JP2016178781A - 蓄電状態調整回路、蓄電状態調整装置及び蓄電池パック - Google Patents

蓄電状態調整回路、蓄電状態調整装置及び蓄電池パック Download PDF

Info

Publication number
JP2016178781A
JP2016178781A JP2015056816A JP2015056816A JP2016178781A JP 2016178781 A JP2016178781 A JP 2016178781A JP 2015056816 A JP2015056816 A JP 2015056816A JP 2015056816 A JP2015056816 A JP 2015056816A JP 2016178781 A JP2016178781 A JP 2016178781A
Authority
JP
Japan
Prior art keywords
current
output
secondary battery
coil
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015056816A
Other languages
English (en)
Inventor
健太 水井
Kenta Mizui
健太 水井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2015056816A priority Critical patent/JP2016178781A/ja
Publication of JP2016178781A publication Critical patent/JP2016178781A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】簡易な構成で、蓄電状態の均一化を図ることを目的としている。【解決手段】複数の二次電池における各二次電池と、前記各二次電池と対応する第一のコイルとの接続/遮断を切り替える第一のスイッチ部と、出力が前記第一のスイッチ部と接続され、第一の電流指示信号に応じた出力電流を出力する第一の可変電流回路と、前記複数の二次電池が直列に接続された組電池と、前記組電池と対応する第二のコイルとの接続/遮断を切り替える第二のスイッチ部と、出力が前記第二のスイッチ部と接続され、第二の電流指示信号に応じた出力電流を出力する第二の可変電流回路と、を有する。【選択図】図2

Description

本発明は、二次電池の蓄電状態を調整する蓄電状態調整回路、蓄電状態調整装置及び電池パックに関する。
従来から、直列に接続された複数の二次電池(セル)を有する電池パックでは、セルの電圧を調整して各セルの電池電圧の均一化を図る電子回路を有するものが知られている。
この電子回路の1つとして、トランスを用いる双方向のアクティブセルバランス回路が知られている。この回路では、セルの内部抵抗から充放電状態を推定し、スイッチングの周波数やデューティ比を制御することで、最適なエネルギー転送効率の制御を実現している。
しかしながら、上記の従来の回路では、スイッチングの周波数が高くなった場合、スイッチングによる電力損失が大きくなる可能性がある。また、上記の従来の回路では、スイッチングの周波数が高くなった場合、サージ電圧(電流)が増大する可能性がある。この場合には、ノイズフィルタやスナバ回路を設ける必要があり、エネルギーの変換効率の低下やコストの増加につながる。
開示の技術は、簡易な構成で、蓄電状態の均一化を図ることを目的としている。
開示の技術は、複数の二次電池における各二次電池と、前記各二次電池と対応する第一のコイルとの接続/遮断を切り替える第一のスイッチ部と、出力が前記第一のスイッチ部と接続され、第一の電流指示信号に応じた出力電流を出力する第一の可変電流回路と、前記複数の二次電池が直列に接続された組電池と、前記組電池と対応する第二のコイルとの接続/遮断を切り替える第二のスイッチ部と、出力が前記第二のスイッチ部と接続され、第二の電流指示信号に応じた出力電流を出力する第二の可変電流回路と、を有する蓄電状態調整回路である。
簡易な構成で、蓄電状態の均一化を図ることができる。
電池パックを説明する図である。 コイル群と蓄電状態調整回路を説明する図である。 可変電流源を説明する図である。 蓄電状態調整回路の動作を説明する第一の図である。 蓄電状態調整回路の動作を説明する第二の図である。 ADCとDACの分解能の関係を説明する図である。 MPUの機能を説明する図である。 電流テーブルの一例を示す第一の図である。 電流テーブルの一例を示す第二の図である。 MPUの動作を説明する第一のフローチャートである。 MPUの動作を説明する第二のフローチャートである。
以下に図面を参照して実施形態について説明する。図1は、電池パックを説明する図である。
本実施形態の蓄電池パック100は、組電池110、電圧検出回路120、コントローラ130、コイル群140及び蓄電状態調整回路200を有する。また、本実施形態の電池パック100は、負荷300及び充電器400の正極と接続されるP+端子と、負荷300及び充電器400の負極と接続されるP−端子と、を有する。尚、本実施形態の負極とは、グランドである。
本実施形態の蓄電池パック100は、P+端子及びP−端子を介して接続された負荷300に、組電池110に蓄電された電力を供給する。また本実施形態の蓄電池パック100は、P+端子及びP−端子を介して接続された充電器400により、組電池110に含まれる二次電池を充電する。
本実施形態の負荷300は、蓄電池パック100により駆動される装置であり、MPU(Micro-Processing Unit)310を有する。MPU310は、負荷300となる装置の動作等を制御するために設けられた演算処理装置である。尚、図1の例では、負荷300が有するMPUを1つとしたが、負荷300が有するMPUは、複数であっても良い。
本実施形態では、負荷300が蓄電池パック100から供給される電力で駆動する点に着目し、負荷300の有するMPU310の機能を用いて、組電池110の有する複数の二次電池の蓄電状態を調整する。本実施形態の蓄電池パック100では、これにより簡易な構成で、蓄電状態の均一化を図る。
より具体的には、本実施形態では、MPU310の機能を利用して、蓄電状態調整回路200における組電池110の有する複数の二次電池に対する充電電流量を制御することで、簡易な構成で蓄電状態を均一化する精度を向上させる。
本実施形態の組電池110は、二次電池B1、二次電池B2、二次電池B3、二次電池B4を含む。本実施形態の二次電池B1〜B4は、充放電が可能な蓄電手段であり、P+端子とP−端子の間で直列に接続されている。組電池110は、正極がP+端子と接続され、負極がP−端子と接続されている。尚、組電池110の正極は、二次電池B1の正極であり、組電池110の負極は、二次電池B4の負極である。
尚、本実施形態では、組電池110は4つの二次電池B1〜B4を有するものとしたが、これに限定されない。本実施形態の組電池110は、任意の数の二次電池が直列接続されていても良い。また、本実施形態の二次電池B1〜B4は、例えば電気二重層キャパシタ等の蓄電池とすることもできる。
本実施形態の電圧検出回路120は、組電池110に含まれる各二次電池B1〜B4のそれぞれのセル電圧を検出する。具体的には、本実施形態の電圧検出回路120は、ADC(Analog-to-Digital Converter)121を有し、二次電池B1〜B4のそれぞれのセル電圧をディジタル値に変換する。そして、電圧検出回路120は、二次電池B1〜B4のそれぞれのセル電圧を、ディジタル値として後述するMPU310に供給する。本実施形態の電圧検出回路120では、二次電池B1〜B4のそれぞれに対応した4つのADC121を有していても良いし、二次電池B1〜B4のそれぞれのセル電圧を1つのADC121で順次検出しても良い。
本実施形態のコントローラ130は、MPU310からの指示を受けて、蓄電状態調整回路200の有する各スイッチ素子をオン/オフさせる制御信号を出力する。
本実施形態のコイル群140は、蓄電状態調整回路200の動作に応じて、エネルギーの蓄積と放出を繰り返す。コイル群140には、二次電池B1〜B4のそれぞれと接続される一次側コイルと、組電池110に接続される二次側コイルとが含まれる。
本実施形態の蓄電状態調整回路200は、組電池110に含まれる二次電池B1〜B4のセル電圧の均一化を図り、各二次電池B1〜B4における電気の蓄積状態(すなわち蓄電状態)を調整する。
本実施形態のMPU310は、DAC(Digital to Analog Converter)320を有する。本実施形態のMPU310は、電圧検出回路120により供給された二次電池B1〜B4のセル電圧(ディジタル値)に基づき、蓄電状態調整回路200に対して各二次電池B1〜B4の蓄電状態を調整するための調整電流の値を決定する。そして、MPU310は、蓄電状態調整回路200に対し、各二次電池B1〜B4の蓄電状態を調整するための電流指示信号を出力する。
また、本実施形態のMPU310は、蓄電池パック100に充電器400が接続されるとこれを検出し、蓄電状態調整回路200に対し、充電器400が接続された充電器接続状態における電流指示信号を出力する。さらに、本実施形態のMPU310は、蓄電池パック100と充電器400との接続が遮断されるこれを検出し、蓄電状態調整回路200に対し、充電器400が接続されていない充電器未接続状態における電流指示信号を出力する。電流指示信号は、MPU310のDAC320から出力される電圧である。
本実施形態のMPU310の詳細は後述する。
図2は、コイル群と蓄電状態調整回路を説明する図である。
本実施形態のコイル群140は、コイルL11、L12、L21、L22、L31、L32、L41、L42を有する。コイルL11、L21、L31、L41は、それぞれが二次電池B1〜B4のそれぞれと並列に接続された一次側コイル(一次側トランス)である。コイルL12、L22、L32、L42は、組電池110と接続される二次側コイル(二次側トランス)である。
本実施形態の蓄電状態調整回路200は、スイッチ素子SW11、SW12、SW21、SW22、SW31、SW32、SW41、SW42、カレントミラー回路210、220、230、240、250、可変電流源211、221、231、241、251を有する。
本実施形態の蓄電状態調整回路200が有する各スイッチ素子は、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等の半導体スイッチ素子等である。
本実施形態のスイッチ素子SW11、SW12は、コイルL11、L12におけるエネルギーの蓄積と放出を制御して、二次電池B1の蓄電状態を調整する。
本実施形態のスイッチ素子SW11は、コントローラ130から供給される制御信号SG11によりオン/オフが制御され、スイッチ素子SW12は、コントローラ130から供給される制御信号SG12によりオン/オフが制御される。
本実施形態のスイッチ素子SW11の一端は、コイルL11の一端と接続されている。コイルL11の他端は、二次電池B1の正極と接続されている。すなわち、コイルL11の他端は、P+端子と接続されている。スイッチ素子SW11の他端は、カレントミラー回路210を介して二次電池B2の正極(二次電池B1の負極)と接続されている。
本実施形態のスイッチ素子SW12の一端は、コイルL12の一端と接続されている。コイルL12の他端は、組電池110の正極(P+端子,二次電池B1の正極)と接続されている。スイッチ素子SW12の他端は、カレントミラー回路250を介して組電池110の負極(二次電池B4の負極、P−端子)と接続されている。
本実施形態のスイッチ素子SW21、SW22は、コイルL21、L22におけるエネルギーの蓄積と放出を制御して、二次電池B2の蓄電状態を調整する。
本実施形態のスイッチ素子SW21は、コントローラ130から供給される制御信号SG21によりオン/オフが制御され、スイッチ素子SW22は、コントローラ130から供給される制御信号SG22によりオン/オフが制御される。
本実施形態のスイッチ素子SW21の一端は、コイルL21の一端と接続されている。コイルL21の他端は、二次電池B2の正極(二次電池B1の負極)と接続されている。スイッチ素子SW21の他端は、カレントミラー回路220を介して二次電池B3の正極(二次電池B2の負極)と接続されている。
本実施形態のスイッチ素子SW22の一端は、コイルL22の一端と接続されている。コイルL22の他端は、組電池110の正極と接続されている。スイッチ素子SW22の他端は、カレントミラー回路250を介して組電池110の負極と接続されている。
本実施形態のスイッチ素子SW31、SW32は、コイルL31、L32におけるエネルギーの蓄積と放出を制御して、二次電池B3の蓄電状態を調整する。
本実施形態のスイッチ素子SW31は、コントローラ130から供給される制御信号SG31によりオン/オフが制御され、スイッチ素子SW32は、コントローラ130から供給される制御信号SG32によりオン/オフが制御される。
本実施形態のスイッチ素子SW31の一端は、コイルL31の一端と接続されている。コイルL31の他端は、二次電池B3の正極(二次電池B2の負極)と接続されている。スイッチ素子SW31の他端は、カレントミラー回路230を介して二次電池B4の正極(二次電池B3の負極)と接続されている。
本実施形態のスイッチ素子SW32の一端は、コイルL32の一端と接続されている。コイルL32の他端は、組電池110の正極と接続されている。スイッチ素子SW32の他端は、カレントミラー回路250を介して組電池110の負極と接続されている。
本実施形態のスイッチ素子SW41、SW42は、コイルL41、L42におけるエネルギーの蓄積と放出を制御して、二次電池B4の蓄電状態を調整する。
本実施形態のスイッチ素子SW41は、コントローラ130から供給される制御信号SG41によりオン/オフが制御され、スイッチ素子SW42は、コントローラ130から供給される制御信号SG42によりオン/オフが制御される。
本実施形態のスイッチ素子SW41の一端は、コイルL41の一端と接続されている。コイルL41の他端は、二次電池B4の正極(二次電池B3の負極)と接続されている。スイッチ素子SW41の他端は、カレントミラー回路240を介して二次電池B4の負極(P−端子)と接続されている。
本実施形態のスイッチ素子SW42の一端は、コイルL42の一端と接続されている。コイルL42の他端は、組電池110の正極と接続されている。スイッチ素子SW42の他端は、カレントミラー回路250を介して組電池110の負極と接続されている。
本実施形態のカレントミラー回路210は、可変電流源211と接続されており、トランジスタM1、M2を有する。
カレントミラー回路210において、トランジスタM1のドレインは、可変電流源211及びトランジスタM1のゲートと接続されている。つまり、可変電流源211は、カレントミラー回路210の入力側の一端と接続されている。トランジスタM1のソースは、トランジスタM2のソース及び二次電池B2の正極と接続されている。トランジスタM2のゲートは、トランジスタM1のゲート及びトランジスタM1のドレインと接続されている。トランジスタM2のドレインは、スイッチ素子SW11の他端と接続されている。つまり、スイッチ素子SW11は、カレントミラー回路210の出力側の一端と接続されている。
本実施形態のカレントミラー回路210は、可変電流源211からトランジスタM1のドレイン−ソース間に供給される電流と値が同一の電流を、トランジスタM2のドレイン−ソース間に流す。すなわち、本実施形態では、カレントミラー回路210により、コイルL11のコイル電流が決定される。また、可変電流源211とカレントミラー回路210とは、コイルL1に供給される電流を出力する可変電流回路212を形成している。
可変電流源211からトランジスタM1のドレイン−ソース間に供給される電流は、後述するMPUからの信号により決められる。
本実施形態のカレントミラー回路220は、可変電流源221と接続されており、トランジスタM3、M4を有する。
カレントミラー回路220において、トランジスタM3のドレインは、可変電流源221及びトランジスタM3のゲートと接続されている。つまり、可変電流源221は、カレントミラー回路220の入力側の一端と接続されている。トランジスタM3のソースは、トランジスタM4のソース及び二次電池B3の正極と接続されている。トランジスタM4のゲートは、トランジスタM3のゲート及びトランジスタM3のドレインと接続されている。トランジスタM4のドレインは、スイッチ素子SW21の他端と接続されている。つまり、スイッチ素子SW21は、カレントミラー回路220の出力側の一端と接続されている。
本実施形態のカレントミラー回路220は、可変電流源221からトランジスタM3のドレイン−ソース間に供給される電流と値が同一の電流を、トランジスタM4のドレイン−ソース間に流す。すなわち、本実施形態では、カレントミラー回路220により、コイルL21に流れるコイル電流が決定される。また、可変電流源221とカレントミラー回路220とは、コイルL2に供給される電流を出力する可変電流回路222を形成している。
可変電流源221からトランジスタM3のドレイン−ソース間に供給される電流は、後述するMPUからの信号により決められる。
本実施形態のカレントミラー回路230は、可変電流源231と接続されており、トランジスタM5、M6を有する。
カレントミラー回路230において、トランジスタM5のドレインは、可変電流源231及びトランジスタM5のゲートと接続されている。つまり、可変電流源231は、カレントミラー回路230の入力側の一端と接続されている。トランジスタM5のソースは、トランジスタM6のソース及び二次電池B4の正極と接続されている。トランジスタM6のゲートは、トランジスタM5のゲート及びトランジスタM5のドレインと接続されている。トランジスタM6のドレインは、スイッチ素子SW31の他端と接続されている。つまり、スイッチ素子SW31は、カレントミラー回路230の出力側の一端と接続されている。
本実施形態のカレントミラー回路230は、可変電流源231からトランジスタM5のドレイン−ソース間に供給される電流と値が同一の電流を、トランジスタM6のドレイン−ソース間に流す。すなわち、本実施形態では、カレントミラー回路230により、コイルL31に流れるコイル電流が決定される。また、可変電流源231とカレントミラー回路230とは、コイルL3に供給される電流を出力する可変電流回路232を形成している。
可変電流源231からトランジスタM5のドレイン−ソース間に供給される電流は、後述するMPUからの信号により決められる。
本実施形態のカレントミラー回路240は、可変電流源241と接続されており、トランジスタM7、M8を有する。
カレントミラー回路240において、トランジスタM7のドレインは、可変電流源241及びトランジスタM7のゲートと接続されている。つまり、可変電流源241は、カレントミラー回路240の入力側の一端と接続されている。トランジスタM7のソースは、トランジスタM8のソース及び二次電池B4の正極と接続されている。トランジスタM8のゲートは、トランジスタM7のゲート及びトランジスタM7のドレインと接続されている。トランジスタM8のドレインは、スイッチ素子SW41の他端と接続されている。つまり、スイッチ素子SW41は、カレントミラー回路240の出力側の一端と接続されている。
本実施形態のカレントミラー回路240は、可変電流源241からトランジスタM7のドレイン−ソース間に供給される電流と値が同一の電流を、トランジスタM8のドレイン−ソース間に流す。すなわち、本実施形態では、カレントミラー回路240により、コイルL41に流れるコイル電流が決定される。また、可変電流源241とカレントミラー回路240とは、コイルL4に供給される電流を出力する可変電流回路242を形成している。
可変電流源241からトランジスタM7のドレイン−ソース間に供給される電流は、後述するMPUからの信号により決められる。
本実施形態のカレントミラー回路250は、可変電流源251と接続されており、トランジスタM10、M11、M12、M13、M14を有する。
カレントミラー回路250において、トランジスタM10のドレインは、可変電流源251及びトランジスタM10、M11、M12、M13、M14のゲートと接続されている。トランジスタM10のソースは、M11、M12、M13、M14のソース及び二次電池B4の負極(P−端子)と接続されている。
本実施形態のカレントミラー回路250は、可変電流源251からトランジスタM10のドレイン−ソース間に供給される電流と値が同一の電流を、トランジスタM11、M12、M13、M14のドレイン−ソース間に流す。すなわち、本実施形態では、カレントミラー回路250により、二次側コイルであるコイルL12、22、32、42に流れるコイル電流が決定される。また、可変電流源251とカレントミラー回路250とは、コイルL12、L22、L32、L42に供給される電流を出力する可変電流回路252を形成している。
可変電流源251からトランジスタM10のドレイン−ソース間に供給される電流は、後述するMPUからの信号により決められる。
次に、図3を参照して本実施形態の可変電流源211、221、231、241、251について説明する。本実施形態の可変電流源211、221、231、241、251は、それぞれが同一の構成を有するため、図3では、一例として可変電流源221の構成について説明する。
図3は、可変電流源を説明する図である。本実施形態の可変電流源221は、基準電圧源12、トランジスタM21、M22、M23を有する。
本実施形態の可変電流源221において、基準電圧源12は、トランジスタM21、M22のドレインと接続されている。トランジスタM21のゲートは、トランジスタM21のソース、トランジスタM23のドレイン及びトランジスタM22のゲートと接続されている。つまり、トランジスタM21、M22は、カレントミラー回路を形成している。トランジスタM22のソースは、カレントミラー回路220のトランジスタM3のドレインと接続される。
トランジスタM23のソースは接地されており、トランジスタM23のゲートには、MPU310からの電流指示信号が供給される。トランジスタM23に電流指示信号が供給されると、トランジスタM23のドレイン−ソース間には、電流指示信号に応じた値の電流が流れる。
トランジスタM21、M22により形成されるカレントミラー回路は、トランジスタM22のドレイン−ソース間の電流と同じ値の電流をトランジスタM22のドレイン−ソース間に流す。
本実施形態では、トランジスタM22のドレイン−ソース間の電流が、可変電流源221から出力される出力電流となる。したがって、本実施形態の可変電流源221から出力される出力電流の値は、MPU310により設定される値である。
次に、本実施形態の蓄電状態調整回路200の動作について説明する。本実施形態の蓄電状態調整回路200は、例えばMPU310により、二次電池B1〜B4の何れかのセル電圧が、満充電時のセル電圧の所定パーセント以下となったときに、蓄電状態を調整する動作を行う。
本実施形態の蓄電状態調整回路200では、二次電池B1〜B4のそれぞれのセル電圧を、4つの二次電池のセル電圧の平均値と比較した結果に応じて、充電の対象となる二次電池を選択し、充電を行うことで、二次電池B1〜B4の蓄電状態を調整する。
また、本実施形態では、蓄電池パック100に充電器400が接続されているか否かに応じて、蓄電状態を調整する。
具体的には、本実施形態の蓄電状態調整回路200は、蓄電池パック100に充電器400が接続された充電器接続状態では、二次電池B1〜B4のうち、セル電圧が平均値より高い二次電池から、セル電圧が平均値より低い二次電池へ電力を供給する。すなわち、蓄電状態調整回路200は、セル電圧が平均値より高い二次電池から、セル電圧が平均値より低い二次電池へ放電させる。
また、本実施形態の蓄電状態調整回路200は、蓄電池パック100に充電器400が接続されていない充電器未接続状態では、二次電池B1〜B4のうち、セル電圧が平均値より低い二次電池に対して、組電池110から電力を供給する。すなわち、蓄電状態調整回路200は、二次電池B1〜B4全体から、セル電圧が平均値より低い二次電池へ放電させる。
尚、二次電池B1〜B4のセル電圧の平均値は、電圧検出回路120により検出された各二次電池のセル電圧に基づき、MPU310により算出される。また、各二次電池Bのセル電圧が、平均値より高いか否かの判定も、MPU310により行われる。
以下に、図4及び図5を参照して、充電器接続状態における蓄電状態調整回路200の動作と、充電器未接続状態における蓄電状態調整回路200の動作を説明する。
図4は、蓄電状態調整回路の動作を説明する第一の図である。図4は、充電器接続状態における蓄電状態調整回路200の動作を示している。図4では、セル電圧が平均値より低い二次電池を二次電池B1とし、セル電圧が平均値より高い二次電池を二次電池B2とした。したがって、図4の場合では、二次電池B2から放電された電流が、二次電池B1へ供給されることになる。
図4(A)は、二次電池B2から放電する場合のスイッチ素子SW21とスイッチ素子SW22の動作を示している。図4(B)は、二次電池B1に充電する場合のスイッチ素子SW11とスイッチ素子SW12の動作を示してする。
本実施形態では、二次電池B2から放電される放電電流の値は、充電器400から供給される充電電流に基づき決められる。例えば、放電される電流の値は、充電電流の10%である。この電流の値は、二次電池B2と接続された可変電流源221に対し、MPU310から供給される電流指示信号により、与えられる。電流指示信号は、MPU310のDAC320から、可変電流源221のトランジスタM23のゲートに与えられる電圧であり、この電圧は放電電流に応じて変更される。
また、本実施形態では、二次電池B1へ充電される充電電流の値は、充電器400から供給される充電電流(以下、充電器充電電流)に、二次電池B2から放電された放電電流を加算した値とする。二次電池B1に供給される充電電流の値は、二次側コイルと接続されている可変電流源251に対し、MPU310から供給される電流指示信号により、与えられる。したがって、放電電流を充電器充電電流の10%とした場合には、二次電池B1に供給される充電電流は、充電器充電電流の110%の電流となる。
以下に、図4(A)のタイミングT21の状態について説明する。タイミングT21では、コントローラ130から供給される制御信号SG21、SG22により、スイッチ素子SW21がオン、スイッチ素子SW22がオフとされている。
この状態では、二次電池B2から電流(放電電流)が流れてコイルL21へ供給され、コイルL21にエネルギーを蓄積する。本実施形態では、二次電池B2の放電電流の値を、充電器充電電流の10%とした。
よって、充電器充電電流をIchとした場合、コイルL21に流れるコイル電流IL21は、0.1×Ichとなり、このコイル電流IL21により、コイルL21にエネルギーが蓄積される。
尚、二次電池から放電させる電流の割合は、10%に限定されず、任意に設定できる。この設定の詳細は後述する。また、充電器400から供給される充電電流の値は、充電器400や、蓄電池パック100の仕様等により予め決められている。
次に、タイミングT22の状態について説明する。タイミングT22では、制御信号SG21と制御信号SG22により、スイッチ素子SW22がオンとされ、スイッチ素子SW21がオフとされる。
このとき、コイルL22に流れるコイル電流IL22は、トランジスタM12のドレイン−ソース間電流と同じである。トランジスタM12のドレイン−ソース間電流は、可変電流源251から出力される出力電流である。可変電流源251の出力電流は、MPU310により、充電器充電電流Ichの110%と設定されている。
よって、コイル電流IL22はよって、コイル電流IL22の値は、Ich×1.1となる。
本実施形態では、二次側コイルに流れるコイル電流が、組電池110に供給される電流であり、二次電池に供給される充電電流である。したがって、ここでは、コイル電流IL22が、充電対象である二次電池B1に供給される充電電流となる。
このように、本実施形態では、充電器充電電流Ichの値を100%としたとき、二次電池から放電される放電電流の値を、充電器充電電流Ichの所定の割合に設定する。そして、充電される二次電池に供給される充電電流の値を、充電器充電電流Ichと放電電流の和となるように設定する。
本実施形態では、このようにセル電圧が平均値より低い二次電池のみ、充電器充電電流Ichよりも大きい充電電流が供給されるため、セル電圧が平均値より高い二次電池と比較して速やかに充電される。
次に、図4(B)のタイミングT21の状態について説明する。タイミングT21では、コントローラ130から供給される制御信号SG11、SG12により、スイッチ素子SW11がオフ、スイッチ素子SW12がオンとされている。
したがって、タイミングT21では、コイルL12に流れるコイル電流L12が二次電池B2に供給される。
このとき、コイル電流IL12は、トランジスタM11のドレインーソース間電流であり、コイル電流IL22の値と同じである。よって、コイル電流IL12は、充電器充電電流Ich×1.1である。
また、本実施形態では、二次電池B1のセル電圧が平均値に達すると、二次電池B1に対する二次電池B2からの放電電流の供給が停止される。より具体的には、MPU310は、電圧検出回路120により検出される二次電池B1のセル電圧が平均値に達したことを検知すると、コントローラ130に対し、制御信号SG11、SG12の供給を停止させ、スイッチ素子SW11、SW12の動作を停止させる。スイッチ素子SW11、SW12の動作が停止した後は、二次電池B1は、充電器400から供給される充電器充電電流Ichにより充電が行われる。二次電池B1に対する充電は、二次電池B1のセル電圧が、充電の停止を判定するための閾値(充電停止電圧等)に達したときに停止される。
すなわち、タイミングT21では、二次電池B2から充電器充電電流Ichの10%の電流が放電されると同時に、二次電池B2に充電器充電電流Ich×1.1が供給される。したがって、本実施形態では、二次電池B2から放電しても、二次電池B2のセル電圧を維持できる。
したがって、本実施形態では、二次電池B1〜B4の蓄電状態を速やかに均一化することがでる。
尚、図4では、二次電池B1と二次電池B2について説明したが、例えば他にセル電圧が平均値より高い二次電池があった場合には、この二次電池の充放電を制御するスイッチ素子は、図4(A)と同様の状態となるようにオン/オフが制御される。また、他にセル電圧が平均値より低い二次電池があった場合には、この二次電池の充放電を制御するスイッチ素子は、図4(B)と同様の状態となるようにオン/オフが制御される。
次に、図5を参照し、充電器未接続状態における蓄電状態調整回路200の動作を説明する。
本実施形態では、充電器未接続状態の場合、セル電圧が平均値より低い二次電池に対し、組電池110から放電される電流を充電電流として供給する。
組電池110から放電される電流の値は、可変電流源251に対してMPU310から与えられる電流指示信号により決められている。
本実施形態では、組電池110から放電される電流の値は、充電対象となる二次電池のセル電圧と、平均値との差分に応じて調整される。組電池110から放電される電流の値調整は、MPU310により行われる。
図5では、二次電池B1のみ、セル電圧が平均値より低い場合を示している。この場合、二次電池B1のみが充電される。したがって、蓄電状態調整回路200では、二次電池B1の蓄電状態を制御するスイッチ素子SW11、SW12にのみ、制御信号SG11、SG12が供給され、その他のスイッチ素子には制御信号は供給されない。
以下に、タイミングT11の状態について説明する。タイミングT11において、スイッチ素子SW12がオンとされ、スイッチ素子SW11はオフとされる。
スイッチ素子SW12がオンされると、コイルL12には、組電池110から、トランジスタMのドレイン−ソース間電流が供給される。トランジスタMのドレイン−ソース間電流は、可変電流源251から出力される電流と同じ値であり、MPU310から供給される電流指示信号により決められる。
充電器未接続状態における可変電流源251の出力電流の値は、セル電圧が平均値より低い二次電池のセル電圧と、平均値との差分に応じて調整される。したがって、図5の例では、MPU310は、二次電池B1のセル電圧と平均値との差分に応じて、可変電流源251の出力電流を決める電流指示信号の値を調整する。
次に、タイミングT12の状態について説明する。タイミングT12において、スイッチ素子SW12がオフとされ、スイッチ素子SW11がオンされると、コイルL11には、トランジスタM2のソース−ドレイン間電流と同じ値の電流が流れる。トランジスタM2のソース−ドレイン間電流は、可変電流源211の出力電流であり、可変電流源211の出力電流は、MPU310から供給される電流指示信号により決まる。本実施形態では、可変電流源211の出力電流の値は、可変電流源251の出力電流の値と同じ値に設定されるものとした。このように設定すれば、組電池110から放電した電流が二次電池B1に充電される。
また、本実施形態のMPU310は、二次電池B1のセル電圧が、平均値に達したことを検出すると、コントローラ130による制御信号SG11、SG12の供給を停止させ、二次電池B1に対する充電を停止させる。
タイミングT11、T12において、二次電池B1以外の二次電池の充放電を制御するスイッチ素子は、全てオフされる。図5では、二次電池B1以外の二次電池の一例として、二次電池B2の充放電を制御するスイッチ素子SW21、22の動作を示している。スイッチ素子SW21、22は、二次電池B1のセル電圧が充電されている間オフされる。
このように、本実施形態では、蓄電池パック100に充電器400が接続されていない充電器未接続状態では、セル電圧が平均値より低い二次電池に対してのみ、組電池110から電力を供給し、セル電圧が平均値になるまで充電する。この場合、充電対象の二次電池に供給される電力は、二次電池B1〜B4のそれぞれから提供される。したがって、セル電圧が平均値より高い二次電池から放電された電流が、セル電圧が平均値より低い二次電池へ充電されることとなり、複数の二次電池のセル電圧の均一化を速やかに行うことができる。
次に、図6を参照して本実施形態の電圧検出回路120の有するADC121の分解能と、MPU310が有するDAC320の分解能について説明する。
図6は、ADCとDACの分解能の関係を説明する図である。本実施形態では、ADC121の分解能と、DAC320の分解能とは等しいものとした。
本実施形態では、ADC121の分解能とDAC320の分解能とを等しくすることで、MPU310は、ADC121の検出精度と同じ精度で、蓄電状態調整回路200に供給される電流指示信号(電圧)の値を調整できる。
図6(A)を参照し、ADC121の分解能とDAC320の分解能について説明する。図6(A)では、ADC121の分解能をn1ビットとし、DAC320の分解能をn2ビットとした。
分解能n1ビットのADC121において、アナログ値である電圧Vaが入力された場合、出力されるディジタル値D1は、
ディジタル値D1=(Va×2n1)/Vmax 式(1)
となる。尚、Vmaxは、ADC121における最大入力電圧である。
また、分解能n2ビットのDAC320において、ディジタル値D2が入力された場合、出力されるアナログ値である電圧Vbは、
電圧Vb=(Vmax×D2)/2n2 式(2)
となる。
ここで、ADC121の分解能n1=DAC320の分解能n2とし、両者の最大入力電圧も等しいものと、ADC121の出力であるディジタル値D1をDAC320に入力した場合を考える。この場合、DAC320の出力であるアナログ値の電圧Vbは、ADC121に入力されたアナログ値である電圧Vaと等しくなる。
つまり、ADC121とDAC320の分解能が等しい場合、ADC121により二値化されたディジタル値をDAC320によりアナログ変換をする場合に、DAC320は、このディジタル値をそのまま用いれば良い。
したがって、本実施形態では、MPU310でディジタル値を用いた処理を行う際に、例えば電圧検出回路120から供給されるディジタル値をDAC320の分解能に合わせる処理等を行う必要がなく、そのまま用いることができ、処理の負荷を軽減できる。
また、本実施形態では、ADC121とDAC320の分解能を等しくすることで、ADC121により検出可能な最小電圧差と、MPU310において調整できる電流指示信号(電圧)の最小変動幅とを一致させることができる。
以下に、ADC121により検出可能な最小電圧差と、MPU310により調整可能な電流指示信号の最小変動幅について説明する。
ここでは、ADC121とDAC320の最小入力電圧をVminとした。したがって、ADC121の最大入力範囲Vioは、Vmax−Vminとなる。ADC121の分解能はn1ビットであるため、ADC121の最大分解能は、Vio/2n1となる。最大分解能Vio/2n1は、ADC121により検出可能な最小電圧差である。
また、DAC320の分解能はn2ビットである。よって、DAC320は、最大入力範囲Vioにおいて、2n2個の電圧レベルを生成することができる。つまり、DAC320は、Vio/2n2の電圧差を生成することができる。この電圧差Vio/2n2は、MPU310により調整可能な電流指示信号の最小変動幅である。
本実施形態では、n1ビット=n2ビットである。よって、Vio/2n1=、Vio/2n2であり、ADC121により検出可能な最小電圧差と、MPU310により調整可能な電流指示信号の最小変動幅は等しくなる。よって、本実施形態では、ADC121の検出精度と同じ精度で、蓄電状態調整回路200に供給される電流指示信号(電圧)の値を調整できる。
次に、図7乃至図11を参照し、本実施形態のMPU310について説明する。図7は、MPUの機能を説明する図である。
本実施形態のMPU310は、電圧データ取得部311、残量判定部312、平均値算出部313、電流指示値生成部314、セル分類部315を有する。また、本実施形態のMPU310は、記憶領域316を有する。
本実施形態のMPU310の有する各部の機能は、例えばMPU310のメモリに書き込まれたプログラム等により実現される。また、本実施形態の記憶領域316は、MPU310の有するメモリの所定の領域に設けられている。
本実施形態の記憶領域316には、電流テーブル317、318と、残量判定閾値319とが格納されている。電流テーブル317は、充電器接続状態の際に参照される。電流テーブル318は、充電器未接続状態の際に参照される。電流テーブル317、318の詳細は後述する。
残量判定閾値319は、二次電池B1〜B4の満充電時のセル電圧に対する所定パーセントのセル電圧の値である。または、残量判定閾値319は、二次電池B1〜B4の満充電時の容量に対する所定パーセントの容量の値である。
本実施形態の電圧データ取得部311は、電圧検出回路120のADC121から出力される二次電池B1〜B4のセル電圧の値(ディジタル値)を取得する。本実施形態の電圧データ取得部311は、所定間隔で二次電池B1〜B4のセル電圧を取得しても良い。
残量判定部312は、二次電池B1〜B4の何れかのセル電圧が、後述する残量判定閾値319以下となったか否かを判定する。また、残量判定部312は、二次電池B1〜B4の何れかの残容量が、残量判定閾値319以下となったか否かを判定しても良い。
平均値算出部313は、電圧データ取得部311により取得した二次電池B1〜B4のセル電圧の平均値を算出する。本実施形態の平均値算出部313は、電圧データ取得部311が二次電池B1〜B4のセル電圧を取得する度に平均値を算出しても良い。
電流指示値生成部314は、電流テーブル317、318を参照し、蓄電状態調整回路200の有する各可変電流源に供給する電圧指示値を生成する。本実施形態の電流指示値は、ディジタル値であり、DAC320に供給される。DAC320は、この電流指示値をアナログ信号である電流指示信号に変換し、蓄電状態調整回路200の各可変電流源に供給する。
セル分類部315は、電圧データ取得部311が取得した値に基づき、二次電池B1〜B4をセル電圧が平均値より高いものと低いものとに分類する。
図8は、電流テーブルの一例を示す第一の図である。本実施形態の電流テーブル317は、MPU310により、充電器400と蓄電池パック100との接続が検出されている充電器接続状態において、電流指示値生成部314により参照される。
本実施形態の電電流テーブル317は、情報の項目として、ΔV、放電電流、充電電流を有する。
項目「ΔV」の値は、二次電池B1〜B4のうち、最も低いセル電圧と平均値との差の範囲を示す。項目「放電電流」の値は、充電器充電電流に対し、セル電圧が平均値より高い二次電池から放電させる放電電流とする割合を示す。項目「充電電流」の値は、充電器充電電流に対し、セル電圧が平均値より低い二次電池に供給される充電電流とする割合を示す。
図8の例では、最も低いセル電圧と平均値との差ΔVが0.10〜0.19Vの範囲であった場合、充電器充電電流の10%を放電電流とし、充電器充電電流の110%を充電電流となる。
図9は、電流テーブルの一例を示す第二の図である。本実施形態の電流テーブル317は、MPU310により、充電器400と蓄電池パック100との接続が検出されていない充電器未接続状態において、電流指示値生成部314により参照される。
本実施形態の電流テーブル317は、情報の項目として、ΔV、充電電流を有する。
項目「充電電流及び放電電流」の値は、組電池110から放電される放電電流の値と、セル電圧が平均値より低い二次電池に供給される充電電流の値を示す。
図9の例では、最も低いセル電圧と平均値との差ΔVが0.10〜0.19Vの範囲であった場合、80mAの電流が組電池110から放電されて、セル電圧が平均値より低い二次電池に供給される。
次に、図10を参照し、本実施形態のMPU310の動作について説明する。図10は、MPUの動作を説明する第一のフローチャートである。図10は、充電器接続状態におけるMPU310の動作を示している。
本実施形態のMPU310は、残量判定部312により、電圧データ取得部311が取得した値から、最もセル電圧が低い二次電池の残容量が残量判定閾値319以下となったか否かを判定する(ステップS1001)。ステップS1001において、残量判定閾値319以下とならない場合、MPU310は残量判定閾値319以下となるまで待機する。
ステップS1001において、残量判定閾値319以下となった場合、MPU310は、電圧データ取得部311により、最もセル電圧が低い二次電池のセル電圧と、平均値との差分を取得する(ステップS1002)。尚、ここで参照される平均値は、平均値算出部313により算出された値である。
続いてMPU310は、セル分類部315により、セル電圧が平均値より高い二次電池Bと、低い二次電池とに分類する(ステップS1003)。続いてMPU310は、電流指示値生成部314により、電流テーブル317を参照し、ステップS1002で求めた差分が含まれるΔVと対応する放電電流の値と充電電流の値を取得する(ステップS1004)。
続いてMPU310は、電流指示値生成部314により、セル電圧が平均値より高い放電対象の二次電池から、取得した値の放電電流を放電させるための電流指示値を生成する。そして、MPU310は、DAC320により、電流指示値に応じた電流指示信号を、放電対象の二次電池の充放電を制御する一次側コイルと接続された可変電流源へ出力する(ステップS1005)。
また、MPU310は、電流指示値生成部314により、組電池110からセル電圧が平均値より低い充電対象の二次電池へ、取得した値の充電電流を供給させるための電流指示値を生成する。そして、MPU310は、DAC320により、電流指示値に応じた電流指示信号を、充電対象の二次電池の充放電を制御する二次側コイルと接続された可変電流源251へ出力する(ステップS1006)。
続いてMPU310は、充電対象の二次電池のうち、セル電圧が所定電圧に達したものがあるか否かを判定する(ステップS1007)。所定電圧とは、例えば予め設定された充電停止電圧でも良いし、平均値であっても良い。
ステップS1007において、該当する二次電池が存在しない場合、MPU310は、待機する。
ステップS1007において、該当する二次電池が存在する場合、MPU310は、該当する二次電池に対する充電電流の供給を停止する(ステップS1008)。具体的には、MPU310は、コントローラ130からの、該当する二次電池の充放電を制御するスイッチ素子に対する制御信号の供給を停止させる。
続いてMPU310は、充電対象の全ての二次電池のセル電圧が所定電圧に達したか否かを判定する(ステップS1009)。ステップS1009において、全ての二次電池のセル電圧が所定電圧に達していない場合、MPU310は、ステップS1007へ戻る。
ステップS1009において、全ての二次電池のセル電圧が所定電圧に達した場合、MPU310は、蓄電状態の調整に関する処理を終了する。
次に、図11を参照し、充電器未接続状態におけるMPU310の動作を説明する。図11は、MPUの動作を説明する第二のフローチャートである。
図11のステップS1101とステップS1102の処理は、図10のステップS1001とステップS1002の処理と同様であるから、説明を省略する。
ステップS1102に続いて、MPU310は、セル分類部315により、セル電圧が平均値より低い二次電池を検出する(ステップS1103)。
続いてMPU310は、電流テーブル318を参照し、ステップS1102で求められた差分が含まれるΔVと対応する充電電流及び放電電流の値を取得する(ステップS1104)。
続いてMPU310は、電流指示値生成部314により、取得した値の放電電流を組電池110から放電させるための電流指示値を生成する。そして、MPU310は、DAC320により、電流指示値に応じた電流指示信号を、二次側コイルと接続された可変電流源251へ出力する(ステップS1105)。
続いてMPU310は、電流指示値生成部314により、セル電圧が平均値より低い放電対象の二次電池に、取得した値の充電電流を供給するための電流指示値を生成する。そして、MPU310は、DAC320により、電流指示値に応じた電流指示信号を、充電対象の二次電池の充放電を制御する一次側コイルと接続された可変電流源へ出力する(ステップS1106)。
続いて、MPU310は、充電対象の二次電池のうち、セル電圧が平均値に達したものがあるか否かを判定する(ステップS1107)。ステップS1107において、該当する二次電池が存在しない場合、MPU310は、待機する。
ステップS1107において、該当する二次電池が存在する場合、MPU310は、該当する二次電池に対する充電電流の供給を停止する(ステップS1108)。具体的には、MPU310は、コントローラ130からの、該当する二次電池の充放電を制御するスイッチ素子に対する制御信号の供給を停止させる。
続いてMPU310は、充電対象の全ての二次電池のセル電圧が平均値に達したか否かを判定する(ステップS1109)。ステップS1109において、全ての二次電池のセル電圧が平均値に達していない場合、MPU310は、ステップS1107へ戻る。
ステップS1109において、全ての二次電池のセル電圧が平均値に達した場合、MPU310は、蓄電状態の調整に関する処理を終了する。
以上のように、本実施形態によれば、蓄電池パック100が接続される負荷(装置)に搭載されたMPU310により、充電電流及び放電電流の値を制御する。
したがって、本実施形態では、蓄電状態調整回路200のスイッチ素子のオン/オフを制御する制御信号の周波数を変えることなく、簡易な構成で複数の二次電池の蓄電状態の均一化を図ることができる。
また、本実施形態では、各二次電池のセル電圧を二値化する際の分解能と、二値データである電流指示値から充電電流及び放電電流の値を決定する電流指示信号を生成する際の分解能とを等しくした。これにより、本実施形態によれば、セル電圧の検出精度と同じ精度で充電電流及び放電電流の値を調整できる。
以上、各実施形態に基づき本発明の説明を行ってきたが、上記実施形態に示した要件に本発明が限定されるものではない。これらの点に関しては、本発明の主旨をそこなわない範囲で変更することができ、その応用形態に応じて適切に定めることができる。
100 蓄電池パック
110 組電池
120 電圧検出回路
130 コントローラ
140 コイル群
200 蓄電状態調整回路
210、220、230、240、250 カレントミラー回路
211、221、231、241、251 可変電流源
300 負荷
310 MPU
320 DAC
400 充電器
特開2013−219994号公報

Claims (9)

  1. 複数の二次電池における各二次電池と、前記各二次電池と対応する第一のコイルとの接続/遮断を切り替える第一のスイッチ部と、
    出力が前記第一のスイッチ部と接続され、第一の電流指示信号に応じた出力電流を出力する第一の可変電流回路と、
    前記複数の二次電池が直列に接続された組電池と、前記組電池と対応する第二のコイルとの接続/遮断を切り替える第二のスイッチ部と、
    出力が前記第二のスイッチ部と接続され、第二の電流指示信号に応じた出力電流を出力する第二の可変電流回路と、を有する蓄電状態調整回路。
  2. 前記第一の可変電流回路の出力電流及び前記第二の可変電流回路の出力電流は、
    前記複数の二次電池の各セル電圧の平均値と、前記各セル電圧において最も低いセル電圧との差分に応じて決められる請求項1記載の蓄電状態調整回路。
  3. 前記組電池と前記第二のコイルとが前記第二のスイッチ部により接続されたときの、前記第二の可変電流回路の出力電流は、
    前記組電池に外部から供給される充電電流と、
    前記複数の二次電池のうち、セル電圧が前記平均値より高い二次電池と、前記第一のコイルとが前記第一のスイッチ部により接続されたときの、前記第一の可変電流回路の出力電流との和となるように、前記第二の電流指示信号により決められる請求項2記載の蓄電状態調整回路。
  4. 前記第一の可変電流回路の出力電流は、前記外部から供給される充電電流に基づき、前記第一の電流指示信号により決められる請求項3記載の蓄電状態調整回路。
  5. 前記第一の電流指示信号は、
    前記複数の二次電池の各セル電圧を二値データとするときの分解能と等しい分解能で、前記第一の可変電流回路の出力電流の値と対応する二値データから生成され、
    前記第二の電流指示信号は、
    前記複数の二次電池の各セル電圧を二値データとするときの分解能と等しい分解能で、前記第二の可変電流回路の出力電流の値と対応する二値データから生成される請求項1乃至4の何れか一項に記載の蓄電状態調整回路。
  6. 前記第一の可変電流回路は、
    前記第一の電流指示信号が示す出力電流を出力する第一の可変電流源と、
    入力側の一端が前記第一の可変電流源と接続され、出力側の一端が前記第一のスイッチ部と接続された第一のカレントミラー回路と、を有し、
    前記第二の可変電流回路は、
    前記第二の電流指示信号が示す出力電流を出力する第二の可変電流源と、
    入力側の一端が前記第二の可変電流源と接続され、出力側の一端が前記第二のスイッチ部と接続された第二のカレントミラー回路と、を有する請求項1乃至5の何れか一項に記載の蓄電状態調整回路。
  7. 複数の二次電池における各二次電池と対応する第一のコイルと、
    前記複数の二次電池が直列に接続された組電池と対応する第二のコイルと、
    前記各二次電池と、前記第一のコイルとの接続/遮断を切り替える第一のスイッチ部と、
    出力が前記第一のスイッチ部と接続され、第一の電流指示信号に応じた出力電流を出力する第一の可変電流回路と、
    前記組電池と、前記第二のコイルとの接続/遮断を切り替える第二のスイッチ部と、
    出力が前記第二のスイッチ部と接続され、第二の電流指示信号に応じた出力電流を出力する第二の可変電流回路と、を有する蓄電状態調整装置。
  8. 複数の二次電池が直列に接続された組電池と、
    前記複数の二次電池における各二次電池と対応する第一のコイルと、
    前記組電池と対応する第二のコイルと、
    前記各二次電池と、前記第一のコイルとの接続/遮断を切り替える第一のスイッチ部と、
    出力が前記第一のスイッチ部と接続され、第一の電流指示信号に応じた出力電流を出力する第一の可変電流回路と、
    前記組電池と、前記第二のコイルとの接続/遮断を切り替える第二のスイッチ部と、
    出力が前記第二のスイッチ部と接続され、第二の電流指示信号に応じた出力電流を出力する第二の可変電流回路と、を有する蓄電池パック。
  9. 前記各二次電池のセル電圧を検出し、二値データとするADコンバータを有し、
    前記第一の電流指示信号は、
    前記A/Dコンバータの分解能と等しい分解能で、前記第一の可変電流回路の出力電流の値と対応した二値データから生成され、
    前記第二の電流指示信号は、
    前記A/Dコンバータの分解能と等しい分解能で、前記第二の可変電流回路の出力電流の値と対応した二値データから生成される請求項8記載の蓄電池パック。
JP2015056816A 2015-03-19 2015-03-19 蓄電状態調整回路、蓄電状態調整装置及び蓄電池パック Pending JP2016178781A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015056816A JP2016178781A (ja) 2015-03-19 2015-03-19 蓄電状態調整回路、蓄電状態調整装置及び蓄電池パック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015056816A JP2016178781A (ja) 2015-03-19 2015-03-19 蓄電状態調整回路、蓄電状態調整装置及び蓄電池パック

Publications (1)

Publication Number Publication Date
JP2016178781A true JP2016178781A (ja) 2016-10-06

Family

ID=57069381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056816A Pending JP2016178781A (ja) 2015-03-19 2015-03-19 蓄電状態調整回路、蓄電状態調整装置及び蓄電池パック

Country Status (1)

Country Link
JP (1) JP2016178781A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106611878A (zh) * 2016-11-10 2017-05-03 江苏索尔新能源科技股份有限公司 电芯智能配组方法和系统
WO2021192581A1 (ja) * 2020-03-23 2021-09-30 Fdk株式会社 電池電圧均等化装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106611878A (zh) * 2016-11-10 2017-05-03 江苏索尔新能源科技股份有限公司 电芯智能配组方法和系统
CN106611878B (zh) * 2016-11-10 2019-05-10 江苏索尔新能源科技股份有限公司 电芯智能配组方法和系统
WO2021192581A1 (ja) * 2020-03-23 2021-09-30 Fdk株式会社 電池電圧均等化装置
JP7441692B2 (ja) 2020-03-23 2024-03-01 Fdk株式会社 電池電圧均等化装置

Similar Documents

Publication Publication Date Title
JP6033337B2 (ja) 蓄電池均等化装置
US9831778B2 (en) Power-converting device and power conditioner using the same
US20160105096A1 (en) Power factor correction controller and power supply apparatus using the same
US10615686B2 (en) Multi-level step-up converters with flying capacitor
US11196344B2 (en) Power switching circuit, a DC-DC converter including the same and a voltage conversion method
US20140232344A1 (en) Circuit and method for voltage equalization in large batteries
CN101419255B (zh) 开关电源的占空比检测电路、检测方法及应用
CN100547680C (zh) 在半导体器件中使用的中点电势生成电路
CN110784103A (zh) 将第一电压转换为第二电压的装置
KR20100081552A (ko) 차지 펌프 회로 및 이를 이용한 전압 변환 장치
TWI746997B (zh) 電荷泵
WO2013140894A1 (ja) 調整装置、組電池装置および調整方法
TW201416817A (zh) 可調整最大功率點追蹤控制器及其相關方法
US6573695B2 (en) High-efficiency power supply
WO2023240990A1 (zh) 电源电路、电路控制方法、电源装置和电子设备
TWI764795B (zh) 返馳式電源轉換器與其中之切換式電容轉換電路
CN115189584A (zh) 电源电路、电路控制方法、电源装置和电子设备
JP2016178781A (ja) 蓄電状態調整回路、蓄電状態調整装置及び蓄電池パック
JP6527106B2 (ja) 電源回路
JP2010098782A (ja) 直列セルの電圧バランス補正回路および蓄電装置
US9000737B2 (en) Maximum power extraction device
Rao et al. A comparative study of Bidirectional DC-DC converter & its interfacing with two battery storage system
JP2005176430A (ja) 電源制御システム、及び該電源制御システムを用いた電子機器
JP2011087379A (ja) 電力制御器
US9407146B2 (en) Power source circuit and method of controlling power source circuit