JP2010082515A - Catalyst for producing ethylene oxide and method for producing ethylene oxide by using the same - Google Patents

Catalyst for producing ethylene oxide and method for producing ethylene oxide by using the same Download PDF

Info

Publication number
JP2010082515A
JP2010082515A JP2008252248A JP2008252248A JP2010082515A JP 2010082515 A JP2010082515 A JP 2010082515A JP 2008252248 A JP2008252248 A JP 2008252248A JP 2008252248 A JP2008252248 A JP 2008252248A JP 2010082515 A JP2010082515 A JP 2010082515A
Authority
JP
Japan
Prior art keywords
catalyst
ethylene oxide
carrier
silver
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008252248A
Other languages
Japanese (ja)
Other versions
JP5258485B2 (en
Inventor
Jun Sento
準 仙頭
Takaaki Hashimoto
高明 橋本
Masahide Shima
昌秀 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008252248A priority Critical patent/JP5258485B2/en
Publication of JP2010082515A publication Critical patent/JP2010082515A/en
Application granted granted Critical
Publication of JP5258485B2 publication Critical patent/JP5258485B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst capable of producing ethylene oxide with high selectivity, in the catalyst for producing ethylene oxide contained silver and at the least rhenium as catalyst components on the carrier, and method for producing ethylene oxide, and to provide a method for producing ethylene oxide by using the catalyst for producing ethylene oxide. <P>SOLUTION: The catalyst for producing ethylene oxide is obtained by depositing the catalyst components on a carrier. The carrier consists α-alumina as principal component and contains 0.01-0.09 mmol/g acid content measured by NH<SB>3</SB>-TPD method. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、担体に触媒成分として銀および少なくともレニウムを含むエチレンオキシド製造用触媒(以下、単に「銀触媒」と称する場合もある)およびエチレンオキシドの製造方法に関する。詳細には、本発明は、エチレンオキシド選択性に優れ、高い選択率でエチレンオキシドを製造しうる触媒およびこの触媒を用いたエチレンオキシドの製造方法に関する。 The present invention relates to a catalyst for producing ethylene oxide containing silver and at least rhenium as catalyst components on a support (hereinafter sometimes simply referred to as “silver catalyst”) and a method for producing ethylene oxide. Specifically, the present invention relates to a catalyst that is excellent in ethylene oxide selectivity and can produce ethylene oxide with high selectivity, and a method for producing ethylene oxide using the catalyst.

エチレンを銀触媒の存在下で分子状酸素含有ガスにより接触気相酸化してエチレンオキシドを製造することは工業的に広く行われている。この接触気相酸化に用いる銀触媒については、その担体、担持方法、反応促進剤などに関し、多くの技術が提案されている。   It is widely used industrially to produce ethylene oxide by catalytic vapor phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst. With regard to the silver catalyst used for the catalytic gas phase oxidation, many techniques have been proposed regarding its carrier, supporting method, reaction accelerator and the like.

触媒を構成する担体に関してその化学的な性質を開示した特許文献としては、例えば、特許文献1にはアルミナ、シリカ、及びチタニアの合計含有量が99質量%以上であり、周期律表のVa、VIa、VIIa、VIII、Ib及びIIbの各族の金属の含有量が金属酸化物合計量として0.1質量%未満であり、かつpKaが+4.8のメチルレッドにより酸性色を呈しない非酸性担体が開示され、この担体に銀及び必要に応じてさらにアルカリ金属成分又はアルカリ土類成分を担持してなる銀触媒が開示されている。   As a patent document disclosing the chemical properties of the carrier constituting the catalyst, for example, Patent Document 1 discloses that the total content of alumina, silica, and titania is 99% by mass or more, Va in the periodic table, Non-acidic that does not exhibit an acidic color due to methyl red having a metal content of each group of VIa, VIIa, VIII, Ib and IIb less than 0.1% by mass as a total amount of metal oxides and pKa of +4.8 A support is disclosed, and a silver catalyst is disclosed in which silver and, if necessary, an alkali metal component or an alkaline earth component are further supported on the support.

一方、特許文献2には、主としてα−アルミナよりなり、特定の表面積、吸水率、平均細孔径、シリカ含量、およびナトリウム含量を持ち、pKa+4.8の指示薬によって検知しうる酸性を示す担体が開示されている。特許文献3にはアルミニウム、ケイ素およびチタンを含み、その合計量が酸化物(Al23+SiO2+TiO2)換算で少なくとも99重量%であり、かつpKa+4.8指示薬のメチルレッドにより酸性色を呈するセラミックス体の成形体に触媒成分として銀とセシウムを担持した酸化エチレン製造用触媒が開示されている。 On the other hand, Patent Document 2 discloses a carrier mainly composed of α-alumina, having a specific surface area, water absorption, average pore diameter, silica content, and sodium content and exhibiting acidity that can be detected by an indicator of pKa + 4.8. Has been. Patent Document 3 contains aluminum, silicon, and titanium, the total amount of which is at least 99% by weight in terms of oxide (Al 2 O 3 + SiO 2 + TiO 2 ), and an acidic color with pKa + 4.8 indicator methyl red. A catalyst for producing ethylene oxide in which silver and cesium are supported as catalyst components on a formed ceramic body is disclosed.

特許文献4には、炭素数3以上の不飽和炭化水素を部分酸化して対応のエポキシドを製造する際に好適な触媒として、支持体として酸化ケイ素等にチタン、または、ジルコニウムの少なくとも一方を含有する酸化物を含んでなる担体を用い、これに金微粒子が固定されてなり、NH −TPD法にてもとめた触媒の有する酸量が0.1mmol/g以下であるエポキシド製造用金触媒が開示されている。 Patent Document 4 contains at least one of titanium or zirconium in silicon oxide as a support as a catalyst suitable for producing a corresponding epoxide by partially oxidizing an unsaturated hydrocarbon having 3 or more carbon atoms. And a gold catalyst for producing an epoxide having an acid amount of 0.1 mmol / g or less having a catalyst obtained by NH 3 -TPD method, in which gold fine particles are fixed thereto. It is disclosed.

銀触媒の触媒活性、選択性および触媒寿命はすでに高いレベルに達しているが、エチレンオキシドの生産規模は大きいことから、選択率が僅か1%向上するだけでも、原料エチレンの使用量が著しく節約され、その経済的効果は大きいことから、より優れた触媒性能を有する銀触媒の開発が当該技術分野の研究者の継続的なテーマとなっている。   Although the catalytic activity, selectivity and catalyst life of silver catalysts have already reached high levels, the ethylene oxide production scale is large, so even if the selectivity is improved by only 1%, the amount of raw ethylene used can be significantly saved. Because of its great economic effects, the development of silver catalysts with better catalytic performance has been a continuing theme for researchers in the art.

しかしながら、上述の通り、不飽和炭化水素の部分酸化に用いられる触媒は対象となる不飽和炭化水素の種類によって活性種となる金属やその他の触媒組成がまったく異なっているため、例えば、炭素数3の不飽和炭化水素のエポキシ化触媒である金触媒の技術をエチレンのエポキシ化用の銀触媒に応用することは容易ではなかった。また、エチレンの部分酸化に用いられる銀触媒においても、さまざまな酸性を有する担体が提案されているとおり、どのような担体が銀触媒用の担体として有用であるかについては検討の余地があった。   However, as described above, the catalyst used for the partial oxidation of the unsaturated hydrocarbon is completely different in the active metal and other catalyst composition depending on the type of the unsaturated hydrocarbon to be used. It was not easy to apply the technology of gold catalysts, which are epoxidation catalysts of unsaturated hydrocarbons, to silver catalysts for the epoxidation of ethylene. In addition, in the silver catalyst used for the partial oxidation of ethylene, there is room for study as to what kind of support is useful as a support for the silver catalyst, as supports having various acidic properties have been proposed. .

特開昭55−145677号公報JP-A-55-145679 特開昭63−116743号公報JP 63-116743 A 特開2001−213665号公報JP 2001-213665 A 特開2001−232194号公報JP 2001-232194 A

そこで本発明は、高選択率でエチレンオキシドを製造しうる触媒およびこの触媒を用いたエチレンオキシドの製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a catalyst capable of producing ethylene oxide with high selectivity and a method for producing ethylene oxide using the catalyst.

本発明者らは、上述した課題を解決すべく鋭意研究を行った。その結果、触媒を構成する担体として、α−アルミナを主成分とし、比表面積が2m/g未満であり、かつNH−TPD法によってもとめた酸量が0.01から0.09mmol/gの範囲に存在する担体を用いることで、エチレンオキシドを高選択率で製造可能なエチレンオキシド製造用触媒が提供されうることを見出し、本発明を完成させるに至った。 The present inventors have conducted intensive research to solve the above-described problems. As a result, as a support constituting the catalyst, α-alumina is the main component, the specific surface area is less than 2 m 2 / g, and the acid amount determined by the NH 3 -TPD method is 0.01 to 0.09 mmol / g. It has been found that by using a carrier present in the range, an ethylene oxide production catalyst capable of producing ethylene oxide with high selectivity can be provided, and the present invention has been completed.

すなわち、本発明は、α−アルミナを主成分とし、比表面積が2m/g未満であり、かつNH−TPD法によってもとめた酸量が0.01から0.09mmol/gの範囲に存在する担体に、触媒成分を担持させてなる、エチレンオキシド製造用触媒およびこの触媒を用いたエチレンオキシドの製造方法である。 That is, the present invention has α-alumina as a main component, a specific surface area of less than 2 m 2 / g, and an acid amount determined by the NH 3 -TPD method in the range of 0.01 to 0.09 mmol / g. The catalyst for carrying | supporting a catalyst component on the support | carrier which carries out, and the manufacturing method of ethylene oxide using this catalyst.

本発明によれば、優れた触媒性能を有し、長期に亘って(優れた触媒寿命で)高選択率でエチレンオキシドを製造しうる触媒およびこの触媒を用いたエチレンオキシドの製造方法が提供されうる。   ADVANTAGE OF THE INVENTION According to this invention, it has the outstanding catalyst performance, The catalyst which can produce ethylene oxide with high selectivity over a long period (with the outstanding catalyst lifetime), and the manufacturing method of ethylene oxide using this catalyst can be provided.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明は、α−アルミナを主成分とし、比表面積が2m/g未満であり、かつNH−TPD法によってもとめた酸量が0.01から0.09mmol/gの範囲に存在する担体に、触媒成分を担持させてなるエチレンオキシド製造用触媒およびこの触媒を用いたエチレンオキシドの製造方法である。はじめに、本発明における担体の有する「酸量」の定義及び測定方法について説明を行う。 The present invention provides a carrier comprising α-alumina as a main component, a specific surface area of less than 2 m 2 / g, and an acid amount determined by the NH 3 -TPD method in the range of 0.01 to 0.09 mmol / g. And a catalyst for producing ethylene oxide in which a catalyst component is supported, and a method for producing ethylene oxide using the catalyst. First, the definition and measurement method of the “acid amount” of the carrier in the present invention will be described.

酸量の測定は、BEL−CAT(日本ベル社製の商品名)を測定装置として使用し、次の要領で行った。はじめに、酸量測定の対象物(以下、被測定体と称する)約0.5gを正確にはかり採り、被測定体を該測定装置内に導入した。続いて、この測定装置内に流量50ml/分でヘリウムガスを流通させながら300℃で60分間保持し、被測定体に吸着している水を取り除いた。その後、測定装置内の温度を100℃まで下げ、100℃、0.1Mpa(1atm)の条件下で、アンモニア/ヘリウム=10%/90%の混合ガスを50ml/分で30分間流通させ、アンモニアを被測定体に吸着させた。続いて、流量50ml/分でヘリウムガスを流通させながら測定装置内の温度を10℃/分の昇温速度で100℃から600℃まで昇温し、その間に脱離するアンモニアをTCD(熱伝導度検出器)にて定量した。測定の際、TCDの感度はHiに設定した。本発明における「酸量」とは、昇温中100℃から300℃の温度範囲内に脱離ピークを有する脱離アンモニアのモル数(mmol)を被測定体の重量(g)で除した値をさすものとする。なお、上記説明のアンモニア脱離量の測定方法を、以下、NH3 −TPD法と称する場合もある。 The acid amount was measured using BEL-CAT (trade name, manufactured by Nippon Bell Co., Ltd.) as a measuring device in the following manner. First, about 0.5 g of an object for acid amount measurement (hereinafter referred to as a measured object) was accurately weighed and the measured object was introduced into the measuring apparatus. Subsequently, the helium gas was circulated in the measuring apparatus at a flow rate of 50 ml / min and held at 300 ° C. for 60 minutes to remove water adsorbed on the object to be measured. Thereafter, the temperature in the measuring apparatus is lowered to 100 ° C., and a mixed gas of ammonia / helium = 10% / 90% is circulated at 50 ml / min for 30 minutes under the conditions of 100 ° C. and 0.1 Mpa (1 atm). Was adsorbed to the object to be measured. Subsequently, while flowing helium gas at a flow rate of 50 ml / min, the temperature in the measuring device is raised from 100 ° C. to 600 ° C. at a rate of temperature increase of 10 ° C./min. Quantified with a degree detector). At the time of measurement, the sensitivity of TCD was set to Hi. The “acid amount” in the present invention is a value obtained by dividing the number of moles (mmol) of desorbed ammonia having a desorption peak within a temperature range of 100 ° C. to 300 ° C. during the temperature increase by the weight (g) of the measured object. Shall be referred to. The method for measuring the amount of desorbed ammonia described above may hereinafter be referred to as the NH 3 -TPD method.

上記α−アルミナを主成分とする担体の酸量が0.01から0.09mmol/gの場合には、エチレンの部分酸化反応に対する触媒活性が高く、エチレンオキシドを高収率かつ高選択率で製造することが可能である。加えて良好な触媒活性が従来担体と比較して長期間維持される。   When the acid amount of the carrier mainly composed of α-alumina is 0.01 to 0.09 mmol / g, the catalytic activity for the partial oxidation reaction of ethylene is high, and ethylene oxide is produced with high yield and high selectivity. Is possible. In addition, good catalytic activity is maintained for a long period of time compared to conventional carriers.

一方、上記α−アルミナを主成分とする担体の酸量が0.01mmol/g未満の場合は、触媒調製の再現性が著しく低下し、0.09mmol/gを超える場合には、触媒活性が低くなるだけでなく、エチレンオキシドの選択率が著しく低下する。   On the other hand, when the acid amount of the carrier containing α-alumina as a main component is less than 0.01 mmol / g, the reproducibility of catalyst preparation is remarkably reduced, and when it exceeds 0.09 mmol / g, the catalytic activity is low. Not only is it lowered, but the selectivity of ethylene oxide is significantly reduced.

なお、銀触媒の活性発現やエポキシド選択性の度合いは、上記説明のように、その酸点の性質の中でも酸量に特に大きく影響されるが、酸点の性質の他の尺度である「酸点の強度」にも影響される。具体的には、上記NH3 −TPD法において、脱離してくるアンモニアの脱離ピーク温度が300℃以下であることがより好ましい。このピーク温度が300℃を超えると酸点の強度が強くなり過ぎるため生成したエポキシドの異性化や燃焼が起こりやすくなる。 As described above, the silver catalyst activity expression and the degree of epoxide selectivity are greatly influenced by the amount of acid among the properties of the acid sites. It is also influenced by “point intensity”. Specifically, in the NH 3 -TPD method, the desorption peak temperature of ammonia desorbing is more preferably 300 ° C. or lower. When the peak temperature exceeds 300 ° C., the strength of the acid point becomes too strong, and isomerization and combustion of the generated epoxide easily occur.

担体の組成については、α−アルミナを主成分とすること以外は特に制限されない。ここで、担体が「α−アルミナを主成分とする」とは、担体におけるα−アルミナの含有量が、担体の全質量100質量%に対して90質量%以上であることを意味する。担体におけるα−アルミナの含有量は、好ましくは95質量%以上であり、より好ましくは98質量%以上である。α−アルミナを主成分とするものであればその他の組成は特に制限されないが、担体は、例えばアルカリ金属またはアルカリ土類金属の酸化物や遷移金属の酸化物を含有しうる。アルカリ金属またはアルカリ土類金属の酸化物の含有量は、酸化物換算で好ましくは0〜5質量%であり、より好ましくは0.01〜4質量%である。また、遷移金属の酸化物の含有量は、酸化物換算で好ましくは0〜5質量%であり、より好ましくは0.01〜3質量%である。   The composition of the carrier is not particularly limited except that α-alumina is the main component. Here, the carrier “having α-alumina as a main component” means that the content of α-alumina in the carrier is 90% by mass or more with respect to 100% by mass of the total mass of the carrier. The content of α-alumina in the support is preferably 95% by mass or more, and more preferably 98% by mass or more. The other composition is not particularly limited as long as it has α-alumina as a main component, but the support can contain, for example, an oxide of an alkali metal or alkaline earth metal or an oxide of a transition metal. The content of the alkali metal or alkaline earth metal oxide is preferably 0 to 5% by mass, more preferably 0.01 to 4% by mass in terms of oxide. The content of the transition metal oxide is preferably 0 to 5% by mass, more preferably 0.01 to 3% by mass in terms of oxide.

担体はまた、シリカ(二酸化ケイ素)を通常含有する。担体におけるシリカの含有量についても特に制限はないが、好ましくは0.01〜10.0質量%であり、より好ましくは0.1〜5.0質量%であり、さらに好ましくは0.2〜3.0質量%である。   The support also usually contains silica (silicon dioxide). Although there is no restriction | limiting in particular also about content of the silica in a support | carrier, Preferably it is 0.01-10.0 mass%, More preferably, it is 0.1-5.0 mass%, More preferably, it is 0.2- 3.0% by mass.

なお、上述した担体の組成や各成分の含有量は、蛍光X線分析法を用いて決定されうる。   The composition of the carrier and the content of each component described above can be determined using a fluorescent X-ray analysis method.

担体の形状は特に制限されず、リング状、球状、円柱状、ペレット状のほか、従来公知の知見が適宜参照されうる。また、担体のサイズ(平均相当直径)についても特に制限はなく、好ましくは3〜20mmであり、より好ましくは5〜10mmである。   The shape of the carrier is not particularly limited, and conventionally known knowledge can be appropriately referred to in addition to a ring shape, a spherical shape, a cylindrical shape, and a pellet shape. Moreover, there is no restriction | limiting in particular also about the size (average equivalent diameter) of a support | carrier, Preferably it is 3-20 mm, More preferably, it is 5-10 mm.

担体原料であるα−アルミナ粉体の一次粒子径は、好ましくは0.01〜100μmであり、より好ましくは0.1〜20μmであり、さらに好ましくは0.5〜10μmであり、特に好ましくは1〜5μmである。また、α−アルミナ粉体の二次粒子径は、好ましくは0.1〜1,000μmであり、より好ましくは1〜500μmであり、さらに好ましくは10〜200μmであり、特に好ましくは30〜100μmである。   The primary particle diameter of the α-alumina powder as the carrier material is preferably 0.01 to 100 μm, more preferably 0.1 to 20 μm, still more preferably 0.5 to 10 μm, and particularly preferably. 1-5 μm. The secondary particle size of the α-alumina powder is preferably 0.1 to 1,000 μm, more preferably 1 to 500 μm, still more preferably 10 to 200 μm, and particularly preferably 30 to 100 μm. It is.

担体の比表面積は、本発明の効果を得るために重要な因子であり、0.1〜5.0m/gであることが好ましい。α−アルミナの表面やα−アルミナと非晶質のアルミナおよび/またはシリカとの界面などに微弱な酸点が存在していると考えられ、比表面積と酸量のバランスは重要である。比表面積が0.1m/gより小さいと選択性が低下し、5.0m/gより大きいと極端な選択率の低下が起こる。さらに、担体の比表面積が0.1m/g以上であれば、必要な量の触媒成分の担持も可能となり、担体の比表面積が大きいほど触媒成分の高分散担持が容易になる。また、触媒反応の活性部位である触媒成分表面の面積が大きくなるので、好ましい。一方、担体の比表面積が5.0m/g以下であれば、担体の細孔径がある程度大きい値に維持され、製造された触媒を用いたエチレンオキシド製造時のエチレンオキシドの逐次酸化が抑制されうる。担体の比表面積は、より好ましくは0.5〜5.0m/gであり、さらに好ましくは0.8〜2.0m/gである。なお、担体の比表面積の値としては、後述する実施例に記載の手法により得られる値を採用するものとする。 The specific surface area of the carrier is an important factor for obtaining the effects of the present invention, and is preferably 0.1 to 5.0 m 2 / g. It is considered that weak acid sites exist on the surface of α-alumina and the interface between α-alumina and amorphous alumina and / or silica, and the balance between the specific surface area and the acid amount is important. When the specific surface area is smaller than 0.1 m 2 / g, the selectivity is lowered, and when it is larger than 5.0 m 2 / g, the extreme selectivity is lowered. Furthermore, if the specific surface area of the support is 0.1 m 2 / g or more, a necessary amount of the catalyst component can be supported. The larger the specific surface area of the support, the easier the highly dispersed support of the catalyst component becomes. Moreover, since the area of the catalyst component surface which is an active site of a catalytic reaction becomes large, it is preferable. On the other hand, if the specific surface area of the carrier is 5.0 m 2 / g or less, the pore diameter of the carrier is maintained at a certain value, and the sequential oxidation of ethylene oxide during the production of ethylene oxide using the produced catalyst can be suppressed. The specific surface area of the support is more preferably 0.5~5.0m 2 / g, more preferably from 0.8~2.0m 2 / g. In addition, as a value of the specific surface area of a support | carrier, the value obtained by the method as described in the Example mentioned later shall be employ | adopted.

担体の細孔容積は特に制限されないが、好ましくは0.2〜0.6cm/gであり、より好ましくは0.3〜0.5cm/gであり、さらに好ましくは0.35〜0.45cm/gである。担体の細孔容積が0.2cm/g以上であれば、触媒成分の担持が容易となるという点で好ましい。一方、担体の細孔容積が0.6cm/g以下であれば、担体の強度が実用的な程度に確保されうるという点で好ましい。なお、担体の細孔容積の値としては、後述する実施例に記載の手法により得られる値を採用するものとする。 The pore volume of the carrier is not particularly limited, but is preferably 0.2 to 0.6 cm 3 / g, more preferably 0.3 to 0.5 cm 3 / g, and further preferably 0.35 to 0. .45 cm 3 / g. A pore volume of the support of 0.2 cm 3 / g or more is preferable in that the catalyst component can be easily supported. On the other hand, if the pore volume of the carrier is 0.6 cm 3 / g or less, it is preferable in that the strength of the carrier can be ensured to a practical level. In addition, as a value of the pore volume of the carrier, a value obtained by the method described in Examples described later is adopted.

上述した担体の細孔容積のうち、所定の細孔直径を有する細孔の容積の割合が所定の範囲内の値であると、より触媒性能に優れるエチレンオキシド製造用触媒が提供されうる。具体的には、0.1〜1.0μmの範囲の細孔直径を有する細孔が、全細孔容積の合計の、好ましくは5〜50容積%であり、より好ましくは10〜45容積%であり、さらに好ましくは15〜35容積%、特に好ましくは15〜30容積%である。   When the ratio of the volume of pores having a predetermined pore diameter in the pore volume of the carrier described above is a value within a predetermined range, a catalyst for producing ethylene oxide having more excellent catalyst performance can be provided. Specifically, pores having a pore diameter in the range of 0.1 to 1.0 μm are preferably 5 to 50% by volume, more preferably 10 to 45% by volume, based on the total pore volume. More preferably, it is 15 to 35% by volume, particularly preferably 15 to 30% by volume.

担体の平均細孔直径は、0.1〜10μmであることが好ましく、より好ましくは0.2〜4.0μmであり、さらに好ましくは0.3〜3.0μmであり、特に好ましくは0.4〜1.5μmである。平均細孔直径が0.1μm以上であれば、エチレンオキシド製造時の生成ガスの滞留に伴うエチレンオキシドの逐次酸化が抑制されうる。一方、平均細孔直径が10μm以下であれば、担体の強度が実用的な程度に確保されうる。なお、平均細孔直径の値としては、後述する実施例に記載の手法により得られる値を採用するものとする。   The average pore diameter of the support is preferably from 0.1 to 10 μm, more preferably from 0.2 to 4.0 μm, still more preferably from 0.3 to 3.0 μm, particularly preferably from 0.8. 4 to 1.5 μm. If the average pore diameter is 0.1 μm or more, the sequential oxidation of ethylene oxide accompanying the retention of the product gas during the production of ethylene oxide can be suppressed. On the other hand, if the average pore diameter is 10 μm or less, the strength of the carrier can be ensured to a practical level. In addition, as a value of an average pore diameter, the value obtained by the method as described in the Example mentioned later shall be employ | adopted.

担体の吸水率についても特に制限はないが、好ましくは10〜70%であり、より好ましくは20〜60%であり、さらに好ましくは30〜50%である。担体の吸水率が10%以上であれば、触媒成分の担持が容易となる。一方、担体の吸水率が70%以下であれば、担体の強度が実用的な程度に確保されうる。なお、担体の吸水率の値としては、後述する実施例に記載の手法により得られる値を採用するものとする。   Although there is no restriction | limiting in particular also about the water absorption rate of a support | carrier, Preferably it is 10 to 70%, More preferably, it is 20 to 60%, More preferably, it is 30 to 50%. If the water absorption rate of the carrier is 10% or more, the catalyst component can be easily supported. On the other hand, if the water absorption rate of the carrier is 70% or less, the strength of the carrier can be ensured to a practical level. In addition, as a value of the water absorption rate of the carrier, a value obtained by a method described in Examples described later is adopted.

本発明の担体の調製方法は特に制限はなく、α−アルミナ粉体を主骨剤とし、これにアルミニウム化合物、ケイ素化合物および有機結合剤を加え、必要によりアルカリ金属化合物を添加した後、所定の形状および寸法に成形し、1200〜2000℃の温度で焼成すればよい。具体的には、例えば、α−アルミナにアルミニウム化合物、ケイ素化合物および有機結合剤を添加し、さらに必要に応じて水を加えてニーダなどの混練機を用いて十分に混合した後、押出成形等により、造粒し、乾燥し、1200〜2000℃、好ましくは1400〜1800℃、より好ましくは1450〜1700℃の温度で焼成する。上記押出成形は湿式でも乾式でもよいが、通常、湿式の押出成形を行う。また、上記乾燥は、通常、80〜900℃、好ましくは120〜850℃の範囲で行うが、省略してもよい。   The method for preparing the carrier of the present invention is not particularly limited, and α-alumina powder is used as a main skeleton, to which an aluminum compound, a silicon compound and an organic binder are added, and an alkali metal compound is added as necessary. What is necessary is just to shape | mold to a shape and a dimension, and to bake at the temperature of 1200-2000 degreeC. Specifically, for example, an aluminum compound, a silicon compound, and an organic binder are added to α-alumina, and water is added as necessary, followed by sufficient mixing using a kneader such as a kneader, and then extrusion molding or the like. The mixture is granulated, dried, and fired at a temperature of 1200 to 2000 ° C, preferably 1400 to 1800 ° C, more preferably 1450 to 1700 ° C. The extrusion molding may be wet or dry, but is usually wet extrusion. Moreover, although the said drying is normally performed in the range of 80-900 degreeC, Preferably 120-850 degreeC, you may abbreviate | omit.

本発明の特徴である酸量の発現には、α−アルミナ担体の外表面およびその気孔の内表面上に形成された非晶質アルミナの被覆層が関与していると考えられている。α−アルミナ粉体、アルミニウム化合物および/またはケイ素化合物、および有機結合剤の混合順序には特に制限はなく、例えば(a)これら化合物を同時に混合した後、成形、乾燥、焼成する方法、(b)α−アルミナと有機結合剤とを混合し、乾燥した後、アルミニウム化合物および/またはケイ素化合物を混合して、成形、乾燥、焼成する方法、(c)α−アルミナ、アルミニウム化合物および有機結合剤を同時に混合し、乾燥した後、ケイ素化合物を混合して、成形、乾燥、焼成する方法、(d)α−アルミナ、ケイ素化合物および有機結合剤を同時に混合し、乾燥した後、アルミニウム化合物を混合して、成形、乾燥、焼成する方法などを適宜用いることができる。得られた焼成物をアルミニウム化合物および/またはケイ素化合物で修飾する場合、得られた焼成物にアルミニウム化合物および/またはケイ素化合物を含浸し、80〜500℃の温度で乾燥し、必要に応じて300〜900℃、好ましくは400〜800℃、さらに好ましくは500〜700℃の温度で焼成する。上記含浸は公知の方法で実施でき、必要に応じて減圧、加熱、スプレー吹付けなどを併せ行う。   The expression of the acid amount, which is a feature of the present invention, is considered to involve the coating layer of amorphous alumina formed on the outer surface of the α-alumina carrier and the inner surface of the pores. There is no particular limitation on the mixing order of the α-alumina powder, the aluminum compound and / or silicon compound, and the organic binder. For example, (a) a method in which these compounds are mixed at the same time, and then molded, dried, and fired; ) A method of mixing α-alumina and an organic binder and drying, then mixing an aluminum compound and / or silicon compound, and molding, drying and firing, (c) α-alumina, aluminum compound and organic binder Are mixed, dried and then mixed with a silicon compound to be molded, dried and fired. (D) α-alumina, silicon compound and organic binder are mixed simultaneously, dried and then mixed with an aluminum compound. Thus, methods such as molding, drying, and firing can be used as appropriate. When the obtained fired product is modified with an aluminum compound and / or a silicon compound, the obtained fired product is impregnated with an aluminum compound and / or a silicon compound, dried at a temperature of 80 to 500 ° C., and optionally 300 Firing is performed at a temperature of ˜900 ° C., preferably 400 to 800 ° C., more preferably 500 to 700 ° C. The above impregnation can be carried out by a known method, and if necessary, decompression, heating, spray spraying, etc. are performed together.

なお、有機結合剤とともに、桃、杏、クルミなどの殻、種子などを均一粒径に揃えたもの、あるいは粒子径が均一で焼成により消失する物質などを気孔形成剤として一緒に用いてもよい。   In addition to organic binders, peaches, apricots, walnut shells, seeds, etc. having a uniform particle size, or substances that have a uniform particle size and disappear upon firing may be used together as pore forming agents. .

上記アルミニウム化合物としては、焼成することによりアルミナの非晶質層を形成し得るものであればいずれも使用することができる。その代表例としては、アルミニウム水和物、アルミニウム酸化物(γ−またはθ−アルミナ)などを挙げることができる。これらは単独でも、あるいは2種以上を組み合わせて使用してもよい。また、合成品でも、あるいは天然物であってもよい。アルミニウム化合物の形態についても特に制限はなく、粉体、ゾル、水溶液などの任意の形態で添加することができる。アルミニウム化合物粉体の場合、1〜300nm、好ましくは1〜20nmの範囲の粒径を有するものが好適に用いられる。これらはアルミニウム化合物のなかでも、1〜300nm、好ましくは1〜20nmの粒径を有するコロイド状のアルミナが好適に用いられる。このコロイド状のアルミナはアルミナゾルとして用いるのが分散の容易さから好ましい。このアルミナゾルはアルミニウム塩を加水分解する方法、アルミニウム塩水溶液をアルカリで中和して一旦ゲルとした後、解膠する方法などによって得ることができる。   Any aluminum compound can be used as long as it can form an amorphous layer of alumina by firing. Typical examples thereof include aluminum hydrate and aluminum oxide (γ- or θ-alumina). These may be used alone or in combination of two or more. Further, it may be a synthetic product or a natural product. There is no restriction | limiting in particular also about the form of an aluminum compound, It can add with arbitrary forms, such as powder, sol, and aqueous solution. In the case of an aluminum compound powder, a powder having a particle size in the range of 1 to 300 nm, preferably 1 to 20 nm is suitably used. Of these aluminum compounds, colloidal alumina having a particle size of 1 to 300 nm, preferably 1 to 20 nm is suitably used. This colloidal alumina is preferably used as an alumina sol from the viewpoint of ease of dispersion. This alumina sol can be obtained by a method of hydrolyzing an aluminum salt, a method of neutralizing an aluminum salt aqueous solution with an alkali to form a gel, and then peptizing.

上記ケイ素化合物としては、シリカ、長石、粘土、窒化ケイ素、炭化ケイ素、シラン、ケイ酸塩などを挙げることができる。そのほか、シリカ−アルミナ、アルミノケイ酸塩なども用いることができる。これらは単独でも、あるいは2種以上を組み合わせて使用してもよい。また、合成品でも、天然物でもよい。ケイ素化合物の形態についても特に制限はなく、粉体、ゾル、溶液などのいずれの形態で添加してもよい。これらケイ素化合物粉体の場合、1〜300nm、好ましくは1〜20nmの粒径を有するケイ素化合物が好適に用いられる。これらケイ素化合物のなかでも、1〜300nm、好ましくは1〜20nmの粒径を有するコロイド状のシリカが好適に用いられる。このコロイド状のシリカは水溶液として用いるのが分散の容易さから好ましい。コロイド状のシリカは、ケイ酸ナトリウム水溶液を酸で中和して一旦ゲルとした後、解膠する方法、ケイ酸ナトリウム水溶液をイオン交換により脱ナトリウム化する方法によって得ることができる。   Examples of the silicon compound include silica, feldspar, clay, silicon nitride, silicon carbide, silane, and silicate. In addition, silica-alumina, aluminosilicate, and the like can be used. These may be used alone or in combination of two or more. Further, it may be a synthetic product or a natural product. There is no restriction | limiting in particular also about the form of a silicon compound, You may add with any forms, such as a powder, a sol, and a solution. In the case of these silicon compound powders, silicon compounds having a particle size of 1 to 300 nm, preferably 1 to 20 nm are suitably used. Among these silicon compounds, colloidal silica having a particle size of 1 to 300 nm, preferably 1 to 20 nm is suitably used. The colloidal silica is preferably used as an aqueous solution because of its easy dispersion. Colloidal silica can be obtained by neutralizing a sodium silicate aqueous solution with an acid to form a gel once and then peptizing, or by sodium removal by ion exchange of the sodium silicate aqueous solution.

上記アルカリ金属化合物のアルカリ金属種としては、リチウム、ナトリウム、カリウム、ルビジウムおよびセシウムのいずれでもよく、これらは単独でも組み合わせて使用してもよい。代表例としては、アルカリ金属の塩、酸化物、水酸化物などを挙げることができる。なお、塩の場合、アニオン種が存在するため、焼成時に望ましくない融剤効果を示すことによって物性の制御が困難になり、または焼成後も不純物として残存して担体、ひいては触媒の性能に悪影響を及ぼす場合もあるので、塩のなかでも、比較的低温で酸化物の形態をとり得る有機酸塩などが好適に用いられる。なかでも、アルカリ金属の酸化物および水酸化物が好適に用いられる。その代表例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、酸化リチウム、酸化ナトリウム、酸化カリウム、酸化ルビジウムなどを挙げることができる。   The alkali metal species of the alkali metal compound may be any of lithium, sodium, potassium, rubidium and cesium, and these may be used alone or in combination. Representative examples include alkali metal salts, oxides, hydroxides, and the like. In the case of a salt, since anionic species are present, it becomes difficult to control physical properties by exhibiting an undesirable flux effect at the time of calcination, or it remains as an impurity even after calcination, which adversely affects the performance of the carrier and thus the catalyst. In some cases, an organic acid salt that can take the form of an oxide at a relatively low temperature is preferably used among the salts. Of these, alkali metal oxides and hydroxides are preferably used. Representative examples thereof include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, lithium oxide, sodium oxide, potassium oxide, rubidium oxide and the like.

上記有機結合剤としては、酸化エチレン製造用触媒の担体の調製に一般に用いられている有機結合剤を用いることができる。その代表例としては、アラビアゴム、ポリビニルアルコール、ヒドロキシエチルセルロース、メチルセルロース、カルボキシメチルセルロース、コーンスターチなどを挙げることができる。これらのうち、メチルセルロースおよびコーンスターチが焼成操作後の灰分が少ないので好適に用いられる。   As said organic binder, the organic binder generally used for preparation of the support | carrier of the catalyst for ethylene oxide manufacture can be used. Typical examples thereof include gum arabic, polyvinyl alcohol, hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, corn starch and the like. Of these, methylcellulose and corn starch are preferably used because of their low ash content after the baking operation.

本発明の触媒は、上述した担体に触媒成分が担持されてなる構成を有する。触媒成分の具体的な形態については特に制限されず、従来公知の知見が適宜参照されうるが、触媒成分として銀を必須に含有することが好ましい。また、銀のほかに、一般に反応促進剤として用いられる触媒成分が担体に担持されてもよい。反応促進剤の代表例としては、アルカリ金属、具体的にはリチウム、ナトリウム、カリウム、ルビジウム、セシウムが挙げられる。アルカリ金属のほかには、タリウム、硫黄、クロム、モリブデン、タングステン、レニウムなどもまた、反応促進剤として用いられうる。これらの反応促進剤は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。これらのうち、反応促進剤としてはセシウム(Cs)、レニウム(Re)が好適に用いられる。   The catalyst of the present invention has a configuration in which a catalyst component is supported on the carrier described above. The specific form of the catalyst component is not particularly limited, and conventionally known knowledge can be referred to as appropriate, but it is preferable that silver is essential as the catalyst component. In addition to silver, a catalyst component generally used as a reaction accelerator may be supported on a carrier. Representative examples of reaction accelerators include alkali metals, specifically lithium, sodium, potassium, rubidium, and cesium. Besides alkali metals, thallium, sulfur, chromium, molybdenum, tungsten, rhenium and the like can also be used as reaction promoters. As for these reaction accelerators, only 1 type may be used independently and 2 or more types may be used together. Of these, cesium (Cs) and rhenium (Re) are preferably used as the reaction accelerator.

銀や反応促進剤の担持量については特に制限はなく、エチレンオキシドの製造に有効な量で担持すればよい。例えば、銀の場合、その担持量はエチレンオキシド製造用触媒の質量基準で1〜30質量%であり、好ましくは5〜20質量%である。また、反応促進剤の担持量は、エチレンオキシド製造用触媒の質量基準で、通常10〜5000質量ppmであり、好ましくは50〜4000質量ppmであり、より好ましくは100〜3000質量ppmである。   There is no particular limitation on the amount of silver or reaction accelerator supported, and it may be supported in an amount effective for the production of ethylene oxide. For example, in the case of silver, the supported amount is 1 to 30% by mass, preferably 5 to 20% by mass, based on the mass of the catalyst for producing ethylene oxide. Moreover, the load of the reaction accelerator is usually 10 to 5000 ppm by mass, preferably 50 to 4000 ppm by mass, more preferably 100 to 3000 ppm by mass, based on the mass of the catalyst for producing ethylene oxide.

特に、反応促進剤の最適な担持量は、担体物性の違いや反応促進剤の組み合わせなどにより異なる。このため、予め反応促進剤の担持量の異なる触媒を調製し、当該触媒について性能を評価した後、最高性能を示す反応促進剤の担持量を決定し、このような最高性能を示す量の反応促進剤量を担持して触媒を調製することが好ましい。なお、下記実施例及び比較例では、このように予め最高性能を示す反応促進剤の担持量を決定した後、触媒を調製した。   In particular, the optimum loading amount of the reaction accelerator varies depending on the difference in the physical properties of the carrier and the combination of the reaction accelerators. For this reason, after preparing catalysts with different amounts of supported reaction accelerators in advance and evaluating the performance of the catalysts, the amount of supported reaction accelerators showing the highest performance is determined, and the amount of reaction showing the highest performance is determined. It is preferred to prepare the catalyst with the amount of promoter supported. In the following Examples and Comparative Examples, the catalyst was prepared after the amount of the reaction accelerator having the highest performance was determined in advance.

本発明のエチレンオキシド製造用触媒は、上述した担体を使用する点を除けば、従来公知のエチレンオキシド製造用触媒の製造方法に従って調製されうる。   The ethylene oxide production catalyst of the present invention can be prepared according to a conventionally known method for producing an ethylene oxide production catalyst, except that the above-described carrier is used.

以下、上述した担体を用いて本発明のエチレンオキシド製造用触媒を製造する手法の一例を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、下記の手法のみに限定されるわけではない。   Hereinafter, an example of a technique for producing the catalyst for producing ethylene oxide of the present invention using the above-described support will be described. The technical scope of the present invention should be determined based on the description of the claims, and is described below. It is not limited only to the method.

まず、担体を準備する。担体の調製方法については上述した通りであるため、ここでは詳細な説明を省略する。   First, a carrier is prepared. Since the method for preparing the carrier is as described above, a detailed description is omitted here.

一方、担体に銀を担持させるための溶液を調製する。具体的には、銀化合物を単独で、または銀錯体を形成するための錯化剤もしくは必要に応じて反応促進剤を、水などの溶媒に添加する。   On the other hand, a solution for supporting silver on a carrier is prepared. Specifically, a silver compound alone or a complexing agent for forming a silver complex or, if necessary, a reaction accelerator is added to a solvent such as water.

ここで、銀化合物としては、例えば、硝酸銀、炭酸銀、シュウ酸銀、酢酸銀、プロピオン酸銀、乳酸銀、クエン酸銀、ネオデカン酸銀などが挙げられる。また、錯化剤としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、プロピレンジアミンなどが挙げられる。これらの銀化合物や錯化剤は、それぞれ、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。   Here, examples of the silver compound include silver nitrate, silver carbonate, silver oxalate, silver acetate, silver propionate, silver lactate, silver citrate, and silver neodecanoate. Examples of the complexing agent include monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, and propylenediamine. Each of these silver compounds and complexing agents may be used alone or in combination of two or more.

次いで、上記で得られた溶液を、同じく上記で準備した担体に含浸させる。この際、反応促進剤は、担体に溶液を含浸させる前段階において溶液に溶解させて同時に含浸させてもよいし、銀を担持した後に担持してもよい。   Next, the carrier prepared above is impregnated with the solution obtained above. At this time, the reaction accelerator may be dissolved in the solution and impregnated at the same time before the support is impregnated with the solution, or may be supported after supporting silver.

続いて、これを乾燥し、焼成する。乾燥は、空気、酸素、または不活性ガス(例えば、窒素)の雰囲気中で、80〜120℃の温度で行うことが好ましい。また、焼成は、空気、酸素、または不活性ガス(例えば、窒素)の雰囲気中で、150〜700℃の温度で、好ましくは200〜600℃の温度で行うことが好ましい。なお、焼成は、1段階のみ行われてもよいし、2段階以上行われてもよい。好ましい焼成条件としては、1段階目の焼成を空気雰囲気中で150〜250℃にて0.1〜10時間行い、2段階目の焼成を空気雰囲気中で250〜450℃にて0.1〜10時間行う条件が挙げられる。さらに好ましくは、かような2段階焼成後にさらに、不活性ガス(例えば、窒素、ヘリウム、アルゴンなど)雰囲気中で450〜700℃にて0.1〜10時間、3段階目の焼成を行うとよい。   Subsequently, this is dried and fired. Drying is preferably performed at a temperature of 80 to 120 ° C. in an atmosphere of air, oxygen, or an inert gas (for example, nitrogen). The firing is preferably performed at a temperature of 150 to 700 ° C., preferably 200 to 600 ° C., in an atmosphere of air, oxygen, or an inert gas (for example, nitrogen). In addition, baking may be performed only in one step or may be performed in two or more steps. As preferable firing conditions, the first stage firing is performed in an air atmosphere at 150 to 250 ° C. for 0.1 to 10 hours, and the second stage firing is performed in an air atmosphere at 250 to 450 ° C. for 0.1 to 10 hours. The conditions for 10 hours are mentioned. More preferably, after the two-step baking, the third-step baking is performed at 450 to 700 ° C. for 0.1 to 10 hours in an inert gas (eg, nitrogen, helium, argon, etc.) atmosphere. Good.

本発明の第2は、本発明の第1のエチレンオキシド製造用触媒の存在下で、エチレンを分子状酸素含有ガスにより気相酸化する段階を有する、エチレンオキシドの製造方法である。
本発明の第2のエチレンオキシドの製造方法は、触媒として本発明の第1のエチレンオキシド製造用触媒を使用する点を除けば、常法に従って行われうる。
例えば、工業的製造規模における一般的な条件、すなわち反応温度150〜350℃、好ましくは180〜320℃、反応圧力0.1〜4.0MPa、好ましくは1.0〜3.0MPa、空間速度1,000〜30,000hr−1(STP)、好ましくは3,000〜8,000hr−1(STP)が採用される。触媒に接触させる原料ガスとしては、エチレン0.5〜40容量%、酸素3〜10容量%、炭酸ガス1〜20容量%、残部の窒素、アルゴン、水蒸気等の不活性ガスおよびメタン、エタン等の低級炭化水素類からなり、さらに反応抑制剤としての二塩化エチレン、塩化ジフェニル等のハロゲン化物を0.1〜10容量ppm含有するものが挙げられる。本発明の製造方法において使用される分子状酸素含有ガスとしては、空気、酸素および富化空気が挙げられる。
2nd of this invention is a manufacturing method of ethylene oxide which has the step which carries out the gaseous-phase oxidation of ethylene with molecular oxygen containing gas in presence of the catalyst for 1st ethylene oxide manufacture of this invention.
The second ethylene oxide production method of the present invention can be carried out in accordance with a conventional method except that the first ethylene oxide production catalyst of the present invention is used as a catalyst.
For example, general conditions on an industrial production scale, that is, reaction temperature 150 to 350 ° C., preferably 180 to 320 ° C., reaction pressure 0.1 to 4.0 MPa, preferably 1.0 to 3.0 MPa, space velocity 1 3,000 to 30,000 hr −1 (STP), preferably 3,000 to 8,000 hr −1 (STP) is employed. Examples of the raw material gas to be brought into contact with the catalyst include 0.5 to 40% by volume of ethylene, 3 to 10% by volume of oxygen, 1 to 20% by volume of carbon dioxide, the remaining inert gas such as nitrogen, argon and water vapor, and methane and ethane. And those containing 0.1 to 10 ppm by volume of halides such as ethylene dichloride and diphenyl chloride as reaction inhibitors. Examples of the molecular oxygen-containing gas used in the production method of the present invention include air, oxygen, and enriched air.

本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、本実施例において、各種パラメータの測定は以下の手法により行われた。
<担体の細孔分布/細孔容積/平均細孔直径の測定>
水銀圧入法により測定した。具体的には、200℃にて少なくとも30分間脱気した担体をサンプルとし、測定装置としてオートポアIII9420W(株式会社島津製作所製)を用い、1.0〜60,000psiaの圧力範囲及び60個の測定ポイントで細孔分布、細孔容積、および平均細孔直径を得た。
<担体中のシリカ含有量の測定>
後述する蛍光X線分析法により測定した。
<担体の比表面積の測定>
担体を粉砕した後、0.85〜1.2mmの粒径に分級したもの約0.2gを正確に秤量した。秤量したサンプルを200℃にて少なくとも30分間脱気し、BET(Brunauer−Emmet−Teller)法により測定した。
<担体の吸水率の測定>
日本工業規格(JIS R 2205(1998年度))に記載の方法に準拠して、以下の手法により測定した。
a)破砕前の担体を、120℃に保温した乾燥機中に入れ、恒量に達した際の質量を秤量した(乾燥質量:W1(g))。
b)上記a)で秤量した担体を水中に沈めて30分間以上煮沸した後、室温の水中にて冷却し、飽水サンプルとした。
c)上記b)で得た飽水サンプルを水中から取り出し、湿布ですばやく表面を拭い、水滴を除去した後に秤量した(飽水サンプル質量:W2(g))。
d)上記で得られたW1およびW2を用い、下記数式1に従って、吸水率を算出した。
[数式1]
吸水率(%)=[(W2−W1)/W1]×100
<アルカリ金属、レニウム、銀の担持率の測定>
蛍光X線分析法を用いて行った。測定装置としてRIGAKU製RIX2000を用い、ファンダメンタルパラメータ法(FP法)にて測定した。
(実施例1)
α−アルミナ担体(A)52.2g(比表面積0.93m/g、SiO2含有率0.7質量%、吸水率40.1%、平均細孔直径2.1μm、NH−TPD法によってもとめた酸量0.039mmol/g)にシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.1282g、過レニウム酸アンモニウム0.0359g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥した。これを空気気流中300℃で0.25時間熱処理した後、窒素気流中570℃で3時間熱処理して触媒(A1)を得た。触媒(A1)の銀含有率は14.8%、セシウム含有率は1460質量ppm、レニウム含有率は370質量ppmであった。
(実施例2)
実施例1において硝酸セシウム0.1282gを0.1495gに変更したこと以外は、上記の実施例1と同様の手法に従って触媒(A2)を得た。触媒(A2)の銀含有率は14.7%、セシウム含有率は1700質量ppm、レニウム含有率は370質量ppmであった。
(実施例3)
実施例1おいて過レニウム酸アンモニウム0.0359gを0.0467gに変更したこと以外は、上記の実施例1と同様の手法に従って触媒(A3)を得た。触媒(A3)の銀含有率は14.7%、セシウム含有率は1460質量ppm、レニウム含有率は480質量ppmであった。
(実施例4)
実施例3において硝酸セシウム0.1282gを0.1495gに変更したこと以外は、上記の実施例3と同様の手法に従って触媒(A4)を得た。触媒(A4)の銀含有率は14.7%、セシウム含有率は1700質量ppm、レニウム含有率は480質量ppmであった。
(実施例5)
α−アルミナ担体(B)52.2g(比表面積0.84m/g、SiO2含有率2.2質量%、吸水率39.1%、平均細孔直径2.3μm、NH−TPD法によってもとめた酸量0.036mmol/g)にシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.2137g、過レニウム酸アンモニウム0.0359g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥した。これを空気気流中300℃で0.25時間熱処理した後、窒素気流中570℃で3時間熱処理して触媒(B1)を得た。触媒(B1)の銀含有率は14.8%、セシウム含有率は2430質量ppm、レニウム含有率は370質量ppmであった。
(実施例6)
20質量%アルミナゾル(日産化学製、アルミナゾル−520)0.4gを水40mlと混合した溶液を担体(A)100gに減圧下で含浸し、減圧に保ったまま90℃で乾燥した。これを空気気流中300℃で0.25時間熱処理した後、空気気流中570℃で3時間熱処理して担体(C)を得た。NH−TPD法によってもとめた担体(C)の酸量は0.076mmol/gであった。得られた担体(C)52.2gにシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.1282g、過レニウム酸アンモニウム0.0359g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥した。これを空気気流中300℃で0.25時間熱処理した後、窒素気流中570℃で3時間熱処理して触媒(C1)を得た。触媒(C1)の銀含有率は14.8%、セシウム含有率は1460質量ppm、レニウム含有率は370質量ppmであった。
(実施例7)
20質量%アルミナゾル(日産化学製、アルミナゾル−520)0.4gを水40mlと混合した溶液を担体(A)100gに減圧下で含浸し、減圧に保ったまま90℃で乾燥した。これを空気気流中300℃で0.25時間熱処理して担体(D)を得た。NH−TPD法によってもとめた担体(D)の酸量は0.076mmol/gであった。得られた担体(D)52.2gにシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.1282g、過レニウム酸アンモニウム0.0359g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥した。これを空気気流中300℃で0.25時間熱処理した後、窒素気流中570℃で3時間熱処理して触媒(D1)を得た。触媒(D1)の銀含有率は14.8%、セシウム含有率は1460質量ppm、レニウム含有率は370質量ppmであった。
(実施例8)
実施例7において硝酸セシウムを0.1282gから0.1709gに変更したこと以外は、上記の実施例7と同様の手法に従って触媒(D2)を得た。触媒(D2)の銀含有率は14.8%、セシウム含有率は1940質量ppm、レニウム含有率は370質量ppmであった。
(実施例9)
実施例7において硝酸セシウムを0.1282gから0.1923gに変更したこと以外は、上記の実施例7と同様の手法に従って触媒(D3)を得た。触媒(D3)の銀含有率は14.8%、セシウム含有率は2180質量ppm、レニウム含有率は370質量ppmであった。
(実施例10)
実施例7において硝酸セシウムを0.1282gから0.1495gに、過レニウム酸アンモニウムを0.0359gから0.0467gに変更したこと以外は、上記の実施例6と同様の手法に従って触媒(D4)を得た。触媒(D4)の銀含有率は14.8%、セシウム含有率は1700質量ppm、レニウム含有率は480質量ppmであった。
(実施例11)
実施例10において硝酸セシウムを0.1495gから0.1709gに変更したこと以外は、上記の実施例10と同様の手法に従って触媒(D5)を得た。触媒(D5)の銀含有率は14.8%、セシウム含有率は1940質量ppm、レニウム含有率は480質量ppmであった。
(実施例12)
実施例10において硝酸セシウムを0.1495gから0.1923gに変更したこと以外は、上記の実施例9と同様の手法に従って触媒(D6)を得た。触媒(D6)の銀含有率は14.8%、セシウム含有率は2180質量ppm、レニウム含有率は480質量ppmであった。
(比較例1)
α−アルミナ担体(E)52.2g(サンゴバン−ノープロ製、SA5502、比表面積0.90m/g、SiO2含有率0.04質量%、吸水率28.1%、平均細孔直径1.2μm、NH−TPD法によってもとめた酸量0.229mmol/g)にシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.1282g、過レニウム酸アンモニウム0.0359g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥した。これを空気気流中300℃で0.25時間熱処理した後、窒素気流中565℃で3時間熱処理して触媒(E1)を得た。触媒(E1)の銀含有率は14.8%、セシウム含有率は1460質量ppm、レニウム含有率は370質量ppmであった。
(比較例2)
20質量%アルミナゾル(日産化学製、アルミナゾル−520)0.4gを水40mlと混合した溶液を担体(A)100gに含浸し、90℃で減圧乾燥した。これを空気気流中300℃で0.25時間熱処理した後、空気気流中570℃で3時間熱処理して担体(F)を得た。NH−TPD法によってもとめた担体(F)の酸量は0.098mmol/gであった。得られた担体(F)52.2gにシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.1282g、過レニウム酸アンモニウム0.0359g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥した。これを空気気流中300℃で0.25時間熱処理した後、窒素気流中570℃で3時間熱処理して触媒(F1)を得た。触媒(F1)の銀含有率は14.8%、セシウム含有率は1460質量ppm、レニウム含有率は370質量ppmであった。
(比較例3)
20質量%アルミナゾル(日産化学製、アルミナゾル−520)2gを水40mlと混合した溶液を担体(A)100gに含浸し、90℃で減圧乾燥した。これを空気気流中300℃で0.25時間熱処理した後、空気気流中570℃で3時間熱処理して担体(G)を得た。NH−TPD法によってもとめた担体(G)の酸量は0.022mmol/gであった。得られた担体(G)52.2gにシュウ酸銀20g、エチレンジアミン6.8ml、硝酸セシウム0.1282g、過レニウム酸アンモニウム0.0359g、および水10gからなる銀含有液を含浸させた後、90℃で減圧乾燥した。これを空気気流中300℃で0.25時間熱処理した後、窒素気流中570℃で3時間熱処理して触媒(G1)を得た。触媒(G1)の銀含有率は14.8%、セシウム含有率は1460質量ppm、レニウム含有率は370質量ppmであった。
The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In this example, various parameters were measured by the following method.
<Measurement of carrier pore distribution / pore volume / average pore diameter>
Measured by mercury intrusion method. Specifically, a carrier deaerated at 200 ° C. for at least 30 minutes is used as a sample, and Autopore III 9420W (manufactured by Shimadzu Corporation) is used as a measuring device, and a pressure range of 1.0 to 60,000 psia and 60 measurements are performed. The pore distribution, pore volume, and average pore diameter were obtained at points.
<Measurement of silica content in carrier>
It measured by the fluorescent X ray analysis method mentioned later.
<Measurement of specific surface area of carrier>
After pulverizing the carrier, about 0.2 g classified to a particle size of 0.85 to 1.2 mm was accurately weighed. The weighed sample was deaerated at 200 ° C. for at least 30 minutes and measured by the BET (Brunauer-Emmet-Teller) method.
<Measurement of water absorption rate of carrier>
In accordance with the method described in Japanese Industrial Standard (JIS R 2205 (1998)), the measurement was performed by the following method.
a) The carrier before crushing was placed in a drier kept at 120 ° C., and the mass when reaching a constant weight was weighed (dry mass: W1 (g)).
b) The carrier weighed in a) above was submerged in water and boiled for 30 minutes or more, and then cooled in room temperature water to obtain a saturated sample.
c) The saturated sample obtained in the above b) was taken out from the water, and the surface was quickly wiped with a compress, and after removing water droplets, weighed (saturated sample mass: W2 (g)).
d) The water absorption was calculated according to the following formula 1 using W1 and W2 obtained above.
[Formula 1]
Water absorption (%) = [(W2−W1) / W1] × 100
<Measurement of alkali metal, rhenium and silver loading>
This was performed using fluorescent X-ray analysis. RIX2000 manufactured by RIGAKU was used as a measuring apparatus, and measurement was performed by a fundamental parameter method (FP method).
Example 1
α-alumina support (A) 52.2 g (specific surface area 0.93 m 2 / g, SiO 2 content 0.7 mass%, water absorption 40.1%, average pore diameter 2.1 μm, by NH 3 -TPD method The obtained acid amount of 0.039 mmol / g) was impregnated with a silver-containing liquid consisting of 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.1282 g of cesium nitrate, 0.0359 g of ammonium perrhenate, and 10 g of water. It dried under reduced pressure at ° C. This was heat-treated at 300 ° C. for 0.25 hours in an air stream, and then heat-treated at 570 ° C. for 3 hours in a nitrogen stream to obtain a catalyst (A1). The silver content of the catalyst (A1) was 14.8%, the cesium content was 1460 mass ppm, and the rhenium content was 370 mass ppm.
(Example 2)
A catalyst (A2) was obtained in the same manner as in Example 1 except that 0.1282 g of cesium nitrate was changed to 0.1495 g in Example 1. The silver content of the catalyst (A2) was 14.7%, the cesium content was 1700 mass ppm, and the rhenium content was 370 mass ppm.
(Example 3)
A catalyst (A3) was obtained in the same manner as in Example 1 except that 0.0359 g of ammonium perrhenate was changed to 0.0467 g in Example 1. The silver content of the catalyst (A3) was 14.7%, the cesium content was 1460 mass ppm, and the rhenium content was 480 mass ppm.
Example 4
A catalyst (A4) was obtained according to the same procedure as in Example 3 except that 0.1282 g of cesium nitrate was changed to 0.1495 g in Example 3. The silver content of the catalyst (A4) was 14.7%, the cesium content was 1700 mass ppm, and the rhenium content was 480 mass ppm.
(Example 5)
α-alumina support (B) 52.2 g (specific surface area 0.84 m 2 / g, SiO 2 content 2.2 mass%, water absorption 39.1%, average pore diameter 2.3 μm, by NH 3 -TPD method The obtained acid amount of 0.036 mmol / g) was impregnated with silver-containing liquid consisting of 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.2137 g of cesium nitrate, 0.0359 g of ammonium perrhenate, and 10 g of water. It dried under reduced pressure at ° C. This was heat-treated at 300 ° C. for 0.25 hours in an air stream, and then heat-treated at 570 ° C. for 3 hours in a nitrogen stream to obtain a catalyst (B1). The silver content of the catalyst (B1) was 14.8%, the cesium content was 2430 mass ppm, and the rhenium content was 370 mass ppm.
(Example 6)
A solution prepared by mixing 0.4 g of 20% by mass alumina sol (Nissan Chemical, alumina sol-520) with 40 ml of water was impregnated into 100 g of carrier (A) under reduced pressure, and dried at 90 ° C. while maintaining the reduced pressure. This was heat-treated at 300 ° C. for 0.25 hours in an air stream, and then heat-treated at 570 ° C. for 3 hours in an air stream to obtain a carrier (C). The acid amount of the carrier (C) determined by the NH 3 -TPD method was 0.076 mmol / g. 52.2 g of the obtained carrier (C) was impregnated with a silver-containing liquid consisting of 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.1282 g of cesium nitrate, 0.0359 g of ammonium perrhenate, and 10 g of water. It dried under reduced pressure at ° C. This was heat-treated at 300 ° C. for 0.25 hours in an air stream, and then heat-treated at 570 ° C. for 3 hours in a nitrogen stream to obtain a catalyst (C1). The silver content of the catalyst (C1) was 14.8%, the cesium content was 1460 mass ppm, and the rhenium content was 370 mass ppm.
(Example 7)
A solution prepared by mixing 0.4 g of 20% by mass alumina sol (Nissan Chemical, alumina sol-520) with 40 ml of water was impregnated into 100 g of carrier (A) under reduced pressure, and dried at 90 ° C. while maintaining the reduced pressure. This was heat-treated at 300 ° C. for 0.25 hours in an air stream to obtain a carrier (D). The acid amount of the carrier (D) determined by the NH 3 -TPD method was 0.076 mmol / g. After impregnating 52.2 g of the obtained carrier (D) with 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.1282 g of cesium nitrate, 0.0359 g of ammonium perrhenate, and 10 g of water, It dried under reduced pressure at ° C. This was heat-treated at 300 ° C. for 0.25 hours in an air stream, and then heat-treated at 570 ° C. for 3 hours in a nitrogen stream to obtain a catalyst (D1). The silver content of the catalyst (D1) was 14.8%, the cesium content was 1460 mass ppm, and the rhenium content was 370 mass ppm.
(Example 8)
A catalyst (D2) was obtained according to the same procedure as in Example 7 except that the cesium nitrate was changed from 0.1282 g to 0.1709 g in Example 7. The silver content of the catalyst (D2) was 14.8%, the cesium content was 1940 mass ppm, and the rhenium content was 370 mass ppm.
Example 9
A catalyst (D3) was obtained according to the same procedure as in Example 7 except that the cesium nitrate was changed from 0.1282 g to 0.1923 g in Example 7. The silver content of the catalyst (D3) was 14.8%, the cesium content was 2180 mass ppm, and the rhenium content was 370 mass ppm.
(Example 10)
In Example 7, except that cesium nitrate was changed from 0.1282 g to 0.1495 g and ammonium perrhenate was changed from 0.0359 g to 0.0467 g, the catalyst (D4) was prepared in the same manner as in Example 6 above. Obtained. The silver content of the catalyst (D4) was 14.8%, the cesium content was 1700 mass ppm, and the rhenium content was 480 mass ppm.
(Example 11)
A catalyst (D5) was obtained according to the same procedure as in Example 10 except that the cesium nitrate was changed from 0.1495 g to 0.1709 g in Example 10. The silver content of the catalyst (D5) was 14.8%, the cesium content was 1940 mass ppm, and the rhenium content was 480 mass ppm.
Example 12
A catalyst (D6) was obtained in the same manner as in Example 9 except that the cesium nitrate was changed from 0.1495 g to 0.1923 g in Example 10. The silver content of the catalyst (D6) was 14.8%, the cesium content was 2180 mass ppm, and the rhenium content was 480 mass ppm.
(Comparative Example 1)
α-alumina support (E) 52.2 g (manufactured by Saint-Gobain Nopro, SA5502, specific surface area 0.90 m 2 / g, SiO 2 content 0.04 mass%, water absorption 28.1%, average pore diameter 1.2 μm Silver-containing liquid comprising 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.1282 g of cesium nitrate, 0.0359 g of ammonium perrhenate, and 10 g of water in an acid amount of 0.229 mmol / g determined by the NH 3 -TPD method. And then dried under reduced pressure at 90 ° C. This was heat-treated at 300 ° C. for 0.25 hours in an air stream, and then heat-treated at 565 ° C. for 3 hours in a nitrogen stream to obtain a catalyst (E1). The silver content of the catalyst (E1) was 14.8%, the cesium content was 1460 mass ppm, and the rhenium content was 370 mass ppm.
(Comparative Example 2)
100 g of carrier (A) was impregnated with a solution obtained by mixing 0.4 g of 20 mass% alumina sol (Nissan Chemical, alumina sol-520) with 40 ml of water, and dried under reduced pressure at 90 ° C. This was heat-treated at 300 ° C. for 0.25 hours in an air stream, and then heat-treated at 570 ° C. for 3 hours in an air stream to obtain a carrier (F). The acid amount of the carrier (F) determined by the NH 3 -TPD method was 0.098 mmol / g. After 52.2 g of the obtained carrier (F) was impregnated with 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.1282 g of cesium nitrate, 0.0359 g of ammonium perrhenate, and 10 g of water, It dried under reduced pressure at ° C. This was heat-treated at 300 ° C. for 0.25 hours in an air stream, and then heat-treated at 570 ° C. for 3 hours in a nitrogen stream to obtain a catalyst (F1). The silver content of the catalyst (F1) was 14.8%, the cesium content was 1460 mass ppm, and the rhenium content was 370 mass ppm.
(Comparative Example 3)
100 g of carrier (A) was impregnated with a solution prepared by mixing 2 g of 20 mass% alumina sol (Nissan Chemical, Alumina Sol-520) with 40 ml of water, and dried under reduced pressure at 90 ° C. This was heat-treated in an air stream at 300 ° C. for 0.25 hour, and then heat-treated in an air stream at 570 ° C. for 3 hours to obtain a carrier (G). The acid amount of the carrier (G) determined by the NH 3 -TPD method was 0.022 mmol / g. After impregnating 52.2 g of the obtained carrier (G) with a silver-containing liquid consisting of 20 g of silver oxalate, 6.8 ml of ethylenediamine, 0.1282 g of cesium nitrate, 0.0359 g of ammonium perrhenate, and 10 g of water, 90 g It dried under reduced pressure at ° C. This was heat-treated at 300 ° C. for 0.25 hours in an air stream, and then heat-treated at 570 ° C. for 3 hours in a nitrogen stream to obtain a catalyst (G1). The silver content of the catalyst (G1) was 14.8%, the cesium content was 1460 mass ppm, and the rhenium content was 370 mass ppm.

触媒(A1)〜(G1)をそれぞれ850〜1180μmに破砕した。破砕した触媒3.00gをそれぞれ内径7mm、管長300mmの外部が加熱式の二重管式ステンレス製反応器に充填し、この充填層にエチレン23.0容量%、酸素7.6容量%、二酸化炭素6.0容量%、二塩化エチレン3.2ppm、残余がメタン、窒素、アルゴンおよびエタンからなるガスを導入し、0.1MPaで空間速度5500Hr−1の条件で、エチレン転化率が8.5容量%となるようにして反応を行った。下記数式2および数式3に従って、エチレンオキシド製造時の転化率(数式2)および選択率(数式3)を算出した。結果を表1に示す。
[数式2]
転化率(%)=[(反応したエチレンのモル数)/(原料ガス中のエチレンのモル数)]×100
[数式3]
選択率(%)=[(エチレンオキシドに変化したエチレンのモル数)/(反応したエチレンのモル数)×100
Catalysts (A1) to (G1) were each crushed to 850 to 1180 μm. 3.00 g of the crushed catalyst was packed in a heating type double tube stainless steel reactor each having an inner diameter of 7 mm and a tube length of 300 mm, and this packed bed had 23.0% by volume of ethylene, 7.6% by volume of oxygen, and dioxide dioxide. Introducing a gas composed of 6.0% by volume of carbon, 3.2 ppm of ethylene dichloride, and the balance of methane, nitrogen, argon and ethane, ethylene conversion was 8.5 under conditions of 0.1 MPa and space velocity of 5500 Hr −1. The reaction was carried out so that the volume percentage was reached. According to the following formula 2 and formula 3, the conversion rate (formula 2) and the selectivity (formula 3) during ethylene oxide production were calculated. The results are shown in Table 1.
[Formula 2]
Conversion (%) = [(Mole number of reacted ethylene) / (Mole number of ethylene in raw material gas)] × 100
[Formula 3]
Selectivity (%) = [(number of moles of ethylene converted to ethylene oxide) / (number of moles of reacted ethylene) × 100

