JP2013202592A - Catalyst for ethylene oxide production and method for production of ethylene oxide - Google Patents

Catalyst for ethylene oxide production and method for production of ethylene oxide Download PDF

Info

Publication number
JP2013202592A
JP2013202592A JP2012077465A JP2012077465A JP2013202592A JP 2013202592 A JP2013202592 A JP 2013202592A JP 2012077465 A JP2012077465 A JP 2012077465A JP 2012077465 A JP2012077465 A JP 2012077465A JP 2013202592 A JP2013202592 A JP 2013202592A
Authority
JP
Japan
Prior art keywords
silver
catalyst
ethylene oxide
surface area
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012077465A
Other languages
Japanese (ja)
Inventor
Katsumi Nakadai
克己 仲代
Soichiro Konya
宗一郎 紺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012077465A priority Critical patent/JP2013202592A/en
Publication of JP2013202592A publication Critical patent/JP2013202592A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To further improve a performance of a catalyst for ethylene oxide production.SOLUTION: There is provided a method for producing a catalyst for ethylene oxide production, which is obtained by impregnating a solution containing silver and rhenium in an alumina carrier whose Si content rate is 0.1-4.5 wt.% by SiOconversion, Na content rate is 0.01-0.4 wt.% by NaO conversion and specific surface area is 0.5-3.0 m/g and performing heating at 275-450°C in an atmosphere containing 5-30% of oxygen, and in which the content rate of silver is 5.0-30.0 wt.%, and a silver surface area per gram of silver defined by expression (I): the silver surface area per gram of silver={catalyst specific surface area-carrier specific surface area×(1-silver content rate)}/silver content rate, is 0.5-7.0 m/g.

Description

本発明は、エチレンオキシド製造用触媒及びエチレンオキシドの製造方法に関する。   The present invention relates to a catalyst for producing ethylene oxide and a method for producing ethylene oxide.

エチレンを分子状酸素により気相接触酸化して工業的にエチレンオキシドを製造する際に使用される触媒は銀触媒である。エチレンオキシドを効率良く生産するために、この銀触媒の改良の要請が強く、従来から種々の方法が提案されており、触媒の調製方法についても、種々の検討が行われている。
例えば、特許文献1においては早期に高選択性を発現させるために触媒を、酸素を含む処理材料と、少なくとも350℃の温度にて少なくとも5分接触させる方法が記載されている。また、特許文献2においては触媒性能(活性、選択性、触媒寿命)を改善する為に酸素を10容積ppm〜5容積%含んだ雰囲気下で200℃〜600℃で加熱処理する方法が記載されている。また、特許文献3においては触媒の活性、選択性及びそれらの安定性を向上させる為に、水蒸気及び酸素を含み、この酸素の含有割合が、0.2容積%以上7容積%以下である雰囲気中で、175℃以上400℃以下の温度にて焼成する方法が記載されている。
A catalyst used when industrially producing ethylene oxide by vapor-phase catalytic oxidation of ethylene with molecular oxygen is a silver catalyst. In order to efficiently produce ethylene oxide, there is a strong demand for improvement of this silver catalyst, and various methods have been proposed in the past, and various studies have been conducted on catalyst preparation methods.
For example, Patent Document 1 describes a method in which a catalyst is brought into contact with a treatment material containing oxygen at a temperature of at least 350 ° C. for at least 5 minutes in order to develop high selectivity at an early stage. Patent Document 2 describes a method of heat treatment at 200 ° C. to 600 ° C. in an atmosphere containing 10 ppm by volume to 5% by volume of oxygen in order to improve catalyst performance (activity, selectivity, catalyst life). ing. Further, in Patent Document 3, in order to improve the activity, selectivity and stability of the catalyst, the atmosphere contains water vapor and oxygen, and the oxygen content is 0.2 vol% or more and 7 vol% or less. Among them, a method of firing at a temperature of 175 ° C. or higher and 400 ° C. or lower is described.

特表2009−525848号公報Special table 2009-525848 gazette 特表2008−540098号公報Special table 2008-540098 gazette 特開2010−036104号公報JP 2010-036104 A

エチレンオキシド製造において、選択率はプラントの経済性を決定する非常に重要な要素である。例えば、選択率を1パーセント向上させると、エチレンオキシド製造プラントの年間操業コストを大幅に低減し得る。そのため、これまでに様々な検討、改良が行われてきたにもかかわらず、エチレンオキシド製造用触媒の更なる性能改良が望まれている。   In ethylene oxide production, selectivity is a very important factor that determines plant economics. For example, increasing the selectivity by 1 percent can significantly reduce the annual operating cost of an ethylene oxide production plant. Therefore, even though various studies and improvements have been made so far, further improvement of the performance of the catalyst for producing ethylene oxide is desired.

本発明者等は、上記課題を解決するべく、鋭意検討を重ねた結果、銀、レニウムを含有する溶液を、所定量のSi、Naを含有し、所定の比表面積を有するアルミナ担体に含浸させ、所定量の酸素を含有する雰囲気中で加熱することにより、所定の銀が含有され、所定の銀表面積を有するエチレンオキシド製造用触媒を製造することが可能となり、該触媒を用いることにより、エチレンからエチレンオキシドへの選択率が高く、エチレンオキシドを効率よく生産できることを見出し、本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventors have impregnated a solution containing silver and rhenium into an alumina carrier containing a predetermined amount of Si and Na and having a specific surface area. By heating in an atmosphere containing a predetermined amount of oxygen, it becomes possible to manufacture a catalyst for ethylene oxide production containing a predetermined silver and having a predetermined silver surface area. The inventors have found that the selectivity to ethylene oxide is high and ethylene oxide can be produced efficiently, and the present invention has been achieved.

即ち、本発明の要旨は下記[1]〜[5]に存する。
[1] 銀、レニウムを含有する溶液を、Si含有率がSiO換算で0.1〜4.5重量%であり、Na含有率がNaO換算で0.01〜0.4重量%であり、比表面積が0.5〜3.0m/gであるアルミナ担体に含浸させ、酸素を5〜30%含有した雰囲気中にて275〜450℃で加熱することにより得られる、銀の含有率が5.0〜30.0重量%であり、下記式(I)で定義される銀1g当たりの銀表面積が0.5〜7.0m/gであることを特徴とする、エチレンオキシド製造用触媒の製造方法。
That is, the gist of the present invention resides in the following [1] to [5].
[1] silver, a solution containing the rhenium, Si content of from 0.1 to 4.5 wt% in terms of SiO 2, 0.01 to 0.4 wt% Na content in terms of Na 2 O It is obtained by impregnating an alumina carrier having a specific surface area of 0.5 to 3.0 m 2 / g and heating at 275 to 450 ° C. in an atmosphere containing 5 to 30% oxygen. Ethylene oxide, wherein the content is 5.0 to 30.0% by weight, and the silver surface area per 1 g of silver defined by the following formula (I) is 0.5 to 7.0 m 2 / g A method for producing a catalyst for production.

(I) 銀1g当たりの銀表面積={触媒比表面積−担体比表面積×(1-銀含有率)}/銀
含有率
[2] 酸素を5〜30%含有した雰囲気中にて275〜450℃で加熱する時間が1〜50時間である[1]に記載のエチレンオキシド製造用触媒の製造方法。
[3] 銀、レニウムを含浸する前に予めアルミナ担体を洗浄、または、予めアルミナ担体にアルカリ金属を担持させることを特徴とする[1]または[2]に記載のエチレンオキシド製造用触媒の製造方法。
(I) Silver surface area per 1 g of silver = {catalyst specific surface area−support specific surface area × (1−silver content)} / silver content
[2] The process for producing a catalyst for ethylene oxide production according to [1], wherein the time for heating at 275 to 450 ° C. in an atmosphere containing 5 to 30% oxygen is 1 to 50 hours.
[3] The method for producing an ethylene oxide production catalyst according to [1] or [2], wherein the alumina support is washed in advance before impregnation with silver or rhenium, or an alkali metal is previously supported on the alumina support. .

[4] 銀、レニウムを含有する溶液を含浸したアルミナ担体を、酸素含有雰囲気中にて275〜450℃で加熱する前に予め100〜250℃で加熱することを特徴とする[1]〜[3]のいずれかに記載のエチレンオキシド製造用触媒の製造方法。
[5] [1]〜[4]のいずれかに記載の製造方法により製造されたエチレンオキシド製造用触媒によるエチレンオキシド製造方法。
[4] The alumina support impregnated with a solution containing silver and rhenium is heated at 100 to 250 ° C. in advance before being heated at 275 to 450 ° C. in an oxygen-containing atmosphere. [3] The method for producing a catalyst for producing ethylene oxide according to any one of [3].
[5] A method for producing ethylene oxide using a catalyst for producing ethylene oxide produced by the production method according to any one of [1] to [4].

本発明により製造されるエチレンオキシド製造用触媒を用いて、エチレンオキシドを製造すると、高い選択率でエチレンオキシドを製造することが可能となる。   When ethylene oxide is produced using the ethylene oxide production catalyst produced according to the present invention, ethylene oxide can be produced with high selectivity.

以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例であり、本発明はその要旨を超えない限り、以下の内容に限定されない。
本発明は、銀、レニウムを含有する溶液を、Si含有率がSiO換算で0.1〜4.5重量%であり、Na含有率がNaO換算で0.01〜0.4重量%であり、比表面積が0.5〜3.0m/gであるアルミナ担体に含浸させ、酸素を5〜30%含有した雰囲気中にて275〜450℃で加熱することにより得られる、銀の含有率が5.0〜30.0重量%であり、下記式(I)定義される銀1g当たりの銀表面積が0.5〜7.0m/gである、エチレンオキシド製造用触媒の製造方法である。
Embodiments of the present invention will be described in detail below. However, the description of the constituent elements described below is an example of embodiments of the present invention, and the present invention is limited to the following contents as long as the gist thereof is not exceeded. Not.
In the present invention, a solution containing silver and rhenium has a Si content of 0.1 to 4.5 wt% in terms of SiO 2 and a Na content of 0.01 to 0.4 wt in terms of Na 2 O. Is obtained by impregnating an alumina carrier having a specific surface area of 0.5 to 3.0 m 2 / g and heating at 275 to 450 ° C. in an atmosphere containing 5 to 30% oxygen. Of the catalyst for ethylene oxide manufacture whose content rate of 5.0-30.0 weight% and the silver surface area per 1g of silver defined by following formula (I) are 0.5-7.0m < 2 > / g. Is the method.

(I) 銀1g当たりの銀表面積={触媒比表面積−担体比表面積×(1-銀含有率)}/銀含有率
(触媒成分)
本発明における、エチレンオキシド製造用触媒に使用される触媒成分は、銀を主成分とし、この銀に加え、レニウムが必須成分である。触媒成分としては、銀、レニウムに加え、更に、窒素、イオウ、リン、ホウ素、フッ素、アルカリ金属、アルカリ土類金属、モリブデン、タングステン、クロム、チタン、ハフニウム、ジルコニウム、バナジウム、タリウム、トリウム、タンタル、ニオブ、ガリウム、ゲルマニウムを含むことが好ましい。これらは、それぞれ、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
(I) Silver surface area per 1 g of silver = {catalyst specific surface area−support specific surface area × (1−silver content)} / silver content (catalyst component)
The catalyst component used for the ethylene oxide production catalyst in the present invention contains silver as a main component, and rhenium is an essential component in addition to this silver. Catalyst components include silver, rhenium, nitrogen, sulfur, phosphorus, boron, fluorine, alkali metals, alkaline earth metals, molybdenum, tungsten, chromium, titanium, hafnium, zirconium, vanadium, thallium, thorium, tantalum Niobium, gallium, and germanium are preferably included. Each of these may be used alone or in combination of two or more.

ここで、主成分とは、触媒成分の中で、触媒成分に対して最も多く含有される成分である。
エチレンオキシド製造用触媒全体に対する銀の含有率は、5.0〜30.0重量%であり、効果と経済性の観点から8.0〜20.0重量%が好ましく、10.0〜15.0重量%がより好ましい。
Here, a main component is a component contained most with respect to a catalyst component in a catalyst component.
The silver content with respect to the total catalyst for ethylene oxide production is 5.0 to 30.0% by weight, preferably 8.0 to 20.0% by weight from the viewpoints of effect and economy, and 10.0 to 15.0. Weight percent is more preferred.

銀を供する化合物としては、酸化銀、硝酸銀、炭酸銀、シュウ酸銀等の各種化合物があげられるが、これらの中でも、シュウ酸銀が特に好ましい。
エチレンオキシド製造用触媒全体に対するレニウムの含有率は、100〜1000重量ppmが好ましく、200〜800重量ppmがより好ましい。レニウムの含有率が少なすぎると、より十分な選択率が得られ難い傾向があり、一方、レニウムの含有率が多すぎ
ると、触媒の活性が低下する傾向がある。
Examples of the compound that provides silver include various compounds such as silver oxide, silver nitrate, silver carbonate, and silver oxalate. Among these, silver oxalate is particularly preferable.
The rhenium content in the ethylene oxide production catalyst is preferably 100 to 1000 ppm by weight, more preferably 200 to 800 ppm by weight. If the rhenium content is too small, a sufficient selectivity tends to be difficult to obtain, whereas if the rhenium content is too high, the activity of the catalyst tends to decrease.

レニウムを供する化合物としては、過レニウム酸化合物、酸化レニウム、塩化レニウム等があげられ、これらの中でも、過レニウム酸アンモニウムが好ましい。
アルカリ金属は、リチウム、カリウム、ルビジウムおよびセシウムがあげられ、好ましくはセシウム、より好ましくはセシウムとリチウムの併用である。エチレンオキシド製造用触媒全体に対するセシウムの含有率は100〜10000重量ppmが好ましく、250〜3000重量ppmがより好ましく、500〜1500重量ppmが更に好ましい。エチレンオキシド製造用触媒全体に対するリチウムの含有率は10〜10000重量ppmが好ましく、100〜1000重量ppmがより好ましく、200〜700重量ppmが最適である。
Examples of the compound that provides rhenium include perrhenic acid compounds, rhenium oxide, rhenium chloride, and the like. Among these, ammonium perrhenate is preferable.
Examples of the alkali metal include lithium, potassium, rubidium and cesium, preferably cesium, more preferably a combination of cesium and lithium. The content of cesium with respect to the entire catalyst for producing ethylene oxide is preferably 100 to 10,000 ppm by weight, more preferably 250 to 3000 ppm by weight, and still more preferably 500 to 1500 ppm by weight. The lithium content relative to the total ethylene oxide production catalyst is preferably 10 to 10,000 ppm by weight, more preferably 100 to 1,000 ppm by weight, and most preferably 200 to 700 ppm by weight.

アルカリ金属を供する化合物としては、水酸化物、硝酸塩、炭酸塩、酢酸塩、塩化物、酸化物、シュウ酸塩等の各種化合物があげられる。これらの中でも、水酸化物、硝酸塩が好ましい。
また、アルカリ金属あるいはその化合物は触媒成分を含浸する前に、一部を後述するような担体処理で担持してもよい。
Examples of the compound that provides the alkali metal include various compounds such as hydroxide, nitrate, carbonate, acetate, chloride, oxide, and oxalate. Among these, hydroxide and nitrate are preferable.
In addition, a part of the alkali metal or a compound thereof may be supported by a carrier treatment as described later before impregnating the catalyst component.

(触媒成分溶液)
触媒成分を担体に担持する際、各成分が溶解しうる適当な溶媒に触媒成分を溶解させて、触媒成分溶液とする。この溶媒としては、水、あるいはメタノール、エタノール等のアルコール類があげられ、取扱いの容易さから水が好ましい。また、水とアルコール類との混合溶液を用いてもよい。
(Catalyst component solution)
When the catalyst component is supported on the carrier, the catalyst component is dissolved in an appropriate solvent in which each component can be dissolved to obtain a catalyst component solution. Examples of the solvent include water or alcohols such as methanol and ethanol, and water is preferable because of easy handling. Further, a mixed solution of water and alcohols may be used.

触媒成分溶液では、溶液中の銀濃度は高い方が担体に含浸させた際の銀含有率が高くなり好ましい。そのため、銀成分が前記溶媒に高濃度で溶解できるように、錯体形成剤を使用する。錯体形成剤とは、銀と反応し、前記溶媒に溶解し易い錯体を形成するものである。
このような錯体形成剤としては、窒素含有化合物等をあげることができる。この窒素含有化合物の具体例としては、エチルアミン、ブチルアミン等の炭素数1〜6のモノアミン、エタノールアミン等の炭素数1〜6のアルカノールアミン、エチレンジアミン、1,3−プロパンジアミン等の炭素数1〜6のポリアミン、アンモニア、ピリジン、アセトニトリルがあげられ、これらの中でも、アンモニア、ピリジン、炭素数1〜6のポリアミン、炭素数1〜6のモノアミンが好ましく、エチレンジアミンまたは1,3−プロパンジアミン、又はこれら2種を混合したものがより好ましい。
In the catalyst component solution, the higher the silver concentration in the solution, the higher the silver content when the carrier is impregnated, which is preferable. Therefore, a complex forming agent is used so that the silver component can be dissolved in the solvent at a high concentration. The complex-forming agent reacts with silver to form a complex that is easily dissolved in the solvent.
Examples of such a complex-forming agent include nitrogen-containing compounds. Specific examples of the nitrogen-containing compound include C1-C6 monoamines such as ethylamine and butylamine, C1-C6 alkanolamines such as ethanolamine, ethylenediamine, 1,3-propanediamine and the like. 6 polyamines, ammonia, pyridine, and acetonitrile. Among these, ammonia, pyridine, polyamines having 1 to 6 carbon atoms, and monoamines having 1 to 6 carbon atoms are preferable, and ethylenediamine, 1,3-propanediamine, or these What mixed 2 types is more preferable.

(多孔性担体)
上記触媒成分を担持させる担体としては、多孔性担体があげられる。この多孔性担体としては、α−アルミナ等のアルミナ、あるいは、炭化珪素、チタニア、ジルコニア、マグネシア等の多孔性耐火物があげられる。中でも、主成分がα−アルミナであるアルミナが好ましい。さらに、このアルミナはSi成分がSiO換算で、通常0.1〜4.5重量%を含有される。また、この多孔性担体にはNa成分がNaO換算で、通常0.01〜0.4重量%含有される。
(Porous carrier)
Examples of the carrier for supporting the catalyst component include a porous carrier. Examples of the porous carrier include alumina such as α-alumina, and porous refractories such as silicon carbide, titania, zirconia, and magnesia. Among these, alumina whose main component is α-alumina is preferable. Further, the alumina is Si component in terms of SiO 2, it is usually contain 0.1 to 4.5 wt%. The porous carrier usually contains 0.01 to 0.4% by weight of Na component in terms of Na 2 O.

担体は、その諸物性によって、得られる触媒の触媒活性に大きな影響を与える場合がある。この担体の比表面積は、通常0.5〜3.0m/gであり、1.0〜2.5m/gが好ましく、1.0〜1.5m/gがより好ましい。担体の比表面積が小さすぎると、担持した銀の粒子が大きくなり過ぎ、活性が低下する可能性がある。一方、大きすぎると、担体の細孔径が小さくなり、物質移動や放熱の面で不利になり、触媒性能が低下するおそれがある。 The support may have a great influence on the catalytic activity of the resulting catalyst depending on its physical properties. The specific surface area of the carrier is usually 0.5~3.0m 2 / g, preferably from 1.0~2.5m 2 / g, 1.0~1.5m 2 / g is more preferable. If the specific surface area of the support is too small, the supported silver particles become too large, and the activity may be reduced. On the other hand, if the size is too large, the pore diameter of the support becomes small, which is disadvantageous in terms of mass transfer and heat dissipation, and the catalyst performance may be reduced.

また、触媒成分の含浸操作を容易にするという点で、担体の吸水率は20〜60%が好ましく、25〜50%が更に好ましい。担体の吸収率が小さすぎると、一度の含浸操作で担持できる銀量が少なくなり、目標とする銀含有率を達成できないおそれがある。一方、上記範囲より大きいと、担体の強度が低下するおそれがある。
これらの特性を満たす担体の調製方法としては、特に制限されないが、例えば次のような調製方法があげられる。主原料粉体、Si成分含有化合物、気孔形成剤等と適当量の水とを混合し、次いで、この混合物を押し出し成形などで所定の形状にしたのち、空気雰囲気下で焼成する。
Further, the water absorption rate of the carrier is preferably 20 to 60%, more preferably 25 to 50%, from the viewpoint of facilitating the impregnation operation of the catalyst component. If the absorption rate of the carrier is too small, the amount of silver that can be supported by a single impregnation operation decreases, and the target silver content may not be achieved. On the other hand, if it is larger than the above range, the strength of the carrier may be lowered.
A method for preparing a carrier satisfying these characteristics is not particularly limited, and examples thereof include the following preparation methods. The main raw material powder, the Si component-containing compound, the pore-forming agent, and the like are mixed with an appropriate amount of water, and then the mixture is formed into a predetermined shape by extrusion or the like and then fired in an air atmosphere.

例えばα-アルミナ担体の場合は、主原料粉体として、低ソーダアルミナ粉体を用いる
ことができる。なお、気孔形成剤は空気雰囲気下での焼成により、担体から燃焼除去され担体に制御された気孔を付与する。ただし、焼成温度が高すぎる場合は担体の比表面積が低下する傾向にある。担体中のSi含有率及びNa含有率は、担体調製に用いた原料の配合割合によって調整でき、配合割合が大きいほど含有率は高くなる。例えば、Si成分含有化合物の配合割合を大きくすることにより、Si含有率を高くすることができる。
For example, in the case of an α-alumina carrier, a low soda alumina powder can be used as the main raw material powder. The pore-forming agent burns and removes from the carrier by firing in an air atmosphere to give controlled pores to the carrier. However, when the firing temperature is too high, the specific surface area of the carrier tends to decrease. The Si content and the Na content in the carrier can be adjusted by the blending ratio of the raw materials used for the carrier preparation. The larger the blending ratio, the higher the content. For example, the Si content can be increased by increasing the blending ratio of the Si component-containing compound.

(担体処理)
担体には、最初に触媒成分溶液を含浸させてもよいが、触媒成分溶液を含浸させる前に、触媒成分の一部であるアルカリ金属を担体に担持させる、若しくは脱イオン水を用いて担体を洗浄する等の担体処理を行うことが触媒の性能向上につながり好ましい。
担体処理で使用するアルカリ金属としては、リチウム、セシウムがあげられる。これらの金属は、それぞれ、1種のみが単独で用いられてもよいし、2種を併用してもよい。
(Carrier treatment)
The support may be first impregnated with the catalyst component solution, but before impregnating the catalyst component solution, the support is loaded with an alkali metal that is a part of the catalyst component, or deionized water is used to support the support. It is preferable to carry out carrier treatment such as washing, which leads to improvement in the performance of the catalyst.
Examples of the alkali metal used in the carrier treatment include lithium and cesium. Each of these metals may be used alone or in combination of two.

担体処理で使用する、リチウム、セシウムを供する化合物としては、それぞれ、リチウム化合物、セシウム化合物があげられる。これらの化合物は、触媒成分溶液を担体に含浸する際に再溶出しないように、触媒成分溶液への溶解度が低いものが好ましい。具体的には、リチウム化合物、セシウム化合物は、いずれも炭酸塩であることが好ましい。また、リチウム化合物、セシウム化合物を溶解する溶媒としては、取扱いの容易さから水が好ましい。   Examples of the compound for providing lithium and cesium used in the carrier treatment include a lithium compound and a cesium compound. These compounds are preferably those having low solubility in the catalyst component solution so as not to re-elut when the support is impregnated with the catalyst component solution. Specifically, both the lithium compound and the cesium compound are preferably carbonates. Moreover, as a solvent which melt | dissolves a lithium compound and a cesium compound, water is preferable from the ease of handling.

担体洗浄に使用する脱イオン水は、0〜100℃、好ましくは60〜100℃、より好ましくは80〜100℃である。担体洗浄1回当たりに使用する脱イオン水の重量は担体重量に対して等量以上が好ましく、2倍以上が更に好ましく、3倍以上がより好ましい。担体洗浄は1回よりも3回以上が好ましく、5回以上がより好ましい。
担体処理を行った後、余剰のリチウム化合物、セシウム化合物含有溶液、若しくは脱イオン水から担体を取り出し、その後、減圧乾燥や、加熱処理等の乾燥処理が行われる。この加熱処理温度は、100〜300℃、好ましくは100〜250℃、より好ましくは110〜220℃である。加熱雰囲気は空気、過熱水蒸気、窒素、アルゴン、クリプトン、ヘリウム、及びこれらの組合せが使用可能であるが、過熱水蒸気が好適である。
The deionized water used for the carrier washing is 0 to 100 ° C, preferably 60 to 100 ° C, more preferably 80 to 100 ° C. The weight of deionized water used per carrier washing is preferably equal to or more than the carrier weight, more preferably 2 times or more, and more preferably 3 times or more. The carrier washing is preferably 3 times or more, more preferably 5 times or more than once.
After carrying out the carrier treatment, the carrier is taken out from the excess lithium compound, cesium compound-containing solution, or deionized water, and then subjected to drying treatment such as reduced pressure drying or heat treatment. The heat treatment temperature is 100 to 300 ° C, preferably 100 to 250 ° C, more preferably 110 to 220 ° C. The heating atmosphere can be air, superheated steam, nitrogen, argon, krypton, helium, and combinations thereof, but superheated steam is preferred.

次いで、担体あるいは担体処理を施した担体に触媒成分溶液を含浸し、酸素含有雰囲気で加熱し触媒を得る。
(触媒成分含浸)
触媒成分含浸工程としては、担体あるいは担体処理を施した担体に触媒成分溶液を浸漬する方法や、スプレー吹き付けする方法があげられる。さらに、必要に応じて、減圧処理を組み合わせることも可能である。この触媒成分含浸工程によって、触媒成分含浸担体が得られる。
Next, the catalyst component solution is impregnated into the carrier or the carrier subjected to the carrier treatment, and heated in an oxygen-containing atmosphere to obtain a catalyst.
(Catalyst component impregnation)
Examples of the catalyst component impregnation step include a method of immersing the catalyst component solution in a carrier or a carrier subjected to carrier treatment, and a method of spraying. Furthermore, it is also possible to combine a decompression process as needed. By this catalyst component impregnation step, a catalyst component-impregnated support is obtained.

(酸素含有雰囲気加熱工程)
触媒成分溶液を含浸させた担体は、酸素含有雰囲気で、通常275〜450℃で加熱し、銀化合物を金属銀に変化させ、エチレンオキシド製造用触媒とする。酸素含有雰囲気での加熱は、エチレンオキシド選択率の観点から335℃以上、経済性の観点から385℃以下が好ましい。この結果、銀、レニウムの触媒成分を含んだ金属銀は、下記式(I)で定義される銀1g当たりの銀表面積が、通常0.5〜7.0m/gとなり、エチレンオキシド選択率が高くなる。銀1g当たりの銀表面積は1.0〜6.0m/gが好ましく、1.5〜6.0m/gがより好ましい。なお、触媒比表面積、および担体比表面積は、BET法で測定することができる。
(Oxygen-containing atmosphere heating process)
The support impregnated with the catalyst component solution is usually heated at 275 to 450 ° C. in an oxygen-containing atmosphere to change the silver compound to metallic silver, thereby obtaining a catalyst for producing ethylene oxide. The heating in the oxygen-containing atmosphere is preferably 335 ° C. or higher from the viewpoint of ethylene oxide selectivity and 385 ° C. or lower from the economical viewpoint. As a result, the metallic silver containing the catalyst component of silver and rhenium has a silver surface area per 1 g of silver defined by the following formula (I), usually 0.5 to 7.0 m 2 / g, and the ethylene oxide selectivity is Get higher. Silver surface area per silver 1g is 1.0~6.0m 2 / g are preferred, 1.5~6.0m 2 / g is more preferable. The catalyst specific surface area and the support specific surface area can be measured by the BET method.

(I) 銀1g当たりの銀表面積={触媒比表面積−担体比表面積×(1-銀含有率)}/銀含有率
酸素含有雰囲気とは、酸素を5〜30%含んでいればよく、残りは窒素、アルゴン、ヘリウム、二酸化炭素等、あるいはこれらの混合物である。酸素含有雰囲気の酸素濃度は、15〜25%が好ましい。酸素含有雰囲気には、簡便性から空気を使用するのが最適である。
(I) Silver surface area per gram of silver = {catalyst specific surface area−support specific surface area × (1−silver content)} / silver content The oxygen-containing atmosphere only needs to contain 5 to 30% of oxygen, and the rest Is nitrogen, argon, helium, carbon dioxide, or a mixture thereof. The oxygen concentration in the oxygen-containing atmosphere is preferably 15 to 25%. For the oxygen-containing atmosphere, it is optimal to use air for simplicity.

酸素含有雰囲気の加熱処理の時間は、1〜50時間が好ましい。エチレンオキシド選択率の観点から、1.2時間以上がより好ましく、2.2時間以上が更に好ましい。経済性の観点からは、20時間以内がより好ましく、10時間以内が更に好ましく、5時間以内が最も好ましい。なお、加熱時間とは、ある目標温度で保持した時間の合計である。ただし、目標温度を、酸素含有雰囲気中における加熱温度の下限温度275℃、上限温度450℃付近とした場合、下限温度未満、上限温度を超える時間は、好ましくは5分以下、更に3分以下である。   The heat treatment time in the oxygen-containing atmosphere is preferably 1 to 50 hours. From the viewpoint of ethylene oxide selectivity, 1.2 hours or more is more preferable, and 2.2 hours or more is more preferable. From the economical viewpoint, it is preferably within 20 hours, more preferably within 10 hours, and most preferably within 5 hours. The heating time is the total time held at a certain target temperature. However, when the target temperature is set to a lower limit temperature of 275 ° C. and an upper limit temperature of about 450 ° C. in the oxygen-containing atmosphere, the time below the lower limit temperature and the upper limit temperature is preferably 5 minutes or less, and further 3 minutes or less. is there.

加熱工程で使用する装置は、マッフル炉等一般的な電気炉が使用できる。工業的には、連続生産の観点から、ローラーハースキルンが適当である。
(予備加熱)
触媒成分を含浸した担体は、加熱工程の初期、銀錯形成剤として使用した窒素含有化合物の蒸気が発生する。窒素含有化合物の蒸気と酸素含有雰囲気の混合ガスが燃焼範囲に入らないように、予め、275℃以下、5〜60分間、酸素含有雰囲気あるいは不活性ガス雰囲気で保持することが好ましい。不活性ガス雰囲気とは、実質的に酸素を含まない雰囲気で、例えば酸素濃度5%未満の雰囲気である。不活性ガス雰囲気としては過熱水蒸気が特に好ましい。予備加熱温度は、100〜250℃が特に好ましい。予備加熱の時間は、10〜30分間が特に好ましい。また、予備加熱実施後、冷却せず、連続して酸素含有雰囲気加熱工程を実施することも可能である。
As an apparatus used in the heating process, a general electric furnace such as a muffle furnace can be used. Industrially, roller hearth kiln is appropriate from the viewpoint of continuous production.
(Preheating)
The carrier impregnated with the catalyst component generates a vapor of a nitrogen-containing compound used as a silver complexing agent at the initial stage of the heating step. In order to prevent the mixed gas of the nitrogen-containing compound vapor and the oxygen-containing atmosphere from entering the combustion range, it is preferably held in advance in an oxygen-containing atmosphere or an inert gas atmosphere at 275 ° C. or lower for 5 to 60 minutes. The inert gas atmosphere is an atmosphere that does not substantially contain oxygen, for example, an atmosphere having an oxygen concentration of less than 5%. As the inert gas atmosphere, superheated steam is particularly preferable. The preheating temperature is particularly preferably 100 to 250 ° C. The preheating time is particularly preferably 10 to 30 minutes. It is also possible to continuously perform the oxygen-containing atmosphere heating step without cooling after the preheating.

(エチレンオキシド製造)
本発明のエチレンオキシド製造用触媒を用いて、エチレンをエチレンオキシドに転換する反応は、一般に公知の方法で実施できる。一般に、反応圧力は、0〜4MPa(ゲージ圧力)であり、反応温度は、180〜350℃である。原料ガスの組成は、エチレンが1〜40容量%、酸素が1〜20容量%の混合ガスに、残りは希釈剤として、メタンや窒素、二酸化炭素、アルゴン等の不活性ガスである。酸素源としては、空気または工業用酸素が用いられる。更に、反応改変剤として、ハロゲン化炭化水素を0.1〜50容量ppm添加することにより、触媒中のホットスポットの形成が防止され、触媒の性能、特に触媒選択性が大幅に改善される。
(Ethylene oxide production)
The reaction for converting ethylene to ethylene oxide using the ethylene oxide production catalyst of the present invention can be carried out by a generally known method. Generally, the reaction pressure is 0 to 4 MPa (gauge pressure), and the reaction temperature is 180 to 350 ° C. The composition of the raw material gas is an inert gas such as methane, nitrogen, carbon dioxide, and argon as a diluent in a mixed gas of 1 to 40% by volume of ethylene and 1 to 20% by volume of oxygen. Air or industrial oxygen is used as the oxygen source. Further, by adding 0.1 to 50 ppm by volume of halogenated hydrocarbon as a reaction modifier, formation of hot spots in the catalyst is prevented, and catalyst performance, particularly catalyst selectivity, is greatly improved.

以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。
以下において、担体および触媒の物性ないし特性の評価は次の方法により行った。
(担体組成の測定)
表1に示す担体A、BのSi含有率は、炭酸ナトリウムとホウ酸を加え加熱溶融させたのち塩酸で抽出しICP発光法にて測定した。一方、Na含有率は、硫酸、リン酸及びフッ化水素酸で抽出し原子吸光法で測定した。担体CのSi含有率及びNa含有率は、蛍光X線法にて測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by a following example, unless the summary is exceeded.
In the following, the physical properties and characteristics of the support and the catalyst were evaluated by the following methods.
(Measurement of carrier composition)
The Si contents of the carriers A and B shown in Table 1 were measured by ICP emission method after sodium carbonate and boric acid were added and melted by heating, extracted with hydrochloric acid. On the other hand, the Na content was extracted with sulfuric acid, phosphoric acid and hydrofluoric acid and measured by atomic absorption. The Si content and Na content of the carrier C were measured by the fluorescent X-ray method.

表1に示す担体A,B,Cの吸水率はJISR2205に準拠する方法により測定した。
(触媒組成の測定)
銀含有率は、硝酸で銀を抽出し、電位差測定法で測定した。セシウム、レニウム、リチウムの含有率は、硝酸で上記の成分を抽出し、セシウム及びリチウムは原子吸光法、レニウムはICP発光法で測定した。
The water absorption rates of the carriers A, B and C shown in Table 1 were measured by a method based on JIS R2205.
(Measurement of catalyst composition)
The silver content was measured by extracting the silver with nitric acid and measuring the potential difference. The contents of cesium, rhenium, and lithium were measured by extracting the above components with nitric acid, cesium and lithium with an atomic absorption method, and rhenium with an ICP emission method.

(触媒比表面積および担体比表面積の測定)
前処理(250℃、15分間窒素ガスフロー)を行ったサンプルを、マウンテック社製、マックソーブ HM Model-1201を用い、BET1点法(吸着ガス:窒素)
にて触媒比表面積および担体比表面積を測定した。
(銀1g当たりの銀表面積の算出)
前記触媒比表面積、担体比表面積、および銀含有率を用いて、銀1g当たりの銀表面積を下記式(I)により求めた。
(Measurement of catalyst specific surface area and support specific surface area)
Sample that has been pretreated (250 ° C., nitrogen gas flow for 15 minutes) was used with a MOTTEC, Macsorb HM Model-1201, BET 1 point method (adsorption gas: nitrogen)
The specific surface area of the catalyst and the specific surface area of the support were measured.
(Calculation of silver surface area per gram of silver)
Using the catalyst specific surface area, the support specific surface area, and the silver content, the silver surface area per 1 g of silver was determined by the following formula (I).

(I) 銀1g当たりの銀表面積={触媒比表面積−担体比表面積×(1-銀含有率)}/銀含有率   (I) Silver surface area per 1 g of silver = {catalyst specific surface area−support specific surface area × (1−silver content)} / silver content

Figure 2013202592
Figure 2013202592

(触媒性能)
原料ガス、生成ガスの組成は、ガスクロマトグラフィーで分析した。エチレンオキシドの選択率は、消費したエチレンのモル数に対する生成したエチレンオキシドのモル数の割合で示した。反応温度は、触媒1L、1時間当たりのエチレンオキシド生産量(STY)が目標値となるように調整した。
(Catalyst performance)
The composition of the source gas and product gas was analyzed by gas chromatography. The selectivity for ethylene oxide was expressed as the ratio of the number of moles of ethylene oxide produced to the number of moles of ethylene consumed. The reaction temperature was adjusted so that 1 L of catalyst and ethylene oxide production amount (STY) per hour became a target value.

[実施例1]
(担体処理)
表1に示す担体A 2000gを、6000mlの沸騰している脱イオン水中に20分
間浸漬し、脱イオン水から担体を取り出し、担体洗浄とした。この操作を繰り返し、合計5回の担体洗浄を実施した。次いで、この担体を150℃の過熱水蒸気にて20分間、2m/秒の流速で加熱乾燥し、洗浄担体2000gを得た。この操作を6回実施し、洗浄担体A12000gを得た。
[Example 1]
(Carrier treatment)
2000 g of carrier A shown in Table 1 was immersed in 6000 ml of boiling deionized water for 20 minutes, the carrier was taken out from the deionized water, and the carrier was washed. This operation was repeated, and the carrier was washed 5 times in total. Subsequently, this carrier was heated and dried with superheated steam at 150 ° C. for 20 minutes at a flow rate of 2 m / sec to obtain 2000 g of a washing carrier. This operation was performed 6 times to obtain 12000 g of washing carrier A.

(触媒成分溶液の調製)
硝酸銀(AgNO)2590 gを脱イオン水9200mlに溶解し、50℃に温度
を調節した。この硝酸銀水溶液に、50℃に保った水酸化ナトリウム水溶液(水酸化ナトリウム633g、脱イオン水3570ml)を滴下し、水酸化銀の沈殿物を得た。上澄み液を置換し、上澄み液のpHが10以下かつ導電率が45μΩ/cm以下となるまで、水
酸化銀を洗浄した。水酸化銀沈殿物に、脱イオン水2300ml、シュウ酸2水和物960gを加え、pHは8.0になった。シュウ酸2水和物の添加中、温度は50℃以下になるように調節した。こうしてシュウ酸銀沈殿物を得た。沈殿物をろ別後、脱イオン水で洗浄し、シュウ酸銀スラリー(含水率 21.4重量%)を得た。こうして得たシュウ酸銀
スラリー2949.9gをエチレンジアミン826g、1,3−ジアミノプロパン226g、及び水960gより成る水溶液に徐々に添加して溶解させ、銀錯体溶液を調製した。この銀錯体溶液の比重は、1.65g/mlであった。
(Preparation of catalyst component solution)
2590 g of silver nitrate (AgNO 3 ) was dissolved in 9200 ml of deionized water, and the temperature was adjusted to 50 ° C. To this silver nitrate aqueous solution, an aqueous sodium hydroxide solution (633 g of sodium hydroxide, 3570 ml of deionized water) maintained at 50 ° C. was added dropwise to obtain a silver hydroxide precipitate. The supernatant was replaced, and the silver hydroxide was washed until the pH of the supernatant was 10 or less and the conductivity was 45 μΩ / cm or less. To the silver hydroxide precipitate, 2300 ml of deionized water and 960 g of oxalic acid dihydrate were added, and the pH became 8.0. During the addition of oxalic acid dihydrate, the temperature was adjusted to 50 ° C. or lower. A silver oxalate precipitate was thus obtained. The precipitate was filtered off and washed with deionized water to obtain a silver oxalate slurry (water content 21.4% by weight). The silver oxalate slurry 2949.9 g thus obtained was gradually added and dissolved in an aqueous solution consisting of 826 g of ethylenediamine, 226 g of 1,3-diaminopropane and 960 g of water to prepare a silver complex solution. The specific gravity of this silver complex solution was 1.65 g / ml.

得られた銀錯体溶液に、水酸化セシウム一水和物(CsOH・HO)濃度11.7重量%の水溶液100ml、過レニウム酸アンモニウム(NHReO)濃度6.8重量%の水溶液100ml、水酸化リチウム一水和物(LiOH・HO)濃度12.0重量%の水溶液230ml、及び脱イオン水480mlを添加し、触媒成分含有溶液を得た。
(触媒成分含浸担体の調製)
こうして得た触媒成分溶液を、上記洗浄担体A12000gに、エバポレーター中で減圧下、40℃に加温し含浸した。
To the obtained silver complex solution, 100 ml of an aqueous solution having a cesium hydroxide monohydrate (CsOH.H 2 O) concentration of 11.7% by weight and an aqueous solution having an ammonium perrhenate (NH 4 ReO 4 ) concentration of 6.8% by weight 100 ml, 230 ml of an aqueous solution having a lithium hydroxide monohydrate (LiOH.H 2 O) concentration of 12.0% by weight, and 480 ml of deionized water were added to obtain a catalyst component-containing solution.
(Preparation of catalyst component impregnated carrier)
The catalyst component solution thus obtained was impregnated by heating to 40 ° C. under reduced pressure in an evaporator with 12,000 g of the above washing carrier A.

(触媒成分含浸担体の予備加熱)
触媒成分含浸担体を、200℃の過熱水蒸気中20分間、2m/秒の流速で焼成し、触媒前駆体を得た。
(酸素含有雰囲気加熱工程)
得られた触媒前駆体を、次いで空気雰囲気下にて加熱炉中で300℃、2.5時間加熱し、次いで、室温まで冷却し触媒を得た。得られた触媒における銀、セシウム、レニウム、リチウムの含有率(触媒基準)は、各々、12.0重量%、770重量ppm、370重量ppm、380重量ppmであった。また、銀1g当たりの銀表面積は2.4m/gであった。
(Preheating of catalyst component impregnated carrier)
The catalyst component-impregnated support was calcined in superheated steam at 200 ° C. for 20 minutes at a flow rate of 2 m / sec to obtain a catalyst precursor.
(Oxygen-containing atmosphere heating process)
The obtained catalyst precursor was then heated in a heating furnace at 300 ° C. for 2.5 hours under an air atmosphere, and then cooled to room temperature to obtain a catalyst. The contents of silver, cesium, rhenium, and lithium (catalyst standard) in the obtained catalyst were 12.0 wt%, 770 wtppm, 370 wtppm, and 380 wtppm, respectively. The silver surface area per 1 g of silver was 2.4 m 2 / g.

(エチレンオキシドの製造)
前記のように調製した触媒12.7Lを内径約40mmのカーボンスチール製反応管に充填し、反応ガス(エチレン30容量%、酸素8.0容量%、二酸化炭素3.0容量%、残り窒素)をGHSV4000hr−1、圧力1.8MPa(ゲージ圧力)で流した。また反応改変剤として、塩化ビニル等炭素数1〜3の塩素化合物を反応ガス中に添加した。反応改変剤の濃度はエチレンオキシド選択率が最大となるように調整した。反応温度は、触媒1L、1時間当たりのエチレンオキシド生産量(STY)が、0.19kg−EO/L−cat・hとなるように調整した(反応条件A)。反応結果を表2に示す。
(Manufacture of ethylene oxide)
12.7 L of the catalyst prepared as described above was charged into a carbon steel reaction tube having an inner diameter of about 40 mm, and a reaction gas (ethylene 30% by volume, oxygen 8.0% by volume, carbon dioxide 3.0% by volume, remaining nitrogen) At a pressure of 1.8 MPa (gauge pressure). As a reaction modifier, a chlorine compound having 1 to 3 carbon atoms such as vinyl chloride was added to the reaction gas. The concentration of the reaction modifier was adjusted so as to maximize the ethylene oxide selectivity. The reaction temperature was adjusted so that the amount of ethylene oxide produced per hour (STY) of the catalyst was 0.19 kg-EO / L-cat · h (reaction condition A). The reaction results are shown in Table 2.

[比較例1]
(担体処理)
実施例1と同様に担体Aに対し担体処理を実施し、担体処理を施された担体A 120
00gを得た。
(触媒成分溶液の調製)
硝酸銀(AgNO)2590 gとシュウ酸カリウム一水和物(K・H
O)1540 gを各々 11.5 L、13Lの水に溶解した後、湯浴中で60℃に加温しながら徐々に混合し、シュウ酸銀(AgC)の白色沈殿を得た。ろ別により沈殿物を回収後、脱イオン水で洗浄し、シュウ酸銀スラリー(含水率 18.7重量%)を得
た。こうして得たシュウ酸銀スラリー2949.9gをエチレンジアミン826g、1,3−ジアミノプロパン226g、及び水960gより成る水溶液に徐々に添加して溶解さ
せ、銀錯体溶液を調製した。この銀錯体溶液の比重は、1.65g/mlであった。
[Comparative Example 1]
(Carrier treatment)
In the same manner as in Example 1, carrier A was subjected to carrier treatment, and carrier A 120 subjected to carrier treatment was used.
00 g was obtained.
(Preparation of catalyst component solution)
Silver nitrate (AgNO 3 ) 2590 g and potassium oxalate monohydrate (K 2 C 2 O 4 .H 2
O) 1540 g was dissolved in 11.5 L and 13 L of water, respectively, and then gradually mixed while heating to 60 ° C. in a hot water bath to obtain a white precipitate of silver oxalate (AgC 2 O 4 ). . The precipitate was collected by filtration and then washed with deionized water to obtain a silver oxalate slurry (water content 18.7% by weight). The silver oxalate slurry 2949.9 g thus obtained was gradually added and dissolved in an aqueous solution consisting of 826 g of ethylenediamine, 226 g of 1,3-diaminopropane and 960 g of water to prepare a silver complex solution. The specific gravity of this silver complex solution was 1.65 g / ml.

得られた銀錯体溶液に、硝酸セシウム(CsNO)濃度13.3重量%の水溶液100ml、過レニウム酸アンモニウム(NHReO)濃度6.8重量%の水溶液100ml、硝酸リチウム(LiNO)濃度34.0重量%の水溶液100ml及び脱イオン水760mlを添加し、触媒成分含溶液を得た。
得られた触媒成分溶液を使用したこと以外は、実施例1と同様にして触媒前駆体を得た。
To the obtained silver complex solution, 100 ml of an aqueous solution with a cesium nitrate (CsNO 3 ) concentration of 13.3% by weight, 100 ml of an aqueous solution with an ammonium perrhenate (NH 4 ReO 4 ) concentration of 6.8 wt%, lithium nitrate (LiNO 3 ) 100 ml of an aqueous solution having a concentration of 34.0% by weight and 760 ml of deionized water were added to obtain a catalyst component-containing solution.
A catalyst precursor was obtained in the same manner as in Example 1 except that the obtained catalyst component solution was used.

(酸素含有雰囲気加熱工程)
触媒前駆体を、次いで空気雰囲気下にて加熱炉中で250℃、1.0時間加熱し、次いで、室温まで冷却し、触媒を得た。得られた触媒における銀、セシウム、レニウム、リチウムの含有率(触媒基準)は、各々、12.2重量%、810重量ppm、400重量ppm、390重量ppmであった。また、銀1g当たりの銀表面積は0.4m/gであった。実施例1と同様にエチレンオキシドの製造を行った結果を表2に示す。
(Oxygen-containing atmosphere heating process)
The catalyst precursor was then heated in an oven at 250 ° C. for 1.0 hour in an air atmosphere, and then cooled to room temperature to obtain a catalyst. The contents of silver, cesium, rhenium, and lithium (catalyst standard) in the obtained catalyst were 12.2 wt%, 810 wtppm, 400 wtppm, and 390 wtppm, respectively. Moreover, the silver surface area per 1g of silver was 0.4m < 2 > / g. The results of producing ethylene oxide in the same manner as in Example 1 are shown in Table 2.

[比較例2]
担体として、担体Bを用いたこと、及び酸素含有雰囲気加熱工程を施さなかったこと以外は比較例1と同様に触媒(触媒前駆体)を製造し、反応評価を行った。この触媒前駆体における銀、セシウム、レニウム、リチウムの含有率(触媒基準)は、各々、11.7重量%、740重量ppm、340重量ppm、350重量ppmであった。また、銀1g当たりの銀表面積は4.4m/gであった。実施例1と同様にエチレンオキシドの製造を行った結果を表2に示す。
[Comparative Example 2]
A catalyst (catalyst precursor) was produced in the same manner as in Comparative Example 1 except that the carrier B was used as the carrier and the oxygen-containing atmosphere heating step was not performed, and the reaction was evaluated. The contents of silver, cesium, rhenium, and lithium (catalyst standard) in the catalyst precursor were 11.7 wt%, 740 wt ppm, 340 wt ppm, and 350 wt ppm, respectively. The silver surface area per gram of silver was 4.4 m 2 / g. The results of producing ethylene oxide in the same manner as in Example 1 are shown in Table 2.

Figure 2013202592
Figure 2013202592

表2より、空気雰囲気下300℃で加熱し、銀表面積が2.4m/gとした実施例1では、空気雰囲気下250℃で加熱し銀表面積が0.4m/gである比較例1、酸素含有雰囲気加熱を実施せず銀表面積が4.4m/gとなった比較例2に比較して、エチレンオキシド選択率が高いことがわかる。
[実施例2]
実施例1と同様の触媒を6〜10メッシュに砕き、その3mlを内径7.5mmのSUS製反応管に充填し、反応ガス(エチレン30容量%、酸素8.5容量%、二酸化炭素3
.0容量%、残り窒素)をGHSV4300hr−1、圧力0.7MPaゲージで流した。また反応改変剤として、塩化ビニルを反応ガス中に添加した。反応改変剤の濃度はエチレンオキシド選択率が最大となるように調整した。反応温度は、触媒1L、1時間当たりのエチレンオキシド生産量(STY)が、0.2kg−EO/L−cat・hとなるように調整した(反応条件B)。反応結果を表3に示す。
From Table 2 that Comparative Example was heated in an air atmosphere at 300 ° C., in the first embodiment the silver surface area was 2.4 m 2 / g, the silver surface area heated under air atmosphere 250 ° C. is 0.4 m 2 / g 1. It turns out that ethylene oxide selectivity is high compared with the comparative example 2 which did not implement oxygen-containing atmosphere heating but the silver surface area became 4.4 m < 2 > / g.
[Example 2]
The same catalyst as in Example 1 was crushed to 6 to 10 mesh, and 3 ml of the catalyst was filled into a SUS reaction tube having an inner diameter of 7.5 mm, and reaction gas (ethylene 30 vol%, oxygen 8.5 vol%, carbon dioxide 3
. 0% by volume, remaining nitrogen) was flowed with GHSV 4300 hr-1, pressure 0.7 MPa gauge. Further, vinyl chloride was added to the reaction gas as a reaction modifier. The concentration of the reaction modifier was adjusted so as to maximize the ethylene oxide selectivity. The reaction temperature was adjusted so that the amount of ethylene oxide produced per hour (STY) of the catalyst was 0.2 kg-EO / L-cat · h (reaction condition B). The reaction results are shown in Table 3.

[実施例3]
(担体処理)
表1に示す担体A 100gを、炭酸セシウム(CsCO)0.08gと炭酸リチ
ウム(LiCO)1.67 gが溶解した水溶液200mlに浸漬させ、余分な液を切
り、次いで、これを150℃の過熱水蒸気にて15分間、2m/秒の流速で加熱乾燥し、リチウムとセシウム成分を担持した。
[Example 3]
(Carrier treatment)
100 g of support A shown in Table 1 was immersed in 200 ml of an aqueous solution in which 0.08 g of cesium carbonate (Cs 2 CO 3 ) and 1.67 g of lithium carbonate (Li 2 CO 3 ) were dissolved, and then the excess liquid was cut off. This was heated and dried with superheated steam at 150 ° C. for 15 minutes at a flow rate of 2 m / sec to carry lithium and cesium components.

(触媒成分溶液の調製)
比較例1と同様の方法にて銀錯体溶液を調製した。この銀錯体溶液の比重は、1.64g/mlであった。
得られた銀錯体溶液12.0gに、硝酸セシウム(CsNO)濃度5.5重量%の水溶液0.6ml、過レニウム酸アンモニウム(NHReO)濃度3.0重量%の水溶液0.6ml、及び脱イオン水1.3mlを添加し、触媒成分含有溶液を得た。
(Preparation of catalyst component solution)
A silver complex solution was prepared in the same manner as in Comparative Example 1. The specific gravity of this silver complex solution was 1.64 g / ml.
To 12.0 g of the obtained silver complex solution, 0.6 ml of an aqueous solution having a cesium nitrate (CsNO 3 ) concentration of 5.5% by weight, and 0.6 ml of an aqueous solution having an ammonium perrhenate (NH 4 ReO 4 ) concentration of 3.0% by weight. And 1.3 ml of deionized water were added to obtain a catalyst component-containing solution.

(触媒成分含浸担体の調製)
得られた触媒成分溶液を、前記担体処理を施した担体30gに、エバポレーター中で減圧下、40℃に加温し含浸した。
(予備加熱)
触媒成分含浸担体を、200℃の過熱水蒸気中15分間、2m/秒の流速で焼成し、触媒前駆体を得た。銀1g当たりの銀表面積は、8.3m/gであった。
(Preparation of catalyst component impregnated carrier)
The obtained catalyst component solution was impregnated by heating at 40 ° C. under reduced pressure in an evaporator with 30 g of the carrier treated as described above.
(Preheating)
The catalyst component-impregnated support was calcined in superheated steam at 200 ° C. for 15 minutes at a flow rate of 2 m / second to obtain a catalyst precursor. The silver surface area per gram of silver was 8.3 m 2 / g.

(酸素含有雰囲気加熱工程)
得られた触媒前駆体を、次いで空気雰囲気下にて加熱炉中で370℃、4.0時間加熱し、次いで、室温まで冷却し触媒を得た。得られた触媒における銀、セシウム、レニウム、リチウムの含有率(触媒基準)は、各々、11.6重量%、780重量ppm、360重量ppm、410重量ppmであった。また、銀1g当たりの銀表面積は3.5m/gであった。銀表面積は、上記加熱工程によって8.3m/gから3.5m/gに減少した。実施例2と同様にエチレンオキシドの製造を行った結果を表3に示す。
(Oxygen-containing atmosphere heating process)
The obtained catalyst precursor was then heated in an oven at 370 ° C. for 4.0 hours in a heating furnace, and then cooled to room temperature to obtain a catalyst. The contents of silver, cesium, rhenium, and lithium (catalyst standard) in the obtained catalyst were 11.6 wt%, 780 wtppm, 360 wtppm, and 410 wtppm, respectively. Moreover, the silver surface area per 1g of silver was 3.5m < 2 > / g. Silver surface area was decreased from 8.3 m 2 / g to 3.5 m 2 / g by the heating step. The results of producing ethylene oxide in the same manner as in Example 2 are shown in Table 3.

[比較例3]
酸素含有雰囲気加熱を実施しなかったことを除いて実施例3と同様に触媒を製造し触媒前駆体を得た。銀1g当たりの銀表面積は、8.3m/gであった。これを用いて反応評価を行った。反応結果を表3に示す。
[実施例4]
担体として表1に示す担体Cを用いたこと、担体前処理にて用いる炭酸セシウム(CsCO)、と炭酸リチウム(LiCO)がそれぞれ0.23g、2.33gであること以外は実施例3と同様に触媒を調製、酸素含有雰囲気加熱を施し、触媒を得た。得られた触媒における銀、セシウム、レニウム、リチウムの含有率(触媒基準)は、各々、11.8重量%、1000重量ppm、360重量ppm、650重量ppmであった。また、銀1g当たりの銀表面積は4.4m/gであった。実施例2と同様にエチレンオキシドの製造を行った結果を表3に示す。
[Comparative Example 3]
A catalyst was produced in the same manner as in Example 3 except that the oxygen-containing atmosphere heating was not performed to obtain a catalyst precursor. The silver surface area per gram of silver was 8.3 m 2 / g. Reaction evaluation was performed using this. The reaction results are shown in Table 3.
[Example 4]
Except that the carrier C shown in Table 1 was used as the carrier, and that cesium carbonate (Cs 2 CO 3 ) and lithium carbonate (Li 2 CO 3 ) used in the carrier pretreatment were 0.23 g and 2.33 g, respectively. Prepared a catalyst in the same manner as in Example 3 and heated in an oxygen-containing atmosphere to obtain a catalyst. The contents of silver, cesium, rhenium, and lithium (catalyst standard) in the obtained catalyst were 11.8 wt%, 1000 wtppm, 360 wtppm, and 650 wtppm, respectively. The silver surface area per gram of silver was 4.4 m 2 / g. The results of producing ethylene oxide in the same manner as in Example 2 are shown in Table 3.

[実施例5]
(担体処理)
表1に示す担体A 100gを、300mlの沸騰している脱イオン水中に20分間浸
漬し、担体の洗浄を実施した。次いで、担体を除去し、新たに300mlの沸騰水中に、更に20分間浸漬した。この手順を合計5回実施し、担体から水を分離し、次いで、これを150℃の過熱水蒸気にて15分間、2m/秒の流速で加熱乾燥した。
[Example 5]
(Carrier treatment)
The carrier A was washed by immersing 100 g of carrier A shown in Table 1 in 300 ml of boiling deionized water for 20 minutes. Subsequently, the support | carrier was removed and it immersed in 300 ml boiling water for another 20 minutes. This procedure was performed a total of 5 times to separate the water from the support, which was then heat dried with superheated steam at 150 ° C. for 15 minutes at a flow rate of 2 m / sec.

(触媒成分溶液の調製)
実施例1と同様の方法にて、銀錯体溶液を調製した。この銀錯体溶液の比重は、1.62g/mlであった。
得られた銀錯体溶液12.1gに、水酸化セシウム一水和物(CsOH・HO)濃度5.5重量%の水溶液0.6ml、過レニウム酸アンモニウム(NHReO)濃度3
.0重量%の水溶液0.6ml、水酸化リチウム一水和物(LiOH・HO)濃度13.1重量%の水溶液0.6ml、及び脱イオン水1.3mlを添加し、銀系成分含有溶液を得た。
(Preparation of catalyst component solution)
A silver complex solution was prepared in the same manner as in Example 1. The specific gravity of this silver complex solution was 1.62 g / ml.
To 12.1 g of the obtained silver complex solution, 0.6 ml of an aqueous solution containing 5.5% by weight of cesium hydroxide monohydrate (CsOH.H 2 O), ammonium perrhenate (NH 4 ReO 4 ) concentration of 3
. Add 0.6 ml of 0% by weight aqueous solution, 0.6 ml of lithium hydroxide monohydrate (LiOH.H 2 O) concentration of 13.1% by weight, and 1.3 ml of deionized water, and contain silver components A solution was obtained.

前記触媒成分溶液による触媒成分含浸担体の調製、触媒成分含浸担体の予備加熱を実施例3と同様に行った。酸素含有雰囲気加熱工程は、2.0時間としたこと以外は実施例3と同様に行い触媒を得た。得られた触媒における銀、セシウム、レニウム、リチウムの含有率(触媒基準)は、各々、12.0重量%、770重量ppm、360重量ppm、410重量ppmであった。また、銀1g当たりの銀表面積は2.6m/gであった。 実施例2と同様にエチレンオキシドの製造を行った結果を表3に示す。 Preparation of the catalyst component-impregnated support using the catalyst component solution and preheating of the catalyst component-impregnated support were performed in the same manner as in Example 3. The oxygen-containing atmosphere heating step was performed in the same manner as in Example 3 except that the heating time was 2.0 hours to obtain a catalyst. The contents of silver, cesium, rhenium, and lithium (catalyst standard) in the obtained catalyst were 12.0 wt%, 770 wtppm, 360 wtppm, and 410 wtppm, respectively. The silver surface area per gram of silver was 2.6 m 2 / g. The results of producing ethylene oxide in the same manner as in Example 2 are shown in Table 3.

Figure 2013202592
Figure 2013202592

表3より、空気雰囲気下300℃で加熱し、銀表面積が2.4m/gである実施例2(実施例1と同様の触媒)は、酸素含有雰囲気加熱を実施せず銀表面積が8.3m/gなった比較例3に比較して、エチレンオキシド選択率が高いことがわかる。反応条件Bにおいても、反応条件A(表2)と同様の効果が確認される。一方、空気雰囲気下370℃で加熱し、銀表面積が2.6〜4.4m/gである実施例3〜5でも、酸素含有雰囲気加熱を実施せず銀表面積が8.3m/gとなった比較例3に比較して、エチレンオキシド選択率が高かった。空気雰囲気下370℃で加熱した場合、加熱時間4.0時間であり、担体処理として、Li、Csを担持した実施例3、4の方が、加熱時間2.0時間の実施例5よりも選択率が高かった。 From Table 3, Example 2 (catalyst similar to Example 1) heated at 300 ° C. in an air atmosphere and having a silver surface area of 2.4 m 2 / g did not perform oxygen-containing atmosphere heating and had a silver surface area of 8 It can be seen that the ethylene oxide selectivity is higher than that of Comparative Example 3 which is .3 m 2 / g. Also in the reaction condition B, the same effect as in the reaction condition A (Table 2) is confirmed. On the other hand, was heated under 370 ° C. air atmosphere, silver surface area in Embodiment 3-5 is 2.6~4.4m 2 / g, the silver surface area without performing an oxygen-containing atmosphere heating 8.3 m 2 / g Compared with Comparative Example 3 that was, the ethylene oxide selectivity was high. When heated at 370 ° C. in an air atmosphere, the heating time is 4.0 hours, and in Examples 3 and 4 supporting Li and Cs as the carrier treatment, the heating time is 2.0 hours compared to Example 5 where the heating time is 2.0 hours. The selectivity was high.

Claims (5)

銀、レニウムを含有する溶液を、Si含有率がSiO換算で0.1〜4.5重量%であり、Na含有率がNaO換算で0.01〜0.4重量%であり、比表面積が0.5〜3.0m/gであるアルミナ担体に含浸させ、酸素を5〜30%含有した雰囲気中にて275〜450℃で加熱することにより得られる、銀の含有率が5.0〜30.0重量%であり、下記式(I)で定義される銀1g当たりの銀表面積が0.5〜7.0m/gであることを特徴とする、エチレンオキシド製造用触媒の製造方法。
(I) 銀1g当たりの銀表面積={触媒比表面積−担体比表面積×(1-銀含有率)}/銀含有率
Silver, a solution containing the rhenium, Si content of from 0.1 to 4.5 wt% in terms of SiO 2, Na content of from 0.01 to 0.4 wt% in terms of Na 2 O, The silver content obtained by impregnating an alumina carrier having a specific surface area of 0.5 to 3.0 m 2 / g and heating at 275 to 450 ° C. in an atmosphere containing 5 to 30% oxygen. A catalyst for ethylene oxide production, characterized in that it is 5.0 to 30.0% by weight, and the silver surface area per 1 g of silver defined by the following formula (I) is 0.5 to 7.0 m 2 / g. Manufacturing method.
(I) Silver surface area per 1 g of silver = {catalyst specific surface area−support specific surface area × (1−silver content)} / silver content
酸素を5〜30%含有した雰囲気中にて275〜450℃で加熱する時間が1〜50時間であることを特徴とする請求項1に記載のエチレンオキシド製造用触媒の製造方法。   The method for producing an ethylene oxide production catalyst according to claim 1, wherein the time for heating at 275 to 450 ° C in an atmosphere containing 5 to 30% oxygen is 1 to 50 hours. 銀、レニウムを含浸する前に予めアルミナ担体を洗浄、または、予めアルミナ担体にアルカリ金属を担持させることを特徴とする請求項1または2に記載のエチレンオキシド製造用触媒の製造方法。   The method for producing an ethylene oxide production catalyst according to claim 1 or 2, wherein the alumina support is washed in advance before impregnation with silver or rhenium, or an alkali metal is supported on the alumina support in advance. 銀、レニウムを含有する溶液を含浸したアルミナ担体を、酸素含有雰囲気中にて275〜450℃で加熱する前に予め100〜250℃で加熱することを特徴とする請求項1〜3のいずれか1項に記載のエチレンオキシド製造用触媒の製造方法。   The alumina carrier impregnated with a solution containing silver and rhenium is heated at 100 to 250 ° C in advance before being heated at 275 to 450 ° C in an oxygen-containing atmosphere. 2. A process for producing a catalyst for producing ethylene oxide according to item 1. 請求項1〜4のいずれか1項に記載の製造方法により製造されたエチレンオキシド製造用触媒によるエチレンオキシド製造方法。   The manufacturing method of ethylene oxide by the catalyst for ethylene oxide manufacture manufactured by the manufacturing method of any one of Claims 1-4.
JP2012077465A 2012-03-29 2012-03-29 Catalyst for ethylene oxide production and method for production of ethylene oxide Pending JP2013202592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012077465A JP2013202592A (en) 2012-03-29 2012-03-29 Catalyst for ethylene oxide production and method for production of ethylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012077465A JP2013202592A (en) 2012-03-29 2012-03-29 Catalyst for ethylene oxide production and method for production of ethylene oxide

Publications (1)

Publication Number Publication Date
JP2013202592A true JP2013202592A (en) 2013-10-07

Family

ID=49522291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012077465A Pending JP2013202592A (en) 2012-03-29 2012-03-29 Catalyst for ethylene oxide production and method for production of ethylene oxide

Country Status (1)

Country Link
JP (1) JP2013202592A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514029A (en) * 2017-01-05 2020-05-21 サイエンティフィック・デザイン・カンパニー・インコーポレーテッドScientific Design Company Incorporated Support, catalyst, method for producing them, and method for producing ethylene oxide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047851A (en) * 2001-08-03 2003-02-18 Nippon Shokubai Co Ltd Catalyst for producing ethylene oxide, method of producing the catalyst and method of producing ethylene oxide using the catalyst
JP2007301553A (en) * 2006-04-10 2007-11-22 Mitsubishi Chemicals Corp Catalyst for manufacturing ethylene oxide and its manufacturing method and manufacturing method for ethylene oxide
WO2009088040A1 (en) * 2008-01-11 2009-07-16 Nippon Shokubai Co., Ltd. Catalyst for production of ethylene oxide, and process for production of ethylene oxide
JP2009241002A (en) * 2008-03-31 2009-10-22 Nippon Shokubai Co Ltd Catalyst for manufacturing ethylene oxide and method for manufacturing ethylene oxide using the catalyst
JP2010082515A (en) * 2008-09-30 2010-04-15 Nippon Shokubai Co Ltd Catalyst for producing ethylene oxide and method for producing ethylene oxide by using the same
JP2010234264A (en) * 2009-03-31 2010-10-21 Nippon Shokubai Co Ltd Catalyst for producing ethylene oxide and method for producing ethylene oxide
US20110196162A1 (en) * 2008-10-08 2011-08-11 Basf Se Method for producing an alkylene oxide
JP2011206669A (en) * 2010-03-30 2011-10-20 Nippon Shokubai Co Ltd Catalyst for manufacturing ethylene oxide, and method for manufacturing ethylene oxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047851A (en) * 2001-08-03 2003-02-18 Nippon Shokubai Co Ltd Catalyst for producing ethylene oxide, method of producing the catalyst and method of producing ethylene oxide using the catalyst
JP2007301553A (en) * 2006-04-10 2007-11-22 Mitsubishi Chemicals Corp Catalyst for manufacturing ethylene oxide and its manufacturing method and manufacturing method for ethylene oxide
WO2009088040A1 (en) * 2008-01-11 2009-07-16 Nippon Shokubai Co., Ltd. Catalyst for production of ethylene oxide, and process for production of ethylene oxide
JP2009241002A (en) * 2008-03-31 2009-10-22 Nippon Shokubai Co Ltd Catalyst for manufacturing ethylene oxide and method for manufacturing ethylene oxide using the catalyst
JP2010082515A (en) * 2008-09-30 2010-04-15 Nippon Shokubai Co Ltd Catalyst for producing ethylene oxide and method for producing ethylene oxide by using the same
US20110196162A1 (en) * 2008-10-08 2011-08-11 Basf Se Method for producing an alkylene oxide
JP2010234264A (en) * 2009-03-31 2010-10-21 Nippon Shokubai Co Ltd Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2011206669A (en) * 2010-03-30 2011-10-20 Nippon Shokubai Co Ltd Catalyst for manufacturing ethylene oxide, and method for manufacturing ethylene oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514029A (en) * 2017-01-05 2020-05-21 サイエンティフィック・デザイン・カンパニー・インコーポレーテッドScientific Design Company Incorporated Support, catalyst, method for producing them, and method for producing ethylene oxide

Similar Documents

Publication Publication Date Title
KR102155068B1 (en) Start-up process for high selectivity ethylene oxide catalysts
EP1492619B1 (en) Ethylene oxide catalyst
US8546297B2 (en) Method for preparing an epoxidation catalyst
TWI621478B (en) Calcination process for producing an improved ethylene oxide catalyst
JP2008540098A (en) Firing in an inert gas in the presence of low concentrations of oxidizing components
KR20100072042A (en) Process for initiating a highly selective ethylene oxide catalyst
TWI485142B (en) A process for initiating a highly selective ethylene oxide catalyst
EP3079810A1 (en) Catalyst for the epoxidation of alkenes
JP2014510697A (en) Method for improving the selectivity of an EO catalyst
KR102197292B1 (en) Carrier treatment to improve catalytic performance of an ethylene oxide catalyst
KR102232620B1 (en) Silver-based ethylene oxide catalyst having reduced sodium content
JP2013202592A (en) Catalyst for ethylene oxide production and method for production of ethylene oxide
JP5211924B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2014188462A (en) Method for producing catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2015199060A (en) Catalyst support for production of ethylene oxide from ethylene and catalyst production method
JP2016165697A (en) Ethylene oxide production catalyst and method for producing ethylene oxide using the same
JP2015047583A (en) Catalyst for producing ethylene oxide, and production method of ethylene oxide
JP2016165696A (en) Ethylene oxide production catalyst and method for producing ethylene oxide using the same
JP5165441B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP2006524129A (en) Ethylene oxide catalyst
JP2021062340A (en) Catalyst for ethylene oxide production
JP2015199059A (en) Catalyst support for production of ethylene oxide from ethylene and catalyst production method
JP2007301554A (en) Catalyst for manufacturing ethylene oxide and its manufacturing method and manufacturing method for ethylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150825