにrs3795850、ヒト第6番染色体上のPSORS1C1遺伝子におけるrs1063646、ヒト第7番染色体上のABCB1遺伝子におけるrs2032582、ヒト第17番染色体上のRP5−1171I10.4又はRNF43遺伝子におけるrs2526374、ヒト第20番染色体上のITPA遺伝子におけるrs1127354、及びヒトX染色体上のTIMP1遺伝子又はSYN1遺伝子におけるrs4898遺伝子よりなる群から選択される一以上のSNP及び/又は該SNPと連鎖不平衡にあるSNPを検出する工程を含む、食道アカラシアの発症リスクの判定方法に関する。 The present invention relates to rs18841420 and rs3795850 in the ALK gene on human chromosome 2, rs1063646 in the PSORS1C1 gene on human chromosome 6, rs2032582 in the ABCB1 gene on human chromosome 7, RP5 on human chromosome 17 One or more SNPs selected from the group consisting of rs2526374 in the -1171I10.4 or RNF43 gene, rs1127354 in the ITPA gene on human chromosome 20, and the rs4898 gene in the TIMP1 gene or SYN1 gene on the human X chromosome and / or The present invention relates to a method for determining the risk of developing esophageal achalasia, comprising a step of detecting a SNP in linkage disequilibrium with the SNP.
ヒト第2番染色体上のALK遺伝子はAnaplastic Lymphoma Receptor Tyrosine Kinaseを、ヒト第6番染色体上のPSORS1C1遺伝子はPsoriasis Susceptibility 1 Candidate 1を、ヒト第7番染色体上のABCB1遺伝子はATP−Binding Cassette,Sub−Family B(MDR/TAP),Member 1を、ヒト第17番染色体上のRP5−1171I10.4はRibosomal proteinを、RNF43遺伝子はRing Finger Protein 43を、ヒト第20番染色体上のITPA遺伝子はinosine triphosphataseを、ヒトX染色体上のTIMP1遺伝子はTIMP metallopeptidase inhibitor 1を、SYN1遺伝子はsynapsin Iを、それぞれコードする遺伝子である。 The ALK gene on the human chromosome 2 is Anaplastic Lymphoma Receptor Tyrosine Kinase, the PSORS1C1 gene on the human chromosome 6 is Psoriasis Susceptibility 1 Candate 1, and the ABCPbette ACBsbetteACBsbetteATB -Family B (MDR / TAP), Member 1, RP5-1171I10.4 on human chromosome 17 is Ribosomal protein, RNF43 gene is Ring Finger Protein 43, and ITPA gene on human chromosome 20 is inosine. Triphosphatase, TIMP1 gene on human X chromosome is TIMP Metallopeptidase inhibitor 1 and the SYN1 gene are genes encoding synapsin I, respectively.
後の実施例に詳細に説明するように、上記SNPは、健常人と比較して臨床的に食道アカラシアと診断された患者において高い頻度で存在することが確認されたSNPである。各SNPの染色体上の位置、rs番号、塩基置換、アミノ酸置換、患者又は健常人における頻度及びP値を表1に示す。 As described in detail in the Examples below, the SNP is a SNP that has been confirmed to be present at a higher frequency in patients who are clinically diagnosed with esophageal achalasia than healthy individuals. Table 1 shows the position of each SNP on the chromosome, rs number, base substitution, amino acid substitution, frequency and P value in patients or healthy individuals.
本発明の判定方法は、具体的にはrs3795850、rs1063646、rs2032582及び/若しくはrs2526374の塩基がチミンの場合に、rs1881420及び/若しくはrs4898の塩基がシトシンの場合に、並びに/又はrs1127354の塩基がアデニンの場合に、食道アカラシアの発症リスクが高いと判定するものである。 Specifically, the determination method of the present invention is such that when the base of rs3795850, rs1063646, rs2032582 and / or rs2526374 is thymine, the base of rs18881420 and / or rs4898 is cytosine, and / or the base of rs1127354 is adenine. In some cases, the risk of developing esophageal achalasia is high.
表1に示されるSNPは、いずれもそれを含む各遺伝子のエクソン領域内に存在することから、この遺伝子にコードされるタンパク質の何らかの変化が食道アカラシアの発症リスク又は発症そのものに関与すると推察される。 Since all of the SNPs shown in Table 1 are present in the exon region of each gene containing the SNP, it is presumed that some change in the protein encoded by this gene is involved in the risk of developing esophageal achalasia or the onset itself. .
本発明において特に好ましいSNPは、rs4898である。rs4898はTIMP1遺伝子のエクソン5領域に位置する。この部位は、プレmRNAのスプライシングに必須であるsnRNPの結合部位であり、したがってrs4898はTIMP1mRNAの成熟を阻害するものと推定される。一方、rs4898は同時にSYN1遺伝子のイントロンに位置する。SYN1は神経終末シナプス小胞膜に発現する分子であり、シナプス小胞の神経終末への移動を制御し、シナプス機能の恒常性を維持している。rs4898は、SYN1mRNAのスプライシングに影響を与え、遺伝子発現を低下させて筋神経叢内シナプスのSYN1の発現を減少させることにより、食道アカラシアの発症に関与していると推察される。 A particularly preferred SNP in the present invention is rs4898. rs4898 is located in the exon 5 region of the TIMP1 gene. This site is a binding site for snRNP that is essential for pre-mRNA splicing, and therefore rs4898 is presumed to inhibit TIMP1 mRNA maturation. On the other hand, rs4898 is simultaneously located in the intron of the SYN1 gene. SYN1 is a molecule expressed in the nerve terminal synaptic vesicle membrane, controls the movement of the synaptic vesicle to the nerve terminal, and maintains synaptic function homeostasis. It is speculated that rs4898 is involved in the development of esophageal achalasia by affecting the splicing of SYN1 mRNA and decreasing the expression of SYN1 at synapses in the muscular plexus by reducing gene expression.
なお、後述の表2に示されるSNPもまた、健常人と比較して臨床的に食道アカラシアと診断された患者において高い頻度で存在することが確認されたSNPであることから、かかるSNP及び/又は該SNPと連鎖不平衡にあるSNPを用いた食道アカラシアの発症リスクの判定方法も本発明の一態様である。 The SNPs shown in Table 2 below are also SNPs that have been confirmed to be present at a higher frequency in patients diagnosed clinically as esophageal achalasia compared with healthy individuals. Alternatively, a method for determining the risk of developing esophageal achalasia using a SNP in linkage disequilibrium with the SNP is also an embodiment of the present invention.
本発明の方法による判定対象は、ヒト、特にアジア人種とりわけ日本人である。また、SNPの検出は、ゲノムDNA、cDNA、又はmRNAのいずれの核酸について行ってもよい。また、かかる核酸は、被験者から採取される任意の生物学的試料、例えば血液、唾液、リンパ液、気道粘液、骨髄液、尿、精液、腹腔液等の体液、又はバイオプシー等によって得られる組織細胞等から、常法にしたがって抽出、精製、調製することができる。 The determination target by the method of the present invention is a human, particularly an Asian race, especially a Japanese. Moreover, you may perform detection of SNP about any nucleic acid of genomic DNA, cDNA, or mRNA. Such nucleic acid may be any biological sample collected from a subject, such as blood, saliva, lymph, airway mucus, bone marrow, urine, semen, peritoneal fluid, tissue cells obtained by biopsy, etc. From the above, it can be extracted, purified and prepared according to a conventional method.
本発明により特定されるSNP及び/又は該SNPと連鎖不平衡にあるSNPは、当業者に知られた従来の方法にしたがって検出することができる。そのような方法としては、例えばNASBA法、LCR法、SDA法、LAMP法、TaqMan(登録商標)PCR等の、PCRによってSNPを含む増幅断片を利用する方法、DNAシーケンサーなどを用いたSNPを含む塩基配列を直接決定する方法、DNAチップ、Geneチップ、マイクロチップ、ビーズアレイなどを含むマイクロアレイによる検出方法、ミスマッチ部位の化学的切断を利用した方法(CCM:chemical cleavage of mismatches)、プライマー伸長法(PEX)又はインベーダー法などを挙げることができるが、これらには限定されない。 SNPs identified by the present invention and / or SNPs in linkage disequilibrium with the SNPs can be detected according to conventional methods known to those skilled in the art. Examples of such methods include NASBA method, LCR method, SDA method, LAMP method, TaqMan (registered trademark) PCR and other methods using amplified fragments containing SNP by PCR, SNP using DNA sequencer, etc. A method for directly determining a base sequence, a detection method using a microchip including a DNA chip, a Gene chip, a microchip, a bead array, a chemical cleavage of mismatches (CCM), a primer extension method (CCM: chemical cleavage of mismatches) PEX) or invader method can be mentioned, but is not limited thereto.
増幅断片を利用する方法の一つは、目的となるSNPを有する場合にのみ増幅断片が生じるよう、センスプライマー又はアンチセンスプライマーの一方がそのSNPにハイブリダイズするように設計されたプライマーセットを用いた方法を挙げることができる。かかるプライマーセットを使用することにより、増幅断片が生じたかどうかで目的とするSNPを検出することが可能となる。 One method of using an amplified fragment is to use a primer set designed so that either a sense primer or an antisense primer hybridizes to that SNP so that an amplified fragment is generated only when the target SNP is present. Can be mentioned. By using such a primer set, it becomes possible to detect the target SNP depending on whether or not an amplified fragment is generated.
また、増幅断片を利用する別の方法は、目的とするSNPを含む領域が増幅されるように設計されたプライマーセットを用いた方法である。かかるプライマーセットを用いたPCRによる増幅断片のサイズ、塩基配列、高次構造などの差異に基づいて、SNPを検出することができる。例えば、アガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動、キャピラリー電気泳動などを用いたときの増幅断片の移動度の違いから、目的とするSNPを検出することができる。 Another method using the amplified fragment is a method using a primer set designed to amplify a region containing the target SNP. SNPs can be detected based on differences in the size, base sequence, higher order structure, etc. of amplified fragments by PCR using such primer sets. For example, the target SNP can be detected from the difference in mobility of amplified fragments when agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, or the like is used.
また、制限酵素断片長多型(Restriction Fragment Length Polymorphism;RFLP)を利用して検出することもできる。例えば、適当なプライマーセットを用いてSNPを含む増幅断片を調製し、目的とするSNPに応じて独特な長さの断片を生じることが知られている制限酵素で増幅断片を切断し、アガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動、キャピラリー電気泳動などを用いたときの切断物の移動度の違いから、目的とするSNPを検出することができる。 It can also be detected using restriction fragment length polymorphism (RFLP). For example, an amplified fragment containing an SNP is prepared using an appropriate primer set, the amplified fragment is cleaved with a restriction enzyme known to produce a fragment of a unique length according to the target SNP, and an agarose gel The target SNP can be detected from the difference in mobility of the cut product when electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis or the like is used.
なお、上記の増幅断片又は切断物の塩基配列を直接決定することによって、目的とするSNPを検出してもよい。また、増幅断片又は切断物を熱変性によって一本鎖DNAとした後、これをゲル電気泳動によって分離し、塩基配列の変化による移動度の変化を解析する、PCR−単鎖高次構造多型(SSCP)によって目的とするSNPを検出してもよい。 In addition, the target SNP may be detected by directly determining the base sequence of the amplified fragment or the cleaved product. PCR-single-stranded conformation polymorphism, wherein the amplified fragment or cleaved product is converted into single-stranded DNA by heat denaturation, and then separated by gel electrophoresis, and the change in mobility due to the change in base sequence is analyzed. The target SNP may be detected by (SSCP).
SNPは、一のSNPに特異的なプローブとのハイブリダイゼーションによって検出することもできる。プローブは、前記のSNPを含み、生物学的試料から調製したDNA等とハイブリダイズし、採用する検出条件下に検出可能な程度の特異性を与えるものである限り、いかなるものでもよい。 SNPs can also be detected by hybridization with a probe specific for one SNP. The probe may be any probe as long as it contains the aforementioned SNP, hybridizes with DNA or the like prepared from a biological sample, and gives a detectable degree of specificity under the detection conditions employed.
プローブとしては、例えば前記SNPを含む連続する少なくとも10塩基以上、好ましくは10〜100塩基の配列、より好ましくは10〜50塩基の配列にハイブリダイズすることのできるオリゴヌクレオチドを用いることができる。また、SNPがプローブのほぼ中心部に存在するようにオリゴヌクレオチドを選択するのが好ましい。該オリゴヌクレオチドは、プローブとして機能し得る限り、即ち、目的の遺伝子多型の配列とハイブリダイズするが、他の遺伝子多型の配列とはハイブリダイズしない条件下でハイブリダイズする限り、その配列において1又はそれ以上の置換、欠失、付加を含んでいてもよい。プローブは、必要に応じて、蛍光物質や放射性物質等の適当な手段により標識してもよい。 As the probe, for example, an oligonucleotide that can hybridize to a sequence of at least 10 bases, preferably 10 to 100 bases, more preferably 10 to 50 bases, including the SNP can be used. In addition, it is preferable to select the oligonucleotide so that the SNP is present almost at the center of the probe. As long as the oligonucleotide can function as a probe, that is, as long as it hybridizes with the sequence of the gene polymorphism of interest, but does not hybridize with the sequence of other gene polymorphisms, One or more substitutions, deletions, additions may be included. The probe may be labeled with an appropriate means such as a fluorescent substance or a radioactive substance, if necessary.
本発明に用いるハイブリダイゼーション条件は、遺伝子多型を区別するのに十分な条件である。例えば、生物学的試料から調製したDNA等が遺伝子多型の一のアレルである場合にはハイブリダイズするが、他のアレルである場合にはハイブリダイズしないような条件、例えばストリンジェントな条件である。 Hybridization conditions used in the present invention are conditions sufficient to distinguish gene polymorphisms. For example, when DNA or the like prepared from a biological sample is one allele of a genetic polymorphism, it hybridizes, but when it is another allele, it does not hybridize under conditions such as stringent conditions. is there.
プローブは、一端を基板に固定してDNAチップとして用いることもできる。この場合、DNAチップには、遺伝子多型の一のアレルに対応するプローブのみが固定されていても、遺伝子多型の複数のアレルに対応するプローブが固定されていてもよい。 The probe can also be used as a DNA chip with one end fixed to a substrate. In this case, only a probe corresponding to one allele of the gene polymorphism may be fixed to the DNA chip, or probes corresponding to a plurality of alleles of the gene polymorphism may be fixed.
本発明において好ましい方法は、PCRによる遺伝子増幅を用いた方法、特に操作が簡便で且つ信頼性の高いTaqMan(登録商標)PCRである。具体的には、目的とするSNPを含む領域を増幅できるプライマーオリゴヌクレオチドセットと、各アレルに相補的な配列を有する、SNPの塩基変異に対応するTaqMan(登録商標)プローブ2種類を用いて、PCRを行なう。 A preferable method in the present invention is a method using gene amplification by PCR, particularly TaqMan (registered trademark) PCR, which is easy to operate and highly reliable. Specifically, using a primer oligonucleotide set that can amplify a region containing the target SNP and two types of TaqMan (registered trademark) probes corresponding to SNP base mutations having a sequence complementary to each allele, Perform PCR.
上記のSNPを検出する方法の多くは、それぞれの原理に応じたオリゴヌクレオチド、例えば遺伝子増幅のためのプライマーオリゴヌクレオチド、またはハイブリダイゼーション用のプローブオリゴヌクレオチドを必要とする。これらは、各方法の原理及び検出対象となるSNPの具体的な塩基配列に基づいて、当業者が適宜設計し、合成することができる。本発明にかかる特定のSNPの検出のためのオリゴヌクレオチドもまた、採用される検出方法の原理及び本発明で特定されるSNPの具体的な塩基配列に基づいて、当業者が適宜設計し、合成することができる。 Many of the methods for detecting SNPs described above require oligonucleotides according to the respective principles, for example, primer oligonucleotides for gene amplification, or probe oligonucleotides for hybridization. These can be appropriately designed and synthesized by those skilled in the art based on the principle of each method and the specific base sequence of the SNP to be detected. Oligonucleotides for detecting specific SNPs according to the present invention are also designed and synthesized by those skilled in the art as appropriate based on the principle of the detection method employed and the specific base sequence of the SNP specified in the present invention. can do.
本発明は、食道アカラシアの発症リスクの判定用キットを提供し、該キットは、a)前記SNP及び/又は該SNPと連鎖不平衡にあるSNPを含む塩基配列を選択的に増幅することができるプライマー用オリゴヌクレオチド、又はb)前記SNP及び/又は該SNPと連鎖不平衡にあるSNPを含む連続する少なくとも10塩基対からなる塩基配列に相補的な塩基配列を有するプローブ用オリゴヌクレオチドを含む。 The present invention provides a kit for determining the risk of developing esophageal achalasia, which can amplify a base sequence containing a) the SNP and / or a SNP in linkage disequilibrium with the SNP. A primer oligonucleotide, or b) a probe oligonucleotide having a base sequence complementary to a base sequence consisting of at least 10 consecutive base pairs including the SNP and / or a SNP in linkage disequilibrium with the SNP.
本発明のキットに含まれるオリゴヌクレオチドは、SNPの検出方法において説明したように、採用される検出方法の原理及び本発明で特定されるSNPの具体的な塩基配列に基づいて、当業者が適宜設計し、合成することができる。 As described in the SNP detection method, the oligonucleotide contained in the kit of the present invention is appropriately selected by those skilled in the art based on the principle of the detection method employed and the specific base sequence of the SNP specified in the present invention. Can be designed and synthesized.
本発明のキットは、上記オリゴヌクレオチドの他に、遺伝子多型を検出する各方法に適した試薬、反応成分その他を含んでいてもよい。例えば、酵素緩衝液、dNTP、コントロール用試薬(例えば、組織サンプル、ポジティブ及びネガティブコントロール用標的オリゴヌクレオチドなど)、標識用又は検出用試薬、固相支持体、説明書などが挙げられる。また、上記オリゴヌクレオチドは、支持体に固定化されたマイクロアレイとしてキットに含まれてもよい。 The kit of the present invention may contain reagents, reaction components and the like suitable for each method for detecting a gene polymorphism in addition to the above-mentioned oligonucleotide. For example, enzyme buffers, dNTPs, control reagents (eg, tissue samples, positive and negative control target oligonucleotides, etc.), labeling or detection reagents, solid supports, instructions, and the like. The oligonucleotide may be included in the kit as a microarray immobilized on a support.
本発明の食道アカラシアの発症リスクの判定用キットにより、被験者の発症リスクを簡便かつ迅速に判定することが可能となり、その結果に応じて適切な医療上の処置を施すことができる。 With the kit for determining the risk of developing esophageal achalasia according to the present invention, the risk of developing the subject can be determined easily and quickly, and appropriate medical treatment can be performed according to the result.
以下の実施例によって本発明をさらに詳細に説明する。 The following examples further illustrate the present invention.
<実施例1>
上部消化管内視鏡又はX線造影によって食道下部の狭窄、口側の拡張及び食道内圧測定で食道蠕動波の消失が認められるとして食道アカラシアと診断された患者21名、及び健常人20名からそれぞれから末梢血8mLを採取し、Ficoll比重遠心法により単核球を分離後、シリカゲルカラムを用いてDNAを抽出、精製した。なお、上記患者及び健常人はいずれも、ヒトゲノム・遺伝子解析研究に関する倫理指針を準拠し、旭川医科大学の倫理委員会で審査され承認された本研究の内容を理解し、研究協力に同意した者である。
<Example 1>
From 21 patients diagnosed as esophageal achalasia and 20 healthy persons as esophageal peristaltic waves disappeared by upper esophageal tract endoscopy or x-ray contrast, esophageal dilatation and oral esophageal pressure measurement. Peripheral blood (8 mL) was collected from the sample, and mononuclear cells were separated by Ficoll specific gravity centrifugation. Then, DNA was extracted and purified using a silica gel column. All of the above patients and healthy individuals should comply with the ethical guidelines for human genome / gene analysis research, understand the content of this study that has been reviewed and approved by the ethics committee of Asahikawa Medical University, and agree to research cooperation. It is.
炎症性腸疾患、膵疾患、肝疾患症、血液疾患及び金属代謝疾患の各疾患との関連性が報告されている遺伝子、ならびに前記各疾患に関連する代謝、免疫又はシグナル伝達に関連する遺伝子を選出し、ここから重複する遺伝子及びアンプリコン(amplicon)の設定が不可能な遺伝子を削除した計1031遺伝子を、SNPを解析する対象遺伝子として決定した。対象遺伝子の全エクソン領域をカバーするように、計12609個のアンプリコンに分割し、それぞれに対するプライマーセットを作成した。 Genes that have been reported to be associated with inflammatory bowel disease, pancreatic disease, liver disease, blood disease, and metal metabolism disease, and genes related to metabolism, immunity, or signal transduction associated with each disease A total of 1031 genes that were selected and from which duplicate genes and genes for which amplicons cannot be set were deleted were determined as target genes for SNP analysis. A total of 12609 amplicons were divided to cover the entire exon region of the target gene, and primer sets for each were prepared.
50ngのDNAをテンプレートとし、5つのプライマープールを用いてPCRを行ってアンプリコンを作成した後、製造者のプロトコルに従って高出力シークエンサーIon Proton(Life technologies)を利用してDNA配列を解析し、上記1031遺伝子に関するSNP解析を行った。解析にあたって、予備的シークエンスを2回施行し、各アンプリコンの解析長と被覆率が検討に十分なことを確認した。 Using 50 ng of DNA as a template, PCR was performed using 5 primer pools to create an amplicon, and then the DNA sequence was analyzed using a high-power sequencer Ion Proton (Life technologies) according to the manufacturer's protocol. SNP analysis on the 1031 gene was performed. In the analysis, a preliminary sequence was performed twice, and it was confirmed that the analysis length and the coverage of each amplicon were sufficient for examination.
全サンプルで国際標準配列(リファレンス)とシークエンス配列とを比較し、患者群と健常人群において計4750のリファレンスとの相違を検出した。この相違から、患者と健常人との遺伝子異常の出現頻度の差をフィッシャー検定におけるp値<0.05を有意として、表2に示す計46種類のSNPが候補として抽出された。 In all samples, the international standard sequence (reference) and the sequence sequence were compared, and a difference of 4750 total references was detected in the patient group and the healthy group. From this difference, the difference in the appearance frequency of gene abnormalities between patients and healthy individuals was regarded as significant when the p-value <0.05 in the Fisher test, and a total of 46 types of SNPs shown in Table 2 were extracted as candidates.
表2に示されるSNPのうち、遺伝子のエクソン領域内に位置するSNP(表中の〇印)からstrand biasが0.55未満であるSNPを有意な多型として抽出し、さらにHapmap JPT(http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.ja、東京在住の日本人86人の遺伝子配列を集積したリファレンス)を参照して日本人固有のSNPと考えられるrs1635498を除くことで、前記表1に示される計7種類のSNPを選出した。 Among the SNPs shown in Table 2, SNPs having a strand bias of less than 0.55 are extracted as significant polymorphisms from SNPs (circles in the table) located in the exon region of the gene, and Hapmap JPT (http) : //Hapmap.ncbi.nlm.nih.gov/downloads/index.html.ja, a reference in which the gene sequences of 86 Japanese living in Tokyo are accumulated) rs1635498 considered to be a SNP unique to Japanese By removing, 7 types of SNPs shown in Table 1 were selected.
さらに、前記精製DNAを鋳型にしたPCRを行って上記7種類の各SNPを含む増幅断片を調製し、シーケンシングしたところ、rs4898について、高出力シーケンサーでSNPが検出された患者個体16名全員がホモ又はヘテロで同じ多型を有することが確認された。患者群及び健常人群の性別とrs4898のアレルとの関係を表3に示す。 Furthermore, PCR was performed using the purified DNA as a template to prepare amplified fragments containing each of the seven types of SNPs described above, and sequencing was performed. As a result, all 16 patient individuals in whom SNP was detected with a high-power sequencer were obtained for rs4898. It was confirmed to be homo or hetero and have the same polymorphism. Table 3 shows the relationship between the sexes of the patient group and the healthy person group and the rs4898 allele.
本発明は、食道アカラシアの発症リスクの判定方法としての利用可能性を有し、これにより、発症リスクが高い人に関して早期に医療上の指導を与える又は治療を開始することができるものと期待される。
The present invention has applicability as a method for determining the risk of developing esophageal achalasia, and is thereby expected to be able to give medical guidance or start treatment at an early stage for people with a high risk of developing the disease. The
Claims (4)
a)請求項1〜3のいずれかに記載の一塩基多型及び/又は該一塩基多型と連鎖不平衡にある一塩基多型を含む塩基配列を選択的に増幅することができるプライマー用オリゴヌクレオチド
b)請求項1〜3のいずれかに記載の一塩基多型及び/又は該一塩基多型と連鎖不平衡にある一塩基多型を含む連続する少なくとも10塩基対からなる塩基配列に相補的な塩基配列を有するプローブ用オリゴヌクレオチド
A kit for determining the risk of developing esophageal achalasia, comprising one or more of the following oligonucleotides a) or b).
a) For a primer capable of selectively amplifying a single nucleotide polymorphism according to any one of claims 1 to 3 and / or a nucleotide sequence comprising a single nucleotide polymorphism in linkage disequilibrium with the single nucleotide polymorphism Oligonucleotide b) A nucleotide sequence comprising at least 10 consecutive base pairs comprising the single nucleotide polymorphism according to any one of claims 1 to 3 and / or the single nucleotide polymorphism in linkage disequilibrium with the single nucleotide polymorphism. Probe oligonucleotide having a complementary nucleotide sequence
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015061460A JP2016178899A (en) | 2015-03-24 | 2015-03-24 | Determination method for risk of onset of esophageal achalasia, and oligonucleotide kits for its determination |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015061460A JP2016178899A (en) | 2015-03-24 | 2015-03-24 | Determination method for risk of onset of esophageal achalasia, and oligonucleotide kits for its determination |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016178899A true JP2016178899A (en) | 2016-10-13 |
Family
ID=57130514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015061460A Pending JP2016178899A (en) | 2015-03-24 | 2015-03-24 | Determination method for risk of onset of esophageal achalasia, and oligonucleotide kits for its determination |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016178899A (en) |
-
2015
- 2015-03-24 JP JP2015061460A patent/JP2016178899A/en active Pending
Non-Patent Citations (3)
Title |
---|
A.R.DE LEON, ET AL., NEUROGASTROENTEROLOGY & MOTILITY, vol. Vol.22, JPN6019001149, 2010, pages p.734-738,e218 * |
C.NUNEZ, ET AL., HUMAN IMMUNOLOGY, vol. Vol.72, JPN6019001153, 2011, pages 749 - 752 * |
J.L.SANTIAGO, ET AL., HUMAN IMMUNOLOGY, vol. Vol.68, JPN6019001148, 2007, pages 867 - 870 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180340227A1 (en) | Materials and methods for identifying spinal muscular atrophy carriers | |
KR20010024597A (en) | Diagnostics and therapeutics for chronic obstructive airway disease | |
JP5899527B2 (en) | Method for examining drug eruption risk with antiepileptic drugs based on single nucleotide polymorphism of chromosome 13 short arm 21.33 region | |
KR20080084806A (en) | Methods and compositions for the assessment of cardiovascular function and disorders | |
US20100112589A1 (en) | Allele-allele interactions of mthfr gene variants, and uses thereof in predicting disease risk | |
JP2008529524A (en) | Method for diagnosing type 2 diabetes using multilocus marker, polynucleotide containing marker related to type 2 diabetes, microarray containing the same, and kit for diagnosing type 2 diabetes | |
CN115786356B (en) | Arrhythmia right ventricular dysplasia cardiomyopathy variant gene CDH2 and application thereof | |
CN110656112A (en) | Liddle syndrome gene detection kit | |
KR102543907B1 (en) | A genetic marker for evaluating risk of periodontitis | |
KR101023194B1 (en) | Marker for diagnosing atopic dermatitis and use thereof | |
JP6494356B2 (en) | Nonalcoholic fatty liver disease and / or nonalcoholic steatohepatitis risk and / or severity risk determination method, and oligonucleotide kit for determination | |
JP6053681B2 (en) | Method and kit for diagnosing glaucoma in dogs | |
JP5904501B2 (en) | Method for detecting type 2 diabetes | |
JP2016178899A (en) | Determination method for risk of onset of esophageal achalasia, and oligonucleotide kits for its determination | |
JP5895317B2 (en) | Method for examining bone / joint disease based on single nucleotide polymorphism of chromosome 10 long arm 24 region | |
JP2007068429A (en) | Method for judging contracted digestive system disease by il-10 polymorphism detection and kit therefor | |
JP4111481B2 (en) | Method for determining genetic factors of myocardial infarction and oligonucleotides used therefor | |
KR102511596B1 (en) | A single nucleotide polymorphism marker composition for diagnosing an adverse reactions with angiotensin converting enzyme inhibitor and a method using the same | |
KR101899235B1 (en) | Primer set for diagnosing adhd in korean, kit for diagnosing comprising the same, and method of predicting adhd risk in korean using thereof | |
JP4825956B2 (en) | Determination of the risk of airway mucosal inflammatory disease | |
WO2015037681A1 (en) | Test method for evaluating the risk of anti-thyroid drug-induced agranulocytosis, and evaluation kit | |
JP2017006074A (en) | Peripheral arterial disease inspection method and inspection reagent | |
JP2017189121A (en) | METHOD FOR DETERMINING THE RISK OF DEVELOPING ANT-TNFα ANTIBODY IN TREATMENT WITH AN ANTI-TNFα ANTIBODY AND OLIGONUCLEOTIDE KIT FOR DETERMINATION THEREOF | |
JP2007512231A5 (en) | ||
JPWO2006068111A1 (en) | Method for determining phenotype associated with polymorphism of PPARγ gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20150326 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180115 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20180115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190122 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190723 |