Figure 2010082515
Figure 2010082515

上記表1に示す結果から、本発明によれば、選択性の優れたエチレンオキシド製造用触媒が提供されうる。そして、当該触媒を用いたエチレンオキシドの製造方法によれば高選択率でエチレンオキシドを製造することが可能となる。   From the results shown in Table 1 above, according to the present invention, a catalyst for producing ethylene oxide having excellent selectivity can be provided. And according to the manufacturing method of ethylene oxide using the said catalyst, it becomes possible to manufacture ethylene oxide with high selectivity.

本発明にかかるエチレンオキシド製造用触媒およびこの触媒を用いたエチレンオキシドの製造方法によれば高効率にエチレンオキシドを製造することができる。   According to the catalyst for producing ethylene oxide and the method for producing ethylene oxide using the catalyst according to the present invention, ethylene oxide can be produced with high efficiency.

Claims (2)

α−アルミナを主成分とし、比表面積が2m/g未満であり、かつNH−TPD法によってもとめた酸量が0.01から0.09mmol/gの範囲に存在する担体に、触媒成分を担持させてなる、エチレンオキシド製造用触媒。 A catalyst component is formed on a support mainly composed of α-alumina, having a specific surface area of less than 2 m 2 / g, and an acid amount determined by the NH 3 -TPD method in the range of 0.01 to 0.09 mmol / g. A catalyst for ethylene oxide production, comprising 請求項1に記載のエチレンオキシド製造用触媒の存在下で、エチレンを分子状酸素含有ガスにより気相酸化する段階を有する、エチレンオキシドの製造方法。 A method for producing ethylene oxide, comprising the step of vapor-phase oxidizing ethylene with a molecular oxygen-containing gas in the presence of the ethylene oxide production catalyst according to claim 1.
JP2008252248A 2008-09-30 2008-09-30 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst Expired - Fee Related JP5258485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252248A JP5258485B2 (en) 2008-09-30 2008-09-30 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252248A JP5258485B2 (en) 2008-09-30 2008-09-30 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst

Publications (2)

Publication Number Publication Date
JP2010082515A true JP2010082515A (en) 2010-04-15
JP5258485B2 JP5258485B2 (en) 2013-08-07

Family

ID=42247007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252248A Expired - Fee Related JP5258485B2 (en) 2008-09-30 2008-09-30 Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst

Country Status (1)

Country Link
JP (1) JP5258485B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202592A (en) * 2012-03-29 2013-10-07 Mitsubishi Chemicals Corp Catalyst for ethylene oxide production and method for production of ethylene oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174238A (en) * 1982-03-24 1983-10-13 サイエンティフィック・デザイン・カンパニー・インコーポレーテッド Catalyst for oxidizing ethylene to ethylene oxide in gaseous phase and production and use thereof
JPS63116743A (en) * 1986-05-09 1988-05-21 Mitsubishi Petrochem Co Ltd Silver catalyst for preparing ethylene oxide
JPH01123629A (en) * 1987-11-06 1989-05-16 Mitsubishi Petrochem Co Ltd Silver catalyst for producing ethylene oxide
JP2001000865A (en) * 1999-06-24 2001-01-09 Mitsubishi Chemicals Corp Catalyst for producing ethylene oxide and production of ethylene oxide
JP2001213665A (en) * 1999-09-06 2001-08-07 Nippon Shokubai Co Ltd Ceramics, catalyst carrier, their manufacturing method, catalyst for manufacturing ethylene oxide using carrier, its manufacturing method and manufacturing method of ethylene oxide
JP2001232194A (en) * 2000-02-23 2001-08-28 Nippon Shokubai Co Ltd Epoxide production catalyst and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174238A (en) * 1982-03-24 1983-10-13 サイエンティフィック・デザイン・カンパニー・インコーポレーテッド Catalyst for oxidizing ethylene to ethylene oxide in gaseous phase and production and use thereof
JPS63116743A (en) * 1986-05-09 1988-05-21 Mitsubishi Petrochem Co Ltd Silver catalyst for preparing ethylene oxide
JPH01123629A (en) * 1987-11-06 1989-05-16 Mitsubishi Petrochem Co Ltd Silver catalyst for producing ethylene oxide
JP2001000865A (en) * 1999-06-24 2001-01-09 Mitsubishi Chemicals Corp Catalyst for producing ethylene oxide and production of ethylene oxide
JP2001213665A (en) * 1999-09-06 2001-08-07 Nippon Shokubai Co Ltd Ceramics, catalyst carrier, their manufacturing method, catalyst for manufacturing ethylene oxide using carrier, its manufacturing method and manufacturing method of ethylene oxide
JP2001232194A (en) * 2000-02-23 2001-08-28 Nippon Shokubai Co Ltd Epoxide production catalyst and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202592A (en) * 2012-03-29 2013-10-07 Mitsubishi Chemicals Corp Catalyst for ethylene oxide production and method for production of ethylene oxide

Also Published As

Publication number Publication date
JP5258485B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP4267015B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
KR100483574B1 (en) Carrier for manufacturing ethylene oxide, catalyst for manufacturing ethylene oxide, and method for manufacturing ethylene oxide
JP2003144932A (en) Catalyst for producing ethylene oxide, producing method therefor and method for manufacturing ethylene oxide by the catalyst
TW200600190A (en) Process for preparing a silver catalyst, the catalyst, and use thereof in olefin oxidation
JP2014514960A (en) Catalyst for ethylene oxide production
JP2013534465A (en) Carrier for ethylene oxide catalyst
JP5570500B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5566881B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP5258485B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP4726349B2 (en) Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide using the catalyst
JP2010234264A (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5143610B2 (en) Method for producing catalyst for producing ethylene oxide
JP4354060B2 (en) Support for catalyst for producing ethylene oxide, catalyst for producing ethylene oxide, and method for producing ethylene oxide
JP4588183B2 (en) Ceramic body, catalyst carrier, production method thereof, ethylene oxide production catalyst using the carrier, production method thereof, and ethylene oxide production method
RU2169040C2 (en) Silver catalyst for production of ethylene oxide, method of preparing catalyst and ethylene oxide production process
JP5388925B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JPH04346835A (en) Silver catalyst for production of ethylene oxide
JP6033124B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5165441B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP2013198875A (en) Catalyst for production of ethylene oxide and production method of ethylene oxide using the same
JP5656709B2 (en) A method for recovering an active component from a catalyst for producing ethylene oxide after use, and a method for producing a catalyst using the recovered component.
JP5581058B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5101428B2 (en) Method for packing catalyst for producing ethylene oxide, reactor for producing ethylene oxide, and method for producing ethylene oxide
JP5328452B2 (en) Catalyst support for ethylene oxide production, catalyst for ethylene oxide production, and method for producing ethylene oxide
JP5479286B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees