JP2017144421A - Catalyst for acetaldehyde synthesis, apparatus for manufacturing acetaldehyde, and method for manufacturing acetaldehyde - Google Patents

Catalyst for acetaldehyde synthesis, apparatus for manufacturing acetaldehyde, and method for manufacturing acetaldehyde Download PDF

Info

Publication number
JP2017144421A
JP2017144421A JP2016133206A JP2016133206A JP2017144421A JP 2017144421 A JP2017144421 A JP 2017144421A JP 2016133206 A JP2016133206 A JP 2016133206A JP 2016133206 A JP2016133206 A JP 2016133206A JP 2017144421 A JP2017144421 A JP 2017144421A
Authority
JP
Japan
Prior art keywords
acetaldehyde
catalyst
synthesis
ethanol
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016133206A
Other languages
Japanese (ja)
Other versions
JP6751608B2 (en
Inventor
友章 西野
Tomoaki Nishino
友章 西野
稔人 御山
Toshihito Miyama
稔人 御山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2017144421A publication Critical patent/JP2017144421A/en
Application granted granted Critical
Publication of JP6751608B2 publication Critical patent/JP6751608B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for acetaldehyde synthesis capable of producing acetaldehyde from ethanol in a high selectivity with excellent economy, and an apparatus and a method for manufacturing acetaldehyde using the catalyst for acetaldehyde synthesis.SOLUTION: A catalyst for acetaldehyde synthesis comprises a component (A):Cu, a component (B):Zn, and a component (C):one or more selected from the group consisting of B, Ge, Hf and W. An apparatus 10 for manufacturing acetaldehyde comprises a reaction tube 1 filled with the catalyst for acetaldehyde synthesis, a supply pipe 3 for supplying ethanol within the reaction tube 1, and a discharge pipe 4 for discharging a product from the reaction tube 1. A method for manufacturing acetaldehyde comprises contacting ethanol with the catalyst for acetaldehyde synthesis to obtain acetaldehyde.SELECTED DRAWING: Figure 1

Description

本発明は、アセトアルデヒド合成用触媒、アセトアルデヒドの製造装置及びアセトアルデヒドの製造方法に関する。   The present invention relates to an acetaldehyde synthesis catalyst, an acetaldehyde production apparatus, and an acetaldehyde production method.

アセトアルデヒドは工業的に重要な中間体であり、酢酸エチル、過酢酸、ピリジン誘導体、クロトンアルデヒド、パラアルデヒド等の原料として大量に使用されている。アセトアルデヒドの製造方法としては、エチレンのWacker酸化によりアセトアルデヒドを得る方法が挙げられる。しかし、近年はバイオ素材への需要の高まりから、原料としてバイオエタノールを用いたアセトアルデヒドに注目が高まっている。   Acetaldehyde is an industrially important intermediate and is used in large quantities as a raw material for ethyl acetate, peracetic acid, pyridine derivatives, crotonaldehyde, paraaldehyde and the like. Examples of the method for producing acetaldehyde include a method for obtaining acetaldehyde by Wacker oxidation of ethylene. However, in recent years, due to the increasing demand for biomaterials, attention has been focused on acetaldehyde using bioethanol as a raw material.

エタノールからアセトアルデヒドを製造する方法としては、例えば、下記の方法(i)〜(iv)が知られている。
(i)硝酸銅等の銅化合物が多孔体に担持された触媒にエタノールを接触させてアセトアルデヒドを得る方法(特許文献1)。
(ii)酸素分子の存在下、La等の卑金属酸化物に金微粒子が分散、固定された触媒にエタノールを接触させてアセトアルデヒドを得る方法(特許文献2)。
(iii)Coと、Fe、Mo及びAlからなる群から選ばれる1種以上とが触媒担体に担持された触媒にエタノールを接触させてアセトアルデヒドを得る方法(特許文献3)。
(iv)Pd1.2Rh0.6Bi1.2等の活性成分を含む触媒活性組成物にエタノールを接触させてアセトアルデヒドを得る方法(特許文献4)。
As a method for producing acetaldehyde from ethanol, for example, the following methods (i) to (iv) are known.
(I) A method of obtaining acetaldehyde by bringing ethanol into contact with a catalyst in which a copper compound such as copper nitrate is supported on a porous body (Patent Document 1).
(Ii) A method of obtaining acetaldehyde by bringing ethanol into contact with a catalyst in which gold fine particles are dispersed and fixed in a base metal oxide such as La 2 O 3 in the presence of oxygen molecules (Patent Document 2).
(Iii) A method of obtaining acetaldehyde by bringing ethanol into contact with a catalyst in which Co and one or more selected from the group consisting of Fe, Mo and Al are supported on a catalyst carrier (Patent Document 3).
(Iv) A method of obtaining acetaldehyde by bringing ethanol into contact with a catalytically active composition containing an active component such as Pd 1.2 Rh 0.6 Bi 1.2 (Patent Document 4).

特開2011−532号公報JP 2011-532 A 特許第5787206号公報Japanese Patent No. 5787206 特許第5108980号公報Japanese Patent No. 5108980 特表2009−542772号公報Special table 2009-54277 gazette

しかし、方法(i)〜(iv)では、エタノール酸化によるアセトアルデヒドの選択率が低いため、工業的なアセトアルデヒドの製造方法としては経済性が悪い。   However, in the methods (i) to (iv), the selectivity of acetaldehyde by ethanol oxidation is low, so that it is not economical as an industrial method for producing acetaldehyde.

本発明は、エタノールから高い選択率でアセトアルデヒドを合成できる経済性に優れたアセトアルデヒド合成用触媒、並びに該アセトアルデヒド合成用触媒を用いたアセトアルデヒドの製造装置及び製造方法を提供することを目的とする。   An object of the present invention is to provide an economical acetaldehyde synthesis catalyst capable of synthesizing acetaldehyde from ethanol with high selectivity, and an acetaldehyde production apparatus and production method using the acetaldehyde synthesis catalyst.

本発明のアセトアルデヒド合成用触媒は、エタノールからアセトアルデヒドを合成するためのアセトアルデヒド合成用触媒であって、成分(A):Cuと、成分(B):Znと、成分(C):B、Ge、Hf及びWからなる群から選ばれる1種以上と、を含む。
前記成分(C)は、B、Ge及びWからなる群から選ばれる1種以上であることが好ましい。
前記成分(C)は、Hfと、B、Ge及びWからなる群から選ばれる1種以上との組み合わせであることが好ましい。
The acetaldehyde synthesis catalyst of the present invention is an acetaldehyde synthesis catalyst for synthesizing acetaldehyde from ethanol, and the component (A): Cu, the component (B): Zn, and the component (C): B, Ge, One or more selected from the group consisting of Hf and W.
The component (C) is preferably at least one selected from the group consisting of B, Ge and W.
The component (C) is preferably a combination of Hf and one or more selected from the group consisting of B, Ge and W.

本発明のアセトアルデヒドの製造装置は、本発明のアセトアルデヒド合成用触媒が充填された反応管と、エタノールを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段と、を備える。   The acetaldehyde production apparatus of the present invention comprises a reaction tube filled with the acetaldehyde synthesis catalyst of the present invention, a supply means for supplying ethanol into the reaction tube, and a discharge means for discharging a product from the reaction tube. Prepare.

本発明のアセトアルデヒドの製造方法は、エタノールを本発明のアセトアルデヒド合成用触媒に接触させてアセトアルデヒドを得る方法である。   The method for producing acetaldehyde of the present invention is a method for obtaining acetaldehyde by contacting ethanol with the catalyst for synthesizing acetaldehyde of the present invention.

本発明のアセトアルデヒド合成用触媒を用いれば、エタノールから高い選択率でアセトアルデヒドを合成でき、経済性に優れている。
本発明のアセトアルデヒドの製造装置を用いれば、エタノールから高い選択率でアセトアルデヒドを製造することができ、経済性に優れている。
本発明のアセトアルデヒドの製造方法によれば、エタノールから高い選択率でアセトアルデヒドを製造することができ、経済性に優れている。
By using the catalyst for synthesizing acetaldehyde of the present invention, acetaldehyde can be synthesized from ethanol with high selectivity, and it is excellent in economic efficiency.
If the apparatus for producing acetaldehyde of the present invention is used, acetaldehyde can be produced from ethanol with high selectivity, which is excellent in economic efficiency.
According to the method for producing acetaldehyde of the present invention, acetaldehyde can be produced from ethanol with high selectivity, which is excellent in economic efficiency.

本発明のアセトアルデヒドの製造装置の一例を示した概略構成図である。It is the schematic block diagram which showed an example of the manufacturing apparatus of the acetaldehyde of this invention. 実施例1のアセトアルデヒドの選択率の測定結果を示したグラフである。2 is a graph showing measurement results of selectivity of acetaldehyde in Example 1. FIG. 実施例2のアセトアルデヒドの選択率の測定結果を示したグラフである。4 is a graph showing the measurement results of the selectivity of acetaldehyde in Example 2. 実施例3のアセトアルデヒドの選択率の測定結果を示したグラフである。4 is a graph showing measurement results of selectivity of acetaldehyde in Example 3. 実施例4のアセトアルデヒドの選択率の測定結果を示したグラフである。4 is a graph showing measurement results of selectivity of acetaldehyde in Example 4. 実施例5のアセトアルデヒドの選択率の測定結果を示したグラフである。6 is a graph showing measurement results of selectivity of acetaldehyde in Example 5. 実施例6のアセトアルデヒドの選択率の測定結果を示したグラフである。6 is a graph showing measurement results of selectivity of acetaldehyde in Example 6. 実施例7のアセトアルデヒドの選択率の測定結果を示したグラフである。6 is a graph showing measurement results of selectivity of acetaldehyde in Example 7.

以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
「アセトアルデヒドの選択率」とは、合成用触媒を用いた反応で消費されたエタノールのモル数のうち、アセトアルデヒドへ変換されたエタノールのモル数が占める百分率を意味する。
The following definitions of terms apply throughout this specification and the claims.
“Selectivity of acetaldehyde” means the percentage of the number of moles of ethanol converted to acetaldehyde in the number of moles of ethanol consumed in the reaction using the synthesis catalyst.

[アセトアルデヒド合成用触媒]
本発明のアセトアルデヒド合成用触媒(以下、単に「合成用触媒」という。)は、エタノールからアセトアルデヒドを合成するための触媒である。本発明の合成用触媒は、成分(A):Cuと、成分(B):Znと、成分(C):B、Ge、Hf及びWからなる群から選ばれる1種以上と、を含む。本発明の合成用触媒が成分(A)〜(C)を含むことで、高い選択率でアセトアルデヒドを合成することができる。
[Acetaldehyde synthesis catalyst]
The acetaldehyde synthesis catalyst of the present invention (hereinafter simply referred to as “synthesis catalyst”) is a catalyst for synthesizing acetaldehyde from ethanol. The synthesis catalyst of the present invention contains component (A): Cu, component (B): Zn, and component (C): one or more selected from the group consisting of B, Ge, Hf and W. When the synthesis catalyst of the present invention contains components (A) to (C), acetaldehyde can be synthesized with high selectivity.

成分(C)としては、アセトアルデヒドの選択率がより高くなる点から、B、Ge及びWからなる群から選ばれる1種以上であることが好ましい。さらに、成分(C)としては、B、Ge及びWからなる群から選ばれる1種がより好ましい。すなわち、本発明の合成用触媒としては、Cuと、Znと、B、Ge及びWからなる群から選ばれる1種との三元系触媒がより好ましい。   The component (C) is preferably at least one selected from the group consisting of B, Ge and W from the point that the selectivity of acetaldehyde becomes higher. Furthermore, as the component (C), one selected from the group consisting of B, Ge and W is more preferable. That is, the synthesis catalyst of the present invention is more preferably a ternary catalyst of Cu, Zn, and one selected from the group consisting of B, Ge, and W.

また、成分(C)としては、アセトアルデヒドの選択率がより高くなる点から、Hfと、B、Ge及びWからなる群から選ばれる1種以上との組み合わせも好ましい。さらに、成分(C)としては、Hfと、B、Ge及びWからなる群から選ばれる1種との組み合わせがより好ましい。すなわち、本発明の合成用触媒としては、Cuと、Znと、Hfと、B、Ge及びWからなる群から選ばれる1種との四元系触媒がより好ましい。   Moreover, as a component (C), the combination of Hf and 1 or more types chosen from the group which consists of B, Ge, and W from the point from which the selectivity of acetaldehyde becomes higher is also preferable. Furthermore, as the component (C), a combination of Hf and one selected from the group consisting of B, Ge, and W is more preferable. That is, the catalyst for synthesis of the present invention is more preferably a quaternary catalyst of Cu, Zn, Hf, and one selected from the group consisting of B, Ge, and W.

本発明の合成用触媒は、下記(1)式で表される組成の触媒であることが好ましい。
aCu・bZn・cM ・・・・(1)
ただし、(1)式中、Mは、B、Ge、Hf及びWからなる群から選ばれる1種以上を表し、a、b及びcは多孔質担体に対する質量百分率を表す。
The synthesis catalyst of the present invention is preferably a catalyst having a composition represented by the following formula (1).
aCu · bZn · cM 1 (1)
However, in (1), M 1 is, it represents B, Ge, at least one member selected from the group consisting of Hf and W, a, b and c represents the mass percentage of the porous carrier.

(1)式中のaは、10〜0.01が好ましく、5〜0.1がより好ましく、2.5〜0.5がさらに好ましい。aが前記下限値未満であれば、副生物であるエチレンの割合が増加する。aが前記上限値超であれば、原料転化率(エタノールが反応物へ変化する割合)が減少する。
(1)式中のbは、10〜0.01が好ましく、5〜0.05がより好ましく、1〜0.1がさらに好ましい。bが前記下限値未満であれば、副生物であるエチレンの生成量が増加する(アセトアルデヒドの選択率が減少する)。bが前記上限値超であれば、副生物であるプロピレンの生成量が増加する(アセトアルデヒドの選択率が減少する)。
(1)式中のcは、10〜0.01が好ましく、5〜0.1がより好ましい。cが前記下限値以上であれば、原料転化率(エタノールが反応物へ変化する割合)が減少する。cが前記上限値以下であれば、C4以上の副生物質が増加する(アセトアルデヒドの選択率が減少する)。
(1) As for a in a formula, 10-0.01 are preferred, 5-0.1 are more preferred, and 2.5-0.5 are still more preferred. If a is less than the lower limit, the proportion of ethylene as a by-product increases. If a exceeds the upper limit, the raw material conversion rate (ratio in which ethanol changes into a reaction product) decreases.
(1) As for b in a formula, 10-0.01 are preferred, 5-0.05 are more preferred, and 1-0.1 are still more preferred. If b is less than the lower limit, the production amount of ethylene as a by-product increases (selectivity of acetaldehyde decreases). If b exceeds the upper limit, the amount of propylene produced as a by-product increases (selectivity of acetaldehyde decreases).
(1) c in the formula is preferably 10 to 0.01, and more preferably 5 to 0.1. If c is more than the said lower limit, a raw material conversion rate (ratio which ethanol changes into a reaction material) will reduce. If c is less than or equal to the above upper limit value, C4 or higher by-product substances increase (selectivity of acetaldehyde decreases).

本発明の合成用触媒は、下記(2)式で表される組成の触媒であることがより好ましい。
aCu・bZn・dHf・eM11 ・・・・(2)
ただし、(2)式中、M11は、B、Ge及びWからなる群から選ばれる1種以上を表し、a、b、d及びeは多孔質担体に対する質量百分率を表す。
The synthesis catalyst of the present invention is more preferably a catalyst having a composition represented by the following formula (2).
aCu · bZn · dHf · eM 11 (2)
However, (2) where, M 11 is, B, represents one or more selected from the group consisting of Ge and W, a, b, d and e represent the mass percentage of the porous carrier.

(2)式中のa及びbの好ましい範囲は、(1)式中のa及びbの好ましい範囲と同じである。
(2)式中のd+eの好ましい範囲は、(1)式中のcの好ましい範囲と同じである。
The preferable range of a and b in the formula (2) is the same as the preferable range of a and b in the formula (1).
The preferable range of d + e in the formula (2) is the same as the preferable range of c in the formula (1).

本発明の合成用触媒における成分(A)と成分(B)との質量比(A/B)は、100〜0.1が好ましく、10〜0.5がより好ましい。質量比(A/B)が前記範囲内であれば、アセトアルデヒドの選択率がより高くなる。   The mass ratio (A / B) of the component (A) to the component (B) in the synthesis catalyst of the present invention is preferably 100 to 0.1, and more preferably 10 to 0.5. If mass ratio (A / B) is in the said range, the selectivity of acetaldehyde will become higher.

本発明の合成用触媒における成分(A)と成分(C)との質量比(A/C)は、100〜0.1が好ましく、10〜0.5がより好ましい。質量比(A/C)が前記範囲内であれば、アセトアルデヒドの選択率がより高くなる。   The mass ratio (A / C) between the component (A) and the component (C) in the synthesis catalyst of the present invention is preferably 100 to 0.1, and more preferably 10 to 0.5. If a mass ratio (A / C) is in the said range, the selectivity of acetaldehyde will become higher.

本発明の合成用触媒が成分(C)としてHfと、B、Ge、Hf及びWからなる群から選ばれる1種以上とを含む場合、Hfに対する成分(C)のHf以外の金属の質量比は、1以下が好ましい。前記質量比が1以下であれば、Hfが寄与する反応を阻害しにくい。   When the synthesis catalyst of the present invention contains Hf as component (C) and one or more selected from the group consisting of B, Ge, Hf and W, the mass ratio of the metal other than Hf of component (C) to Hf Is preferably 1 or less. If the mass ratio is 1 or less, it is difficult to inhibit the reaction contributed by Hf.

本発明の合成用触媒としては、アセトアルデヒドの選択率がより高くなる点から、成分(A)〜(C)が多孔質担体に担持された担持触媒が好ましい。多孔質担体の材質は、特に限定されず、例えば、シリカ、ジルコニア、チタニア、マグネシア等が挙げられる。なかでも、比表面積や細孔直径が異なる種々の製品が市場で調達できることから、シリカが好ましい。   As the synthesis catalyst of the present invention, a supported catalyst in which the components (A) to (C) are supported on a porous carrier is preferable from the viewpoint that the selectivity of acetaldehyde becomes higher. The material of the porous carrier is not particularly limited, and examples thereof include silica, zirconia, titania, magnesia and the like. Among these, silica is preferable because various products having different specific surface areas and pore diameters can be procured on the market.

多孔質担体の大きさは特に限定されず、例えば、シリカの多孔質担体であれば、粒子径150〜2360μmのものが好ましい。多孔質担体の粒子径は、篩分けにより調節される。多孔質担体は、粒子径分布ができるだけ狭いものが好ましい。   The size of the porous carrier is not particularly limited. For example, a porous carrier made of silica preferably has a particle diameter of 150 to 2360 μm. The particle size of the porous carrier is adjusted by sieving. The porous carrier preferably has a particle size distribution as narrow as possible.

多孔質担体における細孔容積の合計(全細孔容積)は、0.10〜2.50mL/gが好ましく、0.25〜1.50mL/gがより好ましい。全細孔容積が前記下限値以上であれば、充分な量の成分(A)〜(C)を担持しやすく、アセトアルデヒドの選択率がより高くなる。全細孔容積が前記上限値以下であれば、エタノールと合成用触媒との接触時間が充分となりやすく、アセトアルデヒドの選択率が高くなりやすい。
なお、多孔質担体の全細孔容積は、水滴定法により測定される値である。水滴定法とは、多孔質担体の表面に水分子を吸着させ、分子の凝縮から細孔分布を測定する方法である。
The total pore volume (total pore volume) in the porous carrier is preferably 0.10 to 2.50 mL / g, and more preferably 0.25 to 1.50 mL / g. If the total pore volume is equal to or greater than the lower limit, a sufficient amount of components (A) to (C) can be easily carried, and the selectivity of acetaldehyde becomes higher. If the total pore volume is less than or equal to the above upper limit value, the contact time between ethanol and the catalyst for synthesis tends to be sufficient, and the selectivity for acetaldehyde tends to increase.
The total pore volume of the porous carrier is a value measured by a water titration method. The water titration method is a method in which water molecules are adsorbed on the surface of a porous carrier and the pore distribution is measured from the condensation of the molecules.

多孔質担体の平均細孔直径は、0.1〜100nmが好ましく、1.0〜50nmがより好ましい。平均細孔直径が前記下限値以上であれば、充分な量の成分(A)〜(C)を担持しやすく、アセトアルデヒドの選択率がより高くなる。平均細孔直径が前記上限値以下であれば、エタノールと合成用触媒との接触時間が充分となりやすく、アセトアルデヒドの選択率が高くなりやすい。   The average pore diameter of the porous carrier is preferably from 0.1 to 100 nm, more preferably from 1.0 to 50 nm. When the average pore diameter is equal to or greater than the lower limit, a sufficient amount of components (A) to (C) can be easily carried, and the selectivity for acetaldehyde becomes higher. When the average pore diameter is not more than the above upper limit, the contact time between ethanol and the catalyst for synthesis tends to be sufficient, and the selectivity for acetaldehyde tends to increase.

なお、平均細孔直径は、以下の手法で測定される値である。平均細孔直径が0.1nm以上10nm未満の場合、平均細孔直径は、全細孔容積とBET比表面積とから算出される。平均細孔直径が10nm以上の場合、平均細孔直径は、水銀圧入法ポロシメーターにより測定される。BET比表面積は、窒素を吸着ガスとし、その吸着量とその時の圧力から算出される値である。水銀圧入法は、水銀を加圧して多孔質担体の細孔に圧入させ、その圧力と圧入された水銀量から平均細孔直径を算出するものである。   The average pore diameter is a value measured by the following method. When the average pore diameter is 0.1 nm or more and less than 10 nm, the average pore diameter is calculated from the total pore volume and the BET specific surface area. When the average pore diameter is 10 nm or more, the average pore diameter is measured by a mercury porosimetry porosimeter. The BET specific surface area is a value calculated from the amount of adsorption and the pressure at that time using nitrogen as the adsorption gas. In the mercury intrusion method, mercury is pressurized and pressed into the pores of the porous carrier, and the average pore diameter is calculated from the pressure and the amount of mercury inserted.

多孔質担体の比表面積は、50〜1000m/gが好ましく、100〜750m/gがより好ましい。比表面積が前記下限値以上であれば、成分(A)〜(C)の担持量が充分となりやすく、アセトアルデヒドの選択率がより高くなる。比表面積が前記上限値以下であれば、エタノールと合成用触媒との接触時間が充分となりやすく、アセトアルデヒドの選択率が高くなりやすい。
なお、前記比表面積は、窒素を吸着ガスとし、BET式ガス吸着法により測定されるBET比表面積である。
The specific surface area of the porous support preferably has 50~1000m 2 / g, 100~750m 2 / g is more preferable. If the specific surface area is equal to or greater than the lower limit, the amount of the components (A) to (C) supported is likely to be sufficient, and the selectivity for acetaldehyde is further increased. If the specific surface area is not more than the above upper limit value, the contact time between ethanol and the catalyst for synthesis tends to be sufficient, and the selectivity for acetaldehyde tends to increase.
The specific surface area is a BET specific surface area measured by a BET gas adsorption method using nitrogen as an adsorption gas.

多孔質担体における全細孔容積と比表面積との積は、5〜7500mL・m/gが好ましく、500〜5000mL・m/gがより好ましい。前記積が前記下限値以上であれば、成分(A)〜(C)の担持量が充分となりやすく、アセトアルデヒドの選択率がより高くなる。前記積が前記上限値以下であれば、エタノールと合成用触媒との接触時間が充分となりやすく、アセトアルデヒドの選択率が高くなりやすい。 The product of the total pore volume and the specific surface area of the porous support preferably has 5~7500mL · m 2 / g 2, and more preferably 500~5000mL · m 2 / g 2. If the said product is more than the said lower limit, the load of component (A)-(C) will become easy enough, and the selectivity of acetaldehyde will become higher. If the product is less than or equal to the upper limit, the contact time between ethanol and the catalyst for synthesis tends to be sufficient, and the selectivity for acetaldehyde tends to increase.

多孔質担体への成分(A)〜(C)の合計の担持量は、多孔質担体の質量に対して、1.0〜10.0質量%が好ましく、2.5〜5.0質量%がより好ましい。担持量が前記下限値以上であれば、充分な量の成分(A)〜(C)が担持されることでアセトアルデヒドの選択率が高くなりやすい。担持量が前記上限値以下であれば、成分(A)〜(C)を均一かつ高分散状態にしやすいため、アセトアルデヒドの選択率を高めやすい。   The total supported amount of the components (A) to (C) on the porous carrier is preferably 1.0 to 10.0% by mass, and 2.5 to 5.0% by mass with respect to the mass of the porous carrier. Is more preferable. If the loading amount is equal to or more than the lower limit value, a sufficient amount of components (A) to (C) is loaded, so that the selectivity of acetaldehyde tends to increase. If the loading amount is less than or equal to the above upper limit value, the components (A) to (C) are likely to be in a uniform and highly dispersed state, so that the selectivity of acetaldehyde can be easily increased.

本発明の合成用触媒は、触媒金属として成分(A)〜(C)を用いる以外は、従来公知の触媒の製造方法に準じて製造できる。本発明の合成用触媒を担持触媒とする場合、例えば、含浸法、イオン交換法等が挙げられ、含浸法が好ましい。含浸法を用いて得た担持触媒は、成分(A)〜(C)がより均一に分散され、エタノールとの接触効率がより高められるため、アセトアルデヒドの選択率をより高めることができる。   The synthesis catalyst of the present invention can be produced according to a conventionally known catalyst production method except that the components (A) to (C) are used as the catalyst metal. When the synthesis catalyst of the present invention is used as a supported catalyst, for example, an impregnation method, an ion exchange method and the like can be mentioned, and an impregnation method is preferable. In the supported catalyst obtained by using the impregnation method, the components (A) to (C) are more uniformly dispersed and the contact efficiency with ethanol is further increased, so that the selectivity of acetaldehyde can be further increased.

含浸法では、例えば、成分(A)〜(C)の原料化合物を溶媒に溶解した溶液(含浸液)に多孔質担体を浸漬する等して、含浸液を多孔質担体に含浸させた後、乾燥し、焼成して、還元処理を施して合成用触媒とする。   In the impregnation method, for example, the porous carrier is impregnated with the porous carrier by immersing the porous carrier in a solution (impregnating solution) in which the raw material compounds of the components (A) to (C) are dissolved in a solvent. It is dried, calcined, and subjected to a reduction treatment to obtain a synthesis catalyst.

成分(A)〜(C)の原料化合物としては、特に限定されず、金属触媒を調製する際に通常用いられるものを用いることができる。具体的には、例えば、酸化物、塩化物、硫化物、硝酸塩、炭酸塩等の無機塩、シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩又はキレート化合物、カルボニル化合物、シクロペンタジエニル化合物、アンミン錯体、アルコキシド化合物、アルキル化合物等が挙げられる。なかでも、塩化物又は硫化物が好ましい。   It does not specifically limit as a raw material compound of component (A)-(C), What is normally used when preparing a metal catalyst can be used. Specifically, for example, inorganic salts such as oxides, chlorides, sulfides, nitrates, carbonates, oxalates, acetylacetonate salts, dimethylglyoxime salts, organic salts such as ethylenediamine acetate, or chelate compounds, Examples include carbonyl compounds, cyclopentadienyl compounds, ammine complexes, alkoxide compounds, and alkyl compounds. Of these, chloride or sulfide is preferred.

含浸液を多孔質担体に含浸させる方法としては、全ての原料化合物を溶解した溶液を担体に含浸させる方法(同時法)、各原料化合物を別個に溶解した溶液を調製し、逐次的に担体に各溶液を含浸させる方法(逐次法)等が挙げられる。   As a method of impregnating the impregnating liquid into the porous carrier, a method of impregnating the carrier with a solution in which all raw material compounds are dissolved (simultaneous method), a solution in which each raw material compound is separately dissolved is prepared, and sequentially applied to the carrier. Examples include a method of impregnating each solution (sequential method).

乾燥温度及び焼成温度は、溶媒の種類等に応じて適宜決定できる。例えば、溶媒が水の場合、乾燥温度を80〜120℃、焼成温度を300〜600℃とすることができる。   The drying temperature and the firing temperature can be appropriately determined according to the type of the solvent. For example, when the solvent is water, the drying temperature can be 80 to 120 ° C., and the firing temperature can be 300 to 600 ° C.

以上説明した本発明の合成用触媒は、成分(A)〜(C)を含むため、エタノール酸化によって高い選択率でアセトアルデヒドを合成できるため、経済性に優れている。また、本発明の合成用触媒を用いれば、バイオエタノールからアセトアルデヒドを製造することもできるため、環境負荷の低減にも寄与できる。   Since the catalyst for synthesis of the present invention described above contains components (A) to (C), acetaldehyde can be synthesized with high selectivity by ethanol oxidation, and thus is excellent in economic efficiency. Moreover, if the synthesis catalyst of the present invention is used, acetaldehyde can also be produced from bioethanol, which can contribute to a reduction in environmental burden.

[アセトアルデヒドの製造装置]
本発明のアセトアルデヒドの製造装置は、本発明の合成用触媒が充填された反応管と、エタノールを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段と、を備える。以下、本発明のアセトアルデヒドの製造装置の一例について、図1に基づいて説明する。
[Acetaldehyde production equipment]
The acetaldehyde production apparatus of the present invention includes a reaction tube filled with the synthesis catalyst of the present invention, a supply unit that supplies ethanol into the reaction tube, and a discharge unit that discharges a product from the reaction tube. . Hereinafter, an example of the acetaldehyde production apparatus of the present invention will be described with reference to FIG.

本実施形態のアセトアルデヒドの製造装置10(以下、単に「製造装置10」という。)は、本発明の合成用触媒が充填されて反応床2が形成された反応管1と、反応管1に接続された供給管3と、反応管1に接続された排出管4と、反応管1に接続された温度制御部5と、排出管4に設けられた圧力制御部6と、を備える。   The acetaldehyde production apparatus 10 of the present embodiment (hereinafter simply referred to as “production apparatus 10”) is connected to the reaction tube 1 filled with the synthesis catalyst of the present invention to form the reaction bed 2 and the reaction tube 1. A supply pipe 3, a discharge pipe 4 connected to the reaction pipe 1, a temperature control unit 5 connected to the reaction pipe 1, and a pressure control unit 6 provided in the discharge pipe 4.

反応床2は、本発明の合成用触媒のみが充填されたものでもよく、本発明の合成用触媒と希釈材とが充填されたものでもよい。なお、エタノールからアセトアルデヒドを合成する反応は吸熱反応であるため、本発明の合成用触媒が過度に発熱することを防止する目的で使用される希釈剤は通常不要である。
希釈材としては、例えば、合成触媒の担体と同様のものや、石英砂、アルミナボール、アルミボール、アルミショット等が挙げられる。
反応床2に希釈材を充填する場合、希釈材/合成用触媒で表される質量比は、それぞれの種類や比重等を勘案して決定され、例えば、0.5〜5が好ましい。
The reaction bed 2 may be filled with only the synthesis catalyst of the present invention, or may be filled with the synthesis catalyst of the present invention and a diluent. Since the reaction for synthesizing acetaldehyde from ethanol is an endothermic reaction, a diluent used for the purpose of preventing the synthesis catalyst of the present invention from generating excessive heat is usually unnecessary.
Examples of the diluent include those similar to the carrier of the synthetic catalyst, quartz sand, alumina balls, aluminum balls, aluminum shots, and the like.
When the reaction bed 2 is filled with a diluent, the mass ratio represented by the diluent / synthesis catalyst is determined in consideration of the type and specific gravity, and is preferably 0.5 to 5, for example.

反応管1は、材料ガス及び合成された生成物に対して不活性な材料からなるものが好ましく、100〜500℃程度の加熱、又は10MPa程度の加圧に耐え得る形状のものが好ましい。反応管1としては、例えば、ステンレス製の略円筒形の部材が挙げられる。
供給管3は、材料ガスを反応管1内に供給する供給手段であり、例えば、ステンレス製等の配管が挙げられる。
排出管4は、反応床2で合成された生成物を含むガスを排出する排出手段であり、例えば、ステンレス製等の配管が挙げられる。
The reaction tube 1 is preferably made of a material inert to the material gas and the synthesized product, and preferably has a shape capable of withstanding heating of about 100 to 500 ° C. or pressurization of about 10 MPa. An example of the reaction tube 1 is a substantially cylindrical member made of stainless steel.
The supply pipe 3 is a supply means for supplying the material gas into the reaction pipe 1 and includes, for example, a pipe made of stainless steel or the like.
The discharge pipe 4 is a discharge means for discharging a gas containing the product synthesized in the reaction bed 2, and examples thereof include a pipe made of stainless steel.

温度制御部5は、反応管1内の反応床2を任意の温度にできるものであればよく、例えば、電気炉等が挙げられる。
圧力制御部6は、反応管1内の圧力を任意の圧力にできるものであればよく、例えば、公知の圧力弁等が挙げられる。
なお、製造装置10は、マスフロー等、ガスの流量を調整するガス流量制御部等の周知の機器を備えていてもよい。
The temperature control part 5 should just be what can make the reaction bed 2 in the reaction tube 1 arbitrary temperature, for example, an electric furnace etc. are mentioned.
The pressure control part 6 should just be what can make the pressure in the reaction tube 1 arbitrary pressure, for example, a well-known pressure valve etc. are mentioned.
The manufacturing apparatus 10 may include a known device such as a gas flow rate control unit that adjusts a gas flow rate, such as a mass flow.

以上説明した本発明のアセトアルデヒドの製造装置では、成分(A)〜(C)を含む本発明の合成用触媒を用いるため、エタノール酸化によって高い選択率でアセトアルデヒドを製造することができ、経済性に優れている。また、バイオエタノールからアセトアルデヒドを製造することもできるため、環境負荷も低減できる。   In the acetaldehyde production apparatus of the present invention described above, since the synthesis catalyst of the present invention containing components (A) to (C) is used, acetaldehyde can be produced with high selectivity by ethanol oxidation, which is economical. Are better. Moreover, since acetaldehyde can also be manufactured from bioethanol, an environmental load can also be reduced.

[アセトアルデヒドの製造方法]
本発明のアセトアルデヒドの製造方法は、前記した本発明の合成用触媒を用いてエタノールからアセトアルデヒドを製造する方法である。本発明のアセトアルデヒドの製造方法では、エタノールを本発明の合成用触媒に接触させる。これにより、エタノールが酸化させてアセトアルデヒドが得られる。
[Method for producing acetaldehyde]
The method for producing acetaldehyde of the present invention is a method for producing acetaldehyde from ethanol using the synthesis catalyst of the present invention described above. In the method for producing acetaldehyde of the present invention, ethanol is brought into contact with the synthesis catalyst of the present invention. Thereby, ethanol is oxidized and acetaldehyde is obtained.

エタノールと合成用触媒との接触させる態様は、特に限定されず、例えば、反応管内に合成用触媒を充填して反応床を形成し、該反応管にエタノールを供給して反応床の合成用触媒と接触させる態様が挙げられる。なお、反応床は、固定床、移動床、流動床等のいずれでもよい。   The mode of bringing ethanol into contact with the synthesis catalyst is not particularly limited. For example, a reaction bed is formed by filling the reaction tube with the synthesis catalyst, and ethanol is supplied to the reaction tube to prepare the reaction bed synthesis catalyst. And an embodiment in which the contact is made. The reaction bed may be a fixed bed, a moving bed, a fluidized bed, or the like.

合成用触媒に接触させるエタノールは、転化率を高くしやすい点から、ガス状であることが好ましい。なお、合成用触媒に接触させるエタノールは、液状であってもよい。合成用触媒にエタノールを接触させる際には、エタノールのみを接触させてもよく、本発明の目的を損なわない範囲であればエタノールとその他の成分の混合物を接触させてもよい。   The ethanol brought into contact with the synthesis catalyst is preferably in the form of a gas from the viewpoint of easily increasing the conversion rate. Note that the ethanol to be brought into contact with the synthesis catalyst may be liquid. When ethanol is brought into contact with the synthesis catalyst, only ethanol may be brought into contact, or a mixture of ethanol and other components may be brought into contact as long as the object of the present invention is not impaired.

ガス化したエタノールと不活性ガスを含む混合ガスとして合成用触媒に接触させてもよい。不活性ガスを含有していると、アセトアルデヒドの合成効率のさらなる向上を図れる。混合ガス中の不活性ガスの含有量は、例えば、5〜50体積%が好ましく、10〜40体積%がより好ましく、15〜30体積%がさらに好ましい。   You may make it contact with the catalyst for a synthesis | combination as mixed gas containing the gasified ethanol and inert gas. When the inert gas is contained, the synthesis efficiency of acetaldehyde can be further improved. For example, the content of the inert gas in the mixed gas is preferably 5 to 50% by volume, more preferably 10 to 40% by volume, and still more preferably 15 to 30% by volume.

エタノールと合成用触媒とを接触させる際の温度(反応温度)は、300〜500℃が好ましく、350〜450℃がより好ましい。反応温度が前記下限値以上であれば、酸化反応の速度が充分に高まり、アセトアルデヒドをより効率的に製造できる。反応温度が前記上限値以下であれば、合成用触媒の劣化を抑制しやすい。   The temperature (reaction temperature) when ethanol is brought into contact with the catalyst for synthesis is preferably 300 to 500 ° C, more preferably 350 to 450 ° C. If reaction temperature is more than the said lower limit, the speed | rate of an oxidation reaction will fully increase and acetaldehyde can be manufactured more efficiently. If reaction temperature is below the said upper limit, it will be easy to suppress degradation of the catalyst for synthesis.

エタノールと合成用触媒とを接触させる際の圧力(反応圧力)、例えば、常圧〜1MPaとされる。   The pressure (reaction pressure) when ethanol is brought into contact with the synthesis catalyst, for example, normal pressure to 1 MPa.

合成用触媒と接触させるエタノールの空間速度は、標準状態換算で、0.1〜10000L/L−触媒/hrが好ましく、10〜5000L/L−触媒/hrがより好ましく、100〜2500L/L−触媒/hrがさらに好ましい。空間速度は、反応圧力及び反応温度を勘案して、適宜調整される。   The space velocity of ethanol brought into contact with the synthesis catalyst is preferably 0.1 to 10000 L / L-catalyst / hr, more preferably 10 to 5000 L / L-catalyst / hr, and 100 to 2500 L / L- in terms of standard state. More preferred is catalyst / hr. The space velocity is appropriately adjusted in consideration of the reaction pressure and the reaction temperature.

例えば、製造装置10を用いる場合は、温度制御部5及び圧力制御部6により反応管1内を任意の温度及び任意の圧力とし、ガス化されたエタノールを含むガス20を供給管3から反応管1内に流入させる。反応管1内においてエタノールが合成用触媒に接触して反応し、アセトアルデヒドが生成する。アセトアルデヒドを含む生成ガス22は、排出管4から排出される。生成ガス22には、プロピレン、エタン等の化合物が含まれていてもよい。   For example, when the manufacturing apparatus 10 is used, the inside of the reaction tube 1 is set to an arbitrary temperature and an arbitrary pressure by the temperature control unit 5 and the pressure control unit 6, and the gas 20 containing the gasified ethanol is supplied from the supply tube 3 to the reaction tube. 1 to flow into. In the reaction tube 1, ethanol reacts with the synthesis catalyst to produce acetaldehyde. The product gas 22 containing acetaldehyde is discharged from the discharge pipe 4. The product gas 22 may contain a compound such as propylene and ethane.

合成用触媒との接触による反応後に得られたアセトアルデヒドを含む生成物に対しては、必要に応じて気液分離や蒸留精製等の精製を行い、未反応のエタノールや副生物を除去する。   The product containing acetaldehyde obtained after the reaction by contact with the catalyst for synthesis is subjected to purification such as gas-liquid separation or distillation purification as necessary to remove unreacted ethanol and by-products.

以上説明した本発明のアセトアルデヒドの製造方法によれば、成分(A)〜(C)を含む本発明の合成用触媒を用いるため、エタノール酸化によって高い選択率でアセトアルデヒドを製造することができ、経済性に優れている。また、バイオエタノールからアセトアルデヒドを製造することもできるため、環境負荷も低減できる。   According to the method for producing acetaldehyde of the present invention described above, since the synthesis catalyst of the present invention containing components (A) to (C) is used, acetaldehyde can be produced with high selectivity by ethanol oxidation, and the economy Excellent in properties. Moreover, since acetaldehyde can also be manufactured from bioethanol, an environmental load can also be reduced.

以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[実施例1]
成分(A)の原料化合物である硝酸銅三水和物(和光純薬社製)0.0761gと、成分(B)の原料化合物である硝酸亜鉛六水和物(和光純薬社製)0.0455gと、を含む水溶液2.10gを調製した(一次含浸溶液)。次いで、該水溶液を多孔質担体(シリカ、粒子径:1.18〜2.36mm、平均細孔直径:14.7nm、全細孔容積:0.99mL/g、比表面積:195m/g)2.0gに滴下して含浸させた(一次含浸工程)。次いで、該多孔体担体を110℃で3時間乾燥し、さらに400℃で4.5時間焼成して一次担持体を得た(一次担持工程)。続いて、成分(C)の原料である塩化ハフニウム(和光純薬社製)0.107gを含む水溶液2.09gを調製した。該水溶液を用いて、一次担持体に一次含浸工程と同様の処理を行い、合成用触媒(1−1)を得た。
得られた合成用触媒(I−1)における成分(A)〜(C)の割合は、多孔質担体の質量に対して、成分(A)が1質量%、成分(B)が0.5質量%、成分(C)が3.0質量%であった。
また、成分(A)の原料化合物と成分(C)の原料化合物の使用量を変更し、多孔質担体の質量に対する成分(A)と成分(C)の割合を表1に示すとおりに変更した以外は、上記と同様にして合成用触媒(I−1)〜(I−3)を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description.
[Example 1]
0.0761 g of copper nitrate trihydrate (manufactured by Wako Pure Chemical Industries, Ltd.) which is a raw material compound of component (A), and zinc nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0 which is a raw material compound of component (B) 0 And an aqueous solution containing 1.455 g (primary impregnation solution). Next, the aqueous solution was treated with a porous carrier (silica, particle diameter: 1.18 to 2.36 mm, average pore diameter: 14.7 nm, total pore volume: 0.99 mL / g, specific surface area: 195 m 2 / g). 2.0 g was dropped and impregnated (primary impregnation step). Next, the porous carrier was dried at 110 ° C. for 3 hours and further calcined at 400 ° C. for 4.5 hours to obtain a primary carrier (primary carrier step). Subsequently, 2.09 g of an aqueous solution containing 0.107 g of hafnium chloride (manufactured by Wako Pure Chemical Industries, Ltd.), which is a raw material of the component (C), was prepared. Using this aqueous solution, the primary support was treated in the same manner as in the primary impregnation step to obtain a synthesis catalyst (1-1).
The proportions of the components (A) to (C) in the resultant synthesis catalyst (I-1) were 1% by mass for the component (A) and 0.5% for the component (B) with respect to the mass of the porous carrier. The mass% and the component (C) were 3.0 mass%.
Moreover, the usage-amount of the raw material compound of a component (A) and the raw material compound of a component (C) was changed, and the ratio of the component (A) and the component (C) with respect to the mass of a porous support | carrier was changed as shown in Table 1. Except for the above, synthesis catalysts (I-1) to (I-3) were obtained in the same manner as above.

[実施例2〜7]
成分(C)の原料化合物を変更して多孔質担体の質量に対する成分(A)〜(C)の割合を表1及び表2に示すとおりにし、また焼成温度を表1及び表2に示すとおりに変更した以外は、実施例1と同様にして各合成用触媒を得た。各実施例の成分(C)の原料化合物としては、以下に示すものを使用した。
実施例2、5〜7:ほう酸アンモニウム八水和物(米山薬品工業社製)。
実施例3、5〜7:グルクロン酸ゲルマニウム(和光純薬社製)。
実施例4:高純度メタタングステン酸アンモニウム(日本無機化学工業社製)。
[Examples 2 to 7]
The raw material compound of component (C) is changed so that the ratio of components (A) to (C) to the mass of the porous carrier is as shown in Table 1 and Table 2, and the firing temperature is as shown in Table 1 and Table 2. Each synthesis catalyst was obtained in the same manner as in Example 1 except that the synthesis catalyst was changed. As raw material compounds of component (C) in each Example, those shown below were used.
Examples 2, 5-7: Ammonium borate octahydrate (manufactured by Yoneyama Pharmaceutical Co., Ltd.).
Examples 3, 5-7: Germanium glucuronate (manufactured by Wako Pure Chemical Industries, Ltd.).
Example 4: High purity ammonium metatungstate (manufactured by Nippon Inorganic Chemical Industry Co., Ltd.).

Figure 2017144421
Figure 2017144421

Figure 2017144421
Figure 2017144421

[アセトアルデヒドの選択率の測定]
各例の合成用触媒0.0500gを直径1/16インチ(0.159cm)、長さ11インチ(27.9cm)のステンレス製の円筒型の反応管に充填して反応床を形成した。
次いで、反応床の温度(反応温度)を400℃、425℃、又は450℃として、空間速度500L/L−触媒/hr、常圧でガス状のエタノールを反応管に供給し、反応床を通過させて生成ガスを得た。それぞれの反応温度での反応中に回収した生成ガスをガスクロマトグラフィーにより分析し、アセトアルデヒドの選択率を求めた。各例においては、時間経過とともに反応温度を400℃、425℃、450℃の順に変化させ、各反応温度において2回ずつアセトアルデヒドの選択率を測定した。
実施例1〜7の合成用触媒を用いたそれぞれの反応について、アセトアルデヒドの選択率の測定結果を図2〜8に示す。
[Measurement of acetaldehyde selectivity]
A reaction bed was formed by filling 0.0500 g of the synthesis catalyst of each example into a stainless steel cylindrical reaction tube having a diameter of 1/16 inch (0.159 cm) and a length of 11 inches (27.9 cm).
Next, the temperature of the reaction bed (reaction temperature) is set to 400 ° C., 425 ° C., or 450 ° C., and gaseous ethanol is supplied to the reaction tube at a space velocity of 500 L / L-catalyst / hr and normal pressure, and passes through the reaction bed. The product gas was obtained. The product gas collected during the reaction at each reaction temperature was analyzed by gas chromatography to determine the selectivity of acetaldehyde. In each example, the reaction temperature was changed in the order of 400 ° C., 425 ° C., and 450 ° C. over time, and the selectivity of acetaldehyde was measured twice at each reaction temperature.
The measurement results of the selectivity of acetaldehyde for each reaction using the synthesis catalysts of Examples 1 to 7 are shown in FIGS.

図2〜5に示すように、成分(A)〜(C)の三元系触媒である実施例1〜4の合成用触媒では、高い選択率でアセトアルデヒドを製造することができた。また、成分(C)として、B、Ge又はWを用いた実施例2〜4の合成用触媒では、より高い選択率でアセトアルデヒドを製造することが可能であった。
また、図6〜8に示すように、成分(C)としてHfを含む2種の金属を用いた実施例5〜7の四元系触媒は、三元系触媒に比べて、さらに高い選択率でアセトアルデヒドを製造することが可能であった。
As shown in FIGS. 2 to 5, acetaldehyde could be produced with high selectivity in the synthesis catalysts of Examples 1 to 4 which are ternary catalysts of components (A) to (C). Moreover, in the synthesis catalysts of Examples 2 to 4 using B, Ge, or W as the component (C), it was possible to produce acetaldehyde with higher selectivity.
Moreover, as shown to FIGS. 6-8, the quaternary catalyst of Examples 5-7 using two types of metals containing Hf as a component (C) has a still higher selectivity than a ternary catalyst. It was possible to produce acetaldehyde.

1 反応管
2 反応床
3 供給管
4 排出管
5 温度制御部
6 圧力制御部
10 アセトアルデヒドの製造装置
DESCRIPTION OF SYMBOLS 1 Reaction pipe 2 Reaction bed 3 Supply pipe 4 Discharge pipe 5 Temperature control part 6 Pressure control part 10 Acetaldehyde manufacturing apparatus

Claims (5)

エタノールからアセトアルデヒドを合成するためのアセトアルデヒド合成用触媒であって、
成分(A):Cuと、成分(B):Znと、成分(C):B、Ge、Hf及びWからなる群から選ばれる1種以上と、を含む、アセトアルデヒド合成用触媒。
A catalyst for acetaldehyde synthesis for synthesizing acetaldehyde from ethanol,
A catalyst for synthesizing acetaldehyde, comprising: component (A): Cu; component (B): Zn; and component (C): one or more selected from the group consisting of B, Ge, Hf and W.
前記成分(C)が、B、Ge及びWからなる群から選ばれる1種以上である、請求項1に記載のアセトアルデヒド合成用触媒。   The catalyst for acetaldehyde synthesis according to claim 1, wherein the component (C) is at least one selected from the group consisting of B, Ge and W. 前記成分(C)が、Hfと、B、Ge及びWからなる群から選ばれる1種以上との組み合わせである、請求項1に記載のアセトアルデヒド合成用触媒。   The catalyst for acetaldehyde synthesis according to claim 1, wherein the component (C) is a combination of Hf and one or more selected from the group consisting of B, Ge and W. 請求項1〜3のいずれか一項に記載のアセトアルデヒド合成用触媒が充填された反応管と、エタノールを前記反応管内に供給する供給手段と、前記反応管から生成物を排出する排出手段と、を備える、アセトアルデヒドの製造装置。   A reaction tube filled with the catalyst for acetaldehyde synthesis according to any one of claims 1 to 3, a supply unit that supplies ethanol into the reaction tube, a discharge unit that discharges a product from the reaction tube, An apparatus for producing acetaldehyde. 請求項1〜3のいずれか一項に記載のアセトアルデヒド合成用触媒にエタノールを接触させてアセトアルデヒドを得る、アセトアルデヒドの製造方法。   The manufacturing method of acetaldehyde which contacts ethanol with the catalyst for acetaldehyde synthesis | combination as described in any one of Claims 1-3, and obtains acetaldehyde.
JP2016133206A 2016-02-15 2016-07-05 Acetaldehyde synthesis catalyst, acetaldehyde production equipment and acetaldehyde production method Expired - Fee Related JP6751608B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016026240 2016-02-15
JP2016026240 2016-02-15

Publications (2)

Publication Number Publication Date
JP2017144421A true JP2017144421A (en) 2017-08-24
JP6751608B2 JP6751608B2 (en) 2020-09-09

Family

ID=59681803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016133206A Expired - Fee Related JP6751608B2 (en) 2016-02-15 2016-07-05 Acetaldehyde synthesis catalyst, acetaldehyde production equipment and acetaldehyde production method

Country Status (1)

Country Link
JP (1) JP6751608B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142865A1 (en) * 2018-01-17 2019-07-25 積水化学工業株式会社 Catalyst, and method for producing diene compound using said catalyst
WO2023193472A1 (en) * 2022-12-13 2023-10-12 广东省科学院测试分析研究所(中国广州分析测试中心) K, rb co-doped c3n4 photocatalyst and application thereof in preparation of acetaldehyde by synergistic photocatalytic co2 reduction and ethanol oxidation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036510A (en) * 2006-08-04 2008-02-21 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai Catalyst for oxidation of alcohol and oxidizing method
JP2010104938A (en) * 2008-10-31 2010-05-13 Daicel Chem Ind Ltd Method for regenerating copper catalyst
JP2011000532A (en) * 2009-06-18 2011-01-06 Daicel Chemical Industries Ltd Catalyst for dehydrogenating alcohol, and method of producing aldehyde using the same
JP2015502935A (en) * 2011-11-23 2015-01-29 ヴァイレント, インコーポレイテッドVirent, Inc. Dehydration of alkanols to increase the yield of aromatic compounds
JP2015502848A (en) * 2011-11-21 2015-01-29 ビーエーエスエフ コーポレーション Copper zirconia catalyst and use and production method
JP5787206B2 (en) * 2010-03-23 2015-09-30 公立大学法人首都大学東京 Gold catalyst for ethanol oxidation and method for producing acetaldehyde and acetic acid using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036510A (en) * 2006-08-04 2008-02-21 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai Catalyst for oxidation of alcohol and oxidizing method
JP2010104938A (en) * 2008-10-31 2010-05-13 Daicel Chem Ind Ltd Method for regenerating copper catalyst
JP2011000532A (en) * 2009-06-18 2011-01-06 Daicel Chemical Industries Ltd Catalyst for dehydrogenating alcohol, and method of producing aldehyde using the same
JP5787206B2 (en) * 2010-03-23 2015-09-30 公立大学法人首都大学東京 Gold catalyst for ethanol oxidation and method for producing acetaldehyde and acetic acid using the same
JP2015502848A (en) * 2011-11-21 2015-01-29 ビーエーエスエフ コーポレーション Copper zirconia catalyst and use and production method
JP2015502935A (en) * 2011-11-23 2015-01-29 ヴァイレント, インコーポレイテッドVirent, Inc. Dehydration of alkanols to increase the yield of aromatic compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF COORDINATION CHEMISTRY, vol. 68, no. 2, JPN6020008435, 2015, pages 229 - 240, ISSN: 0004226420 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142865A1 (en) * 2018-01-17 2019-07-25 積水化学工業株式会社 Catalyst, and method for producing diene compound using said catalyst
JPWO2019142865A1 (en) * 2018-01-17 2021-01-14 積水化学工業株式会社 A catalyst and a method for producing a diene compound using the catalyst.
WO2023193472A1 (en) * 2022-12-13 2023-10-12 广东省科学院测试分析研究所(中国广州分析测试中心) K, rb co-doped c3n4 photocatalyst and application thereof in preparation of acetaldehyde by synergistic photocatalytic co2 reduction and ethanol oxidation

Also Published As

Publication number Publication date
JP6751608B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
KR101528879B1 (en) Process for production of an olefin oxide
KR101711108B1 (en) Catalyst with bimodal pore size distribution and the use thereof
KR101502919B1 (en) Carrier for olefin oxide catalyst
US9067198B2 (en) Calcination process for producing an improved ethylene oxide catalyst
TWI537052B (en) Geometrically sized solid shaped carrier for olefin epoxidation catalyst
JP2017501864A (en) Catalyst for epoxidation of alkenes
US20040110973A1 (en) Olefin oxide catalysts
JP2018008248A (en) Catalyst for synthesizing 1,3-butadiene and apparatus and method for producing 1,3-butadiene
JP6751608B2 (en) Acetaldehyde synthesis catalyst, acetaldehyde production equipment and acetaldehyde production method
JP2006503704A (en) Method for preparing olefin oxide, method for using the olefin oxide and catalyst composition
JP6619255B2 (en) 1,3-butadiene synthesis catalyst, 1,3-butadiene production apparatus, and 1,3-butadiene production method
TWI697358B (en) Silver catalysts with improved size and distribution density of silver particles
JP7160604B2 (en) Method for producing 1,3-butadiene and acetaldehyde diethyl acetal
JP2015199060A (en) Catalyst support for production of ethylene oxide from ethylene and catalyst production method
JP5211924B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP6816241B2 (en) 1,3-butadiene synthesis catalyst, 1,3-butadiene production equipment and 1,3-butadiene production method
US20040138483A1 (en) Olefin oxide catalysts
JP2020199502A (en) Catalyst for synthesizing 1,3-butadiene and apparatus and method for producing 1,3-butadiene
US11352307B2 (en) Catalyst, device for manufacturing conjugated diene, and method for manufacturing conjugated diene
JP2015199059A (en) Catalyst support for production of ethylene oxide from ethylene and catalyst production method
JP2016165697A (en) Ethylene oxide production catalyst and method for producing ethylene oxide using the same
CN115501905A (en) Catalyst with dehydrogenation function, preparation method and application thereof, and method for preparing small-molecule olefin
JP2014188462A (en) Method for producing catalyst for producing ethylene oxide and method for producing ethylene oxide
KR20190121760A (en) Process for preparing unsaturated hydrocarbons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6751608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees