JP5165441B2 - Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst - Google Patents

Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst Download PDF

Info

Publication number
JP5165441B2
JP5165441B2 JP2008093171A JP2008093171A JP5165441B2 JP 5165441 B2 JP5165441 B2 JP 5165441B2 JP 2008093171 A JP2008093171 A JP 2008093171A JP 2008093171 A JP2008093171 A JP 2008093171A JP 5165441 B2 JP5165441 B2 JP 5165441B2
Authority
JP
Japan
Prior art keywords
catalyst
mass
carrier
ethylene oxide
cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008093171A
Other languages
Japanese (ja)
Other versions
JP2009241002A (en
Inventor
準 仙頭
高明 橋本
昌秀 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008093171A priority Critical patent/JP5165441B2/en
Publication of JP2009241002A publication Critical patent/JP2009241002A/en
Application granted granted Critical
Publication of JP5165441B2 publication Critical patent/JP5165441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、エチレンオキシド製造用触媒および該触媒を用いたエチレンオキシドの製造方法に関する。詳細には、本発明は、エチレンオキシド選択性に優れ、高い選択率でエチレンオキシドを製造しうる触媒およびこの触媒を用いたエチレンオキシドの製造方法に関する。   The present invention relates to a catalyst for producing ethylene oxide and a method for producing ethylene oxide using the catalyst. Specifically, the present invention relates to a catalyst that is excellent in ethylene oxide selectivity and can produce ethylene oxide with high selectivity, and a method for producing ethylene oxide using the catalyst.

エチレンを銀触媒の存在下で分子状酸素含有ガスにより接触気相酸化してエチレンオキシドを製造することは工業的に広く行われている。この接触気相酸化に用いる銀触媒については、その担体、担持方法、反応促進剤などに関し、多くの技術が提案されている。   It is widely used industrially to produce ethylene oxide by catalytic vapor phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst. With regard to the silver catalyst used for the catalytic gas phase oxidation, many techniques have been proposed regarding its carrier, supporting method, reaction accelerator and the like.

銀触媒の触媒活性、選択性および触媒寿命はすでに高いレベルに達しているが、なおこれらの触媒性能の向上が求められている。例えば選択率を例にとれば、エチレンオキシドの生産規模は大きいことから、選択率が僅か1%向上するだけでも、原料エチレンの使用量が著しく節約され、その経済的効果は大きい。また、実プラントでは運転可能な温度範囲に制限があり、反応時の温度上昇を抑制することで触媒のライフサイクルが長くなり、生産性が向上する。このような事情から、より優れた触媒性能を有する銀触媒の開発が当該技術分野の研究者の継続的なテーマとなっている。   Although the catalytic activity, selectivity, and catalyst life of silver catalysts have already reached a high level, there is still a demand for improvement of these catalyst performances. For example, if the selectivity is taken as an example, the production scale of ethylene oxide is large, and even if the selectivity is improved by only 1%, the amount of raw material ethylene used is remarkably saved, and its economic effect is great. Moreover, in the actual plant, the operable temperature range is limited, and by suppressing the temperature rise during the reaction, the life cycle of the catalyst is lengthened, and the productivity is improved. Under such circumstances, the development of silver catalysts having better catalytic performance has been a continuous theme for researchers in the technical field.

例えば、特許文献1には、多孔性担体をアルカリ金属化合物の溶液に含浸させ、熱処理したものに、銀などの触媒成分を担持させた触媒が開示されている。
特開平9−150058号公報
For example, Patent Document 1 discloses a catalyst in which a porous carrier is impregnated with a solution of an alkali metal compound and heat-treated, and a catalyst component such as silver is supported thereon.
Japanese Patent Laid-Open No. 9-150058

しかしながら、前記特許文献に記載の銀触媒では、触媒性能は依然として不充分であるという問題があった。   However, the silver catalyst described in the above patent document has a problem that the catalyst performance is still insufficient.

そこで本発明は、高効率、高選択率でエチレンオキシドを製造しうる触媒およびこの触媒を用いたエチレンオキシドの製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a catalyst capable of producing ethylene oxide with high efficiency and high selectivity and a method for producing ethylene oxide using the catalyst.

本発明者らは、上述した課題を解決すべく鋭意研究を行った。その結果、アルカリ金属をプレドープした担体を用いる場合、アルカリ金属を担体に含浸させ乾燥させた後、不活性雰囲気中で熱処理することによって、エチレンオキシドを高効率、高選択率で製造でき、長期使用が可能なエチレンオキシド製造用触媒が提供されうることを見出し、本発明を完成させた。   The present inventors have conducted intensive research to solve the above-described problems. As a result, when using a carrier pre-doped with an alkali metal, ethylene oxide can be produced with high efficiency and high selectivity by impregnating the alkali metal into the carrier and drying, followed by heat treatment in an inert atmosphere. It has been found that possible catalysts for producing ethylene oxide can be provided, and the present invention has been completed.

すなわち、本発明は、α−アルミナを主成分とする担体に触媒成分を担持させてなるエチレンオキシド製造用触媒であって、前記担体として、あらかじめアルカリ金属を含浸させて乾燥させ、酸素濃度5体積%未満の不活性雰囲気中、400〜950℃で0.1〜10時間熱処理したアルカリ金属プレドープ担体を用いる、エチレンオキシド製造用触媒である。   That is, the present invention relates to a catalyst for producing ethylene oxide in which a catalyst component is supported on a carrier mainly composed of α-alumina, and the carrier is impregnated with an alkali metal in advance and dried, and has an oxygen concentration of 5% by volume. It is a catalyst for ethylene oxide production using an alkali metal pre-dope carrier heat-treated at 400 to 950 ° C. for 0.1 to 10 hours in an inert atmosphere of less than

本発明によれば、高効率、高選択率でエチレンオキシドを製造でき、長期に使用できるエチレンオキシド製造用触媒、およびこの触媒を用いたエチレンオキシドの製造方法が提供されうる。   ADVANTAGE OF THE INVENTION According to this invention, the catalyst for ethylene oxide manufacture which can manufacture ethylene oxide with high efficiency and high selectivity, and can be used for a long term, and the manufacturing method of ethylene oxide using this catalyst can be provided.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明の第1は、α−アルミナを主成分とする担体に触媒成分を担持させてなるエチレンオキシド製造用触媒であって、前記担体として、あらかじめアルカリ金属を含浸させて乾燥させ、酸素濃度5体積%未満の不活性雰囲気中、400〜950℃で0.1〜10時間熱処理したアルカリ金属プレドープ担体を用いる、エチレンオキシド製造用触媒である。本発明の触媒は、アルカリ金属をプレドープしなかった触媒と比較して、エチレンオキシド製造反応における初期選択率および寿命の改善が得られ、反応温度の上昇が抑制される。反応温度の上昇が抑制されると触媒を長期に利用できるため、触媒交換コストおよび操業ロスの減少により、経済性向上が期待できる。   A first aspect of the present invention is an ethylene oxide production catalyst comprising a carrier comprising α-alumina as a main component and a catalyst component supported thereon. The carrier is impregnated with an alkali metal in advance and dried, and has an oxygen concentration of 5 vol. It is a catalyst for ethylene oxide production using an alkali metal pre-dope support heat-treated at 400 to 950 ° C. for 0.1 to 10 hours in an inert atmosphere of less than 1%. Compared with a catalyst not predoped with an alkali metal, the catalyst of the present invention can improve initial selectivity and life in an ethylene oxide production reaction, and suppress an increase in reaction temperature. If the increase in the reaction temperature is suppressed, the catalyst can be used for a long period of time. Therefore, an improvement in economic efficiency can be expected due to a reduction in catalyst replacement cost and operation loss.

本発明のエチレンオキシド製造用触媒は、上述した通り、あらかじめアルカリ金属を含浸させて乾燥させ、酸素濃度5体積%未満の不活性雰囲気中で熱処理したアルカリ金属プレドープ担体を用いるものであればよく、その他の形態(担体の形状や触媒成分の具体的な形態など)は特に制限されない。   As described above, the catalyst for producing ethylene oxide of the present invention may be any catalyst that uses an alkali metal pre-doped carrier that has been impregnated with an alkali metal and dried, and heat-treated in an inert atmosphere having an oxygen concentration of less than 5% by volume. There are no particular restrictions on the form of the carrier (such as the shape of the carrier and the specific form of the catalyst component).

担体の組成については、α−アルミナを主成分とすること以外は特に制限されない。ここで、担体が、「α−アルミナを主成分とする」とは、α−アルミナ以外に一部、γーアルミナ、非晶質アルミナなどの別の形態のアルミナを含んでもよいことを意味する。担体におけるアルミナの含有率は、担体の全質量100質量%に対して90質量%以上が好ましく、より好ましくは95質量%以上であり、さらに好ましくは98質量%以上である。α−アルミナを主成分とするものであればその他の組成は特に制限されないが、担体は、例えばアルカリ金属またはアルカリ土類金属の酸化物や遷移金属の酸化物を含有しうる。これらの含有率についても特に制限はないが、アルカリ金属またはアルカリ土類金属の酸化物の含有率は、担体の質量に対して、酸化物換算で好ましくは0.001〜5質量%であり、より好ましくは0.01〜4質量%である。また、遷移金属の酸化物の含有率は、担体の質量に対して、酸化物換算で好ましくは0.001〜5質量%であり、より好ましくは0.01〜3質量%である。   The composition of the carrier is not particularly limited except that the main component is α-alumina. Here, the phrase “having α-alumina as the main component” means that the carrier may contain alumina in another form such as γ-alumina and amorphous alumina in addition to α-alumina. The content of alumina in the carrier is preferably 90% by mass or more, more preferably 95% by mass or more, and still more preferably 98% by mass or more with respect to 100% by mass of the total mass of the carrier. The other composition is not particularly limited as long as it has α-alumina as a main component, but the support can contain, for example, an oxide of an alkali metal or alkaline earth metal or an oxide of a transition metal. These contents are not particularly limited, but the content of the alkali metal or alkaline earth metal oxide is preferably 0.001 to 5% by mass in terms of oxide with respect to the mass of the support, More preferably, it is 0.01-4 mass%. Further, the content of the transition metal oxide is preferably 0.001 to 5 mass%, more preferably 0.01 to 3 mass%, in terms of oxide, with respect to the mass of the support.

担体はまた、シリカ(二酸化ケイ素)を通常含有する。担体におけるシリカの含有率についても特に制限はないが、担体の質量に対して、好ましくは0.01〜10.0質量%であり、より好ましくは0.1〜5.0質量%であり、さらに好ましくは0.2〜3.0質量%である。   The support also usually contains silica (silicon dioxide). The content of silica in the carrier is not particularly limited, but is preferably 0.01 to 10.0% by mass, more preferably 0.1 to 5.0% by mass with respect to the mass of the carrier. More preferably, it is 0.2-3.0 mass%.

なお、上述した担体の組成や各成分の含有率は、蛍光X線分析法を用いて決定されうる。   The composition of the carrier and the content of each component described above can be determined using a fluorescent X-ray analysis method.

担体の形状は特に制限されず、リング状、球状、円柱状、ラシヒリング状、サドルリング状など粒状のほか、従来公知の知見が適宜参照されうる。また、担体のサイズ(平均相当直径)についても特に制限はなく、好ましくは0.1〜30mmであり、より好ましくは1〜15mmである。   The shape of the carrier is not particularly limited, and conventionally known findings can be referred to as appropriate in addition to the ring shape, the spherical shape, the cylindrical shape, the Raschig ring shape, the saddle ring shape, and the like. Moreover, there is no restriction | limiting in particular also about the size (average equivalent diameter) of a support | carrier, Preferably it is 0.1-30 mm, More preferably, it is 1-15 mm.

担体原料であるα−アルミナ粉体の粒径に関しても特に制限はないが、α−アルミナ粉体の一次粒子径は、好ましくは0.01〜100μmであり、より好ましくは0.1〜20μmであり、さらに好ましくは0.5〜10μmであり、特に好ましくは1〜5μmである。また、α−アルミナ粉体の二次粒子径は、好ましくは0.1〜1,000μmであり、より好ましくは1〜500μmであり、さらに好ましくは10〜200μmであり、特に好ましくは30〜100μmである。   The particle diameter of the α-alumina powder as a carrier material is not particularly limited, but the primary particle diameter of the α-alumina powder is preferably 0.01 to 100 μm, more preferably 0.1 to 20 μm. More preferably, it is 0.5-10 micrometers, Most preferably, it is 1-5 micrometers. The secondary particle size of the α-alumina powder is preferably 0.1 to 1,000 μm, more preferably 1 to 500 μm, still more preferably 10 to 200 μm, and particularly preferably 30 to 100 μm. It is.

担体の比表面積についても特に制限はないが、好ましくは0.03〜10m/gであり、より好ましくは0.1〜5m/gであり、さらに好ましくは0.5〜2m/gである。担体の比表面積が0.03m/g以上であれば、吸水率が十分に確保され、触媒成分の担持が容易となる。一方、担体の比表面積が10m/g以下であれば、担体の細孔径がある程度大きい値に維持され、製造された触媒を用いたエチレンオキシド製造時のエチレンオキシドの逐次酸化が抑制されうる。なお、担体の比表面積の値としては、後述する実施例に記載の手法により得られる値を採用するものとする。 Although there is no restriction | limiting in particular also about the specific surface area of a support | carrier, Preferably it is 0.03-10 m < 2 > / g, More preferably, it is 0.1-5 m < 2 > / g, More preferably, it is 0.5-2 m < 2 > / g. It is. When the specific surface area of the support is 0.03 m 2 / g or more, the water absorption rate is sufficiently secured and the catalyst component can be easily supported. On the other hand, when the specific surface area of the carrier is 10 m 2 / g or less, the pore diameter of the carrier is maintained at a certain value, and the sequential oxidation of ethylene oxide during the production of ethylene oxide using the produced catalyst can be suppressed. In addition, as a value of the specific surface area of a support | carrier, the value obtained by the method as described in the Example mentioned later shall be employ | adopted.

担体の有する細孔のサイズも特に制限されないが、平均細孔直径は、好ましくは0.1〜5.0μmであり、より好ましくは0.1〜3.0μmであり、さらに好ましくは0.5〜2.0μmである。平均細孔直径が0.1μm以上であれば、エチレンオキシド製造時の生成ガスの滞留に伴うエチレンオキシドの逐次酸化が抑制されうる。一方、平均細孔直径が5.0μm以下であれば、担体の強度が実用的な程度に確保されうる。なお、平均細孔直径の値としては、後述する実施例に記載の手法により得られる値を採用するものとする。   The size of the pores of the carrier is not particularly limited, but the average pore diameter is preferably 0.1 to 5.0 μm, more preferably 0.1 to 3.0 μm, and still more preferably 0.5. ˜2.0 μm. If the average pore diameter is 0.1 μm or more, the sequential oxidation of ethylene oxide accompanying the retention of the product gas during the production of ethylene oxide can be suppressed. On the other hand, if the average pore diameter is 5.0 μm or less, the strength of the carrier can be ensured to a practical level. In addition, as a value of an average pore diameter, the value obtained by the method as described in the Example mentioned later shall be employ | adopted.

担体の気孔率も特に制限されないが、好ましくは20〜80%であり、より好ましくは30〜70%である。担体の気孔率が20%以上であれば、触媒成分の担持が容易となるという点で好ましい。一方、担体の気孔率が80%以下であれば、担体の強度が実用的な程度に確保されうるという点で好ましい。なお、気孔率の値としては、後述する実施例に記載の手法により得られる値を採用するものとする。   The porosity of the carrier is not particularly limited, but is preferably 20 to 80%, more preferably 30 to 70%. If the porosity of the carrier is 20% or more, it is preferable in that the catalyst component can be easily supported. On the other hand, if the porosity of the carrier is 80% or less, it is preferable in that the strength of the carrier can be ensured to a practical level. In addition, as a value of porosity, a value obtained by a method described in Examples described later is adopted.

担体の吸水率についても特に制限はないが、好ましくは10〜70%であり、より好ましくは20〜60%であり、さらに好ましくは30〜50%である。担体の吸水率が10%以上であれば、触媒成分の担持が容易となる。一方、担体の吸水率が70%以下であれば、担体の強度が実用的な程度に確保されうる。なお、担体の吸水率の値としては、後述する実施例に記載の手法により得られる値を採用するものとする。   Although there is no restriction | limiting in particular also about the water absorption rate of a support | carrier, Preferably it is 10 to 70%, More preferably, it is 20 to 60%, More preferably, it is 30 to 50%. If the water absorption rate of the carrier is 10% or more, the catalyst component can be easily supported. On the other hand, if the water absorption rate of the carrier is 70% or less, the strength of the carrier can be ensured to a practical level. In addition, as a value of the water absorption rate of the carrier, a value obtained by a method described in Examples described later is adopted.

本発明の触媒においては、上述の担体に、アルカリ金属を含浸、乾燥後、酸素濃度5体積%未満の不活性雰囲気中で熱処理してプレドープさせたものを担体として用いる。アルカリ金属としては、例えば、リチウム、カリウム、ナトリウム、ルビジウム、セシウムなどが用いられ、好ましくはセシウム、リチウム、ナトリウムが用いられうる。2種類以上のアルカリ金属が用いられてもよい。   In the catalyst of the present invention, the above support is impregnated with an alkali metal, dried and then heat-treated in an inert atmosphere having an oxygen concentration of less than 5% by volume, and then pre-doped. As the alkali metal, for example, lithium, potassium, sodium, rubidium, cesium and the like are used, and preferably cesium, lithium and sodium can be used. Two or more types of alkali metals may be used.

本発明の触媒は、上述の担体に触媒成分として、好ましくは銀が担持されてなる構成を有する。そして、銀に加えて、好ましくは、反応促進剤として、上述のアルカリ金属の他に、レニウムを含有する。上述した以外の従来公知の成分がさらに用いられてもよい。銀の担持率については特に制限はなく、エチレンオキシドの製造に有効な量で担持すればよい。例えば、銀の担持率はエチレンオキシド製造用触媒の質量基準で1〜30質量%であり、好ましくは5〜20質量%である。レニウムの担持率は、触媒の質量基準で、好ましくは10〜2000質量ppmであり、より好ましくは50〜1000質量ppmであり、さらに好ましくは100〜500質量ppmである。   The catalyst of the present invention preferably has a structure in which silver is supported as a catalyst component on the carrier described above. In addition to silver, rhenium is preferably contained as a reaction accelerator in addition to the alkali metal described above. Conventionally known components other than those described above may be further used. There is no restriction | limiting in particular about the support rate of silver, What is necessary is just to carry | support with the quantity effective for manufacture of ethylene oxide. For example, the supported rate of silver is 1 to 30% by mass, preferably 5 to 20% by mass, based on the mass of the catalyst for producing ethylene oxide. The loading ratio of rhenium is preferably 10 to 2000 ppm by mass, more preferably 50 to 1000 ppm by mass, and still more preferably 100 to 500 ppm by mass, based on the mass of the catalyst.

本発明のエチレンオキシド製造用触媒は、上述した担体を使用する点を除けば、従来公知のエチレンオキシド製造用触媒の製造方法に従って調製されうる。   The ethylene oxide production catalyst of the present invention can be prepared according to a conventionally known method for producing an ethylene oxide production catalyst, except that the above-described carrier is used.

担体の調製方法としては、次のような調製方法を採用することで、担体のサイズや物性が制御されうることが知られている。すなわち、1)α−アルミナを主成分とする母粉体に、所望のサイズおよび量の気孔形成剤を添加する方法、2)物性の異なる少なくとも2種の母粉体を所望の混合比で調合する方法、3)担体を所望の温度にて所望の時間焼成する方法、などが知られており、これらを組み合わせた手法も知られている。例えば、α−アルミナ粉体に、成型性を向上させる効果のある成型助剤や触媒の強度を向上させる補強剤やバインダー、触媒に細孔を形成させる気孔形成剤を添加して混合する。添加する物質としては、添加によって触媒性能に悪影響を及ぼさないものが好ましい。例えば、シリカ、アルミナ、ガラス繊維、炭化珪素、窒化珪素、グラファイトなどが添加されうる。必要によりエチレングリコール、グリセリン、プロピオン酸、マレイン酸、ベンジルアルコール、プロピルアルコール、ブチルアルコール、セルロース、メチルセルロース、でんぷん、ポリビニルアルコールまたはフェノール等の有機結合剤が加えられる。さらに水を加えてニーダなどの混練機を用いて十分に混合した後、押し出し成形などにより適当な金型を用いて所望の形状に成形、造粒し、乾燥した後焼成する。これらの調製方法については、例えば、「多孔質体の性質とその応用技術」竹内雍監修、株式会社フジ・テクノシステム発行(1999年)に記載されている。また、特開平5−329368号公報、特開2001−62291号公報、特開2002−136868号公報、特許第2983740号公報、特許第3256237号公報、特許第3295433号公報なども参照されうる。   As a carrier preparation method, it is known that the size and physical properties of the carrier can be controlled by adopting the following preparation method. That is, 1) a method of adding a pore-forming agent having a desired size and amount to a mother powder mainly composed of α-alumina, and 2) preparing at least two kinds of mother powders having different physical properties at a desired mixing ratio. 3) a method of firing the carrier at a desired temperature for a desired time, and the like, and a method combining these methods is also known. For example, the α-alumina powder is mixed with a molding aid effective in improving moldability, a reinforcing agent or binder that improves the strength of the catalyst, and a pore forming agent that forms pores in the catalyst. As a substance to be added, a substance that does not adversely affect the catalyst performance by addition is preferable. For example, silica, alumina, glass fiber, silicon carbide, silicon nitride, graphite or the like can be added. If necessary, an organic binder such as ethylene glycol, glycerin, propionic acid, maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol, cellulose, methylcellulose, starch, polyvinyl alcohol or phenol is added. Further, water is added and mixed sufficiently using a kneader such as a kneader, then formed into a desired shape using an appropriate mold by extrusion molding, granulated, dried, and then fired. These preparation methods are described in, for example, “Characteristics of Porous Materials and Their Application Technologies”, supervised by Satoshi Takeuchi, published by Fuji Techno System Co., Ltd. (1999). Reference can also be made to JP-A-5-329368, JP-A-2001-62291, JP-A-2002-136868, JP-A-2984740, JP-A-3256237, JP-A-3295433, and the like.

担体にアルカリ金属をプレドープするためには、例えば、アルカリ金属化合物の水溶液が用いられうる。リチウム、カリウム、ナトリウム、ルビジウム、セシウムなどのアルカリ金属は、例えば、塩類や錯体などのアルカリ金属化合物として用いられる。好ましくは、アルカリ金属の硝酸塩、炭酸塩、重炭酸塩、ハロゲン塩、亜硝酸塩、硫酸塩などの無機塩類、例えばギ酸塩などのカルボン酸塩および水酸化物が挙げられる。より好ましくは、水酸化物、硝酸塩、硫酸塩などが用いられうる。具体的には、硝酸セシウム、水酸化セシウム、塩化セシウム、炭酸セシウム、硫酸セシウム、硝酸リチウム、水酸化リチウム、塩化リチウム、炭酸リチウム、蓚酸リチウム、硫酸リチウム、ほう酸リチウム、硝酸ナトリウム、炭酸ナトリウム、重炭酸ナトリウム、酢酸ナトリウム、ほう酸ナトリウム、硝酸カリウム、硝酸ルビジウム等が例示できる。2種類以上のアルカリ金属化合物が併用されてもよい。上述のアルカリ金属化合物は、好ましくは水溶液として全量が溶解した状態で用いられるが、一部不溶であってもよい。必要に応じて、錯体を形成するための錯化剤をさらに添加してもよい。錯化剤としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、プロピレンジアミンなどが用いられうる。とりわけ、エチレンジアミンが好適である。これらの錯化剤は、単独で使用してもよく、2種類以上併用してもよい。   In order to pre-dope the support with an alkali metal, for example, an aqueous solution of an alkali metal compound can be used. Alkali metals such as lithium, potassium, sodium, rubidium, and cesium are used as alkali metal compounds such as salts and complexes. Preferably, inorganic salts such as nitrates, carbonates, bicarbonates, halogen salts, nitrites and sulfates of alkali metals, for example, carboxylates and hydroxides such as formate are included. More preferably, hydroxide, nitrate, sulfate and the like can be used. Specifically, cesium nitrate, cesium hydroxide, cesium chloride, cesium carbonate, cesium sulfate, lithium nitrate, lithium hydroxide, lithium chloride, lithium carbonate, lithium oxalate, lithium sulfate, lithium borate, sodium nitrate, sodium carbonate, heavy Examples thereof include sodium carbonate, sodium acetate, sodium borate, potassium nitrate, rubidium nitrate and the like. Two or more kinds of alkali metal compounds may be used in combination. The above-mentioned alkali metal compound is preferably used as an aqueous solution in a state where the entire amount is dissolved, but may be partially insoluble. If necessary, a complexing agent for forming a complex may be further added. As the complexing agent, for example, monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, propylenediamine and the like can be used. In particular, ethylenediamine is preferred. These complexing agents may be used alone or in combination of two or more.

アルカリ金属を担体にプレドープするための含浸は公知の方法で実施できる。必要により、減圧、加熱、スプレー吹付けなどを併せ行なう。   The impregnation for pre-doping the alkali metal on the support can be carried out by a known method. If necessary, perform decompression, heating, spraying, etc.

アルカリ金属をプレドープするための水溶液中のアルカリ金属濃度は、最終的に得られる触媒全量に対して、好ましくは1〜5000質量ppm、より好ましくは100〜4000質量ppm、さらに好ましくは500〜3000質量ppmの範囲でプレドープされるように選定される。2種類以上のアルカリ金属を用いる場合は、合計量が上述の範囲になるようにすることが好ましい。アルカリ金属としてリチウムを用いる場合、得られる触媒の全量に対して、好ましくは1〜2000質量ppm、より好ましくは1〜1000質量ppm、より好ましくは1〜500質量ppmの範囲でプレドープされる。セシウムは、得られる触媒の全量に対して、好ましくは100〜5000質量ppm、より好ましくは300〜4000質量ppmの範囲でプレドープされる。プレドープするアルカリ金属の量が最終的に得られる触媒全量に対して1〜5000質量ppmの範囲であれば、担体との相互作用が最適に制御されうる。また、上記範囲であれば、後述の銀などの触媒成分を担持させる段階で、銀やレニウムなどと共にさらにアルカリ金属を担持させる場合であっても、最終的にドープされるアルカリ金属の量が銀やレニウムの担持量と最適なバランスを保つことができる。   The alkali metal concentration in the aqueous solution for pre-doping the alkali metal is preferably 1 to 5000 ppm by mass, more preferably 100 to 4000 ppm by mass, and even more preferably 500 to 3000 ppm, based on the total amount of the catalyst finally obtained. It is selected to be pre-doped in the ppm range. When two or more types of alkali metals are used, the total amount is preferably in the above range. When lithium is used as the alkali metal, it is preferably pre-doped in the range of 1 to 2000 ppm by mass, more preferably 1 to 1000 ppm by mass, and more preferably 1 to 500 ppm by mass with respect to the total amount of the resulting catalyst. Cesium is preferably pre-doped in the range of 100 to 5000 ppm by mass, more preferably 300 to 4000 ppm by mass, based on the total amount of the resulting catalyst. When the amount of the alkali metal to be pre-doped is in the range of 1 to 5000 ppm by mass with respect to the total amount of the catalyst finally obtained, the interaction with the support can be optimally controlled. In addition, within the above range, the amount of the alkali metal to be finally doped is silver even when an alkali metal is further supported along with silver and rhenium at the stage of supporting a catalyst component such as silver described later. It is possible to maintain an optimal balance with the amount of supported rhenium.

その後、上述の担体を乾燥し、焼成(熱処理)する。乾燥は、空気、酸素、または不活性ガスの雰囲気中で行ってもよいが、好ましくは減圧下で乾燥させる。乾燥は、好ましくは、30〜200℃の温度で、より好ましくは50〜150℃の温度で行う。乾燥は、好ましくは、0.01〜10時間、より好ましくは0.05〜5時間程度行う。   Thereafter, the above carrier is dried and fired (heat treatment). Drying may be performed in an atmosphere of air, oxygen, or inert gas, but is preferably dried under reduced pressure. Drying is preferably performed at a temperature of 30 to 200 ° C, more preferably at a temperature of 50 to 150 ° C. Drying is preferably performed for about 0.01 to 10 hours, more preferably for about 0.05 to 5 hours.

焼成は、酸素濃度5体積%未満の不活性雰囲気中で行われる工程を含むことが重要である。好ましくは、熱処理の際の酸素濃度は3体積%未満であり、より好ましくは1体積%未満である。本発明者らは、焼成雰囲気中の酸素濃度について検討した結果、焼成雰囲気中の酸素濃度が5体積%未満である場合、製造される触媒の活性および選択率が向上することを見出した。また、焼成雰囲気中の酸素濃度が5体積%未満の場合、製造される触媒中でアルカリ金属が高分散しているが、一方で酸素濃度が5体積%以上の場合、製造される触媒中にアルカリ金属が凝集している部分が存在することが、X線マイクロアナライザーによって確認された。上述のような酸素濃度5体積%未満の不活性雰囲気としては、好ましくは、窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気である。これらの不活性ガスは、好ましくは、10〜5000ml/minの気流として熱処理室に導入されうる。前記熱処温度は、400〜950℃であり、好ましくは450〜850℃であり、より好ましくは500〜800℃である。熱処理温度が400〜950℃の範囲であれば、担体とアルカリ金属との相互作用を最適化できるため、触媒の活性および選択率が向上しうる。熱処理時間は、0.1〜10時間であり、好ましくは0.1〜5時間である。熱処理時間が0.1〜10時間の範囲であれば、担体とアルカリ金属との相互作用を最適化できるため、触媒の活性および選択率が向上しうる。   It is important that the baking includes a step performed in an inert atmosphere having an oxygen concentration of less than 5% by volume. Preferably, the oxygen concentration during the heat treatment is less than 3% by volume, more preferably less than 1% by volume. As a result of examining the oxygen concentration in the firing atmosphere, the present inventors have found that the activity and selectivity of the produced catalyst are improved when the oxygen concentration in the firing atmosphere is less than 5% by volume. When the oxygen concentration in the firing atmosphere is less than 5% by volume, the alkali metal is highly dispersed in the produced catalyst. On the other hand, when the oxygen concentration is 5% by volume or more, the produced catalyst contains It was confirmed by an X-ray microanalyzer that there was a portion where alkali metal aggregated. The inert atmosphere having an oxygen concentration of less than 5% by volume as described above is preferably an inert gas atmosphere such as nitrogen, helium, or argon. These inert gases can be preferably introduced into the heat treatment chamber as an air flow of 10 to 5000 ml / min. The heat treatment temperature is 400 to 950 ° C, preferably 450 to 850 ° C, and more preferably 500 to 800 ° C. When the heat treatment temperature is in the range of 400 to 950 ° C., the interaction between the support and the alkali metal can be optimized, so that the activity and selectivity of the catalyst can be improved. The heat treatment time is 0.1 to 10 hours, preferably 0.1 to 5 hours. When the heat treatment time is in the range of 0.1 to 10 hours, the interaction between the support and the alkali metal can be optimized, so that the activity and selectivity of the catalyst can be improved.

なお、焼成は、2段階以上行われてもよい。好ましくは、上述の乾燥段階で残った水分および錯化剤を十分に除去するための焼成の段階を行い、次いでアルカリ金属と担体との間に相互作用を持たせるための焼成の段階を行う。2段階以上行われる場合、アルカリ金属と担体との間に相互作用を持たせるための焼成の段階を、上記の条件で行う。   Note that the firing may be performed in two or more stages. Preferably, a calcination step is performed to sufficiently remove the moisture and complexing agent remaining in the drying step, and then a calcination step is performed to allow interaction between the alkali metal and the support. When two or more steps are performed, the firing step for causing an interaction between the alkali metal and the support is performed under the above conditions.

2段階で焼成を行う場合、例えば、1段階目の焼成を60〜450℃、好ましくは100〜400℃、より好ましくは150〜350℃で行う。焼成温度が60℃以上であれば、残存する水や錯化剤を十分に除去することができ、450℃以下であれば、触媒の生産性の低下やコストの上昇を避けることができる。焼成時間は、好ましくは0.02〜10時間であり、より好ましくは0.05〜5時間であり、さらに好ましくは0.1〜3時間である。焼成時間が0.02時間以上であれば、残存する水や錯化剤を十分に除去できる。焼成時間が10時間以下であれば、触媒の生産性の低下やコストの上昇を避けることができる。また、焼成雰囲気としては、空気、酸素ガス、窒素などが好ましく、生産性およびコストの面から、空気が特に好ましい。2段階目の焼成は、1段階目の焼成の後、酸素濃度5体積%未満の不活性雰囲気中で行われる。好ましくは、酸素濃度は3体積%未満であり、より好ましくは1体積%未満である。前記熱処温度は、400〜950℃であり、より好ましくは450〜850℃であり、さらに好ましくは500〜800℃である。熱処理時間は、好ましくは0.1〜10時間であり、より好ましくは0.1〜5時間である。   When firing in two stages, for example, the first stage firing is performed at 60 to 450 ° C, preferably 100 to 400 ° C, more preferably 150 to 350 ° C. If the calcination temperature is 60 ° C. or higher, the remaining water and complexing agent can be sufficiently removed, and if it is 450 ° C. or lower, it is possible to avoid a decrease in catalyst productivity and an increase in cost. The firing time is preferably 0.02 to 10 hours, more preferably 0.05 to 5 hours, and further preferably 0.1 to 3 hours. If the firing time is 0.02 hours or more, the remaining water and complexing agent can be sufficiently removed. If the calcination time is 10 hours or less, a decrease in catalyst productivity and an increase in cost can be avoided. Moreover, as a baking atmosphere, air, oxygen gas, nitrogen, etc. are preferable, and air is especially preferable from the surface of productivity and cost. The second stage baking is performed after the first stage baking in an inert atmosphere having an oxygen concentration of less than 5% by volume. Preferably, the oxygen concentration is less than 3% by volume, more preferably less than 1% by volume. The said heat processing temperature is 400-950 degreeC, More preferably, it is 450-850 degreeC, More preferably, it is 500-800 degreeC. The heat treatment time is preferably 0.1 to 10 hours, more preferably 0.1 to 5 hours.

次いで、アルカリ金属をプレドープした担体に銀を担持させるための溶液を調製する。具体的には、銀化合物を単独で、または銀錯体を形成するための錯化剤とともに、水などの溶媒に添加する。さらに銀に加えて、好ましくは、アルカリ金属化合物またはレニウム化合物の少なくとも一方、特にレニウム化合物を用いることが好ましい。   Next, a solution for supporting silver on a support predoped with an alkali metal is prepared. Specifically, a silver compound is added to a solvent such as water alone or together with a complexing agent for forming a silver complex. Further, in addition to silver, it is preferable to use at least one of an alkali metal compound or a rhenium compound, particularly a rhenium compound.

ここで、銀化合物としては、例えば、硝酸銀、炭酸銀、シュウ酸銀、酢酸銀、プロピオン酸銀、乳酸銀、クエン酸銀、ネオデカン酸銀などが挙げられる。また、錯化剤としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、プロピレンジアミンなどが挙げられる。これらの銀化合物や錯化剤は、それぞれ、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。   Here, examples of the silver compound include silver nitrate, silver carbonate, silver oxalate, silver acetate, silver propionate, silver lactate, silver citrate, and silver neodecanoate. Examples of the complexing agent include monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, and propylenediamine. Each of these silver compounds and complexing agents may be used alone or in combination of two or more.

アルカリ金属化合物としては、上記と同様の化合物が用いられうる。レニウム化合物としては、例えば、過レニウム酸アンモニウム、過レニウム酸ナトリウム、過レニウム酸カリウム、過レニウム酸、塩化レニウム、酸化レニウムなどが挙げられる。錯化剤は、上記と同様のものが用いられうる。   As the alkali metal compound, the same compounds as described above can be used. Examples of the rhenium compound include ammonium perrhenate, sodium perrhenate, potassium perrhenate, perrhenic acid, rhenium chloride, and rhenium oxide. As the complexing agent, the same ones as described above can be used.

次いで、上記で得られた溶液を、同じく上記で準備した担体に含浸させる。この際、上術のレニウム化合物またはアルカリ金属化合物は、上記の銀化合物溶液に溶解させて同時に含浸させてもよいし、銀を担持した後に担持してもよい。   Next, the carrier prepared above is impregnated with the solution obtained above. At this time, the rhenium compound or alkali metal compound of the above operation may be dissolved in the above silver compound solution and impregnated at the same time, or may be supported after supporting silver.

続いて、これを乾燥し、焼成する。乾燥は、空気、酸素、または不活性ガス(例えば、窒素)の雰囲気で行ってもよいが、好ましくは減圧下で乾燥させる。乾燥は、例えば、30〜200℃の温度範囲で実施でき、50〜150℃の温度で行うことが好ましい。また、乾燥は、好ましくは0.01〜10時間行う。また、焼成は、空気、酸素、または不活性ガス(例えば、窒素)の雰囲気中で、150〜700℃の温度で、好ましくは200〜600℃の温度で行うことが好ましい。なお、焼成は、1段階のみ行われてもよいし、2段階以上行われてもよい。好ましい焼成条件としては、1段階目の焼成を空気雰囲気中で150〜250℃にて0.1〜10時間行い、2段階目の焼成を空気雰囲気中で250〜450℃にて0.1〜10時間行う条件が挙げられる。さらに好ましくは、かような2段階焼成後にさらに、不活性ガス(例えば、窒素、ヘリウム、アルゴンなど)雰囲気中で450〜700℃にて0.1〜10時間、3段階目の焼成を行うとよい。   Subsequently, this is dried and fired. Drying may be performed in an atmosphere of air, oxygen, or an inert gas (for example, nitrogen), but is preferably dried under reduced pressure. Drying can be performed, for example, in a temperature range of 30 to 200 ° C, and is preferably performed at a temperature of 50 to 150 ° C. The drying is preferably performed for 0.01 to 10 hours. The firing is preferably performed at a temperature of 150 to 700 ° C., preferably 200 to 600 ° C., in an atmosphere of air, oxygen, or an inert gas (for example, nitrogen). In addition, baking may be performed only in one step or may be performed in two or more steps. As preferable firing conditions, the first stage firing is performed in an air atmosphere at 150 to 250 ° C. for 0.1 to 10 hours, and the second stage firing is performed in an air atmosphere at 250 to 450 ° C. for 0.1 to 10 hours. The conditions for 10 hours are mentioned. More preferably, after the two-step baking, the third-step baking is performed at 450 to 700 ° C. for 0.1 to 10 hours in an inert gas (eg, nitrogen, helium, argon, etc.) atmosphere. Good.

なお、触媒性能は、アルカリ金属の状態や担体にも大きく依存しており、例えば、触媒中の水溶性アルカリ金属の量、触媒に固定化されたアルカリ金属の量、アルカリ金属の分散状態、担体物性の影響を受ける。α−アルミナを主成分とする担体の比表面積に対する触媒中の水溶性セシウム量の比は、好ましくは100〜2000質量ppm・g/mであり、より好ましくは200〜1000質量ppm・g/mであり、さらに好ましくは400〜700質量ppm・g/mである。α−アルミナを主成分とする担体の比表面積に対する触媒中の水溶性セシウム量の比が100〜2000質量ppm・g/mの範囲であれば、触媒の活性および選択率が向上しうる。α−アルミナを主成分とする担体の比表面積に対する触媒中の水溶性セシウム量の比は、例えば、仕込みのセシウム量や用いる担体を選択することによって調整されうるが、必要に応じて不活性雰囲気中での熱処理を施してもよい。 In addition, the catalyst performance greatly depends on the state of the alkali metal and the support, for example, the amount of the water-soluble alkali metal in the catalyst, the amount of the alkali metal immobilized on the catalyst, the dispersed state of the alkali metal, the support Influenced by physical properties. The ratio of the amount of water-soluble cesium in the catalyst to the specific surface area of the carrier mainly composed of α-alumina is preferably 100 to 2000 mass ppm · g / m 2 , more preferably 200 to 1000 mass ppm · g / m2. m 2 , more preferably 400 to 700 mass ppm · g / m 2 . When the ratio of the amount of water-soluble cesium in the catalyst to the specific surface area of the support mainly composed of α-alumina is in the range of 100 to 2000 mass ppm · g / m 2 , the activity and selectivity of the catalyst can be improved. The ratio of the amount of water-soluble cesium in the catalyst to the specific surface area of the carrier mainly composed of α-alumina can be adjusted, for example, by selecting the amount of cesium charged and the carrier to be used. Heat treatment inside may be applied.

触媒中の水溶性セシウム量は、触媒を沸騰水で洗浄した後、その洗浄液に含まれるセシウムを既知の原子吸光やイオンクロマトグラフィーなどの方法で得ることができる。また、触媒に固定化されたセシウム量は、原料として用いたセシウム量から、触媒調製工程でのロス分と触媒中の水溶性セシウム量を差し引いて算出することができる。   The amount of water-soluble cesium in the catalyst can be obtained by washing the catalyst with boiling water and then obtaining cesium contained in the washing solution by a known method such as atomic absorption or ion chromatography. The amount of cesium immobilized on the catalyst can be calculated by subtracting the loss in the catalyst preparation step and the amount of water-soluble cesium in the catalyst from the amount of cesium used as a raw material.

本発明の第2は、本発明の第1のエチレンオキシド製造用触媒の存在下で、エチレンを分子状酸素含有ガスにより気相酸化する段階を有する、エチレンオキシドの製造方法である。   2nd of this invention is a manufacturing method of ethylene oxide which has the step which carries out the gaseous-phase oxidation of ethylene with molecular oxygen containing gas in presence of the catalyst for 1st ethylene oxide manufacture of this invention.

本発明の第2のエチレンオキシドの製造方法は、触媒として本発明の第1のエチレンオキシド製造用触媒を使用する点を除けば、常法に従って行われうる。   The second ethylene oxide production method of the present invention can be carried out in accordance with a conventional method except that the first ethylene oxide production catalyst of the present invention is used as a catalyst.

例えば、工業的製造規模における一般的な条件、すなわち反応温度150〜300℃、好ましくは180〜280℃、反応圧力0.1〜4.0MPa、好ましくは1.0〜3.0MPa、空間速度1,000〜30,000hr−1(STP)、好ましくは3,000〜8,000hr−1(STP)が採用される。触媒に接触させる原料ガスとしては、エチレン0.5〜40容量%、酸素3〜10容量%、炭酸ガス1〜20容量%、残部の窒素、アルゴン、水蒸気等の不活性ガスおよびメタン、エタン等の低級炭化水素類からなり、さらに反応抑制剤としての二塩化エチレン、塩化ジフェニル等のハロゲン化物を0.1〜10容量ppm含有するものが挙げられる。本発明の製造方法において使用される分子状酸素含有ガスとしては、空気、酸素および富化空気が挙げられる。 For example, general conditions on an industrial production scale, that is, reaction temperature 150 to 300 ° C., preferably 180 to 280 ° C., reaction pressure 0.1 to 4.0 MPa, preferably 1.0 to 3.0 MPa, space velocity 1 3,000 to 30,000 hr −1 (STP), preferably 3,000 to 8,000 hr −1 (STP) is employed. Examples of the raw material gas to be brought into contact with the catalyst include 0.5 to 40% by volume of ethylene, 3 to 10% by volume of oxygen, 1 to 20% by volume of carbon dioxide, the remaining inert gas such as nitrogen, argon and water vapor, and methane and ethane. And those containing 0.1 to 10 ppm by volume of halides such as ethylene dichloride and diphenyl chloride as reaction inhibitors. Examples of the molecular oxygen-containing gas used in the production method of the present invention include air, oxygen, and enriched air.

本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、本実施例において、各種パラメータの測定は以下の手法により行われた。   The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In this example, various parameters were measured by the following method.

<担体の平均細孔直径の測定>
水銀圧入法により測定した。具体的には、200℃にて少なくとも30分間脱気した担体をサンプルとし、測定装置としてオートポアIII9240W(株式会社島津製作所製)を用い、1.0〜6,000psiaの圧力範囲および60個の測定ポイントで平均細孔直径を得た。
<Measurement of average pore diameter of carrier>
Measured by mercury intrusion method. Specifically, a carrier deaerated at 200 ° C. for at least 30 minutes is used as a sample, and Autopore III 9240W (manufactured by Shimadzu Corporation) is used as a measuring device, and a pressure range of 1.0 to 6,000 psia and 60 measurements are performed. The average pore diameter was obtained in points.

<担体中のシリカ含有率の測定>
後述する蛍光X線分析法により測定した。
<Measurement of silica content in carrier>
It measured by the fluorescent X ray analysis method mentioned later.

<担体の比表面積の測定>
担体を粉砕した後、0.85〜1.2mmの粒径に分級したもの約0.2gを正確に秤量した。秤量したサンプルを200℃にて少なくとも30分間脱気し、BET(Brunauer−Emmet−Teller)法により測定した。
<Measurement of specific surface area of carrier>
After pulverizing the carrier, about 0.2 g classified to a particle size of 0.85 to 1.2 mm was accurately weighed. The weighed sample was deaerated at 200 ° C. for at least 30 minutes and measured by the BET (Brunauer-Emmet-Teller) method.

<担体の吸水率および気孔率の測定>
日本工業規格(JIS R 2205(1998年度))に記載の方法に準拠して、以下の手法により測定した。
<Measurement of water absorption and porosity of carrier>
In accordance with the method described in Japanese Industrial Standard (JIS R 2205 (1998)), the measurement was performed by the following method.

a)破砕前の担体を、120℃に保温した乾燥機中に入れ、恒量に達した際の重量を秤量した(乾燥重量:W1(g))。   a) The carrier before crushing was placed in a drier kept at 120 ° C., and the weight when reaching a constant weight was measured (dry weight: W1 (g)).

b)上記a)で秤量した担体を水中に沈めて30分間以上煮沸した後、室温の水中にて冷却し、飽水サンプルとした。この飽水サンプルの水中での重量を秤量した(飽水サンプル水中重量:S(g))。   b) The carrier weighed in a) above was submerged in water and boiled for 30 minutes or more, and then cooled in room temperature water to obtain a saturated sample. The weight of this saturated sample in water was weighed (saturated sample weight in water: S (g)).

c)上記b)で得た飽水サンプルを水中から取り出し、湿布ですばやく表面を拭い、水滴を除去した後に秤量した(飽水サンプル重量:W2(g))。   c) The saturated sample obtained in the above b) was taken out of the water, quickly wiped with a compress, weighed after removing water droplets (saturated sample weight: W2 (g)).

d)上記で得られたW1およびW2を用い、下記数式1に従って、吸水率を算出した。   d) The water absorption was calculated according to the following formula 1 using W1 and W2 obtained above.

e)上記で得られたW1、W2およびSを用い、下記数式2に従って、気孔率を算出した。   e) The porosity was calculated according to the following formula 2 using W1, W2 and S obtained above.

Figure 0005165441
Figure 0005165441

<アルカリ金属、レニウム、銀の担持率の測定>
蛍光X線分析法を用いて行った。測定装置としてRIGAKU製RIX2000を用い、ファンダメンタルパラメータ法(FP法)にて測定した。
<Measurement of alkali metal, rhenium and silver loading>
This was performed using fluorescent X-ray analysis. RIX2000 manufactured by RIGAKU was used as a measuring apparatus, and measurement was performed by a fundamental parameter method (FP method).

<水溶性セシウム量の測定>
約5gの触媒を約100mlの水で約30分間煮沸した後、触媒と煮沸液を分離した。この操作を2回繰り返し、集めた煮沸液を室温まで冷却した。このセシウム含有水溶液をろ過した後、純水を加えて液量を200mlに調整した。この溶液を任意量取り、0.1%塩化カリウム水溶液を添加した後、純水を加えて5倍に希釈した。希釈した溶液を、島津製作所製原子吸光分光光度計AA−6650にて測定した。
<Measurement of water-soluble cesium content>
About 5 g of the catalyst was boiled with about 100 ml of water for about 30 minutes, and then the catalyst and the boiling liquid were separated. This operation was repeated twice, and the collected boiling liquid was cooled to room temperature. After filtering this cesium-containing aqueous solution, pure water was added to adjust the liquid volume to 200 ml. After taking an arbitrary amount of this solution and adding 0.1% potassium chloride aqueous solution, pure water was added and diluted 5 times. The diluted solution was measured with an atomic absorption spectrophotometer AA-6650 manufactured by Shimadzu Corporation.

(実施例1)
はじめに、アルカリ金属のプレドープ工程を行った。具体的には、硝酸セシウム0.1282gを約30mlの水に溶解し、さらにエチレンジアミンを13.6ml加えた。この硝酸セシウム−エチレンジアミン水溶液をα−アルミナ担体104.4g(比表面積1.5m/g、SiO含有率0.7質量%、吸水率41.7%、平均細孔直径0.143μm、気孔率60.9%)に含浸した後、90℃で減圧乾燥した。これを空気気流中300℃で0.2時間熱処理(アルカリ金属プレドープ工程の1段階目焼成)し、さらに窒素気流中565℃で3時間熱処理(アルカリ金属プレドープ工程の2段階目焼成)し、セシウムプレドープ担体を得た。次いで、銀担持工程として、このセシウムプレドープ担体52.2gにシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.0534g、過レニウム酸アンモニウム0.0281g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥した。これを空気気流中200℃で0.2時間熱処理(触媒主成分担持工程の1段階目焼成)し、さらに空気気流中400℃で0.2時間熱処理(触媒主成分担持工程の2段階目焼成)して触媒Aを得た(表1)。触媒Aの銀含有率は14.8質量%であり、セシウム含有率は1330質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は940質量ppmであった。
Example 1
First, an alkali metal pre-doping step was performed. Specifically, 0.1282 g of cesium nitrate was dissolved in about 30 ml of water, and 13.6 ml of ethylenediamine was further added. 104.4 g of this cesium nitrate-ethylenediamine aqueous solution (specific surface area 1.5 m 2 / g, SiO 2 content 0.7 mass%, water absorption 41.7%, average pore diameter 0.143 μm, pores) And then dried under reduced pressure at 90 ° C. This was heat-treated at 300 ° C. for 0.2 hours in an air stream (first stage baking in the alkali metal pre-doping process), and further heat-treated at 565 ° C. in a nitrogen stream for 3 hours (second stage baking in the alkali metal pre-doping process), and cesium A pre-dope carrier was obtained. Next, as a silver supporting step, 52.2 g of this cesium pre-dope carrier is impregnated with a silver-containing liquid consisting of 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.0534 g of cesium nitrate, 0.0281 g of ammonium perrhenate, and 10 g of water. Then, it was dried under reduced pressure at 90 ° C. This was heat-treated at 200 ° C. for 0.2 hours in the air stream (first stage firing in the catalyst main component supporting step), and further heat treated at 400 ° C. in the air stream for 0.2 hours (second stage firing in the catalyst main component supporting step). The catalyst A was obtained (Table 1). The silver content of catalyst A was 14.8% by mass, the cesium content was 1330 ppm by mass, and the rhenium content was 290 ppm by mass. The amount of water-soluble cesium was 940 mass ppm.

(実施例2)
硝酸セシウム0.3845gを約30mlの水に溶解し、さらにエチレンジアミンを13.6ml加えた。この硝酸セシウム−エチレンジアミン水溶液を実施例1と同様のα−アルミナ担体104.4gに含浸した後、90℃で減圧乾燥した。これを空気気流中300℃で0.2時間熱処理(アルカリ金属プレドープ工程の1段階目焼成)し、さらに窒素気流中620℃で3時間熱処理(アルカリ金属プレドープ工程の2段階目焼成)し、セシウムプレドープ担体を得た。このセシウムプレドープ担体を52.2gにシュウ酸銀20g、エチレンジアミン6.8ml、過レニウム酸アンモニウム0.0281g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥した。これを空気気流中200℃で0.2時間熱処理(触媒主成分担持工程の1段階目焼成)し、さらに空気気流中400℃で0.2時間熱処理(触媒主成分担持工程の2段階目焼成)した後、窒素気流中565℃で3時間熱処理(触媒主成分担持工程の3段階目焼成)して触媒Bを得た。触媒Bの銀含有率は14.8質量%であり、セシウム含有率は2180質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は690質量ppmであった。
(Example 2)
Cesium nitrate (0.3845 g) was dissolved in about 30 ml of water, and 13.6 ml of ethylenediamine was further added. The same α-alumina carrier 104.4 g as in Example 1 was impregnated with this cesium nitrate-ethylenediamine aqueous solution, and then dried at 90 ° C. under reduced pressure. This was heat-treated at 300 ° C. for 0.2 hours in an air stream (first stage baking in an alkali metal pre-doping process), and further heat-treated at 620 ° C. for 3 hours in a nitrogen stream (second stage baking in an alkali metal pre-doping process), and cesium A pre-dope carrier was obtained. 52.2 g of this cesium pre-doped carrier was impregnated with a silver-containing liquid consisting of 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.0281 g of ammonium perrhenate, and 10 g of water, and then dried at 90 ° C. under reduced pressure. This was heat-treated at 200 ° C. for 0.2 hours in the air stream (first stage firing in the catalyst main component supporting step), and further heat treated at 400 ° C. in the air stream for 0.2 hours (second stage firing in the catalyst main component supporting step). Then, heat treatment was performed in a nitrogen stream at 565 ° C. for 3 hours (third stage firing in the catalyst main component supporting step) to obtain catalyst B. The silver content of catalyst B was 14.8 mass%, the cesium content was 2180 mass ppm, and the rhenium content was 290 mass ppm. The amount of water-soluble cesium was 690 mass ppm.

(実施例3)
プレドープする硝酸セシウムを0.3418gに変更したこと以外は、上記の実施例2と同様の手法に従って触媒Cを得た。触媒Cの銀含有率は14.8質量%であり、セシウム含有率は1940質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は720質量ppmであった。
(Example 3)
Catalyst C was obtained according to the same procedure as in Example 2 except that the pre-doped cesium nitrate was changed to 0.3418 g. The silver content of catalyst C was 14.8 mass%, the cesium content was 1940 mass ppm, and the rhenium content was 290 mass ppm. The amount of water-soluble cesium was 720 mass ppm.

(実施例4)
実施例3と同様の方法で得たセシウムプレドープ担体52.2gにシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.0214g、過レニウム酸アンモニウム0.0281g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥した。これを空気気流中200℃で0.2時間熱処理(触媒主成分担持工程の1段階目焼成)し、さらに空気気流中400℃で0.2時間熱処理(触媒主成分担持工程の2段階目焼成)した後、窒素気流中565℃で3時間熱処理(触媒主成分担持工程の3段階目焼成)して触媒Dを得た。触媒Dの銀含有率は14.8質量%であり、セシウム含有率は2180質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は830質量ppmであった。
Example 4
A silver-containing liquid comprising 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.0214 g of cesium nitrate, 0.0281 g of ammonium perrhenate, and 10 g of water on 52.2 g of the cesium pre-dope support obtained in the same manner as in Example 3. And then dried under reduced pressure at 90 ° C. This was heat-treated at 200 ° C. for 0.2 hours in the air stream (first stage firing in the catalyst main component supporting step), and further heat treated at 400 ° C. in the air stream for 0.2 hours (second stage firing in the catalyst main component supporting step). Then, heat treatment was performed at 565 ° C. for 3 hours in a nitrogen stream (third stage firing in the catalyst main component supporting step) to obtain Catalyst D. The silver content of catalyst D was 14.8 mass%, the cesium content was 2180 mass ppm, and the rhenium content was 290 mass ppm. The amount of water-soluble cesium was 830 mass ppm.

(実施例5)
アルカリ金属プレドープ工程の2段階目焼成の雰囲気を窒素/酸素 95.2/4.8(体積%)の混合雰囲気に変更したこと以外は、上記の実施例1と同様の手法に従って触媒Eを調製した。触媒Eの銀含有率は14.8質量%であり、セシウム含有率は1330質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は880質量ppmであった。
(Example 5)
Catalyst E was prepared according to the same procedure as in Example 1 except that the atmosphere of the second stage baking in the alkali metal pre-doping process was changed to a mixed atmosphere of nitrogen / oxygen 95.2 / 4.8 (volume%). did. The silver content of catalyst E was 14.8% by mass, the cesium content was 1330 ppm by mass, and the rhenium content was 290 ppm by mass. The amount of water-soluble cesium was 880 mass ppm.

(実施例6)
アルカリ金属プレドープ工程の2段階目焼成の温度を565℃から800℃に変更したこと以外は、上記の実施例1と同様の手法に従って触媒Fを調製した。触媒Fの銀含有率は14.8質量%であり、セシウム含有率は1330質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は750質量ppmであった。
(Example 6)
Catalyst F was prepared according to the same procedure as in Example 1 except that the temperature of the second stage baking in the alkali metal pre-doping step was changed from 565 ° C. to 800 ° C. The silver content of catalyst F was 14.8 mass%, the cesium content was 1330 ppm by mass, and the rhenium content was 290 ppm by mass. The amount of water-soluble cesium was 750 mass ppm.

(実施例7)
硝酸セシウム0.2564g、硝酸ナトリウム0.0186gを約60mlの水に溶解させ、さらにエチレンジアミン27.2mlを加えた。この硝酸セシウム・硝酸ナトリウム−エチレンジアミン水溶液を実施例1と同様のα−アルミナ担体208.8gに含浸させた後、90℃で減圧乾燥させた。これを空気気流中300℃で0.2時間熱処理(アルカリ金属プレドープ工程の1段階目焼成)し、さらに窒素気流中565℃で3時間熱処理(アルカリ金属プレドープ工程の2段階目焼成)し、セシウム−ナトリウムプレドープ担体を得た。このセシウム−ナトリウムプレドープ担体に52.2gに、シュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.0534g、過レニウム酸アンモニウム0.0281g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥させた。これを空気気流中200℃で0.2時間熱処理(触媒主成分担持工程の1段階目焼成)し、さらに空気気流中400℃で0.2時間熱処理(触媒主成分担持工程の2段階目焼成)して触媒Gを得た。触媒Gの銀含有率は、14.8質量%であり、セシウム含有率は1330質量ppmであり、ナトリウム含有率は20質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は920質量ppmであった。
(Example 7)
0.2564 g of cesium nitrate and 0.0186 g of sodium nitrate were dissolved in about 60 ml of water, and 27.2 ml of ethylenediamine was further added. The same α-alumina carrier 208.8 g as in Example 1 was impregnated with this aqueous cesium nitrate / sodium nitrate-ethylenediamine solution, and then dried at 90 ° C. under reduced pressure. This was heat-treated at 300 ° C. for 0.2 hours in an air stream (first stage baking in the alkali metal pre-doping process), and further heat-treated at 565 ° C. in a nitrogen stream for 3 hours (second stage baking in the alkali metal pre-doping process), and cesium -A sodium pre-dope support was obtained. After impregnating 52.2 g of this cesium-sodium pre-doped carrier with a silver-containing liquid consisting of 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.0534 g of cesium nitrate, 0.0281 g of ammonium perrhenate, and 10 g of water. And dried at 90 ° C. under reduced pressure. This was heat-treated at 200 ° C. for 0.2 hours in the air stream (first stage firing in the catalyst main component supporting step), and further heat treated at 400 ° C. in the air stream for 0.2 hours (second stage firing in the catalyst main component supporting step). ) To obtain catalyst G. The silver content of catalyst G was 14.8% by mass, the cesium content was 1330 ppm by mass, the sodium content was 20 ppm by mass, and the rhenium content was 290 ppm by mass. The amount of water-soluble cesium was 920 mass ppm.

(実施例8)
硝酸リチウム0.1511gを約60mlの水に溶解し、さらにエチレンジアミン27.2mlを加えた。この硝酸リチウム−エチレンジアミン水溶液を実施例1と同様のα−アルミナ担体208.8gに含浸させた後、90℃で減圧乾燥した。これを空気気流中300℃で0.2時間熱処理(アルカリ金属プレドープ工程の1段階目焼成)し、さらに窒素気流中565℃で3時間熱処理(アルカリ金属プレドープ工程の2段階目焼成)し、リチウムプレドープ担体を得た。このリチウムプレドープ担体52.2gにシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.1645g、過レニウム酸アンモニウム0.0281g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥させた。これを空気気流中200℃で0.2時間熱処理(触媒主成分担持工程の1段階目焼成)し、さらに空気気流中400℃で0.2時間熱処理(触媒主成分担持工程の2段階目焼成)した後、窒素気流中565℃で3時間熱処理(触媒主成分担持工程の3段階目焼成)して触媒Hを得た。触媒Hの銀含有率は、14.8質量%であり、セシウム含有率は1860質量ppmであり、リチウム含有率は60質量ppmであり、レニウム含有率は290ppmであった。水溶性セシウム量は810質量ppmであった。
(Example 8)
0.1511 g of lithium nitrate was dissolved in about 60 ml of water, and 27.2 ml of ethylenediamine was further added. This lithium nitrate-ethylenediamine aqueous solution was impregnated into 208.8 g of the same α-alumina carrier as in Example 1, and then dried at 90 ° C. under reduced pressure. This was heat-treated in an air stream at 300 ° C. for 0.2 hours (first stage firing in the alkali metal pre-doping process), and further heat-treated in a nitrogen stream at 565 ° C. for 3 hours (second stage firing in the alkali metal pre-doping process). A pre-dope carrier was obtained. After impregnating 52.2 g of this lithium pre-doped carrier with 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.1645 g of cesium nitrate, 0.0281 g of ammonium perrhenate, and 10 g of water, 90 ° C. It was dried under reduced pressure. This was heat-treated at 200 ° C. for 0.2 hours in the air stream (first stage firing in the catalyst main component supporting step), and further heat treated at 400 ° C. in the air stream for 0.2 hours (second stage firing in the catalyst main component supporting step). Then, heat treatment was performed in a nitrogen stream at 565 ° C. for 3 hours (third stage firing in the catalyst main component supporting step) to obtain catalyst H. The silver content of catalyst H was 14.8 mass%, the cesium content was 1860 mass ppm, the lithium content was 60 mass ppm, and the rhenium content was 290 ppm. The amount of water-soluble cesium was 810 mass ppm.

(実施例9)
硝酸セシウム0.2564g、硝酸リチウム0.0151gを約60mlの水に溶解し、さらにエチレンジアミン27.2mlを加えた。この硝酸セシウム・硝酸リチウム−エチレンジアミン水溶液を実施例1と同様のα−アルミナ担体208.8gに含浸した後、90℃で減圧乾燥した。これを空気気流中300℃で0.2時間熱処理(アルカリ金属プレドープ工程の1段階目焼成)し、さらに窒素気流中565℃で3時間熱処理(アルカリ金属プレドープ工程の2段階目焼成)して、セシウム−リチウムプレドープ担体を得た。このセシウム−リチウムプレドープ担体52.2gにシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.0534g、過レニウム酸アンモニウム0.0281g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥させた。これを空気気流中200℃で0.2時間熱処理(触媒主成分担持工程の1段階目焼成)し、さらに空気気流中400℃で0.2時間熱処理(触媒主成分担持工程の2段階目焼成)して触媒Iを得た。触媒Iの銀含有率は14.8質量%であり、セシウム含有率は1330質量ppmであり、リチウム含有率は6質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は870質量ppmであった。
Example 9
0.2564 g of cesium nitrate and 0.0151 g of lithium nitrate were dissolved in about 60 ml of water, and 27.2 ml of ethylenediamine was further added. The same α-alumina carrier 208.8 g as in Example 1 was impregnated with this aqueous cesium nitrate / lithium nitrate-ethylenediamine solution, and then dried at 90 ° C. under reduced pressure. This was heat-treated at 300 ° C. for 0.2 hours in the air stream (first stage baking in the alkali metal pre-doping process), and further heat-treated at 565 ° C. for 3 hours in the nitrogen stream (second stage baking in the alkali metal pre-doping process). A cesium-lithium pre-doped carrier was obtained. After impregnating 52.2 g of this cesium-lithium pre-dope carrier with 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.0534 g of cesium nitrate, 0.0281 g of ammonium perrhenate, and 10 g of water, It dried under reduced pressure at ° C. This was heat-treated at 200 ° C. for 0.2 hours in the air stream (first stage firing in the catalyst main component supporting step), and further heat treated at 400 ° C. in the air stream for 0.2 hours (second stage firing in the catalyst main component supporting step). To obtain Catalyst I. The silver content of catalyst I was 14.8% by mass, the cesium content was 1330 ppm by mass, the lithium content was 6 ppm by mass, and the rhenium content was 290 ppm by mass. The amount of water-soluble cesium was 870 mass ppm.

(比較例1)
アルカリ金属プレドープ工程の2段階目焼成の雰囲気を窒素から空気に変更したこと以外は、上記の実施例1と同様の手法に従って触媒Jを得た。触媒Jの銀含有率は14.8質量%であり、セシウム含有率は1330質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は850質量ppmであった。
(Comparative Example 1)
A catalyst J was obtained in the same manner as in Example 1 except that the atmosphere of the second stage baking in the alkali metal pre-doping step was changed from nitrogen to air. The silver content of catalyst J was 14.8% by mass, the cesium content was 1330 ppm by mass, and the rhenium content was 290 ppm by mass. The amount of water-soluble cesium was 850 ppm by mass.

(比較例2)
アルカリ金属プレドープ工程の2段階目焼成の温度を565℃から800℃に変更したこと以外は、上記の比較例1と同様の手法に従って触媒Kを調製した。触媒Kの銀含有率は、14.8質量%であり、セシウム含有率は1330質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は720質量ppmであった。
(Comparative Example 2)
Catalyst K was prepared according to the same procedure as in Comparative Example 1 except that the temperature of the second stage baking in the alkali metal pre-doping step was changed from 565 ° C. to 800 ° C. The silver content of catalyst K was 14.8% by mass, the cesium content was 1330 ppm by mass, and the rhenium content was 290 ppm by mass. The amount of water-soluble cesium was 720 mass ppm.

(比較例3)
比較例2で得られた触媒Kをさらに窒素気流中565℃で3時間熱処理(触媒主成分担持工程の3段階目焼成)して触媒Lを得た。触媒Lの銀含有率は14.8質量%であり、セシウム含有率は1330質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は930質量ppmであった。
(Comparative Example 3)
The catalyst K obtained in Comparative Example 2 was further heat-treated in a nitrogen stream at 565 ° C. for 3 hours (third stage firing in the catalyst main component supporting step) to obtain a catalyst L. The silver content of catalyst L was 14.8% by mass, the cesium content was 1330 ppm by mass, and the rhenium content was 290 ppm by mass. The amount of water-soluble cesium was 930 mass ppm.

(比較例4)
アルカリ金属プレドープ工程の2段階目焼成の雰囲気を、窒素から空気に変更したこと以外は、上記の実施例2と同様の手法に従って触媒Mを調製した。触媒Mの銀含有率は14.8質量%であり、セシウム含有率は2180質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は760質量ppmであった。
(Comparative Example 4)
Catalyst M was prepared according to the same procedure as in Example 2 except that the atmosphere of the second stage baking in the alkali metal pre-doping step was changed from nitrogen to air. The silver content of catalyst M was 14.8 mass%, the cesium content was 2180 mass ppm, and the rhenium content was 290 mass ppm. The amount of water-soluble cesium was 760 mass ppm.

(比較例5)
アルカリ金属プレドープ工程の2段階目焼成の温度を300℃としたこと以外は、上記の比較例1と同様の手法に従って、触媒Nを調製した。触媒Nの銀含有率は14.8質量%であり、セシウム含有率は1330質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は1070質量ppmであった。
(Comparative Example 5)
Catalyst N was prepared according to the same method as in Comparative Example 1 except that the temperature of the second stage baking in the alkali metal pre-doping step was set to 300 ° C. The silver content of catalyst N was 14.8 mass%, the cesium content was 1330 ppm by mass, and the rhenium content was 290 ppm by mass. The amount of water-soluble cesium was 1070 mass ppm.

(比較例6)
アルカリ金属プレドープ工程の2段階目焼成の雰囲気を窒素に変更したこと以外は、上記の比較例5と同様の手法に従って、触媒Oを調製した。触媒Oの銀含有率は14.8質量%であり、セシウム含有率は1330質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は1040質量ppmであった。
(Comparative Example 6)
Catalyst O was prepared according to the same method as in Comparative Example 5 except that the atmosphere of the second stage baking in the alkali metal pre-doping step was changed to nitrogen. The silver content of catalyst O was 14.8% by mass, the cesium content was 1330 ppm by mass, and the rhenium content was 290 ppm by mass. The amount of water-soluble cesium was 1040 mass ppm.

(比較例7)
硝酸セシウム0.2564g、硝酸リチウム0.0151gを約60mlの水に溶解し、さらにエチレンジアミン27.2mlを加えた。この硝酸セシウム・硝酸リチウム−エチレンジアミン水溶液を実施例1と同様のα−アルミナ担体208.8gに含浸した後、90℃で減圧乾燥させ、さらに200℃の窒素雰囲気のオーブンで0.2時間熱処理し、セシウム−リチウムプレドープ担体を得た。このセシウム−リチウムプレドープ担体52.2gに、シュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.0534g、過レニウム酸アンモニウム0.0281g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥させた。これを空気気流中200℃で0.2時間熱処理(触媒主成分担持工程の1段階目焼成)し、さらに空気気流中400℃で0.2時間熱処理(触媒主成分担持工程の2段階目焼成)して触媒Pを調製した。触媒Pの銀含有率は14.8質量%であり、セシウム含有率は1330質量ppmであり、リチウム含有率は6質量ppmであり、レニウム含有率は290質量ppmであった。水溶性セシウム量は1120質量ppmであった。
(Comparative Example 7)
0.2564 g of cesium nitrate and 0.0151 g of lithium nitrate were dissolved in about 60 ml of water, and 27.2 ml of ethylenediamine was further added. This cesium nitrate / lithium nitrate-ethylenediamine aqueous solution was impregnated into 208.8 g of the same α-alumina carrier as in Example 1, then dried at 90 ° C. under reduced pressure, and further heat-treated in an oven at 200 ° C. in a nitrogen atmosphere for 0.2 hours. A cesium-lithium pre-doped carrier was obtained. After impregnating 52.2 g of this cesium-lithium pre-doped carrier with a silver-containing liquid consisting of 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.0534 g of cesium nitrate, 0.0281 g of ammonium perrhenate, and 10 g of water, It dried under reduced pressure at 90 degreeC. This was heat-treated at 200 ° C. for 0.2 hours in the air stream (first stage firing in the catalyst main component supporting step), and further heat treated at 400 ° C. in the air stream for 0.2 hours (second stage firing in the catalyst main component supporting step). ) To prepare catalyst P. The silver content of catalyst P was 14.8% by mass, the cesium content was 1330 ppm by mass, the lithium content was 6 ppm by mass, and the rhenium content was 290 ppm by mass. The amount of water-soluble cesium was 1120 mass ppm.

(比較例8)
実施例1と同様のα−アルミナ担体52.2gにシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.1645g、過レニウム酸アンモニウム0.0359g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥させた。これを空気気流中200℃で0.2時間熱処理し、さらに空気気流中400℃で0.2時間熱処理した後、窒素気流中565℃で3時間熱処理して触媒Qを得た。触媒Qの銀含有率は14.8質量%であり、セシウム含有率は1860質量ppmであり、レニウム含有率は370質量ppmであった。水溶性セシウム量は980質量ppmであった。
(Comparative Example 8)
52.2 g of the same α-alumina carrier as in Example 1 was impregnated with a silver-containing liquid consisting of 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.1645 g of cesium nitrate, 0.0359 g of ammonium perrhenate, and 10 g of water. Then, it dried under reduced pressure at 90 degreeC. This was heat-treated at 200 ° C. for 0.2 hours in an air stream, further heat-treated at 400 ° C. for 0.2 hours in an air stream, and then heat-treated at 565 ° C. for 3 hours in a nitrogen stream to obtain Catalyst Q. The silver content of catalyst Q was 14.8 mass%, the cesium content was 1860 mass ppm, and the rhenium content was 370 mass ppm. The amount of water-soluble cesium was 980 mass ppm.

<初期性能評価>
各実施例および各比較例において得られた触媒を、それぞれ850〜1180μmに粉砕した。粉砕した触媒3.00gを、それぞれ内径7.5mm、管長300mmの外部が加熱式の二重管式ステンレス製反応器に充填して充填層を形成した。次いで、当該充填層に、エチレン23.0容量%、酸素7.6容量%、二酸化炭素6.0容量%、残部がメタン、アルゴン、窒素、エタンからなり、さらに二塩化エチレン3.2ppmを含有する混合ガスを導入し、反応圧力0.1MPa、空間速度5500hr−1の条件下で、エチレン転化率が8容量%となるようにして反応を行った。下記数式3および数式4に従って、エチレンオキシド製造時の転化率(数式3)および選択率(数式4)を算出した。結果を下記の表1に示す。
<Initial performance evaluation>
The catalysts obtained in each Example and each Comparative Example were pulverized to 850 to 1180 μm, respectively. A packed bed was formed by charging 3.00 g of the pulverized catalyst into a heating double tube type stainless steel reactor each having an inner diameter of 7.5 mm and a tube length of 300 mm. Subsequently, the packed bed is composed of 23.0% by volume of ethylene, 7.6% by volume of oxygen, 6.0% by volume of carbon dioxide, the balance is made of methane, argon, nitrogen and ethane, and further contains 3.2 ppm of ethylene dichloride. The reaction was carried out under conditions of a reaction pressure of 0.1 MPa and a space velocity of 5500 hr −1 such that the ethylene conversion was 8% by volume. According to the following Equation 3 and Equation 4, the conversion rate (Equation 3) and the selectivity (Equation 4) during ethylene oxide production were calculated. The results are shown in Table 1 below.

Figure 0005165441
Figure 0005165441

Figure 0005165441
Figure 0005165441

<寿命評価>
触媒BおよびQをそれぞれ600〜850μmに粉砕した。粉砕した触媒0.3gを同粒径の石英砂0.9gと混合し、それぞれ内径3mm、管長300mmの外部が加熱式の二重管式ステンレス製反応器に充填し、この充填層にエチレン23.0容量%、酸素7.6容量%、二酸化炭素6.0容量%、残部がメタン、アルゴン、窒素、エタンからなり、さらに二塩化エチレン3.2ppmを含有する混合ガスを導入し、反応圧力2.5MPa、空間速度22000hr−1の条件下で、エチレン転化率が8容量%となるようにして反応を行った。触媒1kgあたりの累積生産エチレンオキシド(EO)量が600kgおよび1100kgのときの性能を表2に示す。
<Life evaluation>
Catalysts B and Q were each pulverized to 600 to 850 μm. 0.3 g of the pulverized catalyst is mixed with 0.9 g of quartz sand having the same particle diameter, and the outside having an inner diameter of 3 mm and a tube length of 300 mm is packed into a heating type double-pipe stainless steel reactor. 0.0% by volume, 7.6% by volume oxygen, 6.0% by volume carbon dioxide, the balance consisting of methane, argon, nitrogen and ethane, and introducing a mixed gas containing 3.2 ppm of ethylene dichloride The reaction was conducted under the conditions of 2.5 MPa and a space velocity of 22000 hr −1 such that the ethylene conversion was 8% by volume. Table 2 shows the performance when the amount of ethylene oxide (EO) produced per kg of the catalyst is 600 kg and 1100 kg.

Figure 0005165441
Figure 0005165441

上記表1、表2に示す結果から、本発明によれば、選択性に優れ、長期間使用できるエチレンオキシド製造用触媒が提供されうる。そして、当該触媒を用いたエチレンオキシドの製造方法によれば、高収率でエチレンオキシドを製造することが可能となる。   From the results shown in Tables 1 and 2, according to the present invention, it is possible to provide an ethylene oxide production catalyst that is excellent in selectivity and can be used for a long period of time. And according to the manufacturing method of ethylene oxide using the said catalyst, it becomes possible to manufacture ethylene oxide with a high yield.

Claims (4)

α−アルミナを主成分とする担体に触媒成分を担持させてなるエチレンオキシド製造用触媒であって、
前記担体として、あらかじめアルカリ金属を含浸させて乾燥させ、酸素濃度5体積%未満の不活性雰囲気中、400〜950℃で0.1〜10時間熱処理したアルカリ金属プレドープ担体を用いる、エチレンオキシド製造用触媒。
A catalyst for producing ethylene oxide, comprising a catalyst component supported on a carrier mainly composed of α-alumina,
A catalyst for ethylene oxide production using an alkali metal pre-doped carrier that has been impregnated with an alkali metal and dried in advance and heat-treated at 400 to 950 ° C. for 0.1 to 10 hours in an inert atmosphere having an oxygen concentration of less than 5% by volume. .
α−アルミナを主成分とする担体に触媒成分を担持させてなるエチレンオキシド製造用触媒であって、A catalyst for producing ethylene oxide, comprising a catalyst component supported on a carrier mainly composed of α-alumina,
前記担体として、あらかじめアルカリ金属を含浸させて乾燥させ、空気中で60〜450℃で熱処理し、更に酸素濃度5体積%未満の不活性雰囲気中、400〜950℃で0.1〜10時間熱処理したアルカリ金属プレドープ担体を用いる、エチレンオキシド製造用触媒。  The carrier is impregnated with an alkali metal in advance, dried, heat-treated at 60 to 450 ° C. in air, and further heat-treated at 400 to 950 ° C. for 0.1 to 10 hours in an inert atmosphere having an oxygen concentration of less than 5% by volume. A catalyst for producing ethylene oxide using the alkali metal pre-doped carrier.
前記α−アルミナを主成分とする担体の比表面積に対する触媒中の水溶性セシウム量の比が、100〜2000質量ppm・g/mである、請求項1または2に記載のエチレンオキシド製造用触媒。 The catalyst for ethylene oxide production according to claim 1 or 2 , wherein the ratio of the amount of water-soluble cesium in the catalyst to the specific surface area of the carrier mainly composed of α-alumina is 100 to 2000 mass ppm · g / m 2. . 請求項1〜3のいずれか1項に記載のエチレンオキシド製造用触媒の存在下で、エチレンを分子状酸素含有ガスにより気相酸化する段階を有する、エチレンオキシドの製造方法。 The manufacturing method of ethylene oxide which has a step which carries out the gaseous-phase oxidation of ethylene with molecular oxygen containing gas in presence of the catalyst for ethylene oxide manufacture of any one of Claims 1-3.
JP2008093171A 2008-03-31 2008-03-31 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst Active JP5165441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093171A JP5165441B2 (en) 2008-03-31 2008-03-31 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093171A JP5165441B2 (en) 2008-03-31 2008-03-31 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst

Publications (2)

Publication Number Publication Date
JP2009241002A JP2009241002A (en) 2009-10-22
JP5165441B2 true JP5165441B2 (en) 2013-03-21

Family

ID=41303540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093171A Active JP5165441B2 (en) 2008-03-31 2008-03-31 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst

Country Status (1)

Country Link
JP (1) JP5165441B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202592A (en) * 2012-03-29 2013-10-07 Mitsubishi Chemicals Corp Catalyst for ethylene oxide production and method for production of ethylene oxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2053411C (en) * 1990-10-12 1997-06-03 Albert Cheng-Yu Liu Alkylene oxide catalysts having enhanced activity and/or stability
DE4106508A1 (en) * 1991-03-01 1992-09-03 Basf Ag SILVER CATALYST
JP2005052839A (en) * 1998-02-20 2005-03-03 Nippon Shokubai Co Ltd Production method of ethylene oxide
JP4042332B2 (en) * 2001-02-27 2008-02-06 三菱化学株式会社 Process for producing olefin oxide using rhenium-containing catalyst
US6987080B2 (en) * 2002-03-01 2006-01-17 Scientific Design Company, Inc. Ethylene oxide catalyst carrier preparation

Also Published As

Publication number Publication date
JP2009241002A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP4267015B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP4052673B2 (en) Epoxidation catalyst and process
RU2744761C2 (en) Epoxidation method
TW201039915A (en) Catalysts having enhanced stability, efficiency and/or activity for alkylene oxide production
TW200600190A (en) Process for preparing a silver catalyst, the catalyst, and use thereof in olefin oxidation
JP5576607B2 (en) Catalyst for producing alkylene oxide, method for producing the same, and method for producing alkylene oxide using the catalyst
JP7369694B2 (en) Process for preparing epoxidation catalysts
JP5566881B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
KR102197292B1 (en) Carrier treatment to improve catalytic performance of an ethylene oxide catalyst
JP5143610B2 (en) Method for producing catalyst for producing ethylene oxide
JP5165441B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
KR20160011204A (en) Silver-based ethylene oxide catalyst having reduced sodium content
JP5211924B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5258485B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP6033124B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5101428B2 (en) Method for packing catalyst for producing ethylene oxide, reactor for producing ethylene oxide, and method for producing ethylene oxide
JP5581058B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2016165697A (en) Ethylene oxide production catalyst and method for producing ethylene oxide using the same
JP2006524129A (en) Ethylene oxide catalyst
JP2016165696A (en) Ethylene oxide production catalyst and method for producing ethylene oxide using the same
JP2021062340A (en) Catalyst for ethylene oxide production
JP2015199059A (en) Catalyst support for production of ethylene oxide from ethylene and catalyst production method
JP2014188462A (en) Method for producing catalyst for producing ethylene oxide and method for producing ethylene oxide
CN115069247A (en) Method for preparing supported silver catalyst, supported silver catalyst and application
JP5479286B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5165441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150