JP2016176808A - テラヘルツ波顕微鏡および焦点制御方法 - Google Patents

テラヘルツ波顕微鏡および焦点制御方法 Download PDF

Info

Publication number
JP2016176808A
JP2016176808A JP2015057097A JP2015057097A JP2016176808A JP 2016176808 A JP2016176808 A JP 2016176808A JP 2015057097 A JP2015057097 A JP 2015057097A JP 2015057097 A JP2015057097 A JP 2015057097A JP 2016176808 A JP2016176808 A JP 2016176808A
Authority
JP
Japan
Prior art keywords
unit
terahertz wave
focus
observation target
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015057097A
Other languages
English (en)
Other versions
JP6330703B2 (ja
Inventor
靖之 石濱
Yasuyuki Ishihama
靖之 石濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2015057097A priority Critical patent/JP6330703B2/ja
Publication of JP2016176808A publication Critical patent/JP2016176808A/ja
Application granted granted Critical
Publication of JP6330703B2 publication Critical patent/JP6330703B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】観察精度を高めることができるテラヘルツ波顕微鏡および焦点制御方法を提供すること。
【解決手段】テラヘルツ波顕微鏡は、支持部と、光源と、光学機構と、制御機構とを具備する。前記支持部は、観察対象を支持する。前記光源は、励起光を発生する。前記光学機構は、前記観察対象に前記励起光を照射することで、前記観察対象から発生するテラヘルツ波を検出するように構成される。前記制御機構は、前記支持部に支持された前記観察対象の焦点誤差を測定するように構成され、その測定情報に基づき、前記光学機構の焦点を前記観察対象の位置に合わせるように、前記支持部および前記光学機構の相対移動を制御するように構成される。
【選択図】図2

Description

本技術は、テラヘルツ電磁波を利用したテラヘルツ波顕微鏡、また、それに用いられる光学系の焦点制御方法に関する。
特許文献1に記載の半導体装置の製造システムでは、テラヘルツ電磁波(以下、単にテラヘルツ波という。)を利用して、非接触で半導体デバイスを検査する方法が用いられている。この検査方法では、検査対象である半導体デバイスに、例えば超短パルスレーザ等、励起用のパルスレーザを照射することにより発生するテラヘルツ波が、その半導体デバイスの内部の電界分布や配線欠陥の影響を受けることを利用し、半導体デバイスの欠陥を検査する(例えば特許文献1参照)。
このようなテラヘルツ波を用いた検査方法では、検査対象から発生するテラヘルツ波を高い効率で検出することが求められる。検査対象から発生するテラヘルツ波が微弱である場合や、検出素子への収束効率が低い場合には、テラヘルツ波の検出効率は低下してしまう。
そこで、特許文献2に記載のテラヘルツ波顕微鏡では、低損失なテラヘルツ集光光学系(楕円形状の反射面)の2つの焦点位置にテラヘルツ発生源(観察対象)とテラヘルツ検出器を置くことで検出素子への収束効率を高めることを実現している。
特開2006-156978号公報 特開2014-219306号公報
このようなテラヘルツ波顕微鏡では、観察対象の位置が変化して光学系の焦点から外れてしまうと、検出器におけるテラヘルツ波の強度が低下し、電磁波から電流への変換効率が低下する。そうすると、検出信号の強度低下が起こるため、検出精度、つまり観察精度が低下する。
本技術の目的は、観察精度を高めることができるテラヘルツ波顕微鏡および焦点制御方法を提供することにある。
上記目的を達成するため、本技術に係るテラヘルツ波顕微鏡は、支持部と、光源と、光学機構と、制御機構とを具備する。
前記支持部は、観察対象を支持する。
前記光源は、励起光を発生する。
前記光学機構は、前記観察対象に前記励起光を照射することで、前記観察対象から発生するテラヘルツ波を検出するように構成される。
前記制御機構は、前記支持部に支持された前記観察対象の焦点誤差を測定するように構成され、その測定情報に基づき、前記光学機構の焦点を前記観察対象の位置に合わせるように、前記支持部および前記光学機構の相対移動を制御するように構成される。
本技術では、制御機構が、光学機構の焦点を、支持部に支持された観察対象に合わせるよう構成される。したがって、光学機構によって取得されるテラヘルツ波の強度低下を防止することができるので、光学機構は適切な検出信号を得ることができる。これにより、観察精度を高めることができる。
前記光学機構は、励起光照射部と、取出部と、検出部とを有してもよい。
前記励起光照射部は、第1焦点を有し、前記観察対象に前記励起光を照射する。
前記取出部は、第2焦点および第3焦点を有し、前記観察対象から発生するテラヘルツ波を取り出す。
前記検出部は、前記取出部により取り出されたテラヘルツ波を検出する。
前記制御機構は、前記第1焦点および前記第2焦点を前記観察対象の位置に合わせるように、かつ、前記第3焦点を前記検出部の位置に合わせるように、前記相対移動の制御を実行するように構成されてもよい。
前記テラヘルツ波顕微鏡は、前記光源からの前記励起光からプローブ光を生成する生成部をさらに具備してもよい。
前記光学機構は、プローブ光照射部と、光学遅延部とを有してもよい。
前記プローブ光照射部は、第4焦点を有し、前記生成部により生成された前記プローブ光を前記検出部に照射する。
前記光学遅延部は、前記プローブ光の光路長を調整する。
前記制御機構は、さらに前記第3焦点および前記第4焦点を前記検出部の位置に合わせるように、前記相対移動の制御を実行するように構成されてもよい。
これにより、プローブ光を用いた同期検波によってテラヘルツ波を検出する形態の光学機構おいても、検出器で取得されるテラヘルツ波の強度低下を防止することができる。その結果、観察精度が向上する。
前記制御機構は、撮像部と、前記撮像部で撮影された前記観察対象の画像データに基づき、前記測定情報を得るように構成された処理部とを有してもよい。
これにより、制御機構は、画像処理によって、測定情報、すなわち焦点誤差を測定することができる。
前記制御機構は、前記観察対象に応じた、前記光学機構の焦点距離のオフセット値を取得する取得部を有してもよい。この場合、前記制御機構は、前記測定情報および前記取得されたオフセット値に基づき、前記光学機構の焦点を前記観察対象の位置に合わせるように、前記相対移動の制御を実行するように構成されてもよい。
焦点制御において観察対象の厚さが考慮されたオフセット値が使用されることにより、観察精度を高めることができる。
観察対象を支持する支持部と、観察対象に励起光を照射することで、前記観察対象から発生するテラヘルツ波を検出するように構成された光学機構とを備えるテラヘルツ波顕微鏡による焦点制御方法である。
前記焦点制御方法は、前記支持部に支持された前記観察対象の焦点誤差を測定することを含む。
前記焦点誤差の測定情報に基づき、前記光学機構の焦点を前記観察対象の位置に合わせるように、前記支持部および前記光学機構の相対移動が制御される。
以上、本技術によれば、テラヘルツ波顕微鏡による観察精度を高めることができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
図1Aは、本技術に係るテラヘルツ波顕微鏡の基本的な光学系を示す図である。図1Bは、図1Aに光学系において、焦点ずれが発生した状態を示す。 図2は、本技術の第1の実施形態に係るテラヘルツ波顕微鏡の全体構成を示す。 図3は、テラヘルツ波顕微鏡の動作を示すフローチャートである。 図4A、Bは、図3におけるステップ105および106の光学機構の動作を示す図である。 図5Aは、励起光およびテラヘルツを合わせた光路長と、プローブ光の光路長を示す。図5Bは、図5Aにおいて、それらの光路長の光路差が生じた状態を示す。 図6は、検出部で得られる検出信号を示す。 図7は、励起光照射部、取出部、検出部およびプローブ光照射部を含む光学系の合焦点状態を示す。 図8は、テラヘルツ波顕微鏡の第2の実施形態に係る処理を示すフローチャートである。
1.テラヘルツ波顕微鏡の原理
図1Aは、本技術に係るテラヘルツ波顕微鏡の基本的な光学系を示す図である。テラヘルツ波顕微鏡は、観察対象Tをテラヘルツ波Wにより観察する装置である。テラヘルツ波顕微鏡は、励起光L0を発生する励起光源11と、観察対象Tにその励起光L0を照射することで、観察対象Tから発生するテラヘルツ波Wを検出するように構成された光学機構120とを備える。
励起光源11は、観察対象Tを励起する励起用のパルスレーザを発生する光源である。励起光源11は、パルスレーザとして、例えば、2μm以下の波長および100ps以下のパルス幅を有する、超短パルスレーザが用いられる。
観察対象Tは、典型的には、主に半導体材料を用いた半導体デバイスであり、例えば半導体レーザや発光ダイオード等の発光デバイスである。あるいは、観察対象Tは、半導体材料を用いた、IC(Integrated Circuit)やその他のデバイスであってもよい。観察対象Tが電子部品である場合、それらの電子部品は、実装基板に実装された電子部品である場合が多い。図1A、Bではその実装基板は図示されていない。観察対象Tはここでは図示しない支持部によって支持される。
光学機構120は、励起光照射部22、取出部24および検出部26を備える。励起光照射部22は、観察対象Tに励起光L0を集光する機能を有する。
取出部24は、励起光照射部22との間に観察対象Tを挟むように配置されている。主に半導体材料を含む観察対象Tにパルスレーザが照射されると、観察対象Tから、例えば1010(Hz)以上1014(Hz)以下の周波数を有するテラヘルツ波Wが発生する。取出部24は、観察対象Tから発生するテラヘルツ波Wを取り出して後段の検出部26に集束させる機能を有する。
励起光照射部22および取出部24は、主に1つまたは複数のレンズを含む集光光学系によりそれぞれ構成される。例えば取出部24としては、誘電体レンズが用いられる。
検出部26は、取出部24により取り出されたテラヘルツ波を受け、それを電気信号に変換する機能を有する。検出部26は、典型的には光伝導素子を含む。光伝導素子は、光伝導アンテナ(PCA:Photoconductive Antenna)とも呼ばれ、テラヘルツ波を検出することが可能な構造を有する。その構造は公知のものでよく、例えば特開2014-219306で開示された光伝導素子が好適である。
光学機構120は、第1焦点F1、第2焦点F2、および第3焦点F3を有する。具体的には、励起光照射部22は、観察対象T側に配置された第1焦点F1を有する。取出部24は、観察対象T側に配置された第2焦点F2と、検出部26側に配置された第3焦点F3を有する。第1焦点F1および第2焦点F2が観察対象Tの位置にあり、かつ、第3焦点F3が検出部26の位置にある時、検出部26で検出される検出信号の強度が最も高くなり、つまり高SN比の信号が得られるため、高精度な観察を行うことができる。
このように構成されたテラヘルツ波顕微鏡において、図1Bの白矢印(変位量D)に示すように、焦点(第1焦点F1)が観察対象Tの位置からずれた場合、次のような問題が発生する。すなわち、第1焦点F1が観察対象Tの位置から外れると、観察対象に照射される光量が不十分となり、観察対象Tの位置での励起光L0のエネルギー密度が低下し、観察対象Tからのテラヘルツ波Wの放射量が低下する。
例えば、雰囲気温度の経時変化による実装基板の変形によって、観察対象Tの位置が変動し焦点から外れる場合がある。あるいは、基板が、フレキシブル基板であったり、または、曲面等、非平面の実装面を有する等、3次元の実装面を有する基板である場合、焦点ずれが起こりやすい。あるいは、1つの実装基板に観察対象Tが複数設けられる場合、観察対象Tごとに焦点が変わる場合もある。
観察対象Tの位置変化(つまり焦点ずれ)は、すなわち、観察対象Tからのテラヘルツ波の発生位置の変化を意味する。したがって、取出部24によるテラヘルツ波の検出部26への放射量が不十分になり、検出部26におけるテラヘルツ波の強度が低下するため、テラヘルツ波から電流への変換効率が低下する。
以上述べたテラヘルツ波の放射量の低下と、テラヘルツ波から電流への変換効率の低下とが、相乗効果で、検出部26による検出信号の強度低下を引き起こす。
2.第1の実施形態
1)テラヘルツ波顕微鏡の構成
図2は、本技術の第1の実施形態に係るテラヘルツ波顕微鏡の全体構成を示す。なお、これ以降の説明では、図1Aで示した要素と同一の要素については同一の符号を付し、その説明を省略または簡略化する。
テラヘルツ波顕微鏡100の光学系は、励起光源11、変調器13、ハーフミラー12、14、光学機構20、および反射ミラー16、17、18、19を備える。光学機構20は、励起光照射部22、取出部24、検出部26、プローブ光照射部28、および光学遅延部23を主に有する。
ハーフミラー12は、励起光源11から発せられたパルスレーザの一部を反射し、その反射光を変調器13に導く機能を有する。変調器13は、ハーフミラー12からの反射光の強度を変調する機能を有する。変調器13としては、例えば光チョッパ等が用いられる。ハーフミラー14は、変調器13から出力された変調されたパルスレーザを反射し、その反射光を励起光照射部22に導く機能を有する。
励起光照射部22、取出部24、検出部26は、図1Aで示したものと同様の構成を有する。プローブ光照射部28は、プローブ光L1を観察対象Tに照射する機能を有する。プローブ光L1は、上記ハーフミラー12を透過するパルスレーザの一部である。この場合、ハーフミラー12は、プローブ光L1を生成する「生成部」として機能する。ハーフミラー12を透過したパルスレーザは、適切な位置にそれぞれ配置された反射ミラー16〜19、また、光学遅延部23を介して、プローブ光照射部28に導かれる。
プローブ光照射部28は、検出部26側に配置された第4焦点F4を有する。観察対象Tの観察時には、プローブ光照射部28は、第4焦点F4が検出部26の位置に配置された状態が維持される。
光学遅延部23は、例えば2つの反射ミラー231、232と、これら移動可能に支持する遅延ステージ23Aとを有する。反射ミラー231、232により、例えばリトロリフレクタが構成される。
このように構成された光学遅延部23は、遅延ステージ23Aが、光の進行方向(図2においてz方向)に移動することにより、プローブ光照射部28へ入射するプローブ光L1の光路長を変化させることができる。パルスレーザの、検出部26への到達時刻もその光路長に応じて変わるので、その結果、光学遅延部23は、所定のタイミングでプローブ光L1(サンプリングパルスレーザ)を出力することが可能となる。光学遅延部23によって、そのプローブ光L1の出力タイミングが制御されることにより、検出部26によるテラヘルツ波の検出タイミングが制御される。この結果、検出部26は、テラヘルツ波の電界強度の時間波形を取得することが可能となる(図6参照)。
光学機構20は、励起光照射部22を光軸方向(つまりz方向)に移動させるステージ22Aを備える。同様に、光学機構20は、取出部24、検出部26、プローブ光照射部28を光軸方向にそれぞれ移動させるステージ24A、26A、28Aを備える。
また、テラヘルツ波顕微鏡100は、観察対象Tを支持する支持部40、制御部10、カメラ15(撮像部)、各ステージコントローラ32、34、36、38、支持部コントローラ35、遅延ステージコントローラ33、プリアンプ37、ロックインアンプ39を備える。
支持部40は、観察対象Tが実装された実装基板S等を支持するように構成され、また、この実装基板Sを2次元内で移動させるように構成されている。その2次元とは、実装基板Sの平面であるx−y面である。支持部コントローラ35は、この支持部40の移動を制御する機能を有する。
制御部10は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等のハードウェアを備えたコンピュータで構成される。制御部10は、カメラ15、各ステージコントローラ32、34、36、38、支持部コントローラ35、遅延ステージコントローラ33、プリアンプ37、およびロックインアンプ39を統括的に制御する機能を有する。また、制御部10は、検出部26で得られた信号を取得し、その信号に基づき、観察対象Tの観察結果を出力する機能を有する。
カメラ15は、観察対象Tの画像光を取得し、その画像データを制御部10に送るように構成されている。励起光源11とは別の図示しない照明光学系が設けられ、その照明光の観察対象Tからの反射光を、カメラ15が画像光として取得する。図示しない照明光学系の光源は、例えば、観察対象Tの近傍、または励起光照射部22の近傍に設けられたリング状の形状を有するように構成されるが、もちろんそれらとは別の位置から照明光を発生する構成であってもよい。その観察対象Tからの反射光は、励起光照射部22およびハーフミラー14を介して、カメラ15に入射する。すなわち、カメラ15は、励起光の観察対象Tへの照射状態を観察することができる。
あるいは、別途の照明光学系が用いられる形態に限られず、励起光源11が照明光学系の光源として用いられてもよい。この場合、カメラ15が取得する画像光は、励起光L0によって観察対象Tで反射し散乱する光である。
各ステージコントローラ32、34、36、38は、制御部10による制御にしたがって、各ステージ22A、24A、26A、28Aのz方向の移動を制御する機能を有する。支持部コントローラ35は、制御部10による制御にしたがって、支持部40のx−y平面内の移動を制御する機能を有する。遅延ステージコントローラ33は、制御部10による制御にしたがって、光学遅延部23の遅延ステージ23Aのz方向の移動を制御する機能を有する。
プリアンプ37は、検出部26から出力される検出信号を増幅する機能を有する。ロックインアンプ39は、その増幅された信号に基づく同期検波によって、テラヘルツ波の所望のタイミングにおける強度に比例した信号を取得する機能を有する。ロックインアンプ39で得られた信号は制御部10へ送られる。
2)テラヘルツ波顕微鏡の動作
図3は、テラヘルツ波顕微鏡100の動作を示すフローチャートである。説明の便宜的上、この動作の主体を制御部10として説明する。
テラヘルツ波顕微鏡100の初期設定として、制御部10は、処理対象となる観察対象Tを実装した実装基板Sに関するデータを取得する。具体的には、制御部10は、実装基板S上のx−y面内における観察対象Tの座標データを少なくとも取得する(ステップ101)。実装基板S上に複数の観察対象Tが実装されている場合、制御部10は、観察対象Tごとに座標データを取得する。
実装基板Sが支持部40に支持される。支持部コントローラ35は、制御部10による観察対象Tの座標データに基づく制御にしたがって、支持部40を移動させる(ステップ102)。具体的には、支持部コントローラ35は、光学機構20の光軸(ここでは、励起光照射部22、取出部24、検出部26およびプローブ光照射部28の共通のz方向の光軸)が観察対象Tを通るように、支持部40をx−y平面内で移動させる。
制御部10は、励起光源11からパルスレーザを発生させ、観察対象Tにパルスレーザが照射される(ステップ103)。一方、カメラ15は、観察対象Tから反射する画像光を、励起光照射部22を介して取得し、制御部10はその画像データを取得する(ステップ104)。
制御部10は、その画像データに基づき、光学機構20による観察対象Tの位置の焦点誤差を測定し、測定情報を得る(ステップ105)。制御部10は、その測定情報(焦点誤差)に基づき、支持部40に対する光学機構20の移動を制御する(ステップ106)。なお、制御部が焦点誤差を測定する代わりに、カメラに内蔵された演算部が、焦点誤差を測定してもよい。この場合、制御部や演算部は、「処理部」として機能する。
このようなステップ105および106の処理では、制御部10、各ステージコントローラステージコントローラ32、34、36、38、支持部コントローラ35、および遅延ステージコントローラ33は、「制御機構」として機能する。
図4A、Bは、ステップ105および106の光学機構20の動作を示す図である。
ステップ105では、制御部10は、具体的に次のような処理を実行する。制御部10は、励起光照射部22の第1焦点F1の、観察対象Tの位置からの変位量D(図1B参照)である焦点誤差を測定し、その測定情報を得る。焦点誤差は、例えば位相差法やコントラスト法等の公知の方法によって得られる。
ステップ106では、制御部10は、その測定情報に基づき、第1焦点F1を観察対象Tの位置に合わせるように、ステージコントローラ32の光軸方向(z方向)の移動を制御する。具体的には、制御部10は、その焦点誤差が実質的にゼロとなるような移動量情報を、ステージコントローラ32に出力し、ステージコントローラ32はその移動量情報にしたがい励起光照射部22を駆動する。
また、ステップ106では、制御部10は、上記同様にその焦点誤差の測定情報(変位量D)に基づき、ステージコントローラ34、36、38の移動をそれぞれ制御する。具体的には、制御部10は、その焦点誤差が実質的にゼロとなるような移動量情報を、ステージコントローラ34、36、38に出力する。そして、それらステージコントローラ34、36、38は、その移動量情報にしたがい、取出部24、検出部26、プローブ光照射部28をそれぞれ駆動する。
図4Aを参照して、上記のように、各ステージコントローラ32、34、36、38は、変位量Dの分、励起光照射部22、取出部24、検出部26、およびプローブ光照射部28を移動させる。これにより、第1焦点F1および第2焦点F2が観察対象Tの位置に合わせられ、第3焦点F3および第4焦点F4が検出部26の位置に合わせられる。すなわち、励起光照射部22、取出部24、検出部26、プローブ光照射部28が一体的に、変位量Dの分移動する。
ここで、図4Aに示した状態では、観察位相のずれが発生しているため、このままでは最適な状態とは言えない。図6は、検出部26で得られる検出信号を示す。横軸は時間、縦軸は電界強度を示す。最適なサンプリングのタイミングTpでは、最大の電界強度を得ることができる。しかし、観察位相がずれる、つまりサンプリングタイミングがTpからTp'にずれることにより、電界強度である検出信号は、その分低下する。
具体的には、図5Aに示すように、観察位相は、励起光L0(図2参照)とテラヘルツ波Wを合わせた光路OP1の光路長と、プローブ光L1(図2参照)の光路OP2の光路長の光路差によって決定される。それぞれの光路長を、上記図4Aにおける各ステージ22A、24A、26A、28Aの一体的な移動の前後で比較する。そうすると、図5Bに示すように、光路OP1の光路長が変位量Dの分長くなり、一方、光路OP2の光路長がD分短くなるので、光路差が新たに2D発生し、観察位相にずれが発生する。
この観察位相のずれを無くすには、光路OP2を2D分長くすればよい。そこで、図4Bに示すように、制御部10は、観察位相のずれ、すなわち上記光路差2Dが実質的にゼロとなるような移動量情報を、遅延ステージコントローラ33に出力する。遅延ステージコントローラ33は、その移動量情報にしたがって遅延ステージ23Aを駆動する。本実施形態に係る光学遅延部23は、リトロリフレクタのような折り返し型の光路を有するので、遅延ステージコントローラ33は、遅延ステージ23Aを変位量D分移動させる。
以上のように、本実施形態に係るテラヘルツ波顕微鏡100は、カメラ15および励起光照射部22によって得られる観察対象Tの画像光について、合焦点のためのフィードバック制御を実行するものである。
観察対象Tで欠陥等が発生している場合とそうでない場合とで、検出部26で得られる信号(図6参照)が異なる。したがって、制御部10は、例えば閾値判定や、信号のパターンマッチング判定によって、欠陥の有無を検出することができる。
図7は、励起光照射部22、取出部24、検出部26およびプローブ光照射部28を含む光学系の実際の合焦点状態を示す。このように、励起光照射部22の第1焦点F1と、取出部24の第2焦点F2とが、観察対象Tの位置で一致している。また、取出部24の第3焦点F3と、プローブ光照射部28の第4焦点F4とが、検出部26の位置で一致している。
以上、本実施形態では、観察対象Tの位置が所期の位置から変動したとしても、光学機構20の焦点が支持部40に支持された観察対象Tに合わせられる。したがって、テラヘルツ波顕微鏡100は、検出部26によって取得されるテラヘルツ波の強度低下を防止することができ、検出部26は適切な検出信号を得ることができる。これにより、観察精度を高めることができる。
すなわち、取出部24によるテラヘルツ波の検出部26の集束が最適となり、かつ、検出部26におけるテラヘルツ波の強度が最適となるため、テラヘルツ波から電流への変換効率が最適となる。これにより、検出部26はSN比の高い信号を得ることができ、観察精度を高めることができる。
特に、本実施形態では、観察位相のずれに対応する光路差を無くすように、光学遅延部23が駆動されるので、より高精度な検出信号を得ることができる。
実装基板S上に複数の観察対象Tがある場合、観察対象Tごとに、制御部10は、図3に示したフローを実行する。例えば、非平面の実装面を有する実装基板上に実装された複数の観察対象を観察する場合、同じ種類の観察対象であっても、観察対象ごとに焦点位置が異なるので、本技術はこれに対処できる有利な技術である。
2.第2の実施形態
上記第1の実施形態において、カメラ15は、観察対象Tの表面で反射した光を画像光として取得する。図7に示したように、合焦点状態では、励起光照射部22の第1焦点F1は、観察対象Tの表面ではなく、その内部で第2焦点F2と一致することが多い。したがって、カメラ15および励起光照射部22を含む光学系の焦点が、励起光照射部22および取出部24を含む光学系の焦点(第1焦点F1および第2焦点F2)と一致しない場合がある。
かかる事態を回避するため、本技術の第2の実施形態に係るテラヘルツ波顕微鏡100の制御部10は、例えば光学機構20の焦点距離のオフセット値を取得する。この場合、制御部10は「取得部」として機能する。そして制御部10は、焦点誤差にそのオフセット値を加えて得られる演算値に基づき、焦点制御を実行するように構成される。
図8は、その処理を示すフローチャートである。図8において、図3と異なる処理は、ステップ201、206である。
ステップ201では、制御部10は、観察対象Tの厚さデータ(図7に示す「E1」)を取得する。ステップ206では、制御部10は、測定された焦点誤差である測定情報と、その厚さデータとに基づき、光学機構20の移動を制御する。例えば観察対象Tの、光軸方向における実質的に中心に、第1焦点F1および第2焦点F2がある状態を合焦点状態とする場合、上記オフセット値は、観察対象Tの厚さE1の1/2として計算される。すなわち焦点誤差にオフセット値であるE1/2を加えた(あるいは引いた)値が、実際の焦点誤差となる。
以上のように、本実施形態では、観察対象Tの厚さが考慮されたオフセット値が使用されることにより、観察対象Tに応じて適切な合焦点状態を得ることができ、観察精度を高めることができる。
なお、実装基板S上に複数の観察対象Tが設けられる場合、制御部10は、観察対象Tごと、または観察対象Tの種類ごとの厚さデータを取得すればよい。
オフセット値は、観察対象Tの厚さE1の1/2である形態に限られない。例えば、観察対象Tの種類(ここでは、材料、構造、および/または形状等)に応じてオフセット値が異なっていてもよい。
[他の種々の実施形態]
本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
上記実施形態では、z方向で固定の観察対象Tに対して、光学機構20がz方向に移動して焦点制御が行われた。しかし、光学機構20(ここでは、励起光照射部22、取出部24、検出部26、プローブ光照射部28および光学遅延部23を含む機構)がz方向で固定であり、観察対象Tを支持する支持部40が、制御部10の制御にしたがってz方向に移動する構成であってもよい。
上記実施形態では、励起光照射部22、取出部24、検出部26、プローブ光照射部28および光学遅延部23には、個別にステージ22A、24A、26A、28Aがそれぞれ設けられ、それらステージが個別に移動するように構成されていた(移動量(変位量D)は同じである)。しかし、これら5つの要素のうち少なくとも2つが、1つの共通のステージにより移動するように構成されていてもよい。例えば、取出部24、検出部26およびプローブ光照射部28が、1つの共通のステージに一体的に取り付けられていてもよい。この場合、第3焦点F3および第4焦点F4が検出部26の位置に合致するように、これらの要素がその共通ステージに取り付けられる。あるいは、取出部24、検出部26、プローブ光照射部28および光学遅延部23が、1つの共通のステージに一体的に取り付けられていてもよい。
上記実施形態では、励起光照射部22、取出部24、検出部26およびプローブ光照射部28は、z方向に一直線上に配置されていた。しかし、励起光照射部22からプローブ光照射部28までの間にミラー等が配置され、その光路が1回以上折られるように構成されていてもよい。
上記実施形態では、焦点誤差の測定情報を得る手段としてカメラ15が用いられた。しかし、距離計が用いられてもよい。距離計としては、例えばレーザ距離計が用いられる。例えば光学機構20に対する観察対象Tの基準位置が予め定められ、距離計は、その基準位置からの観察対象Tの位置ずれ(図2においてz方向のずれ)を測定するように構成される。制御部10は、その測定情報を焦点誤差として使用する。
本技術は、上記図1で示したように、図2で示した光学遅延部23を備えていないテラヘルツ波顕微鏡にも適用可能である。この場合、検出部26で検出信号を得るために、サンプリングパルスレーザに代わるゲート信号を発生するデバイスが、光学遅延部23の代わりに設けられる。
上記実施形態では、観察対象Tとして半導体材料を含む部品を例に挙げたが、生体(例えば生体組織や細胞等)を観察対象としてもよい。この場合、光源からの照射光学系としては、上記励起光源11と、半導体材料を含むデバイスとを含む。そして、検出部26は、半導体材料から発生するテラヘルツ波が、生体に照射され、生体から反射または透過したテラヘルツ波を検出する。
以上説明した各形態の特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。
なお、本技術は以下のような構成もとることができる。
(1)
観察対象を支持する支持部と、
励起光を発生する光源と、
前記観察対象に前記励起光を照射することで、前記観察対象から発生するテラヘルツ波を検出するように構成された光学機構と、
前記支持部に支持された前記観察対象の焦点誤差を測定するように構成され、その測定情報に基づき、前記光学機構の焦点を前記観察対象の位置に合わせるように、前記支持部および前記光学機構の相対移動を制御するように構成された制御機構と
を具備するテラヘルツ波顕微鏡。
(2)
前記(1)に記載のテラヘルツ波顕微鏡であって、
前記光学機構は、
第1焦点を有し、前記観察対象に前記励起光を照射する励起光照射部と、
第2焦点および第3焦点を有し、前記観察対象から発生するテラヘルツ波を取り出す取出部と、
前記取出部により取り出されたテラヘルツ波を検出する検出部と
を有し、
前記制御機構は、前記第1焦点および前記第2焦点を前記観察対象の位置に合わせるように、かつ、前記第3焦点を前記検出部の位置に合わせるように、前記相対移動の制御を実行するように構成される
テラヘルツ波顕微鏡。
(3)
前記(2)に記載のテラヘルツ波顕微鏡であって、
前記光源からの前記励起光からプローブ光を生成する生成部をさらに具備し、
前記光学機構は、
第4焦点を有し、前記生成部により生成された前記プローブ光を前記検出部に照射するプローブ光照射部と、
前記プローブ光の光路長を調整する光学遅延部と
を有し、
前記制御機構は、さらに前記第3焦点および前記第4焦点を前記検出部の位置に合わせるように、前記相対移動の制御を実行するように構成される
テラヘルツ波顕微鏡。
(4)
前記(1)から(3)のうちいずれか1項に記載のテラヘルツ波顕微鏡であって、
前記制御機構は、
撮像部と、
前記撮像部で撮影された前記観察対象の画像データに基づき、前記測定情報を得るように構成された処理部と
を有する
テラヘルツ波顕微鏡。
(5)
前記(1)から(4)のうちいずれか1項に記載のテラヘルツ波顕微鏡であって、
前記制御機構は、前記観察対象に応じた、前記光学機構の焦点距離のオフセット値を取得する取得部を有し、前記測定情報および前記取得されたオフセット値に基づき、前記光学機構の焦点を前記観察対象の位置に合わせるように、前記相対移動の制御を実行するように構成される
テラヘルツ波顕微鏡。
(6)
観察対象を支持する支持部と、観察対象に励起光を照射することで、前記観察対象から発生するテラヘルツ波を検出するように構成された光学機構とを備えるテラヘルツ波顕微鏡による焦点制御方法であって、
前記支持部に支持された前記観察対象の焦点誤差を測定し、
前記焦点誤差の測定情報に基づき、前記光学機構の焦点を前記観察対象の位置に合わせるように、前記支持部および前記光学機構の相対移動を制御する
焦点制御方法。
L0…励起光
L1…プローブ光
F1…第1焦点
F2…第2焦点
F3…第3焦点
F4…第4焦点
10…制御部
11…励起光源
15…カメラ
20、120…光学機構
22…励起光照射部
22A、24A、26A、28A…ステージ
23…光学遅延部
23A…遅延ステージ
24…取出部
26…検出部
28…プローブ光照射部
32、34、36、38…ステージコントローラ
33…遅延ステージコントローラ
35…支持部コントローラ
40…支持部
100…テラヘルツ波顕微鏡

Claims (6)

  1. 観察対象を支持する支持部と、
    励起光を発生する光源と、
    前記観察対象に前記励起光を照射することで、前記観察対象から発生するテラヘルツ波を検出するように構成された光学機構と、
    前記支持部に支持された前記観察対象の焦点誤差を測定するように構成され、その測定情報に基づき、前記光学機構の焦点を前記観察対象の位置に合わせるように、前記支持部および前記光学機構の相対移動を制御するように構成された制御機構と
    を具備するテラヘルツ波顕微鏡。
  2. 請求項1に記載のテラヘルツ波顕微鏡であって、
    前記光学機構は、
    第1焦点を有し、前記観察対象に前記励起光を照射する励起光照射部と、
    第2焦点および第3焦点を有し、前記観察対象から発生するテラヘルツ波を取り出す取出部と、
    前記取出部により取り出されたテラヘルツ波を検出する検出部と
    を有し、
    前記制御機構は、前記第1焦点および前記第2焦点を前記観察対象の位置に合わせるように、かつ、前記第3焦点を前記検出部の位置に合わせるように、前記相対移動の制御を実行するように構成される
    テラヘルツ波顕微鏡。
  3. 請求項2に記載のテラヘルツ波顕微鏡であって、
    前記光源からの前記励起光からプローブ光を生成する生成部をさらに具備し、
    前記光学機構は、
    第4焦点を有し、前記生成部により生成された前記プローブ光を前記検出部に照射するプローブ光照射部と、
    前記プローブ光の光路長を調整する光学遅延部と
    を有し、
    前記制御機構は、さらに前記第3焦点および前記第4焦点を前記検出部の位置に合わせるように、前記相対移動の制御を実行するように構成される
    テラヘルツ波顕微鏡。
  4. 請求項1に記載のテラヘルツ波顕微鏡であって、
    前記制御機構は、
    撮像部と、
    前記撮像部で撮影された前記観察対象の画像データに基づき、前記測定情報を得るように構成された処理部と
    を有する
    テラヘルツ波顕微鏡。
  5. 請求項1に記載のテラヘルツ波顕微鏡であって、
    前記制御機構は、前記観察対象に応じた、前記光学機構の焦点距離のオフセット値を取得する取得部を有し、前記測定情報および前記取得されたオフセット値に基づき、前記光学機構の焦点を前記観察対象の位置に合わせるように、前記相対移動の制御を実行するように構成される
    テラヘルツ波顕微鏡。
  6. 観察対象を支持する支持部と、観察対象に励起光を照射することで、前記観察対象から発生するテラヘルツ波を検出するように構成された光学機構とを備えるテラヘルツ波顕微鏡による焦点制御方法であって、
    前記支持部に支持された前記観察対象の焦点誤差を測定し、
    前記焦点誤差の測定情報に基づき、前記光学機構の焦点を前記観察対象の位置に合わせるように、前記支持部および前記光学機構の相対移動を制御する
    焦点制御方法。
JP2015057097A 2015-03-20 2015-03-20 テラヘルツ波顕微鏡および焦点制御方法 Expired - Fee Related JP6330703B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015057097A JP6330703B2 (ja) 2015-03-20 2015-03-20 テラヘルツ波顕微鏡および焦点制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015057097A JP6330703B2 (ja) 2015-03-20 2015-03-20 テラヘルツ波顕微鏡および焦点制御方法

Publications (2)

Publication Number Publication Date
JP2016176808A true JP2016176808A (ja) 2016-10-06
JP6330703B2 JP6330703B2 (ja) 2018-05-30

Family

ID=57069919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015057097A Expired - Fee Related JP6330703B2 (ja) 2015-03-20 2015-03-20 テラヘルツ波顕微鏡および焦点制御方法

Country Status (1)

Country Link
JP (1) JP6330703B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664626A (zh) * 2017-08-02 2018-02-06 华中光电技术研究所(中国船舶重工集团公司第七七研究所) 一种衰减全反射式太赫兹光谱测量探头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082925A (ja) * 1999-09-14 2001-03-30 Sony Corp 紫外光の焦点位置制御機構及び方法、並びに、検査装置及び方法
JP2006133178A (ja) * 2004-11-09 2006-05-25 Tochigi Nikon Corp 測定装置
JP2010060317A (ja) * 2008-09-01 2010-03-18 Hamamatsu Photonics Kk 半導体検査装置及び検査方法
US20110272579A1 (en) * 2009-01-23 2011-11-10 Canon Kabushiki Kaisha Analyzing apparatus
JP2014219306A (ja) * 2013-05-09 2014-11-20 ソニー株式会社 光学系、テラヘルツ放射顕微鏡、及びデバイスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082925A (ja) * 1999-09-14 2001-03-30 Sony Corp 紫外光の焦点位置制御機構及び方法、並びに、検査装置及び方法
JP2006133178A (ja) * 2004-11-09 2006-05-25 Tochigi Nikon Corp 測定装置
JP2010060317A (ja) * 2008-09-01 2010-03-18 Hamamatsu Photonics Kk 半導体検査装置及び検査方法
US20110272579A1 (en) * 2009-01-23 2011-11-10 Canon Kabushiki Kaisha Analyzing apparatus
JP2014219306A (ja) * 2013-05-09 2014-11-20 ソニー株式会社 光学系、テラヘルツ放射顕微鏡、及びデバイスの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664626A (zh) * 2017-08-02 2018-02-06 华中光电技术研究所(中国船舶重工集团公司第七七研究所) 一种衰减全反射式太赫兹光谱测量探头
CN107664626B (zh) * 2017-08-02 2019-11-08 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种衰减全反射式太赫兹光谱测量探头

Also Published As

Publication number Publication date
JP6330703B2 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
US8681344B2 (en) Devices and methods for position determination and surface measurement
KR101712890B1 (ko) 연속파 THz 빔 스캔을 이용한 고속 3차원 영상 탐지 장치
US9874545B2 (en) Photoacoustic microscope
JP5187843B2 (ja) 半導体検査装置及び検査方法
JP6286863B2 (ja) 光学系、及びテラヘルツ放射顕微鏡
CN107860742B (zh) 一种反射式太赫兹时域近场扫描显微镜
US11402200B2 (en) Measuring device, observing device and measuring method
JPWO2017013759A1 (ja) 遠赤外分光装置
JP5992147B2 (ja) テラヘルツ波を用いた検査装置及び検査方法
WO2020017017A1 (ja) 光計測装置および試料観察方法
CN102841055A (zh) 光学元件体内激光损伤在线探测方法和装置
JP2012202866A (ja) パターン検査装置およびパターン検査方法
JP6330703B2 (ja) テラヘルツ波顕微鏡および焦点制御方法
KR101701409B1 (ko) 테라헤르츠 전자기파를 이용한 고해상도 영상 생성 장치 및 영상 생성 방법
KR20200013639A (ko) 반도체 검사 장치
JP2019045431A (ja) 光画像計測装置
JP6218959B2 (ja) 解析装置及び解析方法
JP2009109628A (ja) 深さ測定装置
KR101361776B1 (ko) 레이저 가공용 오토포커싱 장치 및 이를 이용한 오토포커싱 방법
KR20150048971A (ko) 광섬유를 이용한 미세 패턴의 선폭 및 깊이 측정 장치 및 측정 방법
JP4834363B2 (ja) 表面検査装置
RU2012135405A (ru) Двухфотонный сканирующий микроскоп с автоматической точной фокусировкой изображения и способ автоматической точной фокусировки изображения
KR102231509B1 (ko) 해석 장치 및 해석 방법
CN109444212B (zh) 一种近场热反射测量装置
JP2018096766A (ja) 異物検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R151 Written notification of patent or utility model registration

Ref document number: 6330703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees