JP2016167946A - Current controller for ac motor - Google Patents

Current controller for ac motor Download PDF

Info

Publication number
JP2016167946A
JP2016167946A JP2015047285A JP2015047285A JP2016167946A JP 2016167946 A JP2016167946 A JP 2016167946A JP 2015047285 A JP2015047285 A JP 2015047285A JP 2015047285 A JP2015047285 A JP 2015047285A JP 2016167946 A JP2016167946 A JP 2016167946A
Authority
JP
Japan
Prior art keywords
axis
voltage
current
output
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015047285A
Other languages
Japanese (ja)
Other versions
JP6391096B2 (en
Inventor
大森 洋一
Yoichi Omori
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2015047285A priority Critical patent/JP6391096B2/en
Publication of JP2016167946A publication Critical patent/JP2016167946A/en
Application granted granted Critical
Publication of JP6391096B2 publication Critical patent/JP6391096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve stable current control, giving a priority to torque even when a voltage is saturated.SOLUTION: The current controller for AC motor includes a switcher for switching between a normal mode in which a d-axis voltage command is taken as a sum of a proportional amplification and an integration amplifier of a d-axis current deviation and a q-axis voltage command is taken as a sum of a proportional amplification and an integration amplifier of a q-axis current deviation, and an other-axis integration mode in which a d-axis voltage command is taken as a sum of a proportional amplification of a d-axis current deviation and an integration amplification of a q-axis current deviation and a q-axis voltage command is taken as a sum of a proportional amplification of a q-axis current deviation and an integration amplification of a d-axis current deviation.SELECTED DRAWING: Figure 1

Description

本発明は、交流電動機の電流制御に関するものである。   The present invention relates to current control of an AC motor.

従来の交流電動機の電流制御技術について、図2に基づいて以下に説明する。電流検出器2は、交流電動機1の固定子電流を回転する直交座標であるdq軸上の各成分のd軸電流idとq軸電流iqに変換して出力する。前記d軸は、交流電動機1が誘導電動機の場合に一般的に該電動機の2次鎖交磁束ベクトルの方向に定義され、交流電動機1が永久磁石同期電動機の場合に一般的に該電動機の回転子の永久磁石のN極方向に定義される。電流指令生成器5は、前記dq座標上のd軸電流指令idrとq軸電流指令iqrを生成して出力する。d軸偏差演算器9で得られたidrとidとの偏差iderは、d軸比例増幅器11で所定倍に増幅されてd軸比例成分となる。またiderは、d軸積分ゲイン増幅器13で増幅された後にd軸積分器18で時間積分されてd軸積分成分となる。q軸偏差演算器8で得られたiqrとiqとの偏差iqerは、q軸比例増幅器10で所定倍に増幅されてq軸比例成分となる。またiqerは、q軸積分ゲイン増幅器12で増幅された後にq軸積分器17で時間積分されてq軸積分成分となる。   A conventional current control technique for an AC motor will be described below with reference to FIG. The current detector 2 converts the stator current of the AC motor 1 into a d-axis current id and a q-axis current iq of each component on the dq axis, which are orthogonal coordinates for rotation, and outputs the result. The d-axis is generally defined in the direction of the secondary linkage magnetic flux vector of the motor when the AC motor 1 is an induction motor, and the rotation of the motor is generally performed when the AC motor 1 is a permanent magnet synchronous motor. Defined in the north pole direction of the permanent magnet of the child. The current command generator 5 generates and outputs a d-axis current command idr and a q-axis current command iqr on the dq coordinate. The deviation ider between idr and id obtained by the d-axis deviation calculator 9 is amplified by a predetermined factor by the d-axis proportional amplifier 11 and becomes a d-axis proportional component. The ider is amplified by the d-axis integral gain amplifier 13 and then time-integrated by the d-axis integrator 18 to become a d-axis integral component. A deviation iqer between iqr and iq obtained by the q-axis deviation calculator 8 is amplified by a predetermined factor by the q-axis proportional amplifier 10 to become a q-axis proportional component. The iqer is amplified by the q-axis integral gain amplifier 12 and then time-integrated by the q-axis integrator 17 to become a q-axis integral component.

加算器21は、q軸比例増幅器10出力とq軸積分器17出力との和を求めてq軸電圧指令vqrを出力する。加算器22は、d軸比例増幅器11出力とd軸積分器18出力との和を求めてd軸電圧指令vdrを出力する。電圧座標変換器4は、回転しているdq軸座標上の各軸電圧指令であるvdrとvqrを静止したab座標上の各成分電圧指令varとvbrに変換して電力変換器3に出力する。電力変換器3は、入力した電圧指令通りの電圧を交流電動機1に印加するが、該電圧指令の大きさが電力変換器3の出力可能な最大電圧よりも大きければ大きさが該最大電圧で位相が指令通りの電圧を交流電動機1に印加する。   The adder 21 calculates the sum of the q-axis proportional amplifier 10 output and the q-axis integrator 17 output, and outputs a q-axis voltage command vqr. The adder 22 calculates the sum of the output of the d-axis proportional amplifier 11 and the output of the d-axis integrator 18 and outputs a d-axis voltage command vdr. The voltage coordinate converter 4 converts vdr and vqr, which are axis voltage commands on the rotating dq axis coordinates, into component voltage commands var and vbr on a stationary ab coordinate and outputs them to the power converter 3. . The power converter 3 applies a voltage according to the input voltage command to the AC motor 1. If the magnitude of the voltage command is larger than the maximum voltage that can be output by the power converter 3, the magnitude is the maximum voltage. A voltage whose phase is as commanded is applied to the AC motor 1.

図2に示された電流制御では、a軸成分varとb軸成分vbrまたはd軸成分vdrとq軸成分vqrをもつ電圧指令ベクトルの大きさが電力変換器3の出力可能最大電圧を超えると、指令通りの電圧を交流電動機1に印加できないことになるので、dq軸の片方または両方の電流制御ができなくなる。この問題を解決するために提案されたのが図3に示された特許文献1記載の電流制御である。以下は図3について説明するが、図2と同一部分の説明は省略し、異なる部分のみ説明する。   In the current control shown in FIG. 2, when the magnitude of the voltage command vector having the a-axis component var and the b-axis component vbr or the d-axis component vdr and the q-axis component vqr exceeds the maximum output voltage of the power converter 3. Since the commanded voltage cannot be applied to the AC motor 1, current control of one or both of the dq axes cannot be performed. In order to solve this problem, the current control described in Patent Document 1 shown in FIG. 3 is proposed. 3 will be described below, but the description of the same parts as those in FIG. 2 will be omitted, and only different parts will be described.

交流電動機1が誘導電動機の場合の1次側の電圧方程式は(1)式と(2)式で表される。ここで、vdはd軸電圧、vqはq軸電圧、R1は巻線抵抗値、Lσ=L1−M・M/L2、ωは出力角周波数、Mは相互インダクタンス、L1とL2はそれぞれ1次と2次の自己インダクタンス、φ2は2次鎖交磁束の大きさ、pは時間微分を表す。交流電動機1が永久磁石同期電動機の場合の電圧方程式は(3)式と(4)式で表される。ここで、LdとLqはそれぞれd軸とq軸のインダクタンス、φは永久磁石磁束の大きさである。   When the AC motor 1 is an induction motor, the voltage equation on the primary side is expressed by equations (1) and (2). Here, vd is a d-axis voltage, vq is a q-axis voltage, R1 is a winding resistance value, Lσ = L1-M · M / L2, ω is an output angular frequency, M is a mutual inductance, and L1 and L2 are primary. And secondary self-inductance, φ2 is the magnitude of the secondary flux linkage, and p is the time derivative. The voltage equation when the AC motor 1 is a permanent magnet synchronous motor is expressed by the equations (3) and (4). Here, Ld and Lq are the d-axis and q-axis inductances, respectively, and φ is the magnitude of the permanent magnet magnetic flux.

(数1)

Figure 2016167946
(数2)
Figure 2016167946
(数3)
Figure 2016167946
(数4)
Figure 2016167946
(Equation 1)
Figure 2016167946
(Equation 2)
Figure 2016167946
(Equation 3)
Figure 2016167946
(Equation 4)
Figure 2016167946

q軸積分器17の入力に加算器23によってd軸電流偏差iderをd軸速度比例増幅器14で増幅したものを加算している。d軸速度比例増幅器14は、交流電動機1が誘導電動機ならば(2)式、永久磁石同期電動機ならば(4)式の右辺第3項に基づくもので、その増幅ゲインは角周波数ωに比例したものとなる。同様に、加算器24によってq軸電流偏差iqerをq軸速度比例増幅器15で増幅したものを加算している。q軸速度比例増幅器15は、交流電動機1が誘導電動機ならば(1)式、永久磁石同期電動機ならば(3)式の右辺第3項に基づくもので、その増幅ゲインは角周波数ωに比例したものとなる。加算器24の出力は、d軸積分器18に入力される。d軸積分ゲイン増幅器13の入力にはスイッチ16が挿入されており、スイッチ16は、電力変換器3の入力電圧指令の大きさが電力変換器3の出力可能最大電圧より小さい場合にd軸電流偏差ider、そうで無い場合に0を出力する。   The input of the q-axis integrator 17 is added with the d-axis current deviation ider amplified by the d-axis speed proportional amplifier 14 by the adder 23. The d-axis speed proportional amplifier 14 is based on the third term on the right side of the equation (2) if the AC motor 1 is an induction motor, and if it is a permanent magnet synchronous motor, the amplification gain is proportional to the angular frequency ω. Will be. Similarly, the adder 24 adds the q-axis current deviation iqer amplified by the q-axis speed proportional amplifier 15. The q-axis speed proportional amplifier 15 is based on the third term on the right side of the equation (1) if the AC motor 1 is an induction motor, and if it is a permanent magnet synchronous motor, the amplification gain is proportional to the angular frequency ω. Will be. The output of the adder 24 is input to the d-axis integrator 18. A switch 16 is inserted at the input of the d-axis integral gain amplifier 13, and the switch 16 has a d-axis current when the magnitude of the input voltage command of the power converter 3 is smaller than the maximum output voltage of the power converter 3. Deviation ider, 0 otherwise.

スイッチ16がオフ状態でも、d軸電流偏差はd軸速度比例増幅器14と加算器23を介してq軸積分器17でq軸電圧指令を補正することでd軸電流偏差を0にすることができ、d軸電流制御は実現できる。しかし、電力変換器3の入力電圧指令の大きさが電力変換器3の出力可能最大電圧を超えた電圧飽和状態となると、q軸積分器17の出力は制限値に制限された固定値となるのでd軸電流制御はできなくなる。一方、q軸偏差演算器8出力のq軸電流偏差はq軸速度比例増幅器15と加算器24とd軸積分器18を介してd軸電圧指令を補正することでq軸電流制御は保たれたままとなる。つまり、電圧飽和状態ではd軸電流制御を放棄しq軸電流制御を優先した制御とすることができる。そして、q軸は磁束軸に直交した軸であることから、q軸電流を制御することで交流電動機1のトルクが制御できるので、電圧が飽和してもトルク制御は維持できることとなる。   Even when the switch 16 is off, the d-axis current deviation can be reduced to 0 by correcting the q-axis voltage command by the q-axis integrator 17 via the d-axis speed proportional amplifier 14 and the adder 23. D-axis current control can be realized. However, when the magnitude of the input voltage command of the power converter 3 exceeds the maximum output possible voltage of the power converter 3, the output of the q-axis integrator 17 becomes a fixed value limited to the limit value. Therefore, d-axis current control cannot be performed. On the other hand, the q-axis current deviation of the output of the q-axis deviation calculator 8 is maintained by correcting the d-axis voltage command via the q-axis velocity proportional amplifier 15, the adder 24, and the d-axis integrator 18. Will remain. That is, in the voltage saturation state, the d-axis current control can be abandoned and the control giving priority to the q-axis current control can be performed. Since the q-axis is an axis perpendicular to the magnetic flux axis, the torque of the AC motor 1 can be controlled by controlling the q-axis current, so that the torque control can be maintained even when the voltage is saturated.

特開2003−88193号公報JP 2003-88193 A 特開2003−209997号公報JP 2003-209997 A 特開2012−151931号公報JP 2012-151931 A

解決しようとする問題点は、図2の従来技術においては、電圧が飽和すると両軸または片方軸の制御ができなくなり、交流電動機の所望の出力トルクが得られなくなることである。図3の従来技術では、電圧飽和時となっても、q軸優先制御とすることができて所望の出力トルクが得られるので前記問題点を解決できるが以下の問題がある。   The problem to be solved is that, in the prior art of FIG. 2, when the voltage is saturated, control of both axes or one axis cannot be performed, and a desired output torque of the AC motor cannot be obtained. In the prior art of FIG. 3, even when the voltage is saturated, the q-axis priority control can be performed and a desired output torque can be obtained, so that the above problem can be solved, but there are the following problems.

図4は、図3の従来技術において、電圧飽和時の電圧指令ベクトルvrやvr1と交流電動機1に印加される電圧ベクトルvやv1を図示している。電圧ベクトルvやv1は、電力変換器3の出力可能最大電圧である電圧出力限界円内に制限されていて、電圧指令ベクトルvrやvr1のq軸成分は電圧飽和によりq軸積分器17の制限値vqrlmtに制限されている。このvqrlmtは電力変換器3の出力可能最大電圧以上にする必要がある。図に示されているように電圧飽和状態ではq軸電圧指令は制限値vqrlmtに制限されているのでd軸電圧指令を調整して電圧ベクトルの位相を変化させてq軸電流を制御していることになる。例えば電圧ベクトル位相をΔθ変化させるにはΔvdrのd軸電圧指令の変化が必要になる。誘導電動機の場合は図に示されているように、電圧ベクトルがq軸に近い方向を向いているので、電圧ベクトル位相を変化させるのに必要なd軸電圧指令の変化分は小さくて済む。しかし、永久磁石同期電動機の場合は電圧ベクトルの向きがq軸から大きく離れている場合があることから。電圧ベクトル位相を変化させるのに必要なd軸電圧指令の変化分Δvdrを大きくしなければならない。従って、d軸積分器18の出力範囲を非常に大きくしておく必要があり、その積分ゲインとなるq軸速度比例増幅器15やd軸積分ゲイン増幅器13のゲイン調整が困難となる。   FIG. 4 illustrates voltage command vectors vr and vr1 and voltage vectors v and v1 applied to the AC motor 1 when the voltage is saturated in the prior art of FIG. The voltage vectors v and v1 are limited within a voltage output limit circle that is the maximum output voltage of the power converter 3, and the q-axis component of the voltage command vectors vr and vr1 is limited by the q-axis integrator 17 due to voltage saturation. Limited to the value vqrlmt. This vqrlmt needs to be equal to or higher than the maximum output voltage of the power converter 3. As shown in the figure, since the q-axis voltage command is limited to the limit value vqrlmt in the voltage saturation state, the d-axis voltage command is adjusted to change the phase of the voltage vector to control the q-axis current. It will be. For example, in order to change the voltage vector phase by Δθ, it is necessary to change the d-axis voltage command of Δvdr. In the case of an induction motor, as shown in the figure, since the voltage vector is oriented in the direction close to the q-axis, the amount of change in the d-axis voltage command required to change the voltage vector phase is small. However, in the case of a permanent magnet synchronous motor, the direction of the voltage vector may be far away from the q axis. The change Δvdr in the d-axis voltage command necessary to change the voltage vector phase must be increased. Therefore, it is necessary to make the output range of the d-axis integrator 18 very large, and it becomes difficult to adjust the gain of the q-axis velocity proportional amplifier 15 and the d-axis integral gain amplifier 13 that become the integral gain.

また、電圧ベクトルの向きがd軸に近くなるとd軸電圧指令制御では電圧ベクトル位相を制御できなくなり制御不能になってしまう。このことは、回生運転で電圧ベクトルが図4の第1象限にある場合も同様である。   Further, when the direction of the voltage vector is close to the d-axis, the voltage vector phase cannot be controlled by the d-axis voltage command control, and the control becomes impossible. This is the same when the voltage vector is in the first quadrant of FIG. 4 in the regenerative operation.

特許文献2では、上記問題点を解決するために、交流電動機の一次鎖交磁束ベクトルと一致するM軸とそれに直交するT軸を導入し、dq軸の代わりにMT軸で図3と同様な構成としているが、以下の問題がある。T軸電流優先制御とすることができるが、dq軸電流指令から回転座標変換によってMT軸電流指令を得た場合は、電圧飽和によってq軸電流が指令と一致しなくなり、所望のトルクが得られなくなる。また電流の急変によりd軸から見たM軸の位相が急変することがある。その際に各軸の電圧指令はその位相に見合った値に急変させる必要がある。しかし積分器の出力は急変できないので、MT軸の位相が急変した場合は電流制御が不安定となることがある。   In Patent Document 2, in order to solve the above problem, an M axis that coincides with the primary linkage magnetic flux vector of the AC motor and a T axis that is orthogonal to the M axis are introduced, and the MT axis is the same as that of FIG. 3 instead of the dq axis. The configuration has the following problems. Although the T-axis current priority control can be performed, when the MT-axis current command is obtained from the dq-axis current command by rotational coordinate conversion, the q-axis current does not match the command due to voltage saturation, and a desired torque can be obtained. Disappear. Also, the M-axis phase viewed from the d-axis may change suddenly due to a sudden change in current. At that time, it is necessary to suddenly change the voltage command of each axis to a value corresponding to the phase. However, since the output of the integrator cannot be changed suddenly, current control may become unstable if the MT axis phase changes suddenly.

図3に示す従来技術において、例えば交流電動機が誘導電動機の場合に、回転速度が上昇するに従ってd軸電流は自動的に減少するが所望のトルクを出力し続けるためにq軸電流指令は大きくしなければならない。しかし誘導電動機は印加電圧制限下では停動トルクが存在するのでq軸電流を大きくしてもトルクが大きくならない状態に陥ることがあり、発散状態となり制御不能となってしまう。また永久磁石同期電動機の場合は、電圧ベクトルがd軸に近づきすぎる場合があり、そうすると上述のように制御不能となってしまう。   In the prior art shown in FIG. 3, for example, when the AC motor is an induction motor, the d-axis current automatically decreases as the rotational speed increases, but the q-axis current command is increased to keep outputting the desired torque. There must be. However, since the induction motor has a stationary torque under the applied voltage limit, the torque may not be increased even if the q-axis current is increased. In the case of a permanent magnet synchronous motor, the voltage vector may be too close to the d-axis, and as a result, control becomes impossible as described above.

図3に示す従来技術で電圧飽和によりd軸電流制御が放棄された状態において、d軸偏差演算器9の出力は大きな値となりd軸比例増幅器11の出力が大きくなり、それを補正するようにd軸積分器18は動作する。よってd軸電流指令の急変はq軸電流制御の大きな外乱となり制御が不安定となってしまう。   In the state where the d-axis current control is abandoned due to voltage saturation in the prior art shown in FIG. 3, the output of the d-axis deviation calculator 9 becomes a large value, the output of the d-axis proportional amplifier 11 becomes large, and it is corrected. The d-axis integrator 18 operates. Therefore, a sudden change in the d-axis current command becomes a large disturbance in the q-axis current control and the control becomes unstable.

本発明は、上記問題点を解決するために、
交流電動機の固定子電流を回転する直交座標であるdq軸上の各成分のd軸電流とq軸電流に変換して出力する電流検出器と、
静止座標系での電圧指令を入力し、該電圧指令が出力可能な最大電圧よりも小さければ前記電圧指令通りの電圧を前記交流電動機に印加し、前記電圧指令の大きさが前記出力可能な最大電圧よりも大きければ、前記最大電圧の大きさで前記電圧指令と概略同位相の電圧を前記交流電動機に印加する電力変換器と、
前記dq座標上のd軸電流指令とq軸電流指令を生成して出力する電流指令生成器と、
前記電流指令生成器出力のd軸電流指令と前記電流検出器のd軸電流との差を得るd軸偏差演算器と、
前記電流指令生成器出力のq軸電流指令と前記電流検出器のq軸電流との差を得るq軸偏差演算器と、
前記d軸偏差演算器出力を比例ゲイン倍するd軸比例増幅器と、
前記q軸偏差演算器出力を比例ゲイン倍するq軸比例増幅器と、
入力を時間積分して所定制限値VdLtで制限して出力するd軸積分器と、
入力を時間積分して所定制限値VqLtで制限して出力するq軸積分器と、
前記q軸比例増幅器出力と前記q軸積分器出力との和のq軸電圧指令と、前記d軸比例増幅器出力と前記d軸積分器出力との和のd軸電圧指令から前記静止座標系での電圧指令を求める電圧座標変換器とからなる交流電動機の電流制御装置において、
前記d軸積分器の入力に少なくとも前記d軸偏差演算器出力を所定ゲイン倍したものを加え前記q軸積分器の入力を前記q軸偏差演算器出力を所定ゲイン倍したもののみとした通常モードと、前記d軸積分器の入力を前記q軸偏差演算器出力を所定ゲイン倍したもののみとし前記q軸積分器の入力に少なくとも前記d軸偏差演算器出力を所定ゲイン倍したものを加えたものとした他軸積分モードとを切り替える切替器を具備する。
In order to solve the above problems, the present invention
A current detector that converts and outputs a d-axis current and a q-axis current of each component on the dq axis, which are orthogonal coordinates for rotating the stator current of the AC motor,
When a voltage command in a stationary coordinate system is input and the voltage command is smaller than the maximum voltage that can be output, a voltage according to the voltage command is applied to the AC motor, and the magnitude of the voltage command is the maximum that can be output. A power converter that applies a voltage substantially in phase with the voltage command at the magnitude of the maximum voltage, if greater than the voltage, to the AC motor;
A current command generator for generating and outputting a d-axis current command and a q-axis current command on the dq coordinate;
A d-axis deviation calculator for obtaining a difference between the d-axis current command of the current command generator output and the d-axis current of the current detector;
A q-axis deviation calculator for obtaining a difference between the q-axis current command of the current command generator output and the q-axis current of the current detector;
A d-axis proportional amplifier for multiplying the d-axis deviation calculator output by a proportional gain;
A q-axis proportional amplifier that multiplies the q-axis deviation calculator output by a proportional gain;
A d-axis integrator that integrates the input over time and outputs it after being limited by a predetermined limit value VdLt;
A q-axis integrator that integrates the input over time and limits and outputs a predetermined limit value VqLt;
From the q-axis voltage command that is the sum of the q-axis proportional amplifier output and the q-axis integrator output and the d-axis voltage command that is the sum of the d-axis proportional amplifier output and the d-axis integrator output, In an AC motor current control device comprising a voltage coordinate converter for obtaining a voltage command of
Normal mode in which at least the output of the d-axis deviation calculator is multiplied by a predetermined gain to the input of the d-axis integrator, and the input of the q-axis integrator is only the one obtained by multiplying the output of the q-axis deviation calculator by a predetermined gain. And the input of the d-axis integrator is only the q-axis deviation calculator output multiplied by a predetermined gain, and at least the d-axis deviation calculator output is multiplied by a predetermined gain to the input of the q-axis integrator. A switch for switching between the different axis integration modes is provided.

前記切替器において、前記電力変換器の電圧変調率が所定値以上かつ前記q軸積分器出力の絶対値が前記d軸積分器出力以上の場合に前記他軸積分モードを選択する。   In the switch, the other-axis integration mode is selected when the voltage modulation rate of the power converter is greater than a predetermined value and the absolute value of the q-axis integrator output is greater than or equal to the d-axis integrator output.

前記VdLtを前記交流電動機のd軸の特性式より電流微分項を除いて得られたd軸電圧値の絶対値にd軸誤差補正値Vdxを加えたものとし、前記VqLtを前記交流電動機のq軸の特性式より電流微分項を除いて得られたq軸電圧値の絶対値にq軸誤差補正値Vqxを加えたものとする。   The VdLt is obtained by adding the d-axis error correction value Vdx to the absolute value of the d-axis voltage value obtained by removing the current differential term from the d-axis characteristic formula of the AC motor, and the VqLt is the q of the AC motor. Assume that the q-axis error correction value Vqx is added to the absolute value of the q-axis voltage value obtained by excluding the current differential term from the axis characteristic equation.

前記d軸電流から高周波成分を除去したものに所定値を加算した第2d軸電流指令と、前記電流指令生成器出力のd軸電流指令とを比較して、負の方向に大きい方を選択して出力するd軸電流指令調整器を具備し、前記d軸電流指令の代わりに該d軸電流指令調整器出力を前記d軸偏差演算器の入力とする。   The second d-axis current command obtained by adding a predetermined value to the d-axis current from which the high frequency component is removed is compared with the d-axis current command of the current command generator output, and the larger one in the negative direction is selected. The d-axis current command regulator is output, and the output of the d-axis current command regulator is used as the input of the d-axis deviation calculator instead of the d-axis current command.

前記d軸電圧指令と前記q軸電圧指令を成分とする電圧指令ベクトルの前記d軸からの位相の制限値である電圧ベクトル位相制限値と前記最大電圧とから前記q軸電流指令の制限値を求めて、前記q軸電流指令を該制限値に制限して前記q軸偏差演算器に出力するq軸電流指令制限器を具備する。 The limit value of the q-axis current command is obtained from the voltage vector phase limit value, which is a limit value of the phase from the d-axis of the voltage command vector having the d-axis voltage command and the q-axis voltage command as components, and the maximum voltage. A q-axis current command limiter is provided for limiting the q-axis current command to the limit value and outputting the limit value to the q-axis deviation calculator.

切替器により、電圧未飽和時や回生運転時は、図2と同様な制御構成と等価となる。回生運転時は、図4の第1象限に電圧ベクトルが存在し、回生トルクを増やすことはq軸電流指令を負の方向に増加することとなり、電圧ベクトルがd軸に近づくことになるので、電圧飽和状態でも回生運転時は図2の構成でもq軸電流制御は維持できる。一方d軸積分器18は制限値に制限された状態となるので、d軸電流制御は維持できなくなる。以上から本発明により少なくとも回生側においては、電圧ベクトル向きがd軸に非常に近づいてもq軸優先制御とすることができる。   When the voltage is not saturated or during regenerative operation, the switch is equivalent to the same control configuration as in FIG. During regenerative operation, there is a voltage vector in the first quadrant of FIG. 4, and increasing the regenerative torque will increase the q-axis current command in the negative direction, and the voltage vector will approach the d-axis. Even in the voltage saturation state, the q-axis current control can be maintained even in the configuration of FIG. 2 during the regenerative operation. On the other hand, since the d-axis integrator 18 is limited to the limit value, the d-axis current control cannot be maintained. From the above, according to the present invention, at least on the regeneration side, q-axis priority control can be performed even when the voltage vector direction is very close to the d-axis.

また切替器が、電力変換器の電圧変調率が所定値以上かつ前記q軸積分器出力の絶対値が前記d軸積分器出力以上の場合に図3相当の他軸積分モードを選択し、そのほかの場合に図2相当の通常モードを選択するようにすれば、該切替時点に電圧指令のジャンプが発生しないことからスムーズな切替ができる。   The switch selects another axis integration mode corresponding to FIG. 3 when the voltage modulation rate of the power converter is equal to or greater than a predetermined value and the absolute value of the q-axis integrator output is equal to or greater than the d-axis integrator output. In this case, if the normal mode corresponding to FIG. 2 is selected, the voltage command jump does not occur at the time of switching, so that smooth switching can be performed.

d軸積分器の制限値VdLtを(1)式または(3)式の右辺の微分項を除いたものの絶対値にd軸誤差補正値Vdxを加えたものとし、q軸積分器の制限値VqLtを(2)式または(4)式の右辺の微分項を除いたものの絶対値にq軸誤差補正値Vqxを加えたものとすることで、q軸積分器出力が制限値に制限された状態でvqrを無駄に大きくならず、それによって永久磁石同期電動機のように電圧ベクトルの向きがq軸から大きく離れている場合でも電圧ベクトル位相を変化させるのに必要なd軸電圧指令の変化分Δvdrを小さくすることができる。   The limit value VdLt of the d-axis integrator is obtained by adding the d-axis error correction value Vdx to the absolute value of the value obtained by removing the differential term on the right side of the equation (1) or (3), and the limit value VqLt of the q-axis integrator. When the q-axis error correction value Vqx is added to the absolute value of the expression excluding the differential term on the right side of the expression (2) or (4), the q-axis integrator output is limited to the limit value. Thus, vqr is not increased unnecessarily, and as a result, the change Δvdr in the d-axis voltage command necessary to change the voltage vector phase even when the direction of the voltage vector is far away from the q-axis as in a permanent magnet synchronous motor. Can be reduced.

またd軸電流指令調整器により、d軸電流指令とd軸電流との偏差を所定値以下にすることができ、電流指令生成器出力のd軸電流指令が急変してもq軸電流制御への影響を小さくすることができる。   Moreover, the d-axis current command adjuster can reduce the deviation between the d-axis current command and the d-axis current to a predetermined value or less, and even if the d-axis current command output from the current command generator changes suddenly, the q-axis current control is performed. The influence of can be reduced.

またq軸電流指令制限器により、永久磁石同期電動機の場合は力行時に電圧指令ベクトルがd軸に近づきすることを制限することができ、d軸電圧指令の調整で電圧ベクトル位相の調整ができなくなることを防ぐことができる。誘導電動機の場合に、回転速度が上昇するに従ってd軸電流は自動的に減少し所望のトルクを出力し続けるためにq軸電流指令を大きくしなければならないが、印加電圧制限下での停動トルクによってq軸電流を大きくしてもトルクが出なくなり制御不能状態に陥ることがある。しかし、q軸電流指令制限器で適切な値に制限することで制御不能状態になることを防止することができる。   Also, the q-axis current command limiter can limit the voltage command vector from approaching the d-axis during powering in the case of a permanent magnet synchronous motor, and the voltage vector phase cannot be adjusted by adjusting the d-axis voltage command. Can be prevented. In the case of an induction motor, the d-axis current automatically decreases as the rotational speed increases, and the q-axis current command must be increased in order to continue outputting the desired torque. Even if the q-axis current is increased by torque, torque may not be generated and the control may be disabled. However, it is possible to prevent an uncontrollable state by limiting the q-axis current command limiter to an appropriate value.

電流制御の本発明の実施例を示した説明図である。(実施例1)It is explanatory drawing which showed the Example of this invention of current control. Example 1 電流制御の従来技術例1の説明図である。It is explanatory drawing of the prior art example 1 of electric current control. 電流制御の従来技術例2の説明図である。It is explanatory drawing of the prior art example 2 of electric current control. 従来技術の電圧ベクトルと各電圧指令の関係を図示したものである。The relationship between the voltage vector of a prior art and each voltage command is shown in figure. 本発明の電圧ベクトルと各電圧指令の関係を図示したものである。The relationship between the voltage vector of this invention and each voltage command is shown in figure.

本発明の交流電動機の電流制御技術の実施例を図1に示し、この図に基づいて本発明の実施例を説明する。なお、図3と同一部分については説明を省略し、異なる点のq軸電流指令制限器6とd軸電流指令調整器7と切替器19について説明する。   An embodiment of the current control technique for an AC motor of the present invention is shown in FIG. 1, and the embodiment of the present invention will be described based on this figure. The description of the same parts as those in FIG. 3 is omitted, and only the q-axis current command limiter 6, the d-axis current command adjuster 7, and the switch 19 will be described.

切替器19は、電力変換器3の電圧変調率が電圧飽和直前の所定値以上かつq軸積分器17出力の絶対値がd軸積分器18出力以上の場合にBにスイッチし、その他の場合はAにスイッチする。切替器19がAにスイッチしている通常モード時に、図1の場合はq軸速度比例増幅器15の入力をq軸偏差としているが、d軸速度比例増幅器14の入力と同様に0としてもよい。すると、図2の構成と同じとなり、電圧未飽和状態では両軸の電流制御が実現できる。また、q軸積分器17出力の絶対値がd軸積分器18出力未満の場合は、図4において、電圧ベクトルのd軸からの位相差が±45度以内にあることになり、回生運転状態となっている。そうすると電圧飽和時には、d軸積分器18が制限値VdLtに制限された状態となるが、q軸積分器17出力は制限されず電圧ベクトルの位相を制御できるのでq軸電流制御は維持できる。   The switch 19 switches to B when the voltage modulation rate of the power converter 3 is equal to or greater than a predetermined value immediately before voltage saturation and the absolute value of the q-axis integrator 17 output is equal to or greater than the d-axis integrator 18 output. Switches to A. In the normal mode in which the switch 19 is switched to A, the input of the q-axis speed proportional amplifier 15 is q-axis deviation in the case of FIG. 1, but may be 0 similarly to the input of the d-axis speed proportional amplifier 14. . Then, it becomes the same as the configuration of FIG. 2, and current control of both axes can be realized in a voltage unsaturated state. When the absolute value of the q-axis integrator 17 output is less than the d-axis integrator 18 output, the phase difference from the d-axis of the voltage vector is within ± 45 degrees in FIG. It has become. Then, when the voltage is saturated, the d-axis integrator 18 is limited to the limit value VdLt, but the output of the q-axis integrator 17 is not limited and the phase of the voltage vector can be controlled, so that the q-axis current control can be maintained.

切替器19がBにスイッチしている他軸積分モード時においては、図3のスイッチ16がオフしている状態と同じとなる。よって電圧飽和時には、q軸積分器17が制限値VqLtに制限された状態となるので、その入力であるd軸偏差が残ることになる。一方、d軸誤差補正値Vdx≫q軸誤差補正値Vqxとすることで、d軸積分器18は制限されにくくなり、vdrを制御することができ、それにより電圧位相を調整してq軸電流制御を維持することができる。その際に、q軸積分器17の制限値VqLtを(2)式や(4)式の右辺の微分項を除いた値の絶対値にq軸誤差補正値Vqxを加えた値とすることで、q軸積分器17の出力を無駄に大きくする必要がなくなり、q軸誤差補正値Vqxの値を(2)式や(4)式の演算誤差を補正するだけの大きさにすればよいので、図5に示されているように電圧ベクトルvがq軸より離れていても電圧ベクトル位相を変化させるためのd軸電圧指令の変化分Δvdrを小さくすることができる。従って、d軸積分器18の出力範囲小さくすることができ、その積分ゲインとなるq軸速度比例増幅器15やd軸積分ゲイン増幅器13のゲイン調整が簡単となる。   In the other axis integration mode in which the switch 19 is switched to B, the state is the same as the state in which the switch 16 in FIG. 3 is off. Therefore, when the voltage is saturated, the q-axis integrator 17 is limited to the limit value VqLt, and the d-axis deviation that is the input remains. On the other hand, by setting d-axis error correction value Vdx >> q-axis error correction value Vqx, d-axis integrator 18 is less likely to be restricted, and vdr can be controlled, thereby adjusting the voltage phase and adjusting the q-axis current. Control can be maintained. At that time, the limit value VqLt of the q-axis integrator 17 is set to a value obtained by adding the q-axis error correction value Vqx to the absolute value of the value excluding the differential term on the right side of the equations (2) and (4). Therefore, it is not necessary to unnecessarily increase the output of the q-axis integrator 17, and the value of the q-axis error correction value Vqx only needs to be large enough to correct the calculation error in the equations (2) and (4). As shown in FIG. 5, even if the voltage vector v is away from the q axis, the change Δvdr of the d-axis voltage command for changing the voltage vector phase can be reduced. Therefore, the output range of the d-axis integrator 18 can be reduced, and the gain adjustment of the q-axis speed proportional amplifier 15 and the d-axis integral gain amplifier 13 serving as the integral gain is simplified.

次にq軸電流指令制限器6の動作について説明する。q軸電流指令制限器6は、電圧ベクトル位相制限値θvxと電力変換器3が出力可能な最大電圧Emとを入力してq軸電流制限値を求め、その値にq軸電流指令を制限して新しいq軸電流指令iqrrとして出力する。   Next, the operation of the q-axis current command limiter 6 will be described. The q-axis current command limiter 6 obtains a q-axis current limit value by inputting the voltage vector phase limit value θvx and the maximum voltage Em that the power converter 3 can output, and limits the q-axis current command to that value. Is output as a new q-axis current command iqrr.

(数5)

Figure 2016167946
(数6)
Figure 2016167946
(数7)
Figure 2016167946
(Equation 5)
Figure 2016167946
(Equation 6)
Figure 2016167946
(Equation 7)
Figure 2016167946

q軸電流指令制限器6は、交流電動機1が永久磁石同期電動機の場合は、前記q軸電流制限値を、d軸と電圧指令ベクトルとの位相差をθvxに制限するために用いる。(3)式に(5)式を代入し、巻線抵抗の項と電流微分項を無視すると絶対値として(6)式が得られる。この式でq軸電流指令を制限することでd軸と電圧指令ベクトルとの位相差を例えばω>0の場合は、θvx〜180−θvxの範囲内に制限することができる。   When the AC motor 1 is a permanent magnet synchronous motor, the q-axis current command limiter 6 uses the q-axis current limit value to limit the phase difference between the d-axis and the voltage command vector to θvx. By substituting equation (5) into equation (3) and ignoring the term of winding resistance and the current differential term, equation (6) is obtained as an absolute value. By limiting the q-axis current command with this equation, the phase difference between the d-axis and the voltage command vector can be limited within the range of θvx to 180−θvx when ω> 0, for example.

交流電動機1が誘導電動機の場合は、最大トルクを得る条件としてθvx=π/4またはθvx=3・π/4が得られる。よって、θvx=π/4として(7)式でq軸電流制限値iqlmtを求め、iqlmtでq軸電流指令を制限すれば、停動トルクを超えることによる電流制御不能状態に陥ることを防ぐことができる。   When AC motor 1 is an induction motor, θvx = π / 4 or θvx = 3 · π / 4 is obtained as a condition for obtaining the maximum torque. Therefore, if θvx = π / 4 and the q-axis current limit value iqlmt is obtained by the equation (7) and the q-axis current command is limited by iqlmt, the current control cannot be prevented from exceeding due to exceeding the stall torque. Can do.

次にd軸電流指令調整器7の動作について説明する。d軸電流指令調整器7は、d軸電流idの高周波成分を除いたものに所定値Δidを加えたものとd軸電流指令idrとから負の方向に大きいものを選択して新しいd軸電流指令idrrとして出力する。これによってd軸偏差演算器9で得られたidrrとidとの偏差iderは、Δidより大きくなることがなくなる。すると電圧飽和状態で電流指令生成器5出力のd軸電流指令idrがidよりも大きい範囲で急変しても全く電流制御には影響しなくなる。   Next, the operation of the d-axis current command adjuster 7 will be described. The d-axis current command regulator 7 selects a new d-axis current by selecting a value obtained by adding a predetermined value Δid to a value obtained by removing the high-frequency component of the d-axis current id and a d-axis current command idr that is larger in the negative direction. Output as command idrr. As a result, the deviation ider between idrr and id obtained by the d-axis deviation calculator 9 does not become larger than Δid. Then, even if the d-axis current command idr output from the current command generator 5 suddenly changes in a voltage saturation state in a range larger than id, the current control is not affected at all.

交流電動機の制御装置において、電圧飽和状態となってもトルク制御優先での電流制御を安定に継続することができ、また電動機速度の上昇や電力変換器の電源電圧低下などでより電圧飽和度が向上してもq軸電流指令を的確に制限することで制御不能状態を避けることができるので、誘導電動機や永久磁石同期電動機による全てのドライブシステムに本発明を適用でき、速度や電源電圧の運転許容範囲を広げることができるようになる。   In an AC motor control device, current control with priority on torque control can be stably continued even when voltage saturation occurs, and voltage saturation is further increased due to an increase in motor speed or a decrease in power supply voltage of the power converter. Even if it is improved, it is possible to avoid an uncontrollable state by accurately limiting the q-axis current command. Therefore, the present invention can be applied to all drive systems using induction motors or permanent magnet synchronous motors, and operation of speed and power supply voltage can be performed. The allowable range can be expanded.

1 交流電動機
2 電流検出器
3 電力変換器
4 電圧座標変換器
5 電流指令生成器
6 q軸電流指令制限器
7 d軸電流指令調整器
8 q軸偏差演算器
9 d軸偏差演算器
10 q軸比例増幅器
11 d軸比例増幅器
12 q軸積分ゲイン増幅器
13 d軸積分ゲイン増幅器
14 d軸速度比例増幅器
15 q軸速度比例増幅器
16 スイッチ
17 q軸積分器
18 d軸積分器
19 切替器
21、22、23、24 加算器
DESCRIPTION OF SYMBOLS 1 AC motor 2 Current detector 3 Power converter 4 Voltage coordinate converter 5 Current command generator 6 q-axis current command limiter 7 d-axis current command adjuster 8 q-axis deviation calculator 9 d-axis deviation calculator 10 q-axis Proportional amplifier 11 d-axis proportional amplifier 12 q-axis integral gain amplifier 13 d-axis integral gain amplifier 14 d-axis velocity proportional amplifier 15 q-axis velocity proportional amplifier 16 switch 17 q-axis integrator 18 d-axis integrator 19 switches 21, 22, 23, 24 Adder

Claims (5)

交流電動機の固定子電流を回転する直交座標であるdq軸上の各成分のd軸電流とq軸電流に変換して出力する電流検出器と、
静止座標系での電圧指令を入力し、該電圧指令が出力可能な最大電圧よりも小さければ前記電圧指令通りの電圧を前記交流電動機に印加し、前記電圧指令の大きさが前記出力可能な最大電圧よりも大きければ、前記最大電圧の大きさで前記電圧指令と概略同位相の電圧を前記交流電動機に印加する電力変換器と、
前記dq座標上のd軸電流指令とq軸電流指令を生成して出力する電流指令生成器と、
前記電流指令生成器出力のd軸電流指令と前記電流検出器のd軸電流との差を得るd軸偏差演算器と、
前記電流指令生成器出力のq軸電流指令と前記電流検出器のq軸電流との差を得るq軸偏差演算器と、
前記d軸偏差演算器出力を比例ゲイン倍するd軸比例増幅器と、
前記q軸偏差演算器出力を比例ゲイン倍するq軸比例増幅器と、
入力を時間積分して所定制限値VdLtで制限して出力するd軸積分器と、
入力を時間積分して所定制限値VqLtで制限して出力するq軸積分器と、
前記q軸比例増幅器出力と前記q軸積分器出力との和のq軸電圧指令と、前記d軸比例増幅器出力と前記d軸積分器出力との和のd軸電圧指令から前記静止座標系での電圧指令を求める電圧座標変換器とからなる交流電動機の電流制御装置において、
前記d軸積分器の入力に少なくとも前記d軸偏差演算器出力を所定ゲイン倍したものを加え前記q軸積分器の入力を前記q軸偏差演算器出力を所定ゲイン倍したもののみとした通常モードと、前記d軸積分器の入力を前記q軸偏差演算器出力を所定ゲイン倍したもののみとし前記q軸積分器の入力に少なくとも前記d軸偏差演算器出力を所定ゲイン倍したものを加えたものとした他軸積分モードとを切り替える切替器を具備することを特徴とする交流電動機の電流制御装置。
A current detector that converts and outputs a d-axis current and a q-axis current of each component on the dq axis, which are orthogonal coordinates for rotating the stator current of the AC motor,
When a voltage command in a stationary coordinate system is input and the voltage command is smaller than the maximum voltage that can be output, a voltage according to the voltage command is applied to the AC motor, and the magnitude of the voltage command is the maximum that can be output. A power converter that applies a voltage of approximately the same phase as the voltage command to the AC motor if the voltage is greater than the voltage,
A current command generator for generating and outputting a d-axis current command and a q-axis current command on the dq coordinate;
A d-axis deviation calculator for obtaining a difference between the d-axis current command of the current command generator output and the d-axis current of the current detector;
A q-axis deviation calculator for obtaining a difference between the q-axis current command of the current command generator output and the q-axis current of the current detector;
A d-axis proportional amplifier for multiplying the d-axis deviation calculator output by a proportional gain;
A q-axis proportional amplifier that multiplies the q-axis deviation calculator output by a proportional gain;
A d-axis integrator that integrates the input over time and outputs it after being limited by a predetermined limit value VdLt;
A q-axis integrator that integrates the input over time and limits and outputs a predetermined limit value VqLt;
From the q-axis voltage command that is the sum of the q-axis proportional amplifier output and the q-axis integrator output and the d-axis voltage command that is the sum of the d-axis proportional amplifier output and the d-axis integrator output, In an AC motor current control device comprising a voltage coordinate converter for obtaining a voltage command of
Normal mode in which at least the output of the d-axis deviation calculator is multiplied by a predetermined gain to the input of the d-axis integrator, and the input of the q-axis integrator is only the one obtained by multiplying the output of the q-axis deviation calculator by a predetermined gain. And the input of the d-axis integrator is only the q-axis deviation calculator output multiplied by a predetermined gain, and at least the d-axis deviation calculator output is multiplied by a predetermined gain to the input of the q-axis integrator. A current control device for an AC motor, comprising a switch for switching between the other-axis integration modes.
前記切替器において、前記電力変換器の電圧変調率が所定値以上かつ前記q軸積分器出力の絶対値が前記d軸積分器出力以上の場合に前記他軸積分モードを選択することを特徴とする請求項1記載の交流電動機の電流制御装置。 In the switch, the other-axis integration mode is selected when the voltage modulation rate of the power converter is equal to or greater than a predetermined value and the absolute value of the q-axis integrator output is equal to or greater than the d-axis integrator output. The current control device for an AC motor according to claim 1. 前記VdLtを前記交流電動機のd軸の特性式より電流微分項を除いて得られたd軸電圧値の絶対値にd軸誤差補正値Vdxを加えたものとし、前記VqLtを前記交流電動機のq軸の特性式より電流微分項を除いて得られたq軸電圧値の絶対値にq軸誤差補正値Vqxを加えたものとすることを特徴とする請求項1および2記載の交流電動機の電流制御装置。 The VdLt is obtained by adding the d-axis error correction value Vdx to the absolute value of the d-axis voltage value obtained by removing the current differential term from the d-axis characteristic formula of the AC motor, and the VqLt is the q of the AC motor. 3. An AC motor current according to claim 1, wherein a q-axis error correction value Vqx is added to an absolute value of a q-axis voltage value obtained by excluding a current differential term from the shaft characteristic equation. Control device. 前記d軸電流から高周波成分を除去したものに所定値を加算した第2d軸電流指令と、前記電流指令生成器出力のd軸電流指令とを比較して、負の方向に大きい方を選択して出力するd軸電流指令調整器を具備し、前記d軸電流指令の代わりに該d軸電流指令調整器出力を前記d軸偏差演算器の入力とすることを特徴とする請求項1から3記載の交流電動機の電流制御装置。 The second d-axis current command obtained by adding a predetermined value to the d-axis current from which the high frequency component is removed is compared with the d-axis current command of the current command generator output, and the larger one in the negative direction is selected. 4. A d-axis current command adjuster for outputting the output, and the output of the d-axis current command regulator is used as an input to the d-axis deviation calculator instead of the d-axis current command. The AC motor current control device described. 前記d軸電圧指令と前記q軸電圧指令を成分とする電圧指令ベクトルの前記d軸からの位相の制限値である電圧ベクトル位相制限値と前記最大電圧とから前記q軸電流指令の制限値を求めて、前記q軸電流指令を該制限値に制限して前記q軸偏差演算器に出力するq軸電流指令制限器を具備することを特徴とする請求項1から4記載の交流電動機の電流制御装置。

The limit value of the q-axis current command is obtained from the voltage vector phase limit value, which is a limit value of the phase from the d-axis of the voltage command vector having the d-axis voltage command and the q-axis voltage command as components, and the maximum voltage. 5. A current of an AC motor according to claim 1, further comprising a q-axis current command limiter that obtains and limits the q-axis current command to the limit value and outputs the limit to the q-axis deviation calculator. Control device.

JP2015047285A 2015-03-10 2015-03-10 AC motor current control device Active JP6391096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015047285A JP6391096B2 (en) 2015-03-10 2015-03-10 AC motor current control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015047285A JP6391096B2 (en) 2015-03-10 2015-03-10 AC motor current control device

Publications (2)

Publication Number Publication Date
JP2016167946A true JP2016167946A (en) 2016-09-15
JP6391096B2 JP6391096B2 (en) 2018-09-19

Family

ID=56898862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047285A Active JP6391096B2 (en) 2015-03-10 2015-03-10 AC motor current control device

Country Status (1)

Country Link
JP (1) JP6391096B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123925A (en) * 2020-08-26 2022-03-01 美的威灵电机技术(上海)有限公司 Motor current control method, control device, motor system and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150445A1 (en) * 2016-02-29 2017-09-08 日本精工株式会社 Electric power steering apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067453A (en) * 2006-09-06 2008-03-21 Toyo Electric Mfg Co Ltd Control device of synchronous machine
JP2012151931A (en) * 2011-01-17 2012-08-09 Nagaoka Univ Of Technology Motor controller
JP2014093889A (en) * 2012-11-05 2014-05-19 Yaskawa Electric Corp Controller of ac motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067453A (en) * 2006-09-06 2008-03-21 Toyo Electric Mfg Co Ltd Control device of synchronous machine
JP2012151931A (en) * 2011-01-17 2012-08-09 Nagaoka Univ Of Technology Motor controller
JP2014093889A (en) * 2012-11-05 2014-05-19 Yaskawa Electric Corp Controller of ac motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123925A (en) * 2020-08-26 2022-03-01 美的威灵电机技术(上海)有限公司 Motor current control method, control device, motor system and storage medium
CN114123925B (en) * 2020-08-26 2024-06-11 美的威灵电机技术(上海)有限公司 Current control method and device for motor, motor system and storage medium

Also Published As

Publication number Publication date
JP6391096B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP5957704B2 (en) Electric motor control device
JP5948613B2 (en) Motor control device
JP5409727B2 (en) AC motor speed control device
KR100374662B1 (en) Apparatus for controlling synchronous motor
JP5717808B2 (en) Current control device for synchronous motor
EP2869461A1 (en) Motor controller
KR102199277B1 (en) Efficiency improvement technique in the v/f operation for permanent magnet synchronous motor
JP4797074B2 (en) Vector control device for permanent magnet motor, vector control system for permanent magnet motor, and screw compressor
JP2018057170A (en) Controller for alternating electric motor
CN107395078A (en) Permagnetic synchronous motor field weakening control method
JP5284895B2 (en) Winding field synchronous machine controller
JP2005151678A (en) V/f CONTROLLER FOR PERMANENT-MAGNET SYNCHRONOUS MOTOR
JP4605254B2 (en) Rotating machine control device
JP6391096B2 (en) AC motor current control device
JP7194320B2 (en) motor controller
JP4639832B2 (en) AC motor drive device
JP2001190093A (en) Control device of print magnet type synchronous motor
JP5385374B2 (en) Control device for rotating electrical machine
CN110890854B (en) Synchronous motor control device
JP6417881B2 (en) Induction motor controller
JP3534722B2 (en) Motor control device
JP4051601B2 (en) Variable speed control device for electric motor
JPWO2005025049A1 (en) Rotating machine control device
JP5517983B2 (en) AC rotating machine control device
JP2015220944A (en) Sensorless drive device of synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180816

R150 Certificate of patent or registration of utility model

Ref document number: 6391096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150