JP2016165696A - Ethylene oxide production catalyst and method for producing ethylene oxide using the same - Google Patents

Ethylene oxide production catalyst and method for producing ethylene oxide using the same Download PDF

Info

Publication number
JP2016165696A
JP2016165696A JP2015047579A JP2015047579A JP2016165696A JP 2016165696 A JP2016165696 A JP 2016165696A JP 2015047579 A JP2015047579 A JP 2015047579A JP 2015047579 A JP2015047579 A JP 2015047579A JP 2016165696 A JP2016165696 A JP 2016165696A
Authority
JP
Japan
Prior art keywords
catalyst
ethylene oxide
carrier
weight
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015047579A
Other languages
Japanese (ja)
Other versions
JP2016165696A5 (en
Inventor
宗一郎 紺谷
Soichiro Konya
宗一郎 紺谷
克己 仲代
Katsumi Nakadai
克己 仲代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2015047579A priority Critical patent/JP2016165696A/en
Publication of JP2016165696A publication Critical patent/JP2016165696A/en
Publication of JP2016165696A5 publication Critical patent/JP2016165696A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide an ethylene oxide production catalyst in which stability of catalyst performance is improved and good reaction characteristics are obtained over a long period from the initial reaction stage without accompanying an extreme increase in the reaction temperature.SOLUTION: Provided is an ethylene oxide production catalyst comprising a carrier, silver and rhenium, in which the carrier contains therein silicon in an amount of 0.01 wt.% to 1.0 wt.% in terms of SiO, and the carrier has, in a pore distribution measured by mercury press-in method, at least two peaks having a maximal value of log differential pore volume of 0.2 ml/g or more in a range of pore diameter of 0.01 μm to 100 μm, where at least one of the peaks is present in a range of 0.5 μm to 3.0 μm.SELECTED DRAWING: Figure 1

Description

本発明は、エチレンからエチレンオキシドを製造するための触媒及びそれを用いたエチレンオキシドの製造方法に関する。   The present invention relates to a catalyst for producing ethylene oxide from ethylene and a method for producing ethylene oxide using the same.

エチレンを分子状酸素により気相接触酸化して工業的にエチレンオキシドを製造する際に使用される触媒は銀触媒である。エチレンオキシドを効率よく生産するために、この銀触媒の改良の要請が強く、反応初期から持続的に高選択性を保持する触媒の出現が望まれている。このため、従来から種々の検討が行われている。   A catalyst used when industrially producing ethylene oxide by vapor-phase catalytic oxidation of ethylene with molecular oxygen is a silver catalyst. In order to efficiently produce ethylene oxide, there is a strong demand for improvement of this silver catalyst, and the appearance of a catalyst that maintains high selectivity continuously from the beginning of the reaction is desired. For this reason, various studies have been made conventionally.

例えば、特許文献1には、特定の比表面積、特定の細孔径分布を有する担体に銀を担持させた触媒が記載されている。特許文献2には、特定の比表面積、特定吸水率、特定の細孔径分布を有する触媒用担体が記載されている。また、特許文献3には、細孔分布において少なくとも二つのピークを有する担体からなる触媒が記載されている。特許文献4には、特定の細孔容積を有する触媒用担体が記載されている。さらに、特許文献5には、二峰性細孔径分布を有する担体及び銀、レニウム等の触媒成分を含む触媒が記載されている。   For example, Patent Document 1 describes a catalyst in which silver is supported on a carrier having a specific surface area and a specific pore size distribution. Patent Document 2 describes a catalyst carrier having a specific surface area, a specific water absorption rate, and a specific pore size distribution. Patent Document 3 describes a catalyst comprising a support having at least two peaks in the pore distribution. Patent Document 4 describes a catalyst carrier having a specific pore volume. Furthermore, Patent Document 5 describes a catalyst containing a carrier having a bimodal pore size distribution and a catalyst component such as silver or rhenium.

特表2008−545533号公報Special table 2008-545533 特表2005−518275号公報Special table 2005-518275 gazette 特開2008−86877号公報JP 2008-86877 A 特表2010−537807号公報Special table 2010-537807 特表2010−537993号公報Special table 2010-537993 gazette

しかしながら、従来技術により得られる触媒は、反応初期には触媒性能が良好であっても、長時間反応を継続した場合、触媒性能の低下が生じるものであった。
尚、該触媒性能を補填するために、反応温度を上昇させることが試みられてはいるが、温度上昇は熱効率を悪化させ、触媒寿命の短縮を引き起こすものである。
However, the catalyst obtained by the prior art has a decrease in the catalyst performance when the reaction is continued for a long time even if the catalyst performance is good at the beginning of the reaction.
Although attempts have been made to increase the reaction temperature in order to compensate for the catalyst performance, the increase in temperature deteriorates the thermal efficiency and shortens the catalyst life.

本発明は上記従来の問題点を解決し、触媒性能の安定性が向上し、反応温度の極度の上昇を伴うことなく、反応初期より長期間良好な反応特性が得られるエチレンオキシド製造用触媒を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and provides a catalyst for producing ethylene oxide that can improve the stability of catalyst performance and can obtain good reaction characteristics for a long period of time from the beginning of the reaction without causing an extreme increase in the reaction temperature. The purpose is to do.

本発明者らは、研究を重ねた結果、担体、銀及びレニウムを含むエチレンオキシド製造用触媒において、該担体が担体中にケイ素を特定量含み、ログ微分細孔容積のピークが少なくとも二つ存在し、該ピークの少なくとも一つが特定範囲にある担体であるエチレンオキシド製造用触媒とすることにより、前記課題を解決したのである。
すなわち、本発明の要旨は下記[1]〜[5]に存する。
[1]担体、銀及びレニウムを含むエチレンオキシド製造用触媒であって、
該担体が担体中にケイ素をSiO換算で0.01重量%〜1.0重量%含み、水銀圧入法により測定される細孔分布において、細孔直径0.01μm〜100μmの範囲に、ログ微分細孔容積の極大値が0.2ml/g以上のピークが少なくとも二つ存在し、該ピ
ークの少なくとも一つが0.5μm〜3.0μmの範囲に存在する担体である、エチレンオキシド製造用触媒。
As a result of repeated research, the present inventors have found that in a catalyst for producing ethylene oxide containing support, silver and rhenium, the support contains a specific amount of silicon in the support, and there are at least two peaks of log differential pore volume. The above problems have been solved by using a catalyst for producing ethylene oxide, which is a carrier in which at least one of the peaks is in a specific range.
That is, the gist of the present invention resides in the following [1] to [5].
[1] A catalyst for producing ethylene oxide containing a carrier, silver and rhenium,
The carrier contains 0.01% to 1.0% by weight of silicon in terms of SiO 2 in the carrier, and in the pore distribution measured by the mercury intrusion method, the log has a diameter in the range of 0.01 μm to 100 μm. A catalyst for producing ethylene oxide, wherein at least two peaks having a maximum value of the differential pore volume of 0.2 ml / g or more are present, and at least one of the peaks is in a range of 0.5 µm to 3.0 µm.

[2]前記担体の比表面積が0.8m/g〜1.8m/gである、[1]に記載のエチレンオキシド製造用触媒。
[3]前記担体の吸水率が40重量%〜70重量%である、[1]又は[2]に記載のエチレンオキシド製造用触媒。
[4]前記担体が更にナトリウムを含み、ナトリウム含有量が担体中にNaO換算で10重量ppm〜1500重量ppmである[1]乃至[3]のいずれかに記載のエチレンオキシド製造用触媒。
[2] The specific surface area of the carrier is 0.8m 2 /g~1.8m 2 / g, a catalyst for production of ethylene oxide according to [1].
[3] The catalyst for producing ethylene oxide according to [1] or [2], wherein the carrier has a water absorption rate of 40% by weight to 70% by weight.
[4] The catalyst for producing ethylene oxide according to any one of [1] to [3], wherein the carrier further contains sodium, and the sodium content in the carrier is 10 ppm by weight to 1500 ppm by weight in terms of Na 2 O.

[5]前記[1]乃至[4]のいずれかに記載のエチレンオキシド製造用触媒の存在下、エチレンを酸化しエチレンオキシドとする、エチレンオキシドの製造方法。 [5] A method for producing ethylene oxide, wherein ethylene is oxidized to ethylene oxide in the presence of the ethylene oxide production catalyst according to any one of [1] to [4].

本発明のエチレンオキシド製造用触媒を用いてエチレンからエチレンオキシドを製造すると、触媒性能の低下が抑制され、反応初期より長期間、温度の極度の上昇を伴うことなく、エチレンオキシドを高選択率で製造することができる。   When ethylene oxide is produced from ethylene using the catalyst for producing ethylene oxide according to the present invention, reduction in catalyst performance is suppressed, and ethylene oxide is produced with high selectivity without causing an extreme temperature rise for a long period of time from the beginning of the reaction. Can do.

実施例1で使用した担体Aの細孔分布(ログ微分細孔容積)を示すグラフである2 is a graph showing the pore distribution (log differential pore volume) of carrier A used in Example 1. FIG. 実施例1で使用した担体Aの細孔分布(積算細孔容積)を示すグラフである2 is a graph showing the pore distribution (cumulative pore volume) of the carrier A used in Example 1. FIG. 比較例1で使用した担体Bの細孔分布(ログ微分細孔容積)を示すグラフである6 is a graph showing the pore distribution (log differential pore volume) of the carrier B used in Comparative Example 1. 比較例1で使用した担体Bの細孔分布(積算細孔容積)を示すグラフである6 is a graph showing the pore distribution (cumulative pore volume) of the carrier B used in Comparative Example 1.

以下、この発明の実施形態について詳細に説明する。
本発明は、エチレンからエチレンオキシドを製造するためのエチレンオキシド製造用触媒及びそれを用いたエチレンオキシドの製造方法の発明である。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention is an invention of an ethylene oxide production catalyst for producing ethylene oxide from ethylene and an ethylene oxide production method using the same.

(担体)
本発明のエチレンオキシド製造用触媒(以下「触媒」と称する場合がある。)に含まれる担体は、エチレンからエチレンオキシドを製造するための触媒成分を担持するための担体であり、多孔性担体が好ましい。この多孔性担体としては、アルミナ、炭化ケイ素、チタニア、ジルコニア、マグネシア等の多孔性耐火物が挙げられる。この中でも、アルミナを含むことが好ましく、αアルミナを含むことがより好ましい。
(Carrier)
The carrier contained in the catalyst for producing ethylene oxide (hereinafter sometimes referred to as “catalyst”) of the present invention is a carrier for carrying a catalyst component for producing ethylene oxide from ethylene, and a porous carrier is preferred. Examples of the porous carrier include porous refractories such as alumina, silicon carbide, titania, zirconia, and magnesia. Among these, it is preferable to contain alumina, and it is more preferable to include α-alumina.

前記担体は、セラミック成分を含む原料を焼成することにより製造される。このセラミック成分には、αアルミナ構造を有するアルミナ原粉(以下、単に「アルミナ原粉」と称する場合がある。)やαアルミナの前駆物質等が含まれる。このαアルミナ構造を有するアルミナ原粉とは、焼結後もαアルミナ構造を保持するαアルミナの粉をいう。また、前記αアルミナの前駆物質とは、焼成することによりαアルミナとなるものをいい、アルミナの水和物等があげられる。   The carrier is manufactured by firing a raw material containing a ceramic component. This ceramic component includes an alumina raw powder having an α-alumina structure (hereinafter sometimes simply referred to as “alumina raw powder”), an α-alumina precursor, and the like. The alumina raw powder having the α-alumina structure refers to α-alumina powder that retains the α-alumina structure even after sintering. The precursor of α-alumina refers to a material that becomes α-alumina upon firing, and examples thereof include alumina hydrates.

前記αアルミナ構造を有するアルミナ原粉(アルミナ原粉)は、特定のαアルミナ構造を有するアルミナ原粉(以下、「特定アルミナ原粉」と称する場合がある。)を含有する。   The alumina raw powder having the α-alumina structure (alumina raw powder) contains an alumina raw powder having a specific α-alumina structure (hereinafter sometimes referred to as “specific alumina raw powder”).

前記特定アルミナ原粉は、前記αアルミナ構造を有するアルミナ原粉全体に対し、50重量%以上含有することが好ましく、70重量%以上含有することがより好ましく、80重量%以上含有することがさらに好ましく、90重量%以上含有することが特に好ましい。50重量%未満だと、得られた担体や触媒が工業的に使用可能な圧壊強度が得られないという問題点を生じる場合がある。一方、前記原料に含まれるセラミック成分の全量が前記アルミナ原粉であってもいいので、含有割合の上限は100重量%である。   The specific alumina raw powder is preferably contained in an amount of 50% by weight or more, more preferably 70% by weight or more, and more preferably 80% by weight or more based on the whole alumina raw powder having the α-alumina structure. The content is preferably 90% by weight or more. If it is less than 50% by weight, there may be a problem that the obtained support or catalyst does not have an industrially usable crushing strength. On the other hand, since the total amount of the ceramic component contained in the raw material may be the alumina raw powder, the upper limit of the content ratio is 100% by weight.

また、この特定アルミナ原粉の一次粒子が凝集した二次粒子の平均粒子径は、1.0μm以上が好ましく、1.5μm以上がより好ましい。1.0μmより小さいと、得られる担体中に微細な細孔が存在し、工業的に使用するのに十分な機械的強度が得られなくなるという問題点を生じる場合がある。一方、該平均粒子径の上限は10μmが好ましく、7.5μmがより好ましい。10μmより大きいと、得られる担体は工業的に使用するのに十分な機械的強度が得られなくなるという問題点を生じる場合がある。   Moreover, the average particle diameter of the secondary particles in which the primary particles of the specific alumina raw powder are aggregated is preferably 1.0 μm or more, and more preferably 1.5 μm or more. If it is smaller than 1.0 μm, fine pores exist in the obtained carrier, and there may be a problem that sufficient mechanical strength for industrial use cannot be obtained. On the other hand, the upper limit of the average particle diameter is preferably 10 μm, more preferably 7.5 μm. If it is larger than 10 μm, the obtained carrier may cause a problem that sufficient mechanical strength for industrial use cannot be obtained.

前記原料中には、セルロース、クルミ、デンプン、ワセリン等の有機物質等を含有させることが担体成形の容易性の点で好ましく、中でもセルロースがより好ましい。この有機物質の含有量は、前記原料に対し、60重量%以下が好ましく、40重量%以下がより好ましい。60重量%より多いと、工業的に使用するのに十分な機械的強度が得られなくなるという問題点を生じる場合がある。   In the raw material, it is preferable to contain an organic substance such as cellulose, walnut, starch, petrolatum or the like in terms of ease of carrier molding, and among these, cellulose is more preferable. The content of the organic material is preferably 60% by weight or less, and more preferably 40% by weight or less based on the raw material. If it is more than 60% by weight, there may be a problem that sufficient mechanical strength for industrial use cannot be obtained.

前記担体は水銀圧入法により測定される細孔分布において、細孔直径0.01μm〜100μmの範囲に、ログ微分細孔容積の極大値が0.2ml/gを超えるピークが少なくとも二つ存在する。
該細孔直径の範囲は好ましくは0.05μm〜50μm、より好ましくは0.1μm〜40μm、さらに好ましくは0.1μm〜30μmである。前記範囲とすることにより高選択的にエチレンオキシドを製造する触媒となる可能性がある。
更に、任意のピークとそのピークの最も近傍にあるピークとの間隔は好ましくは0.01μm〜20μm、より好ましくは0.05μm〜15μm、さらに好ましくは0.1μm〜13μmである。前記範囲とすることにより触媒性能の低下が抑制された触媒となる可能性がある。
更に加えて、ピーク間の極小値と該極小値を形成するピークの極大値との差は0.02ml/g以上であることが好ましく、0.05ml/g以上であることがより好ましく、0.1以上であることが更に好ましい。
In the pore distribution measured by the mercury intrusion method, the carrier has at least two peaks in which the maximum value of the log differential pore volume exceeds 0.2 ml / g in the pore diameter range of 0.01 μm to 100 μm. .
The range of the pore diameter is preferably 0.05 μm to 50 μm, more preferably 0.1 μm to 40 μm, and still more preferably 0.1 μm to 30 μm. By setting it in the above range, there is a possibility of becoming a catalyst for producing ethylene oxide with high selectivity.
Furthermore, the interval between an arbitrary peak and a peak nearest to the peak is preferably 0.01 μm to 20 μm, more preferably 0.05 μm to 15 μm, and still more preferably 0.1 μm to 13 μm. By setting it in the above range, there is a possibility that the catalyst is prevented from being deteriorated in catalyst performance.
In addition, the difference between the minimum value between the peaks and the maximum value of the peak forming the minimum value is preferably 0.02 ml / g or more, more preferably 0.05 ml / g or more, and 0 More preferably, it is 1 or more.

尚、本発明において、担体の細孔分布は水銀圧入法により測定することができる。該水銀圧入法では、細孔はすべて円筒形、細孔径は直径D、細孔容積はVで表現するものと仮定して細孔径を測定する。また、「ログ微分細孔容積分布」とは、広い範囲の細孔分布を表現するのに適しており、差分細孔容積dVを細孔径の対数扱いの差分値d(logD)で割った値を求め、これを各区分の平均細孔径に対してプロットしたものである。なお、「差分細孔容積dV」とは、測定ポイント間の細孔容積の増加分をいう。例えば、図1のように、横軸が細孔直径(対数目盛り)を示し、縦軸がログ微分細孔容積を示す。また、積算細孔容積分布とは、横軸に細孔径、縦軸に細孔容積ΣVをプロットしたものである。例えば、図2のように、横軸が細孔直径(対数目盛り)を示し、縦軸が積算細孔容積を示す。なお、細孔分布を得るための水銀圧入法の具体的な手法としては、後述する実施例に記載の手法を採用するものとする。   In the present invention, the pore distribution of the carrier can be measured by a mercury intrusion method. In the mercury intrusion method, the pore diameter is measured on the assumption that all the pores are cylindrical, the pore diameter is represented by diameter D, and the pore volume is represented by V. The “log differential pore volume distribution” is suitable for expressing a wide range of pore distribution, and is a value obtained by dividing the differential pore volume dV by the logarithmic difference value d (logD) of the pore diameter. This is plotted against the average pore diameter of each section. “Differential pore volume dV” refers to an increase in pore volume between measurement points. For example, as shown in FIG. 1, the horizontal axis indicates the pore diameter (logarithmic scale), and the vertical axis indicates the log differential pore volume. The cumulative pore volume distribution is obtained by plotting the pore diameter on the horizontal axis and the pore volume ΣV on the vertical axis. For example, as shown in FIG. 2, the horizontal axis indicates the pore diameter (logarithmic scale), and the vertical axis indicates the integrated pore volume. In addition, as a specific technique of the mercury intrusion method for obtaining the pore distribution, the technique described in Examples described later is adopted.

水銀圧入法により測定される細孔分布において、「ピーク」とは、ログ微分細孔容積の極大値が0.2ml/g以上であるものであり、極大値が0.2ml/g未満のものは「ピーク」には含まれないものとする。   In the pore distribution measured by the mercury intrusion method, “peak” means that the maximum value of the log differential pore volume is 0.2 ml / g or more and the maximum value is less than 0.2 ml / g. Are not included in the “peak”.

前記担体は、細孔直径0.01μm〜100μmの範囲に、ログ微分細孔容積の極大値が0.2ml/g以上のピークのうちの少なくとも一つが0.5μm〜3.0μmの範囲に存在する。
該範囲は好ましくは0.5μm〜2.0μm、より好ましくは0.6μm〜2.0μm、さらに好ましくは0.6μm〜1.8μmである。前記範囲であることにより長期間の使用に伴うエチレンオキシド選択率の低下が抑制された触媒となる可能性がある。
前記担体のログ微分細孔容積の極大値が0.2ml/g以上のピークは前記範囲以外に存在していてもよく、好ましくは4.0μm〜100μmの範囲であり、より好ましくは4.0μm〜50μmの範囲であり、さらに好ましくは4.0μm〜20μmの範囲である。
The carrier has a pore diameter in the range of 0.01 μm to 100 μm, and at least one of the peaks having a maximum log differential pore volume of 0.2 ml / g or more is in the range of 0.5 μm to 3.0 μm. To do.
The range is preferably 0.5 μm to 2.0 μm, more preferably 0.6 μm to 2.0 μm, and still more preferably 0.6 μm to 1.8 μm. By being in the above range, there is a possibility that the catalyst is suppressed from lowering the ethylene oxide selectivity due to long-term use.
The peak having a maximum log differential pore volume of the carrier of 0.2 ml / g or more may be present outside the above range, preferably 4.0 μm to 100 μm, more preferably 4.0 μm. It is the range of -50 micrometers, More preferably, it is the range of 4.0 micrometers-20 micrometers.

前記担体の比表面積は0.8m/g〜1.8m/gであることが好ましく、0.8m/g〜1.7m/gであることがより好ましく、1.0m/g〜1.7m/gであることがさらに好ましく、1.3m/g〜1.7m/gであることが特に好ましい。比表面積が小さすぎると、触媒成分として銀を担体に担持する場合に、担持した銀の粒子が大きくなり過ぎ、エチレンの転化率を上げるための反応温度の上昇が必要になり、結果としてエチレンオキシド選択率が低下する可能性がある。一方、大きすぎると、担体の細孔径が小さくなり、物質移動や放熱の面で不利になり、エチレンオキシド選択率が低下するおそれがある。 Preferably the specific surface area of the carrier is 0.8m 2 /g~1.8m 2 / g, more preferably 0.8m 2 /g~1.7m 2 / g, 1.0m 2 / more preferably g~1.7m is 2 / g, particularly preferably 1.3m 2 /g~1.7m 2 / g. If the specific surface area is too small, when silver is supported on the support as a catalyst component, the supported silver particles become too large, and it is necessary to increase the reaction temperature in order to increase the conversion of ethylene, resulting in the selection of ethylene oxide. The rate may decrease. On the other hand, if the size is too large, the pore diameter of the support becomes small, which is disadvantageous in terms of mass transfer and heat dissipation, and the ethylene oxide selectivity may be lowered.

前記担体の吸水率は40重量%〜70重量%であることが好ましく、45重量%〜65重量%であることがより好ましく、50重量%〜65重量%であることが更に好ましい。上記範囲より小さいと、一度に担持できる触媒成分が少なくなり、後述する触媒成分含浸工程の回数が増加するおそれがある。一方、上記範囲より大きいと、要求される表面積を保持できないおそれがある。   The water absorption of the carrier is preferably 40% by weight to 70% by weight, more preferably 45% by weight to 65% by weight, and still more preferably 50% by weight to 65% by weight. If it is smaller than the above range, the number of catalyst components that can be supported at one time decreases, and the number of catalyst component impregnation steps described later may increase. On the other hand, if it is larger than the above range, the required surface area may not be maintained.

前記担体中のケイ素含有量は、SiO換算で0.01重量%〜1.0重量%であり、0.01重量%〜0.9重量%が好ましく、0.01重量%〜0.8重量%がより好ましく、0.01重量%〜0.5重量%がさらに好ましい。ケイ素含有量が多すぎると、エチレンオキシド選択率が低下する可能性があり、またケイ素含有量が小さすぎるとエチレンの転化率を上げるために反応温度の上昇が必要となり、結果としてエチレンオキシド選択率が低下する可能性がある。
尚、触媒用担体中のケイ素含有量は誘導結合プラズマ発光分光分析法により測定することができる。
The silicon content of the carrier is 0.01 wt% to 1.0 wt% in terms of SiO 2, preferably 0.01 wt% to 0.9 wt%, 0.01 wt% to 0.8 % By weight is more preferable, and 0.01% by weight to 0.5% by weight is more preferable. If the silicon content is too high, the ethylene oxide selectivity may decrease. If the silicon content is too low, the reaction temperature must be increased to increase the ethylene conversion, resulting in a decrease in ethylene oxide selectivity. there's a possibility that.
The silicon content in the catalyst carrier can be measured by inductively coupled plasma emission spectroscopy.

又、前記担体中のナトリウム含有量は、NaO換算で10重量ppm〜1500重量ppmが好ましく、10重量ppm〜1000重量ppmがより好ましく、50重量ppm〜1000重量ppmがさらに好ましく、210重量ppm〜800重量ppmが特に好ましい。前記範囲とすることにより、高いエチレンオキシド選択率を持つ触媒となる可能性がある。
尚、担体中のナトリウム含有量は原子吸光分光法により測定することができる。
The sodium content in the carrier is preferably 10 ppm by weight to 1500 ppm by weight in terms of Na 2 O, more preferably 10 ppm by weight to 1000 ppm by weight, still more preferably 50 ppm by weight to 1000 ppm by weight, more preferably 210 ppm by weight. Particularly preferred is ppm to 800 ppm by weight. By setting it as the above range, there is a possibility that the catalyst has high ethylene oxide selectivity.
The sodium content in the carrier can be measured by atomic absorption spectroscopy.

(触媒成分)
本発明のエチレンオキシド製造用触媒は担体に担持する触媒成分として銀及びレニウムを含む。
(Catalyst component)
The catalyst for producing ethylene oxide of the present invention contains silver and rhenium as catalyst components supported on a carrier.

前記エチレンオキシド製造用触媒全体に対する、銀の含有量は、5.0重量%〜30.0重量%が好ましく、10.0重量%〜30.0重量%がさらに好ましく、11.0重量%〜27.0重量%がさらに好ましい。銀の含有量が少ないと、触媒性能が低下する傾向がある。   The content of silver is preferably 5.0% by weight to 30.0% by weight, more preferably 10.0% by weight to 30.0% by weight, and more preferably 11.0% by weight to 27% by weight based on the total catalyst for producing ethylene oxide. More preferred is 0.0% by weight. When the content of silver is small, the catalyst performance tends to decrease.

銀を供与する化合物としては、酸化銀、硝酸銀、炭酸銀、シュウ酸銀等の各種化合物が使用できる。これらの中でも、シュウ酸銀が特に好ましい。   As the compound for donating silver, various compounds such as silver oxide, silver nitrate, silver carbonate, silver oxalate and the like can be used. Among these, silver oxalate is particularly preferable.

前記エチレンオキシド製造用触媒全体に対する、レニウムの含有量は、10重量ppm〜1000重量ppmが好ましく、100重量ppm〜900重量ppmがより好ましく、200重量ppm〜800重量ppmがさらに好ましい。レニウムの含有量が少ないと、十分な選択率が得られ難い傾向がある。一方、レニウムの含有量が多いとエチレンの転化率を上げるために反応温度の上昇が必要となり、結果としてエチレンオキシド選択率が低下する可能性がある。   The content of rhenium with respect to the whole catalyst for producing ethylene oxide is preferably 10 ppm by weight to 1000 ppm by weight, more preferably 100 ppm by weight to 900 ppm by weight, and even more preferably 200 ppm by weight to 800 ppm by weight. When the rhenium content is low, there is a tendency that sufficient selectivity cannot be obtained. On the other hand, if the content of rhenium is large, it is necessary to increase the reaction temperature in order to increase the conversion rate of ethylene, and as a result, the ethylene oxide selectivity may decrease.

レニウムを供与する化合物としては、過レニウム酸化合物、酸化レニウム、塩化レニウム等があげられる。これらの中でも、過レニウム酸アンモニウムが好ましい。   Examples of compounds that donate rhenium include perrhenic acid compounds, rhenium oxide, and rhenium chloride. Among these, ammonium perrhenate is preferable.

本発明のエチレンオキシド製造用触媒には、銀及びレニウム以外に、長周期型周期表第1族の元素を含むことが高いエチレンオキシド選択率を得る点で好ましく、中でもセシウム、リチウムがより好ましい。
前記エチレンオキシド製造用触媒全体に対する、セシウムの含有量は、10重量ppm〜2000重量ppmが好ましく、100重量ppm〜1500重量ppmがより好ましく、300重量ppm〜1200重量ppmがさらに好ましい。セシウムの含有量が少なすぎると、十分な選択率が得られ難い傾向がある。一方、セシウムの含有量が多すぎると、エチレンの転化率を上げるために反応温度の上昇が必要となり、結果としてエチレンオキシド選択率が低下する可能性がある。
In addition to silver and rhenium, the catalyst for producing ethylene oxide of the present invention preferably contains an element belonging to Group 1 of the long-period periodic table from the viewpoint of obtaining a high ethylene oxide selectivity, and among these, cesium and lithium are more preferable.
The content of cesium with respect to the entire catalyst for producing ethylene oxide is preferably 10 ppm by weight to 2000 ppm by weight, more preferably 100 ppm by weight to 1500 ppm by weight, and even more preferably 300 ppm by weight to 1200 ppm by weight. If the cesium content is too small, sufficient selectivity tends to be difficult to obtain. On the other hand, when the content of cesium is too large, it is necessary to increase the reaction temperature in order to increase the conversion rate of ethylene, and as a result, the ethylene oxide selectivity may decrease.

セシウムを供与する化合物としては、水酸化物、硝酸塩、炭酸塩、酢酸塩、塩化物、酸化物、シュウ酸塩等の各種化合物が挙げられる。これらの中でも、水酸化物が好ましい。   Examples of compounds that donate cesium include various compounds such as hydroxide, nitrate, carbonate, acetate, chloride, oxide, and oxalate. Among these, hydroxide is preferable.

前記エチレンオキシド製造用触媒全体に対する、リチウムの含有量は、10重量ppm〜1000重量ppmが好ましく、20重量ppm〜800重量ppmがより好ましく、50重量ppm〜500重量ppmがさらに好ましい。リチウムの含有量が少なすぎると、十分なエチレンオキシド選択率が得られ難い傾向がある。一方、リチウムの含有量が多すぎると、エチレンの転化率を上げるために反応温度の上昇が必要となり、結果としてエチレンオキシド選択率が低下する可能性がある。   The content of lithium with respect to the whole catalyst for producing ethylene oxide is preferably 10 ppm by weight to 1000 ppm by weight, more preferably 20 ppm by weight to 800 ppm by weight, and even more preferably 50 ppm by weight to 500 ppm by weight. If the lithium content is too small, sufficient ethylene oxide selectivity tends to be difficult to obtain. On the other hand, if the lithium content is too high, it is necessary to increase the reaction temperature in order to increase the conversion rate of ethylene, and as a result, the ethylene oxide selectivity may decrease.

リチウムを供与する化合物としては、水酸化物、硝酸塩、炭酸塩、酢酸塩、塩化物、酸化物、シュウ酸塩等の各種化合物が挙げられる。これらの中でも、水酸化物が好ましい。   Examples of the compound that donates lithium include various compounds such as hydroxide, nitrate, carbonate, acetate, chloride, oxide, and oxalate. Among these, hydroxide is preferable.

(触媒の製造方法)
前記触媒成分を前記担体に担持する際、適当な溶媒に前記触媒成分を溶解させて、触媒成分含有溶液を調製し、使用されることが好ましい。この溶媒としては、取扱いの容易さから通常水が選択されるが、メタノール、エタノール等のアルコール類や水とアルコールの混合溶液も使用可能である。
(Catalyst production method)
When the catalyst component is supported on the carrier, the catalyst component is preferably dissolved in an appropriate solvent to prepare a catalyst component-containing solution. As the solvent, water is usually selected for ease of handling, but alcohols such as methanol and ethanol, and a mixed solution of water and alcohol can also be used.

前記触媒成分含有溶液では、溶液中の銀濃度は高い方が、担体に含浸させた際の銀濃度が高くなるために好ましい。そのため、触媒成分が前記溶媒に溶解し易くなるように、錯体形成剤を使用することが好ましい。錯体形成剤としては、銀と錯体を形成しやすく、得られた錯体が前記溶媒に溶解し易い化合物が好ましい。   In the catalyst component-containing solution, the higher the silver concentration in the solution, the higher the silver concentration when impregnated on the carrier is preferable. Therefore, it is preferable to use a complex forming agent so that the catalyst component is easily dissolved in the solvent. As the complex-forming agent, a compound that easily forms a complex with silver and the resulting complex is easily dissolved in the solvent is preferable.

このような錯体形成剤としては、アミン化合物等をあげることができる。このアミン化合物の具体例としては、アンモニア、ピリジン、アセトニトリル、ブチルアミン等の炭素
数1〜6のモノアミン、エタノールアミン等の炭素数1〜6のアルカノールアミン、エチレンジアミン、1,3−プロパンジアミン等の炭素数1〜6のポリアミン等があげられ、これらの中でも、アンモニア、ピリジン、ブチルアミン、エタノールアミン、エチレンジアミン、1,3−プロパンジアミン等が好ましく、エチレンジアミン及び1,3−プロパンジアミンから選ばれる1種の使用、又は2種の混合使用がより好ましい。上記の各成分の濃度は、各成分毎の含有量に合わせて適宜決定される。
Examples of such a complex-forming agent include amine compounds. Specific examples of this amine compound include C1-C6 monoamines such as ammonia, pyridine, acetonitrile and butylamine, C1-C6 alkanolamines such as ethanolamine, carbons such as ethylenediamine and 1,3-propanediamine. Among them, ammonia, pyridine, butylamine, ethanolamine, ethylenediamine, 1,3-propanediamine and the like are preferable, and one kind selected from ethylenediamine and 1,3-propanediamine is preferable. Use or mixed use of two kinds is more preferable. The density | concentration of said each component is suitably determined according to content for every component.

前記担体には、そのまま前記触媒成分含有溶液を含浸させてもよいが、前記触媒成分含有溶液を含浸させる前に、イオン交換水を用いて担体を洗浄するか、又は触媒成分の一部であるリチウム、又はリチウム及びセシウムを担体に担持させる(担体処理)と、触媒の寿命向上につながり、好ましい。   The support may be impregnated with the catalyst component-containing solution as it is, but before impregnating the catalyst component-containing solution, the support is washed with ion-exchanged water or is a part of the catalyst component. Lithium or lithium and cesium are preferably supported on a carrier (support treatment), which leads to an improvement in catalyst life.

前記担体処理に使用するリチウム化合物、セシウム化合物は、前記触媒成分含有溶液を担体に含浸する際、再溶出が少ないことから、触媒成分含有溶液への溶解度が低いものが好ましい。具体的には、リチウム化合物、セシウム化合物は、いずれも炭酸塩であることが最適である。また、リチウム化合物、セシウム化合物を溶解する溶媒としては、取扱いの容易さから水が好ましい。   The lithium compound and cesium compound used for the carrier treatment are preferably those having low solubility in the catalyst component-containing solution because the re-elution is small when the carrier is impregnated with the catalyst component-containing solution. Specifically, it is optimal that both the lithium compound and the cesium compound are carbonates. Moreover, as a solvent which melt | dissolves a lithium compound and a cesium compound, water is preferable from the ease of handling.

担体洗浄に使用するイオン交換水の温度は、0℃〜100℃が好ましく、60℃〜100℃がより好ましく、80℃〜100℃が更に好ましい。担体洗浄1回当たりに使用するイオン交換水の重量は担体重量に対して等量以上が好ましく、2倍以上がより好ましく、3倍以上が更に好ましい。担体洗浄は3回以上が好ましく、5回以上がより好ましい。   The temperature of ion-exchanged water used for carrier washing is preferably 0 ° C to 100 ° C, more preferably 60 ° C to 100 ° C, and still more preferably 80 ° C to 100 ° C. The weight of ion-exchanged water used per carrier washing is preferably equal to or more than the weight of the carrier, more preferably 2 times or more, still more preferably 3 times or more. The carrier washing is preferably 3 times or more, more preferably 5 times or more.

前記の担体処理を行った後、担体と余剰のリチウム化合物とセシウム化合物の含有溶液を分離し、その後、減圧乾燥や、加熱処理等の乾燥処理が行われる。この加熱処理は、好ましくは100℃〜300℃、更に好ましくは110℃〜220℃での空気、窒素等の不活性ガス、過熱水蒸気を利用して行う。特に好ましいのは過熱水蒸気を利用する方法である。   After carrying out the above carrier treatment, the carrier, the excess lithium compound and the cesium compound-containing solution are separated, and then a drying treatment such as reduced pressure drying or heat treatment is performed. This heat treatment is preferably performed using air, an inert gas such as nitrogen, or superheated steam at 100 ° C. to 300 ° C., more preferably 110 ° C. to 220 ° C. Particularly preferred is a method using superheated steam.

(触媒成分担持工程)
次に、触媒成分を担体に担持する工程(触媒成分担持工程)について説明する。この触媒成分担持工程は、前記触媒成分含有溶液を担体あるいは担体処理を施した担体に含浸させ(触媒成分含浸工程)、次いで、少なくとも不活性ガスを含む雰囲気下で加熱する(予備加熱工程)、更に酸素含有雰囲気下で加熱する(加熱処理工程)を含む工程である。
(Catalyst component loading process)
Next, the step of supporting the catalyst component on the carrier (catalyst component supporting step) will be described. In this catalyst component loading step, the catalyst component-containing solution is impregnated into a carrier or a carrier that has been subjected to carrier treatment (catalyst component impregnation step), and then heated in an atmosphere containing at least an inert gas (preheating step). Furthermore, it is a process including heating in an oxygen-containing atmosphere (heat treatment process).

前記触媒成分含浸工程としては、担体あるいは担体処理を施した担体に触媒成分含有溶液を浸漬する方法や、担体あるいは担体処理を施した担体に触媒成分含有溶液をスプレー状に吹き付ける方法があげられる。さらに、必要に応じて、減圧処理を組み合わせることも可能である。この触媒成分含浸工程によって、触媒成分含浸担体が得られる。   Examples of the catalyst component impregnation step include a method of immersing the catalyst component-containing solution in a carrier or carrier-treated carrier, and a method of spraying the catalyst component-containing solution on a carrier or carrier-treated carrier in a spray form. Furthermore, it is also possible to combine a decompression process as needed. By this catalyst component impregnation step, a catalyst component-impregnated support is obtained.

前記予備加熱工程における雰囲気ガスは、窒素、水蒸気等の不活性ガスであることが好ましいが、酸素を含んでいてもよい。酸素源としては、高純度酸素又は空気が使用できるが、安全性及び経済性の観点から空気の方が好ましい。   The atmospheric gas in the preheating step is preferably an inert gas such as nitrogen or water vapor, but may contain oxygen. As the oxygen source, high-purity oxygen or air can be used, but air is preferred from the viewpoint of safety and economy.

酸素濃度の測定は、酸素計又はガスクロマトグラフを使って実施することが可能である。後述するように、予備加熱工程の雰囲気が酸素又は空気と水蒸気との混合ガスである場合は、雰囲気ガスをサンプリングし、冷却によって水蒸気を液化することで、残った気相部体積と冷却前の体積比から、酸素又は空気の予備加熱雰囲気中の濃度を求めることが簡便である。   The oxygen concentration can be measured using an oximeter or a gas chromatograph. As will be described later, when the atmosphere of the preheating step is a mixed gas of oxygen or air and water vapor, sampling the atmospheric gas and liquefying the water vapor by cooling, the remaining gas phase part volume and It is convenient to obtain the concentration of oxygen or air in the preheating atmosphere from the volume ratio.

前記予備加熱工程の温度、時間は、析出する銀粒子の大きさが適当となるように選択される。特に、予備加熱温度が析出する銀粒子の大きさに大きく影響する。予備加熱温度は、下限は100℃が好ましく、125℃がより好ましく、150℃がさらに好ましい。予備加熱温度が100℃より低いと十分に銀粒子の析出が生じない可能性がある。これは低温のため金属銀粒子を析出することに要する熱量が十分に供給されにくいためと考えられる。一方、予備加熱温度の上限は、300℃が好ましく、200℃がより好ましい。予備加熱温度が300℃より高くなると、エチレンの転化率が低下し、エチレンオキシドの収率が低下する傾向がある。これは、析出する金属銀の粒子が大きくなりすぎたためと考えられる。
予備加熱工程の時間は、5分間〜60分間が好ましく、10分間〜30分間がより好ましい。
The temperature and time of the preheating step are selected so that the size of the silver particles to be deposited is appropriate. In particular, the preheating temperature greatly affects the size of the silver particles deposited. The lower limit of the preheating temperature is preferably 100 ° C, more preferably 125 ° C, and further preferably 150 ° C. If the preheating temperature is lower than 100 ° C., silver particles may not be sufficiently precipitated. This is presumably because the amount of heat required to deposit the metallic silver particles is not sufficiently supplied due to the low temperature. On the other hand, the upper limit of the preheating temperature is preferably 300 ° C, more preferably 200 ° C. When preheating temperature becomes higher than 300 degreeC, there exists a tendency for the conversion rate of ethylene to fall and the yield of ethylene oxide to fall. This is presumably because the deposited silver metal particles were too large.
The time for the preheating step is preferably 5 minutes to 60 minutes, more preferably 10 minutes to 30 minutes.

予備加熱工程で使用する装置では、雰囲気ガスを、所定量、連続供給し、装置外に排気する。環境悪化抑制、効率化の観点から、装置外に排出するのは、雰囲気ガスの一部とし、残りを循環させるのが好ましい。雰囲気ガスの排気割合は、5%〜30%が好ましい。   In the apparatus used in the preliminary heating process, a predetermined amount of atmospheric gas is continuously supplied and exhausted outside the apparatus. From the viewpoint of suppressing environmental deterioration and improving efficiency, it is preferable to discharge outside the apparatus as a part of the atmospheric gas and to circulate the remainder. The exhaust ratio of the atmospheric gas is preferably 5% to 30%.

前記予備加熱工程において、ガス線速は、0.5m/sec〜5m/secが好ましく、1m/sec〜3m/secがより好ましい。ガス線速が前記範囲より小さい場合、含浸担体に含まれる水分や錯体形成剤又はその分解物が十分に除去されない場合がある。一方、前記範囲より大きい場合は、ガス線速を増大させたことによる効果はほとんどないことから、5m/sec程度で十分である。   In the preliminary heating step, the gas linear velocity is preferably 0.5 m / sec to 5 m / sec, and more preferably 1 m / sec to 3 m / sec. When the gas linear velocity is smaller than the above range, the moisture, the complex forming agent, or the decomposition product thereof contained in the impregnated support may not be sufficiently removed. On the other hand, if it is larger than the above range, about 5 m / sec is sufficient because there is almost no effect of increasing the gas linear velocity.

工業的には、触媒成分含浸担体は、予備加熱装置に連続的に供給され、一定時間装置内に滞留し、装置外に排出されるのが好ましい。装置としては、触媒成分含浸担体を水平に移動するバンドに積載し移動させて加熱するもの(バンド乾燥機)、又は傾斜回転円筒内に積載し、斜め下方に移動させて加熱するもの(回転乾燥機)があげられる(「化学工学便覧(改訂5版)」1988年、(社)化学工学協会編、丸善(株)、昭和63年3月18日発行、p674〜683)。これらのうち、含浸担体と雰囲気ガスとの接触の容易さから、加熱した雰囲気ガスを通気させるバンド乾燥機(通気バンド乾燥機)を使用するのが好ましい。   Industrially, it is preferable that the catalyst component-impregnated support is continuously supplied to the preheating device, stays in the device for a certain time, and is discharged outside the device. As the equipment, the catalyst component impregnated carrier is loaded on a horizontally moving band and moved and heated (band dryer), or loaded in an inclined rotating cylinder and moved obliquely downward and heated (rotary drying). ("Chemical Engineering Handbook (5th revised edition)" 1988, edited by Chemical Engineering Association, Maruzen Co., Ltd., issued March 18, 1988, p674-683). Among these, it is preferable to use a band drier (aeration band drier) that allows the heated atmospheric gas to be vented because of easy contact between the impregnated carrier and the atmospheric gas.

前記加熱処理工程で、前記予備加熱工程で得られた触媒成分を担持した担体は、更に酸素含有雰囲気下で加熱し、銀化合物を金属銀に変化させ、エチレンオキシド製造用触媒とする。加熱処理温度は275℃〜450℃の範囲が好ましく、下限温度はエチレンオキシド選択率を高くすることが可能であるので335℃がより好ましく、また上限温度はエネルギー効率や経済性の観点から385℃がより好ましい。   In the heat treatment step, the carrier carrying the catalyst component obtained in the preheating step is further heated in an oxygen-containing atmosphere to change the silver compound to metallic silver to obtain an ethylene oxide production catalyst. The heat treatment temperature is preferably in the range of 275 ° C. to 450 ° C., and the lower limit temperature is more preferably 335 ° C. because the ethylene oxide selectivity can be increased. The upper limit temperature is 385 ° C. from the viewpoint of energy efficiency and economy. More preferred.

前記加熱処理工程における酸素濃度は5体積%〜30体積%であることが好ましく、15体積%〜25重量%であることがより好ましい。その他の気体成分としては窒素、アルゴン、ヘリウム、二酸化炭素等や、これらの混合物が好ましいが、本願発明の目的及び効果を阻害しない限り特に限定されない。加熱処理工程に使用する気体は、簡便性から空気を使用するのが好ましい。   The oxygen concentration in the heat treatment step is preferably 5% by volume to 30% by volume, and more preferably 15% by volume to 25% by weight. Other gas components are preferably nitrogen, argon, helium, carbon dioxide, or a mixture thereof, but are not particularly limited as long as the object and effect of the present invention are not impaired. The gas used in the heat treatment process is preferably air for simplicity.

前記加熱処理工程の加熱処理の時間は、1時間〜50時間が好ましい。エチレンオキシド選択率を高くすることが可能であるので、1.2時間以上がより好ましく、2時間以上が更に好ましい。又、エネルギー効率や経済性の観点からは、20時間以下がより好ましく、10時間以下が更に好ましく、5時間以下が最も好ましい。なお、加熱処理の時間とは、上記所定の温度範囲に保持した時間である。加熱処理は複数回に分けて実施してもよいが、この場合においても、好ましい下限温度である275℃及び好ましい上限温度である450℃を外れた時間を、加熱処理の時間の5%以下とすることが好ましく、3%以下
とすることがより好ましい。上記所定の温度範囲を外れる時間が長くなると触媒の賦活化が十分に行えない場合がある。
The heat treatment time in the heat treatment step is preferably 1 hour to 50 hours. Since ethylene oxide selectivity can be increased, 1.2 hours or more is more preferable, and 2 hours or more is even more preferable. Further, from the viewpoint of energy efficiency and economy, it is more preferably 20 hours or less, further preferably 10 hours or less, and most preferably 5 hours or less. Note that the heat treatment time is a time during which the heat treatment is held in the predetermined temperature range. The heat treatment may be carried out in a plurality of times. In this case as well, the time outside the preferred lower limit temperature of 275 ° C. and the preferred upper limit temperature of 450 ° C. is 5% or less of the heat treatment time. It is preferable to set it to 3% or less. If the time outside the predetermined temperature range becomes long, the catalyst may not be sufficiently activated.

加熱処理工程で使用する装置は、マッフル炉等一般的な電気炉が使用できる。工業的には、連続生産の観点から、ローラーハースキルンが適当である。   As an apparatus used in the heat treatment process, a general electric furnace such as a muffle furnace can be used. Industrially, roller hearth kiln is appropriate from the viewpoint of continuous production.

前記エチレンオキシド製造用触媒中のナトリウム含有量は、NaO換算で1500重量ppm以下が好ましく、1000重量ppm以下がより好ましく、800ppm重量以下がさらに好ましく、500重量ppm以下が特に好ましい。1500重量ppmより多いと、高いエチレンオキシド選択率を示す触媒とならない可能性がある。
尚、エチレンオキシド製造用触媒中のナトリウム含有量は原子吸光分光法により測定することができる。
The sodium content in the ethylene oxide production catalyst is preferably 1500 ppm by weight or less, more preferably 1000 ppm by weight or less, further preferably 800 ppm by weight or less, and particularly preferably 500 ppm by weight or less in terms of Na 2 O. If it exceeds 1500 ppm by weight, the catalyst may not exhibit a high ethylene oxide selectivity.
The sodium content in the ethylene oxide production catalyst can be measured by atomic absorption spectroscopy.

また、前記エチレンオキシド製造用触媒中のシリコンの含有量は、SiO換算で1重量%以下が好ましく、0.8重量%以下がより好ましく、0.8重量%以下がさらに好ましく、0.5重量%以下が特に好ましい。1重量%より多いと、エチレンオキシド選択率が低下する可能性がある。
尚、エチレンオキシド製造用触媒中のシリコン含有量は誘導結合プラズマ発光分光分析法により測定することができる。
The content of silicon in the ethylene oxide production catalyst is preferably 1% by weight or less, more preferably 0.8% by weight or less, still more preferably 0.8% by weight or less, and 0.5% by weight in terms of SiO 2. % Or less is particularly preferable. If it is more than 1% by weight, the ethylene oxide selectivity may be lowered.
The silicon content in the ethylene oxide production catalyst can be measured by inductively coupled plasma emission spectroscopy.

(エチレンオキシド製造用触媒を用いた反応)
本発明のエチレンオキシド製造用触媒を用いて、エチレンをエチレンオキシドに転換する反応は、一般に知られた方法で実施できる。反応圧力は、通常、0.1MPa〜3.6MPa(0〜35kg/cmG)であり、反応温度は、通常、180℃〜350℃、好ましくは200℃〜300℃である。反応原料ガスの組成は、一般に、エチレンが1体積%〜40体積%、分子状酸素が1体積%〜20体積%の混合ガスが用いられ、また、一般に希釈剤、例えばメタンや窒素等の不活性ガスを一定割合、例えば1体積%〜70体積%で存在させることができる。分子状酸素含有ガスとしては、通常、空気あるいは工業用酸素が用いられる。更に、反応改変剤として、例えばハロゲン化炭化水素を0.1ppm〜50ppm程度、反応原料ガスに加えることにより触媒中のホットスポットの形成を防止でき、且つ触媒の性能、殊に触媒選択性を大幅に改善させることができる。
(Reaction using catalyst for ethylene oxide production)
The reaction for converting ethylene to ethylene oxide using the catalyst for producing ethylene oxide of the present invention can be carried out by a generally known method. The reaction pressure is usually 0.1 MPa to 3.6 MPa (0 to 35 kg / cm 2 G), and the reaction temperature is usually 180 ° C. to 350 ° C., preferably 200 ° C. to 300 ° C. The composition of the reaction raw material gas is generally a mixed gas of 1% to 40% by volume of ethylene and 1% to 20% by volume of molecular oxygen, and is generally a diluent such as methane or nitrogen. The active gas can be present in a certain proportion, for example, 1% to 70% by volume. As the molecular oxygen-containing gas, air or industrial oxygen is usually used. Furthermore, as a reaction modifier, for example, by adding about 0.1 to 50 ppm of halogenated hydrocarbon to the reaction raw material gas, the formation of hot spots in the catalyst can be prevented, and the performance of the catalyst, particularly the catalyst selectivity is greatly increased. Can be improved.

以下実施例を用いて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。まず、分析・測定及び測定方法、原材料について、説明する。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. First, analysis / measurement and measurement methods and raw materials will be described.

<分析、測定及び評価方法>
(1)担体のログ微分細孔容積分布、積算細孔容積分布
マイクロメリテックス社製・オートポアIV 9520型を用いて、担体サンプルを減圧下(50μmHg以下)で10分間減圧処理をした後、水銀圧入退出曲線を測定し、担体のログ微分細孔容積分布、積算細孔容積分布を算出した。
<Analysis, measurement and evaluation methods>
(1) Log differential pore volume distribution and integrated pore volume distribution of carrier The carrier sample was subjected to reduced pressure treatment under reduced pressure (50 μmHg or less) for 10 minutes using Micromeritex Autopore IV 9520, and then mercury. The indentation / retraction curve was measured, and the log differential pore volume distribution and the integrated pore volume distribution of the support were calculated.

(2)担体の比表面積の測定
前処理(250℃、15分間窒素ガスフロー)を行った担体サンプルを、マウンテック社製、マックソーブ HM Model-1201を用い、BET1点法(吸着ガス:窒
素)にて担体比表面積を測定した。
(2) Measurement of specific surface area of carrier The carrier sample subjected to pretreatment (250 ° C., nitrogen gas flow for 15 minutes) was subjected to a BET one-point method (adsorbed gas: nitrogen) using Maxsorb HM Model-1201 manufactured by Mountech. The specific surface area of the carrier was measured.

(3)担体中のシリカ含量の測定
担体サンプルに炭酸ナトリウムとホウ酸を加え加熱溶融させたのち、塩酸、純水にてシ
リカ成分を抽出しICP発光法にて測定した。測定値はSiO換算である。
(3) Measurement of silica content in carrier After adding sodium carbonate and boric acid to a carrier sample and melting it by heating, the silica component was extracted with hydrochloric acid and pure water and measured by ICP emission method. Measurements are in terms of SiO 2.

(4)担体中のナトリウム含有量の測定
担体を粉砕したサンプルに硫酸、リン酸およびふっ化水素酸を加え加熱抽出した後、その抽出液を原子吸光法にて測定した。測定値はNaO換算である。
(4) Measurement of sodium content in carrier After adding sulfuric acid, phosphoric acid and hydrofluoric acid to a sample obtained by pulverizing the carrier and heating and extracting, the extract was measured by atomic absorption method. Measurements are in terms of Na 2 O.

(5)担体の吸水率の測定
担体サンプルの重量(α)を測定し、該担体サンプルに十分な量の水を加え、エバポレーター中で減圧下40℃にて加温、3分保持した後、これを取り出し、担体の重量(β)を測定した。下記式にて吸水率を算出した。
(5) Measurement of water absorption rate of carrier After measuring the weight (α) of the carrier sample, adding a sufficient amount of water to the carrier sample, heating at 40 ° C under reduced pressure in an evaporator and holding for 3 minutes, This was taken out and the weight (β) of the carrier was measured. The water absorption was calculated by the following formula.

Figure 2016165696
Figure 2016165696

(6)エチレンオキシドの選択率の測定
エチレンオキシドの選択率は、消費したエチレンのモル数に対する生成したエチレンオキシドのモル数の割合で示した。
(6) Measurement of ethylene oxide selectivity The ethylene oxide selectivity was expressed as the ratio of the number of moles of ethylene oxide produced to the number of moles of ethylene consumed.

(7)反応温度の調整
反応温度は、触媒1L、1時間当たりのエチレンオキシド生産量(STY)が目標値となるように調整した。
(7) Adjustment of reaction temperature The reaction temperature was adjusted so that the amount of ethylene oxide produced per hour (STY) of the catalyst was 1 L.

(実施例1)
(触媒の調製)
(担体処理工程)
表1に示す担体A 100gを、300mlの沸騰している脱イオン水中に20分間浸
漬し、該脱イオン水から担体を取り出し、脱イオン水で洗浄とした。この操作を5回繰り返した。次いで、5回浸漬−洗浄操作を繰り返した担体を150℃の過熱水蒸気にて20分間、2m/秒の流速で加熱乾燥し、洗浄担体A 100gを得た。
Example 1
(Preparation of catalyst)
(Carrier processing step)
100 g of carrier A shown in Table 1 was immersed in 300 ml of boiling deionized water for 20 minutes, the carrier was taken out from the deionized water, and washed with deionized water. This operation was repeated 5 times. Subsequently, the support | carrier which repeated immersion-washing operation 5 times was heat-dried with the superheated steam of 150 degreeC for 20 minutes at the flow rate of 2 m / sec, and 100 g of washing | cleaning support | carrier A was obtained.

(銀錯体溶液の調製)
硝酸銀(AgNO)2590 gを脱イオン水9240mlに溶解して硝酸銀水溶液
とし、50℃に温度を調節した。この硝酸銀水溶液に、50℃に保った水酸化ナトリウム水溶液(水酸化ナトリウム633g、脱イオン水3570ml)を滴下し、水酸化銀の沈殿物を得た。上澄み液を脱イオン水で置換し、上澄み液のpHが10以下かつ導電率が45μΩ/cm以下となるまで、水酸化銀の沈殿物を洗浄した。水酸化銀の沈殿物に、脱イ
オン水2290ml、シュウ酸2水和物961gを加えると、pHは9.8となり、水酸化銀の沈殿物がシュウ酸銀沈殿物となった。尚、シュウ酸2水和物の添加中、温度は50℃以下になるように調節した。シュウ酸銀沈殿物をろ別後、脱イオン水で洗浄し、シュウ酸銀スラリー(含水率 23.0重量%)を得た。該シュウ酸銀スラリー262gをエチ
レンジアミン72.8g、1,3−ジアミノプロパン20.0g、及び水92.9gより成る水溶液に徐々に添加して溶解させ、銀錯体溶液を調製した。この銀錯体溶液の比重は、1.57g/mlであった。
(Preparation of silver complex solution)
2590 g of silver nitrate (AgNO 3 ) was dissolved in 9240 ml of deionized water to form an aqueous silver nitrate solution, and the temperature was adjusted to 50 ° C. To this silver nitrate aqueous solution, an aqueous sodium hydroxide solution (633 g of sodium hydroxide, 3570 ml of deionized water) maintained at 50 ° C. was added dropwise to obtain a silver hydroxide precipitate. The supernatant was replaced with deionized water, and the silver hydroxide precipitate was washed until the pH of the supernatant was 10 or less and the conductivity was 45 μΩ / cm or less. When 2290 ml of deionized water and 961 g of oxalic acid dihydrate were added to the silver hydroxide precipitate, the pH became 9.8, and the silver hydroxide precipitate became a silver oxalate precipitate. During the addition of oxalic acid dihydrate, the temperature was adjusted to 50 ° C. or lower. The silver oxalate precipitate was filtered off and washed with deionized water to obtain a silver oxalate slurry (water content 23.0% by weight). A silver complex solution was prepared by gradually adding and dissolving 262 g of the silver oxalate slurry in an aqueous solution consisting of 72.8 g of ethylenediamine, 20.0 g of 1,3-diaminopropane, and 92.9 g of water. The specific gravity of this silver complex solution was 1.57 g / ml.

(1回目含浸の触媒成分含有溶液の調製)
上記操作により得られた銀錯体溶液16.7gに、脱イオン水3.8mlを添加し、1
回目含浸の触媒成分含有溶液を得た。
(Preparation of catalyst component-containing solution for the first impregnation)
To 16.7 g of the silver complex solution obtained by the above operation, 3.8 ml of deionized water was added, and 1
A catalyst component-containing solution for the second impregnation was obtained.

(1回目の触媒成分含浸担体、触媒中間体の調製)
前記触媒成分含有溶液を、前記洗浄担体A30gに含浸し、エバポレーター中で減圧下40℃に加温した。こうして得た1回目の触媒成分含浸担体を、200℃の過熱水蒸気中15分間、2m/secの流速で焼成した。次いで空気雰囲気下にて加熱炉中で300℃、2時間加熱し、触媒中間体を得た。
(First preparation of catalyst component impregnated support and catalyst intermediate)
The catalyst component-containing solution was impregnated into 30 g of the washing carrier A, and heated to 40 ° C. under reduced pressure in an evaporator. The first catalyst component-impregnated support thus obtained was calcined in superheated steam at 200 ° C. for 15 minutes at a flow rate of 2 m / sec. Subsequently, it heated at 300 degreeC for 2 hours in the heating furnace in air atmosphere, and obtained the catalyst intermediate body.

(2回目含浸の触媒成分含有溶液の調製)
比重1.57g/mlの銀錯体溶液14.6gに、水酸化セシウム一水和物(CsOH・HO)濃度13.0重量%の水溶液0.3ml、過レニウム酸アンモニウム(NHReO)濃度4.9重量%の水溶液0.6ml、硫酸リチウム一水和物(LiSO・HO)濃度3.4重量%の水溶液0.3ml、メタタングステン酸アンモニウム(H264012・xHO)濃度2.0重量%の水溶液0.3ml、炭酸リチウム(LiCO)0.02g、及び脱イオン水3.1mlを添加し、2回目含浸の触媒成分含有溶液を得た。
(Preparation of catalyst component-containing solution for second impregnation)
To 14.6 g of a silver complex solution having a specific gravity of 1.57 g / ml, 0.3 ml of an aqueous solution having a cesium hydroxide monohydrate (CsOH.H 2 O) concentration of 13.0 wt%, ammonium perrhenate (NH 4 ReO 4 ) 0.6 ml of an aqueous solution with a concentration of 4.9 wt%, 0.3 ml of an aqueous solution with a lithium sulfate monohydrate (Li 2 SO 4 .H 2 O) concentration of 3.4 wt%, ammonium metatungstate (H 26 N 6 O 40 W 12 · xH 2 O) 2.0% by weight aqueous solution 0.3 ml, lithium carbonate (Li 2 CO 3 ) 0.02 g, and deionized water 3.1 ml were added, and the catalyst component for the second impregnation A containing solution was obtained.

(2回目の触媒成分含浸担体、触媒前駆体の調製)
2回目含浸の触媒成分含有溶液を、前記触媒中間体35.6gに含浸し、エバポレーター中で減圧下40℃に加温した。こうして得た2回目の触媒成分含浸担体を、200℃の過熱水蒸気中15分間、2m/secの流速で焼成し、触媒前駆体を得た。
(Second preparation of catalyst component impregnated support and catalyst precursor)
The catalyst component-containing solution of the second impregnation was impregnated into 35.6 g of the catalyst intermediate, and heated to 40 ° C. under reduced pressure in an evaporator. The catalyst component-impregnated support thus obtained was calcined in 200 ° C. superheated steam for 15 minutes at a flow rate of 2 m / sec to obtain a catalyst precursor.

(加熱処理工程)
得られた触媒前駆体を、次いで空気雰囲気下にて加熱炉中で370℃、2時間加熱し、次いで、室温まで冷却し触媒を得た。
(Heat treatment process)
The obtained catalyst precursor was then heated in an oven at 370 ° C. for 2 hours in a heating furnace, and then cooled to room temperature to obtain a catalyst.

(エチレンオキシドの製造)
得られた触媒を6〜10メッシュに砕き、その3mlを内径7.5mmのSUS製反応管に充填し、反応ガス(エチレン30体積%、酸素8.5体積%、二酸化炭素3.0体積
%、残り窒素)をGHSV4300hr−1、圧力0.7MPaゲージで流した。また反応改変剤として、塩化ビニルを反応ガス中に添加した。反応改変剤の濃度はエチレンオキシド選択率が最大となるように調整した。反応温度は、触媒1L、1時間当たりのエチレンオキシド生産量(STY)が、0.2kg−EO/L−cat・hとなるように調整した。この反応結果を表1に示す。
(Manufacture of ethylene oxide)
The obtained catalyst was crushed to 6 to 10 mesh, and 3 ml of the catalyst was filled into a SUS reaction tube having an inner diameter of 7.5 mm, and reaction gas (ethylene 30% by volume, oxygen 8.5% by volume, carbon dioxide 3.0% by volume). , Remaining nitrogen) was flowed with GHSV 4300 hr −1 , pressure 0.7 MPa gauge. Further, vinyl chloride was added to the reaction gas as a reaction modifier. The concentration of the reaction modifier was adjusted so as to maximize the ethylene oxide selectivity. The reaction temperature was adjusted so that 1 L of catalyst and ethylene oxide production (STY) per hour were 0.2 kg-EO / L-cat · h. The reaction results are shown in Table 1.

(比較例1)
(触媒の調製)
(担体処理工程)
表1に示す担体B 13000gを、39000mlの沸騰している脱イオン水中に2
0分間浸漬し、脱イオン水から担体を取り出し、担体洗浄とした。この操作を繰り返し、合計5回の担体洗浄を実施した。次いで、この担体を150℃の過熱水蒸気にて20分間、2m/secの流速で加熱乾燥し、洗浄担体B 13000gを得た。
(Comparative Example 1)
(Preparation of catalyst)
(Carrier processing step)
13,000 g of carrier B shown in Table 1 is placed in 29000 ml of boiling deionized water.
It was immersed for 0 minutes, the carrier was taken out from deionized water, and the carrier was washed. This operation was repeated, and the carrier was washed 5 times in total. Subsequently, this carrier was heated and dried with superheated steam at 150 ° C. for 20 minutes at a flow rate of 2 m / sec to obtain 13000 g of washing carrier B.

(1回目含浸の銀錯体溶液の調製)
酸化銀(AgO)2310 gを脱イオン水13000mlに溶解し、50℃に温度
を調節した。これに、シュウ酸2水和物1256gを加え、pHは9.7になった。シュウ酸2水和物の添加中、温度は50℃以下になるように調節した。こうしてシュウ酸銀沈殿物を得た。沈殿物をろ別後、脱イオン水で洗浄し、シュウ酸銀スラリー(含水率 21
.3重量%)を得た。こうして得たシュウ酸銀スラリー3846gをエチレンジアミン1095g、1,3−ジアミノプロパン300g、及び水1396gより成る水溶液に徐々
に添加して溶解させ、銀錯体溶液を調製した。この銀錯体溶液の比重は、1.61g/mlであった。
(Preparation of silver complex solution for the first impregnation)
2310 g of silver oxide (Ag 2 O) was dissolved in 13000 ml of deionized water, and the temperature was adjusted to 50 ° C. To this, 1256 g of oxalic acid dihydrate was added, and the pH became 9.7. During the addition of oxalic acid dihydrate, the temperature was adjusted to 50 ° C. or lower. A silver oxalate precipitate was thus obtained. After the precipitate is filtered off, it is washed with deionized water, and a silver oxalate slurry (water content 21
. 3% by weight) was obtained. The silver oxalate slurry thus obtained (3846 g) was gradually added and dissolved in an aqueous solution consisting of 1095 g of ethylenediamine, 300 g of 1,3-diaminopropane, and 1396 g of water to prepare a silver complex solution. The specific gravity of this silver complex solution was 1.61 g / ml.

(1回目含浸の触媒成分含有溶液の調製)
上記操作で得られた銀錯体溶液6570gに、脱イオン水426mlを添加し、1回目含浸の触媒成分含有溶液を得た。
(Preparation of catalyst component-containing solution for the first impregnation)
To 6570 g of the silver complex solution obtained by the above operation, 426 ml of deionized water was added to obtain a catalyst component-containing solution for the first impregnation.

(1回目の触媒成分含浸担体、触媒中間体の調製)
得られた触媒成分含有溶液を、上記洗浄担体A12000gに含浸し、エバポレーター中で減圧下40℃に加温した。こうして得た1回目の触媒成分含浸担体を、200℃の過熱水蒸気中15分間、2m/secの流速で焼成し、触媒中間体を得た。
(First preparation of catalyst component impregnated support and catalyst intermediate)
The obtained catalyst component-containing solution was impregnated into 12,000 g of the washing carrier A and heated to 40 ° C. under reduced pressure in an evaporator. The first catalyst component-impregnated support thus obtained was calcined in 200 ° C. superheated steam for 15 minutes at a flow rate of 2 m / sec to obtain a catalyst intermediate.

(2回目含浸の銀錯体溶液の調製)
酸化銀(AgO)2029 gを脱イオン水11500mlに溶解し、50℃に温度
を調節した。これに、シュウ酸2水和物1103gを加え、pHは9.5になった。シュウ酸2水和物の添加中、温度は50℃以下になるように調節した。こうしてシュウ酸銀沈殿物を得た。沈殿物をろ別後、脱イオン水で洗浄し、シュウ酸銀スラリー(含水率 18
.1重量%)を得た。こうして得たシュウ酸銀スラリー3246gをエチレンジアミン961g、1,3−ジアミノプロパン264g、及び水1226gより成る水溶液に徐々に添加して溶解させ、銀錯体溶液を調製した。この銀錯体溶液の比重は、1.63g/mlであった。
(Preparation of second-impregnated silver complex solution)
2029 g of silver oxide (Ag 2 O) was dissolved in 11500 ml of deionized water, and the temperature was adjusted to 50 ° C. To this, 1103 g of oxalic acid dihydrate was added, and the pH became 9.5. During the addition of oxalic acid dihydrate, the temperature was adjusted to 50 ° C. or lower. A silver oxalate precipitate was thus obtained. After the precipitate is filtered off, it is washed with deionized water, and a silver oxalate slurry (water content 18
. 1% by weight) was obtained. The silver oxalate slurry 3246 g thus obtained was gradually added and dissolved in an aqueous solution consisting of 961 g of ethylenediamine, 264 g of 1,3-diaminopropane, and 1226 g of water to prepare a silver complex solution. The specific gravity of this silver complex solution was 1.63 g / ml.

(2回目含浸の触媒成分含有溶液の調製)
上記操作で得られた銀錯体溶液5648gに、水酸化セシウム一水和物(CsOH・HO)濃度13.0重量%の水溶液120ml、過レニウム酸アンモニウム(NHReO)濃度4.9重量%の水溶液240ml、硫酸リチウム一水和物(LiSO・HO)濃度3.4重量%の水溶液120ml、メタタングステン酸アンモニウム(H264012・xHO)濃度2.0重量%の水溶液120ml、水酸化リチウム(LiOH)濃度6.4重量%の水溶液120ml、及び脱イオン水100mlを添加し、2回目含浸の触媒成分含有溶液を得た。
(Preparation of catalyst component-containing solution for second impregnation)
To 5648 g of the silver complex solution obtained by the above operation, 120 ml of an aqueous solution having a cesium hydroxide monohydrate (CsOH.H 2 O) concentration of 13.0 wt% and an ammonium perrhenate (NH 4 ReO 4 ) concentration of 4.9 240 ml by weight aqueous solution, 120 ml aqueous solution having a lithium sulfate monohydrate (Li 2 SO 4 .H 2 O) concentration of 3.4 wt%, ammonium metatungstate (H 26 N 6 O 40 W 12 · xH 2 O) 120 ml of an aqueous solution having a concentration of 2.0% by weight, 120 ml of an aqueous solution having a lithium hydroxide (LiOH) concentration of 6.4% by weight, and 100 ml of deionized water were added to obtain a catalyst component-containing solution for the second impregnation.

(2回目の触媒成分含浸担体、触媒前駆体の調製)
こうして得た2回目含浸の触媒成分含有溶液のうち5434gに脱イオン水180mlを添加した後、上記触媒中間体11692gに含浸し、エバポレーター中で減圧下40℃に加温した。こうして得た2回目の触媒成分含浸担体を、200℃の過熱水蒸気中15分間、2m/secの流速で焼成し、触媒前駆体を得た。
(Second preparation of catalyst component impregnated support and catalyst precursor)
180 ml of deionized water was added to 5434 g of the catalyst component-containing solution for the second impregnation thus obtained, then impregnated into 11692 g of the catalyst intermediate, and heated to 40 ° C. under reduced pressure in an evaporator. The catalyst component-impregnated support thus obtained was calcined in 200 ° C. superheated steam for 15 minutes at a flow rate of 2 m / sec to obtain a catalyst precursor.

(加熱処理工程)
得られた触媒前駆体を、次いで空気雰囲気下にて加熱炉中で370℃、2時間加熱し、次いで、室温まで冷却し触媒を得た。担体物性を表1に示す。
(Heat treatment process)
The obtained catalyst precursor was then heated in an oven at 370 ° C. for 2 hours in a heating furnace, and then cooled to room temperature to obtain a catalyst. Table 1 shows the physical properties of the carrier.

(エチレンオキシドの製造)
比較例1で得られた触媒を用いた以外は、実施例1と同様にしてエチレンオキシドを製造した。反応結果を表2に示す。
(Manufacture of ethylene oxide)
Ethylene oxide was produced in the same manner as in Example 1 except that the catalyst obtained in Comparative Example 1 was used. The reaction results are shown in Table 2.

Figure 2016165696
Figure 2016165696

Figure 2016165696
Figure 2016165696

表1及び表2に示す結果から、本発明によれば、触媒性能の安定性が向上し、反応初期より長期間、反応温度の極度の上昇を伴うことなく、良好な反応特性が得られるエチレンオキシド製造用触媒が提供されうる。   From the results shown in Tables 1 and 2, according to the present invention, the stability of the catalyst performance is improved, and ethylene oxide can be obtained with good reaction characteristics for a long period of time from the initial stage of the reaction without causing an extreme increase in the reaction temperature. A production catalyst may be provided.

Claims (5)

担体、銀及びレニウムを含むエチレンオキシド製造用触媒であって、
該担体が担体中にケイ素をSiO換算で0.01重量%〜1.0重量%含み、水銀圧入法により測定される細孔分布において、細孔直径0.01μm〜100μmの範囲に、ログ微分細孔容積の極大値が0.2ml/g以上のピークが少なくとも二つ存在し、該ピークの少なくとも一つが0.5μm〜3.0μmの範囲に存在する担体である、エチレンオキシド製造用触媒。
A catalyst for ethylene oxide production comprising a support, silver and rhenium,
The carrier contains 0.01% to 1.0% by weight of silicon in terms of SiO 2 in the carrier, and in the pore distribution measured by the mercury intrusion method, the log has a diameter in the range of 0.01 μm to 100 μm. A catalyst for producing ethylene oxide, wherein at least two peaks having a maximum value of the differential pore volume of 0.2 ml / g or more are present, and at least one of the peaks is in a range of 0.5 µm to 3.0 µm.
前記担体の比表面積が0.8m/g〜1.8m/gである、請求項1に記載のエチレンオキシド製造用触媒。 The specific surface area of the carrier is 0.8m 2 /g~1.8m 2 / g, a catalyst for production of ethylene oxide according to claim 1. 前記担体の吸水率が40重量%〜70重量%である、請求項1又は2に記載のエチレンオキシド製造用触媒。   The ethylene oxide production catalyst according to claim 1 or 2, wherein the carrier has a water absorption rate of 40 wt% to 70 wt%. 前記担体が更にナトリウムを含み、ナトリウム含有量が担体中にNaO換算で10重量ppm〜1500重量ppmである請求項1乃至3のいずれか1項に記載のエチレンオキシド製造用触媒。 The catalyst for ethylene oxide production according to any one of claims 1 to 3, wherein the carrier further contains sodium, and the sodium content in the carrier is 10 ppm by weight to 1500 ppm by weight in terms of Na 2 O. 前記請求項1乃至4のいずれか1項に記載のエチレンオキシド製造用触媒の存在下、エチレンを酸化しエチレンオキシドとする、エチレンオキシドの製造方法。   The manufacturing method of ethylene oxide which oxidizes ethylene to ethylene oxide in presence of the catalyst for ethylene oxide manufacture of any one of the said Claims 1 thru | or 4.
JP2015047579A 2015-03-10 2015-03-10 Ethylene oxide production catalyst and method for producing ethylene oxide using the same Pending JP2016165696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015047579A JP2016165696A (en) 2015-03-10 2015-03-10 Ethylene oxide production catalyst and method for producing ethylene oxide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015047579A JP2016165696A (en) 2015-03-10 2015-03-10 Ethylene oxide production catalyst and method for producing ethylene oxide using the same

Publications (2)

Publication Number Publication Date
JP2016165696A true JP2016165696A (en) 2016-09-15
JP2016165696A5 JP2016165696A5 (en) 2018-02-08

Family

ID=56897900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047579A Pending JP2016165696A (en) 2015-03-10 2015-03-10 Ethylene oxide production catalyst and method for producing ethylene oxide using the same

Country Status (1)

Country Link
JP (1) JP2016165696A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514029A (en) * 2017-01-05 2020-05-21 サイエンティフィック・デザイン・カンパニー・インコーポレーテッドScientific Design Company Incorporated Support, catalyst, method for producing them, and method for producing ethylene oxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086877A (en) * 2006-09-29 2008-04-17 Nippon Shokubai Co Ltd Catalyst for producing ethylene oxide and manufacturing method of ethylene oxide
JP2012516234A (en) * 2009-01-27 2012-07-19 サイエンティフィック・デザイン・カンパニー・インコーポレーテッド Catalyst having bimodal pore size distribution and use thereof
JP2014512949A (en) * 2011-04-14 2014-05-29 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing a catalyst for oxidizing ethylene to ethylene oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086877A (en) * 2006-09-29 2008-04-17 Nippon Shokubai Co Ltd Catalyst for producing ethylene oxide and manufacturing method of ethylene oxide
JP2012516234A (en) * 2009-01-27 2012-07-19 サイエンティフィック・デザイン・カンパニー・インコーポレーテッド Catalyst having bimodal pore size distribution and use thereof
JP2014512949A (en) * 2011-04-14 2014-05-29 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing a catalyst for oxidizing ethylene to ethylene oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514029A (en) * 2017-01-05 2020-05-21 サイエンティフィック・デザイン・カンパニー・インコーポレーテッドScientific Design Company Incorporated Support, catalyst, method for producing them, and method for producing ethylene oxide

Similar Documents

Publication Publication Date Title
JP4267015B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
CN107847914B (en) Epoxidation process
KR101711108B1 (en) Catalyst with bimodal pore size distribution and the use thereof
JP5069223B2 (en) Nanometer-sized reconstruction of alumina support surface and catalyst for alkene oxide production
JP2013534465A (en) Carrier for ethylene oxide catalyst
US10669247B2 (en) Carrier treatment to improve catalytic performance of an ethylene oxide catalyst
JP2016165696A (en) Ethylene oxide production catalyst and method for producing ethylene oxide using the same
KR102232620B1 (en) Silver-based ethylene oxide catalyst having reduced sodium content
JP2016165697A (en) Ethylene oxide production catalyst and method for producing ethylene oxide using the same
JP2015199060A (en) Catalyst support for production of ethylene oxide from ethylene and catalyst production method
JP5211924B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
TWI697358B (en) Silver catalysts with improved size and distribution density of silver particles
JP5143610B2 (en) Method for producing catalyst for producing ethylene oxide
JP2015199059A (en) Catalyst support for production of ethylene oxide from ethylene and catalyst production method
JP2017144421A (en) Catalyst for acetaldehyde synthesis, apparatus for manufacturing acetaldehyde, and method for manufacturing acetaldehyde
JP5165441B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP2014188462A (en) Method for producing catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2021062340A (en) Catalyst for ethylene oxide production
JP2013202592A (en) Catalyst for ethylene oxide production and method for production of ethylene oxide
JP5258485B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP2015047583A (en) Catalyst for producing ethylene oxide, and production method of ethylene oxide
JP5328452B2 (en) Catalyst support for ethylene oxide production, catalyst for ethylene oxide production, and method for producing ethylene oxide
JP2014128800A (en) Catalyst for manufacturing ethylene oxide, and manufacturing method of ethylene oxide
JP2011206669A (en) Catalyst for manufacturing ethylene oxide, and method for manufacturing ethylene oxide

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190402