JP4354060B2 - Support for catalyst for producing ethylene oxide, catalyst for producing ethylene oxide, and method for producing ethylene oxide - Google Patents

Support for catalyst for producing ethylene oxide, catalyst for producing ethylene oxide, and method for producing ethylene oxide Download PDF

Info

Publication number
JP4354060B2
JP4354060B2 JP32746499A JP32746499A JP4354060B2 JP 4354060 B2 JP4354060 B2 JP 4354060B2 JP 32746499 A JP32746499 A JP 32746499A JP 32746499 A JP32746499 A JP 32746499A JP 4354060 B2 JP4354060 B2 JP 4354060B2
Authority
JP
Japan
Prior art keywords
alkali metal
carrier
content
catalyst
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32746499A
Other languages
Japanese (ja)
Other versions
JP2001062291A (en
Inventor
昌秀 島
旬 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP32746499A priority Critical patent/JP4354060B2/en
Publication of JP2001062291A publication Critical patent/JP2001062291A/en
Application granted granted Critical
Publication of JP4354060B2 publication Critical patent/JP4354060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化エチレン製造用触媒の調製に用いる担体、該担体に銀触媒を担持してなる酸化エチレン製造用触媒および該触媒を用いた酸化エチレンの製造方法に関する。
【0002】
【従来の技術】
エチレンを気相酸化して酸化エチレンを製造する際に用いる酸化エチレン製造用触媒およびその担体について従来から数多くの文献が紹介されている。
【0003】
例えば、特開昭57−171435号公報には、ナトリウム含量を低く抑えたα−アルミナにムライト、コロイダルシリカなどを添加して得られる担体は、比表面積が高く、均一な細孔分布を有し、しかも耐摩耗性が高いことが記載されている。特開昭62−4444号公報には、アルミニウム化合物と周期律表第IA族金属の塩とを混合し、焼成することで不純物の少ない担体が得られ、この担体を用いた触媒は安定性に優れていることが記載されている。特開平4−363139号公報には、α−アルミナに周期律表IIIa−VIIaおよびIIIb−Vb族の第4、5および6周期の元素(例えばチタン、スズ、ハウニウム)を含む担体が開示され、この担体を用いた触媒は高選択性、高寿命であることが記載されている。また、特開平6−47278号公報には、高純度α−アルミナ、アルカリ土類金属酸化物、ケイ素酸化物および酸化ジルコニウムを含む担体、およびこの担体を用いた触媒は高初期選択率、長期寿命であることが記載されている。
【0004】
我々は、α−アルミナの表面に非晶質シリカの被覆層を設けた担体に触媒成分として銀とセシウムとを担持した酸化エチレン製造用触媒(特開平2−194839号公報)、およびα−アルミナの表面に非晶質シリカ−アルミナの被覆層を設け、この担体に触媒成分として銀とセシウムとを担持した酸化エチレン製造用触媒(特開平5−329368号公報)を提案している。
【0005】
【発明が解決しようとする課題】
上記特開平2−194839号および特開平5−329368号各公報に記載の触媒は触媒性能に優れ、工業的に十分満足し得るものである。しかしながら、酸化エチレンの生産規模は大きく、選択率が僅か1%向上するだけでも、原料エチレンを著しく節約できるので、その経済的効果が高いとの事情から、より優れた触媒性能を有する酸化エチレン製造用触媒を開発することが望まれている。
【0006】
したがって、本発明の目的は、酸化エチレン製造用触媒の調製に用いる担体、該担体に銀触媒成分を担持してなる酸化エチレン製造用触媒および該触媒を用いた酸化エチレンの製造方法を提供することにある。
【0007】
本発明の他の目的は、触媒性能、すなわち活性、選択率および寿命に優れた酸化エチレン製造用触媒を調製することを可能とする酸化エチレン製造用触媒の担体、該担体を用いて得られる、優れた触媒性能を有する酸化エチレン製造用触媒、および該触媒を用いた酸化エチレンの製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記諸目的は、下記(1)〜(11)により達成される。
【0009】
(1) アルカリ金属含量1〜70mmol/kg−粉体のアルカリ金属含量の低いα−アルミナ粉体に、アルミニウム化合物、ケイ素化合物およびアルカリ金属化合物を加え、焼成して得られる担体であって、該担体中のアルミニウム化合物含量がアルミニウム換算で0〜3mol/kg−担体、ケイ素化合物含量がケイ素換算で0.01〜2mol/kg−担体、アルカリ金属化合物含量がアルカリ金属換算で0.01〜2mol/kg−担体であり、該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比が0.0001〜0.8である酸化エチレン製造用触媒の担体。
【0010】
(2) 該α−アルミナ粉体はその二次粒子平均径が50〜100μmである前記(1)に記載の担体。
【0011】
(3) 該担体はそのBET比表面積が0.5〜4m /gである前記(1)〜(2)のいずれか一つに記載の担体。
【0012】
(4) 該担体中のアルミニウム化合物含量がアルミニウム換算で0.01〜2mol/kg−担体であり、アルカリ金属化合物含量が0.02〜0.5mol/kg−担体であり、かつ該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比が0.001〜0.5である前記(1)〜(4)のいずれか一つに記載の担体。
【0013】
(5) アルカリ金属含量1〜70mmol/kg−粉体のアルカリ金属含量の低いα−アルミナ粉体に、アルミニウム化合物、ケイ素化合物およびアルカリ金属化合物を加え、焼成して得られる担体であって、該担体中のアルミニウム化合物含量がアルミニウム換算で0〜3mol/kg−担体、ケイ素化合物含量がケイ素換算で0.01〜2mol/kg−担体、アルカリ金属化合物含量がアルカリ金属換算で0.01〜2mol/kg−担体であり、該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比が0.0001〜0.8である担体に銀を含む触媒成分を担持してなる酸化エチレン製造用触媒。
【0014】
(6) 該α−アルミナ粉体はその二次粒子平均径が50〜100μmである前記(5)に記載の触媒。
【0015】
(7) 該担体はそのBET比表面積が0.5〜4m /gである前記(5)または(6)に記載の触媒。
【0016】
(8) 該担体中のアルミニウム化合物含量がアルミニウム換算で0.01〜2mol/kg−担体であり、アルカリ金属化合物含量が0.02〜0.5mol/kg−担体であり、かつ該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比が0.001〜0.5である前記(5)〜(7)のいずれか一つに記載の触媒。
(9) 該銀の担持量は、触媒の重量基準で1〜30重量%である前記(5)〜(8)のいずれか一つに記載の触媒。
(10) 反応促進剤としてアルカリ金属を触媒の重量基準で0.001〜2重量%担持してなる前記(9)に記載の触媒。
(11) 前記()〜(10)のいずれか一つに記載の触媒の存在下にエチレンを分子状酸素含有ガスにより接触気相酸化することを特徴とする酸化エチレンの製造方法。
【0017】
【発明の実施の形態】
本発明で用いるα−アルミナは、その1kg当りのアルカリ金属含量が1〜70ミリモル(mmol)(本発明では1〜70mmol/kg−粉体と表示する)の範囲にあるものである。α−アルミナそれ自体には特に制限はなく、一般にα−アルミナとして用いられているものであればいずれも使用することができる。例えば、バイヤー焼成法によって得られるα−アルミナは、その製法上の理由から、アルカリ金属、特にナトリウムが必然的に含まれるものであるが、本発明においては、このアルカリ金属、が、1〜70mmol/kg−粉体の範囲に制御された低アルカリα−アルミナを使用するものである。
【0018】
アルカリ金属含量が1mmol/kg−粉体未満あるいは70mmol/kg−粉体を超えると、酸化エチレン選択率が低下して本発明の目的を達成することができない。なかでも、アルカリ金属含量が3〜30mmol/kg−粉体、特に5〜20mmol/kg−粉体の範囲のα−アルミナが好適に用いられる。
【0019】
本発明で用いられるα−アルミナとしては、アルミナ結晶径(一次粒子径)が0.1〜5μm、平均粒子径(二次粒子径)が50〜100μmであり、あるいは更にBET比表面積が0.5〜4m2/gであり、あるいは更に1700℃における2時間焼成による線収縮率が12〜20%のものが好適に用いられる。なお、「1700℃における2時間焼成による線収縮率」とは、α−アルミナをα結晶(一次粒子)の大きさまで粉砕した試料を1ton/cm2の圧力で成形し、この成形体を1700℃で2時間焼成したときの線収縮率を意味する。
【0020】
本発明の担体は、上記低アルカリα−アルミナ粉体にアルミニウム化合物、ケイ素化合物およびアルカリ金属化合物を、通常、有機結合剤とともに加え、粒状物に成形したのち、1200〜2000℃の範囲の温度で焼成して得られるものである。この焼成操作によりα−アルミナの外表面およびその気孔の内表面上にアルカリ金属を含む非晶質シリカ−アルミナの被覆層が形成されているものと考えられている。
【0021】
本発明の特徴の一つは、このようなアルカリ金属を含む非晶質シリカまたは非晶質シリカ−アルミナの被覆層を設ける点にあり、単に非晶質シリカないしはシリカ−アルミナの被覆層を予め形成し、その上にアルカリ金属を担持したのでは本発明の目的を達成することができない。
【0022】
上記アルミニウム化合物としては、ケイ素化合物およびアルカリ金属化合物とともに焼成することによりアルカリ金属を含むシリカ−アルミナの非晶質層を形成し得るものであればいずれも使用することができる。その代表例としては、アルミニウム水和物、アルミニウム酸化物(γ−またはθ−アルミナ)などを挙げることができる。これらは単独でも、あるいは2種以上を組み合わせて使用してもよい。また、合成品でも、あるいは天然物であってもよい。アルミニウム化合物の形態についても特に制限はなく、粉体、ゾル、水溶液などの任意の形態で添加することができる。アルミニウム化合物粉体の場合、1〜300nm、好ましくは1〜20nmの範囲の粒径を有するものが好適に用いられる。これらはアルミニウム化合物のなかでも、1〜300nm、好ましくは1〜20nmの粒径を有するコロイド状のアルミナが好適に用いられる。このコロイド状のアルミナはアルミナゾルとして用いるのが分散の容易さから好ましい。このアルミナゾルはアルミニウム塩を加水分解する方法、アルミニウム塩水溶液をアルカリで中和して一旦ゲルとした後、解膠する方法などによって得ることができる。
【0023】
上記ケイ素化合物としては、アルミニウム化合物およびアルカリ金属化合物とともに焼成することによりアルカリ金属を含むシリカまたはシリカ−アルミナの非晶質層を形成し得るものであればいずれも使用することができる。その代表例としては、シリカ、長石、粘土、窒化ケイ素、炭化ケイ素、シラン、ケイ酸塩などを挙げることができる。そのほか、シリカ−アルミナ、アルミノケイ酸塩なども用いることができる。これらは単独でも、あるいは2種以上を組み合わせて使用してもよい。また、合成品でも、天然物でもよい。ケイ素化合物の形態についても特に制限はなく、粉体、ゾル、溶液などのいずれの形態で添加してもよい。これらケイ素化合物粉体の場合、1〜300nm、好ましくは1〜20nmの粒径を有するケイ素化合物が好適に用いられる。これらケイ素化合物のなかでも、1〜300nm、好ましくは1〜20nmの粒径を有するコロイド状のシリカが好適に用いられる。このコロイド状のシリカは水溶液として用いるのが分散の容易さから好ましい。コロイド状のシリカは、ケイ酸ナトリウム水溶液を酸で中和して一旦ゲルとした後、解膠する方法、ケイ酸ナトリウム水溶液をイオン交換により脱ナトリウム化する方法によって得ることができる。
【0024】
上記アルカリ金属化合物のアルカリ金属種としては、リチウム、ナトリウム、カリウム、ルビジウムおよびセシウムのいずれでもよく、なかでもカリウムおよびルビジウム、特にカリウムが好適に用いられる。これらは単独でも組合わせて使用してもよい。代表例としては、アルカリ金属の塩、酸化物、水酸化物などを挙げることができる。なお、塩の場合、アニオン種が存在するため、焼成時に望ましくない融剤効果を示すことによって物性の制御が困難になり、または焼成後も不純物として残存して担体、ひいては触媒の性能に悪影響を及ぼす場合もあるので、塩のなかでも、比較的低温で酸化物の形態をとり得る有機酸塩などが好適に用いられる。なかでも、アルカリ金属の酸化物および水酸化物が好適に用いられる。その代表例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、酸化リチウム、酸化ナトリウム、酸化カリウム、酸化ルビジウムなどを挙げることができる。
【0025】
上記有機結合剤としては、酸化エチレン製造用触媒の担体の調製に一般に用いられている有機結合剤を用いることができる。その代表例としては、アラビアゴム、ポリビニルアルコール、ヒドロキシエチルセルロース、メチルセルロース、カルボキシメチルセルロース、コーンスターチなどを挙げることができる。これらのうち、メチルセルロースおよびコーンスターチが焼成操作後の灰分が少ないので好適に用いられる。
【0026】
本発明の担体中のケイ素化合物の含量は、担体1kg当りケイ素に換算して、0.01〜2molである(本発明では0.01〜2mol/kg−担体と表示する)。ケイ素化合物の含量が0.01mol/kg−担体未満あるいは2mol/kg−担体を超えると、該担体を用いて調製した触媒は、酸化エチレン選択率が低下して本発明の目的を達成することができない。担体中のケイ素化合物の含量は、好ましくは0.1〜1mol/kg−担体、より好ましくは0.2〜0.5mol/kg−担体である。
【0027】
アルミニウム化合物の含量(添加するアルミニウム化合物に由来するものであり、α−アルミナを除く)は、担体1kg当りアルミニウムに換算して0〜3molである(本発明では0〜3mol/kg−担体と表示する)。3mol/kg−担体を超えると、該担体を用いて調製した触媒は、酸化エチレン選択率が低下して本発明の目的を達成することができない。担体中のアルミニウム化合物の含量は、好ましくは0.01〜2mol/kg‐担体、より好ましくは0.1〜1mol/kg−担体である。
【0028】
アルカリ金属化合物の含量(添加するアルカリ金属化合物に由来するものであり、α−アルミナ中のアルカリ金属を除く)は、担体1kg当りアルカリ金属換算で0.010〜2molである。(本発明では0.010〜2mol/kg−担体と表示する)。アルカリ金属化合物の含量が0.010mol/kg−担体未満あるいは2mol/kg−担体を超えると、該担体を用いて調製した触媒は、酸化エチレン選択率が低下する。担体中のアルカリ金属化合物の含量は、好ましくは0.02〜0.5mol/kg−担体、より好ましくは0.03〜0.3mol/kg−担体である。
【0029】
担体中のケイ素化合物の含量、アルミニウム化合物に由来するアルミニウムとα−アルミナとのアルミニウム合計含量、およびアルカリ金属化合物に由来するアルカリ金属とα−アルミナ中のアルカリ金属とのアルカリ金属合計含量は、担体の蛍光X線分析による組成分析結果から算出することができる。そして、本発明のアルミニウム含量は上記アルミニウム合計含量から仕込みのα−アルミナの量を除いたものであり、また本発明のアルカリ金属含量は上記アルカリ金属合計含量から仕込みのα−アルミナ中のアルミニウム含量を除いたものである。しかして、該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比は、通常0.0001〜0.8、好ましくは0.001〜0.5、さらに好ましくは0.01〜0.3である。
【0030】
本発明の担体を調製する際のα−アルミナに対するアルミニウム化合物、ケイ素化合物およびアルカリ金属化合物の使用量については、担体中のアルミニウム、ケイ素およびアルカリ金属の含量が上記範囲内となるように適宜決定すればよい。有機結合剤の使用量については特に制限はなく適宜最適量を選ぶことができる。
【0031】
本発明の担体の調製方法には特に制限はなく、α−アルミナ粉体を主骨剤とし、これにアルミニウム化合物、ケイ素化合物、アルカリ金属化合物および必要により有機結合剤を加えた後、所定の形状および寸法に成形し、1200〜2000℃の温度で焼成すればよい。具体的には、例えば、α−アルミナにアルミニウム化合物、ケイ素化合物、アルカリ金属化合物および有機結合剤を添加し、さらに必要に応じて水を加えてニーダなどの混練機を用いて十分に混合した後、押出成形等により、造粒し、乾燥し、1200〜2000℃、好ましくは1400〜1800℃、より好ましくは1500〜1700℃の温度で焼成する。上記押出成形は湿式でも乾式でもよいが、通常、湿式の押出成形を行う。また、上記乾燥は、通常、80〜900℃、好ましくは120〜850℃の範囲で行うが、省略してもよい。
【0032】
α−アルミナ粉体、アルミニウム化合物、ケイ素化合物、アルカリ金属化合物および有機結合剤の混合順序には特に制限はなく、(a)これら化合物を同時に混合した後、成形、乾燥、焼成する方法、(b)α−アルミナと有機結合剤とを混合し、乾燥した後、アルミニウム化合物、ケイ素化合物およびアルカリ金属化合物を混合して、成形、乾燥、焼成する方法、(c)α−アルミナ、アルミニウム化合物、ケイ素化合物および有機結合剤を同時に混合し、乾燥した後、アルカリ金属化合物を混合して、成形、乾燥、焼成する方法、(d)α−アルミナ、アルカリ金属および有機結合剤を混合し、乾燥した後、アルミニウム化合物およびケイ素化合物を混合して、成形、乾燥、焼結する方法などを適宜用いることができる。
【0033】
なお、有機結合剤とともに、桃、杏、クルミなどの殻、種子などを均一粒径に揃えたもの、あるいは粒子径が均一で焼成により消失する物質などを気孔形成剤として一緒に用いてもよい。
【0034】
本発明の担体の形状には特に制限はなく、通常、球状、ペレット状、リング状などの粒状で用いられる。また、その大きさについては、その平均相当直径は、通常、3〜20mmであり、好ましくは5〜10mmである。
【0035】
本発明の担体のBrunauer−Emmett−Teller(BET)比表面積は、通常、0.03〜10m2/gであり、好ましくは0.1〜5m2/g、より好ましくは0.3〜2m2/gである。比表面積が低すぎると焼結が過度に進行しているため十分な吸水率が得られず、触媒成分の担持が困難になり、逆に比表面積が高すぎると細孔径が小さくなり、該担体を用いて調製した触媒において、生成物であるエチレンオキシドの逐次酸化が促進される。吸水率は、通常、10〜70%であり、好ましくは20〜60%、より好ましくは30〜50%である。吸水率が低すぎると触媒成分の担持が困難になり、逆に高すぎると十分な圧壊強度が得られない。平均細孔径は、通常、0.1〜5μmであり、好ましくは0.2〜3μm、より好ましくは0.3〜0.9μmである。平均細孔径が大きすぎると触媒の活性が低下し、逆に小さすぎるとガスの滞留により生成物である酸化エチレンの逐次酸化が促進される。気孔率は、通常、40〜80%であり、好ましくは50〜70%である。気孔率が低すぎると担体比重が過度に大きくなり、逆に高すぎると十分な圧壊強度が得られない。
【0036】
本発明の酸化エチレン製造用触媒は上記の担体を用いる点を除けば、酸化エチレン製造用触媒の調製に一般に用いられている方法にしたがって調製することができる。担体に担持する触媒成分は、銀単独でも、あるいは銀とセシウムなどの反応促進剤との組み合せでもよい。本発明の「触媒成分を担持」するとは、銀単独のほかに銀と反応促進剤とを担持する態様を包含する。
【0037】
具体的には、例えば、銀を形成させるための銀化合物単独、または銀化合物および銀錯体を形成するための錯化剤、もしくは更に必要に応じて用いる反応促進剤を含む水溶液を調製し、これに担体を含浸させた後、乾燥し、焼成する。この乾燥は空気、酸素ガス、または窒素などの不活性ガス雰囲気中で80〜120℃の温度で行うのが好ましい。焼成は、空気、酸素ガス、または窒素などの不活性ガス雰囲気中で150〜700℃、特に200〜600℃の温度で行うのが好ましい。なお、この焼成は、1段階または2段階以上で行ってもよい。中でも好ましくは、1段階目を空気雰囲気中で150〜250℃で0.1〜10時間、2段階目を空気雰囲気中で250〜450℃で0.1〜10時間処理したものが好適である。さらに好ましくは、3段階目を窒素、ヘリウム、アルゴンなどから選択される不活性ガス雰囲気中で450〜700℃で0.1〜10時間で処理したものが好ましい。
【0038】
上記銀化合物の代表例としては、硝酸銀、炭酸銀、シュウ酸銀、酢酸銀、プロピオン酸銀、乳酸銀、クエン酸銀、ネオデカン酸銀などを挙げることができる。鎖化剤の代表例としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、プロピレンジアミンなどを挙げることができる。反応促進剤の代表例としては、リチウム、ナトリウム、カリウム、ルビジウム、およびセシウムのアルカリ金属、タリウム、硫黄、クロム、モリブデン、タングステンなどを挙げることができる。これらは単独でも、2種以上を組み合わせて使用することもできる。
【0039】
本発明の酸化エチレン製造用触媒としては、触媒成分として銀とセシウムなどの反応促進剤とを担持したものが好ましい。銀の担持量は、触媒の重量基準で、通常、1〜30重量%であり、好ましくは5〜20重量%である。反応促進剤の担持量は、触媒の重量基準で、通常、0.001〜2重量%、好ましくは0.01〜1重量%、より好ましくは0.1〜0.7重量%である。
【0040】
本発明のエチレンを気相酸化して酸化エチレンを製造する方法は、触媒として上記の酸化エチレン製造用触媒を用いる点を除けば、従来から一般に用いられている方法によって行うことができる。
【0041】
具体的には、例えば、エチレン0.5〜40容量%、酸素3〜10容量%、炭酸ガス5〜30容量%、残部が窒素、アルゴン、水蒸気などの不活性ガス、メタン、エタンなどの低級炭化水素類からなり、さらに反応抑制剤としての二塩化エチレン、塩化ジフェニルなどのハロゲン化物を含む原料ガスを1000〜30000hr-1(STP)、好ましくは3000〜8000hr-1(STP)の空間速度、2〜40kg/cm2g、好ましくは15〜40kg/cm2Gの圧力、180〜300℃、好ましくは200〜260℃の温度で上記の酸化エチレン製造用触媒に接触させる
【0042】
【発明の効果】
本発明の担体を用いて得られる酸化エチレン製造用触媒は、触媒性能、特に選択率が一段と優れたものである。
【0043】
【実施例】
以下、実施例を挙げて本発明を更に具体的に説明する。なお、部は重量部を意味する。
【0044】
なお、実施例および比較例に記載する転化率および選択率は次式により算出されたものである。
【0045】
【数1】

Figure 0004354060
【0046】
【数2】
Figure 0004354060
【0047】
実施例1
α−アルミナ粉体A(アルミナ結晶径:1μm、二次粒子平均径:65μm、BET比表面積:2.2m2/g、1700℃における2時間焼成による線収縮率:15%、ナトリウム含量16mmol/kg−粉体)93重量部、メチルセルロース6重量部、およびコーンスターチ6重量部をニーダに投入し、十分混合した後、粒径2〜20nmのコロイダルアルミナ4重量部(Al23含有量として)、粒径2〜20nmのコロイダルシリカ(日産化学株式会社製、スノーテックス−O)を3重量部(SiO2含有量として)および水酸化カリウム水溶液0.38重量部(KOH含有量として)を加え、これに水20重量部をニーダに投入し、十分に混合した。この混合物を押出成形した後、造粒、乾燥し、1450℃で2時間焼成して担体を得た。
【0048】
この担体は、ケイ素含有量が0.5mol/kg−担体、アルミニウム含量が0.8mol/kg−担体、かつアルカリ金属含有量が0.08mol/kg−担体で、BET比表面積が1.0m2/gであった。該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比は0.18であった。
【0049】
上記のようにして得られた担体1リットルに純水1リットルを加え、常圧下に、90℃で30分間煮沸洗浄した後、洗浄液を除去し、純水で洗浄した。さらに、この煮沸洗浄およびその後の洗浄を2回繰り返し、120℃で2時間乾燥した。
【0050】
この乾燥担体300gにシュウ酸銀57.3g、モノエタノールアミン38.6ml、水41.4mlおよび硝酸セシウム0.18gからなる錯体溶液を含浸させた後、加熱、濃縮し、さらに120℃で40分間乾燥した後、空気気流中で300℃で30分間加熱処理して、エチレンオキシド製造用触媒(A)を得た。
【0051】
実施例2
実施例1において、水酸化カリウム水溶液0.38g重量部の代わりに水酸化ルビジウム水溶液0.70重量部(RbOHとして)を用いた以外は実施例1と同様にして担体を得た。
【0052】
この担体は、ケイ素含有量が0.5mol/kg−担体、アルミニウム含量が0.8mol/kg−担体、かつアルカリ金属含有量が0.08mol/kg−担体で、BET比表面積が0.8m2/gであった。該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比は0.18であった。
【0053】
上記のようにして得られた担体を用いて、実施例1のように酸化エチレン製造用触媒(B)を得た。
【0054】
実施例3
実施例1において、水酸化カリウム水溶液0.38g重量部の代わりに水酸化ナトリウム水溶液0.34重量部(NaOHとして)を用いた以外は実施例1と同様にして担体を得た。
【0055】
この担体は、ケイ素含有量が0.5mol/kg−担体、アルミニウム含量が0.8mol/kg−担体、かつアルカリ金属含有量が0.10mol/kg−担体で、BET比表面積が0.6m2/gであった。
【0056】
上記のようにして得られた担体を用いて、実施例1のように酸化エチレン製造用触媒(C)を得た。
【0057】
実施例4
実施例1において、水酸化カリウム水溶液0.38g重量部およびメチルセルロース6重量部の代わりにカルボキシメチルセルロース3重量部(Naとして0.2重量部)およびメチルセルロース3重量部を用いた以外は実施例1と同様にして担体を得た。
【0058】
この担体は、ケイ素含有量が0.5mol/kg−担体、アルミニウム含量が0.8mol/kg−担体、かつアルカリ金属含有量が0.10mol/kg−担体で、BET比表面積が0.6m2/gであった。
【0059】
上記のようにして得られた担体を用いて、実施例1のように酸化エチレン製造用触媒(D)を得た。
【0060】
実施例5
実施例1において、用いたα−アルミナ粉体Aの代わりに、α−アルミナ粉体B(アルミナ結晶径:3μm、二次粒子平均径:65μm、BET比表面積:0.7m2/g、1700℃における2時間焼成による線収縮率:14%、ナトリウム含量:16mmol/kg−粉体)を用いた以外は実施例1と同様にして担体を得た。該粉体中のアルカリ金属/該担体中のアルカリ金属含量の原子比は0.18であった。
【0061】
この担体は、ケイ素含有量が0.5mol/kg−担体、アルミニウム含量が0.8mol/kg−担体、かつアルカリ金属含有量が0.08mol/kg−担体で、BET比表面積が0.3m2/gであった。
【0062】
上記のようにして得られた担体を用いて、実施例1のように酸化エチレン製造用触媒(E)を得た。
【0063】
実施例6
実施例1において、用いたα−アルミナ粉体Aの代わりに、α−アルミナ粉体C(アルミナ結晶径:3μm、二次粒子平均径:65μm、BET比表面積:0.9m2/g、1700℃における2時間焼成による線収縮率:15%、ナトリウム含量:16mmol/kg−粉体)を用いた以外は実施例1と同様にして担体を得た。
【0064】
この担体は、ケイ素含有量が0.5mol/kg−担体、アルミニウム含量が0.8mol/kg−担体、かつアルカリ金属含有量が0.08mol/kg−担体で、BET比表面積が0.6m2/gであった。該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比は0.18であった。
【0065】
上記のようにして得られた担体を用いて、実施例1のように酸化エチレン製造用触媒(F)を得た。
【0066】
実施例7
実施例1において、用いたα−アルミナ粉体Aの代わりに、α−アルミナ粉体D(アルミナ結晶径:3μm、二次粒子平均径:55μm、BET比表面積:6.0m2/g、1700℃における2時間焼成による線収縮率:17%、ナトリウム含量:16mmol/kg−粉体)を用いた以外は実施例1と同様にして担体を得た。
【0067】
この担体は、ケイ素含有量が0.5mol/kg−担体、アルミニウム含量が0.8mol/kg−担体、かつアルカリ金属含有量が0.08mol/kg−担体で、BET比表面積が2.3m2/gであった。
【0068】
上記のようにして得られた担体を用いて、実施例1のように酸化エチレン製造用触媒(G)を得た。
【0069】
実施例8
実施例1において用いたコロイダルアルミナを用いない以外は実施例1と同様にして担体を得た。
【0070】
この担体は、ケイ素含有量が0.5mol/kg−担体かつアルカリ金属含有量が0.08mol/kg−担体で、BET比表面積が1.2m2/gであった。該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比は0.18であった。
【0071】
上記のようにして得られた担体を用いて、実施例1のように酸化エチレン製造用触媒(H)を得た。
【0072】
実施例9
実施例1において、水酸化カリウム水溶液0.38重量部の代わりに水酸化カリウム水溶液0.02重量部(KOHとして)を用いた以外は実施例1と同様にして担体を得た。
【0073】
この担体は、ケイ素含有量が0.5mol/kg−担体、アルミニウム含量0.8mol/kg−担体、かつアルカリ金属含有量が0.02mol/kg−担体で、BET比表面積が1.5m2/gであった。該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比は0.75であった。
【0074】
上記のようにして得られた担体を用いて、実施例1のように酸化エチレン製造用触媒(I)を得た。
【0075】
実施例10
実施例1で得られた担体300gに、シュウ酸銀57.3g、モノエタノールアミン38.6ml、水41.4ml及び硝酸セシウム0.6gからなる錯体溶液を含浸させた後、加熱、濃縮し、さらに120℃で40分間乾燥した後、空気気流中で300℃で30分間加熱処理し、さらに窒素気流中で600℃で3h加熱処理し、エチレンオキシド製造用触媒(J)を得た。
【0076】
比較例1
実施例1において用いた、水酸化カリウム水溶液を使用しなかった以外は、実施例1と同様にして担体、続いてエチレン製造用触媒(K)を得た。該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比は1.0であった。
【0077】
比較例2
実施例1において、用いたα−アルミナ粉体Aの代わりに、α−アルミナ粉体F(ナトリウム含量0)を用いた以外は、実施例1と同様にして完成担体、続いてエチレンオキシド製造用触媒(L)を得た。該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比は0であった。
【0078】
比較例3
実施例1において、用いたα−アルミナ粉体Aの代わりに、α−アルミナ粉体G(アルミナ結晶径:3μm、二次粒子平均径:65μm、BET比表面積:2.4m2/g、1700℃における2時間焼成による線収縮率:17%、ナトリウム含量:84mmol/kg−粉体)を用いた以外は実施例1と同様にして担体を得た。
【0079】
この担体は、ケイ素含有量が0.5mol/kg−担体、アルミニウム含量3.5mol/kg−担体、かつアルカリ金属含有量が0.10mol/kg−担体で、BET比表面積が1.3m2/gであった。
た。
【0080】
上記のようにして得られた担体を用いて、実施例1のように酸化エチレン製造用触媒(M)を得た。
【0081】
実施例11
触媒(A)〜(M)を各々粉砕し、600〜850メッシュに篩い分け、その1.2gを内径3mm、管長600mmのステンレス鋼製の反応管に充填し、これに下記条件下にてエチレンの気相酸化を行なった。エチレン転化率が10%のときの選択率および触媒層の反応温度を測定したところ、表1の結果が得られた。
【0082】
空間速度:6,000hr-1
反応圧力:20kg/cm2
原料ガス:エチレン20容量%、酸素7.8容量%、二酸化炭素5.5容量%、エチレンジクロリド2.1ppmおよび残余(メタン、窒素、アルゴンおよびエタン)
実施例12
触媒(A)および(M)を各々粉砕し、600〜850メッシュに篩い分け、その1.2gを内径3mm、管長600mmのステンレス鋼製の反応管に充填し、これに下記条件下にてエチレンの気相酸化を行なった。この試験の全期間にわたってエチレン転化率が25%のときの酸化エチレンの選択率および触媒層の反応温度を測定した。触媒1ml当りの酸化エチレンの生成量が1000gをこえるまで試験を行なった。酸化エチレンを1000gを生成するのに25日以上を要した。
【0083】
エチレン転化率が25%になった直後と25日目の酸化エチレンの選択率および反応温度を測定し、その差をそれぞれ計算して、表2の結果を得た。
【0084】
本願発明の触媒は、上記算出の差が小さいことから、触媒性能の安定性の点でも優れていると見なすことができる。
【0085】
空間速度:22,000hr-1
反応圧力:20kg/cm2
原料ガス:エチレン20容量%、酸素7.8容量%、二酸化炭素5.5容量%、エチレンジクロリド2.1ppmおよび残余(メタン、窒素、アルゴンおよびエタン)
【0086】
【表1】
Figure 0004354060
【0087】
【表2】
Figure 0004354060
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carrier used for preparing an ethylene oxide production catalyst, a catalyst for producing ethylene oxide in which a silver catalyst is supported on the carrier, and a method for producing ethylene oxide using the catalyst.
[0002]
[Prior art]
Numerous documents have been introduced in the past regarding catalysts for ethylene oxide production and carriers used for producing ethylene oxide by vapor phase oxidation of ethylene.
[0003]
For example, in JP-A-57-171435, a support obtained by adding mullite, colloidal silica, etc. to α-alumina with a low sodium content has a high specific surface area and a uniform pore distribution. In addition, it is described that the wear resistance is high. In Japanese Patent Laid-Open No. 62-4444, an aluminum compound and a salt of a Group IA metal of the periodic table are mixed and calcined to obtain a carrier with less impurities, and a catalyst using this carrier is stable. It is described that it is excellent. JP-A-4-363139 discloses a carrier containing α-alumina containing elements of the fourth, fifth and sixth periods of the groups IIIa-VIIa and IIIb-Vb of the periodic table (for example, titanium, tin, haunium), It is described that the catalyst using this support has high selectivity and long life. JP-A-6-47278 discloses a carrier containing high-purity α-alumina, alkaline earth metal oxide, silicon oxide and zirconium oxide, and a catalyst using this carrier has a high initial selectivity and a long life. It is described that.
[0004]
We have prepared a catalyst for production of ethylene oxide in which silver and cesium are supported as catalyst components on a carrier provided with a coating layer of amorphous silica on the surface of α-alumina (Japanese Patent Laid-Open No. Hei 2-19439), and α-alumina A catalyst for producing ethylene oxide (Japanese Patent Laid-Open No. 5-329368) is proposed in which a coating layer of amorphous silica-alumina is provided on the surface of this substrate and silver and cesium are supported on the carrier as catalyst components.
[0005]
[Problems to be solved by the invention]
The catalysts described in JP-A-2-194839 and JP-A-5-329368 are excellent in catalyst performance and can be sufficiently satisfied industrially. However, the production scale of ethylene oxide is large, and even if the selectivity is improved by only 1%, the raw material ethylene can be saved significantly. Therefore, the production of ethylene oxide with better catalytic performance is possible because of its high economic effect. It is desired to develop a catalyst for use.
[0006]
Accordingly, an object of the present invention is to provide a carrier used for preparing a catalyst for producing ethylene oxide, a catalyst for producing ethylene oxide having a silver catalyst component supported on the carrier, and a method for producing ethylene oxide using the catalyst. It is in.
[0007]
Another object of the present invention is to obtain an ethylene oxide production catalyst carrier that makes it possible to prepare a catalyst for ethylene oxide production that is excellent in catalyst performance, that is, activity, selectivity, and life, and is obtained using the carrier. An object of the present invention is to provide a catalyst for producing ethylene oxide having excellent catalytic performance, and a method for producing ethylene oxide using the catalyst.
[0008]
[Means for Solving the Problems]
  The above-mentioned purposes are as follows (1) to (11).
[0009]
  (1) Alkali metal content of 1-70 mmol / kg-powder alkalimetalLow content of α-aluminapowderA carrier obtained by adding an aluminum compound, a silicon compound and an alkali metal compound, and calcining, wherein the aluminum compound content in the carrier is 0 to 3 mol / kg-carrier in terms of aluminum, and the silicon compound content in terms of silicon 0.01-2 mol / kg-carrierALucari metal compound content is 0.01-2 mol / kg-carrier in terms of alkali metalThe atomic ratio of alkali metal content in the powder / alkali metal content in the carrier is 0.0001 to 0.8.A catalyst carrier for producing ethylene oxide.
[0010]
  (2) The α-aluminapowderIs thatSecondary particle average diameter is 50-100 μmThe carrier according to (1), wherein
[0011]
  (3)The carrier has a BET specific surface area of 0.5 to 4 m. 2 The carrier according to any one of (1) to (2), which is / g.
[0012]
  (4)The aluminum compound content in the carrier is 0.01-2 mol / kg-carrier in terms of aluminum, the alkali metal compound content is 0.02-0.5 mol / kg-carrier, and the alkali metal in the powder The carrier according to any one of (1) to (4), wherein the atomic ratio of content / alkali metal content in the carrier is 0.001 to 0.5.
[0013]
  (5)A carrier obtained by adding an aluminum compound, a silicon compound and an alkali metal compound to an α-alumina powder having an alkali metal content of 1 to 70 mmol / kg-powders having a low alkali metal content, and calcining the same. Aluminum compound content 0-3 mol / kg-carrier in terms of aluminum, silicon compound content 0.01-2 mol / kg-carrier in terms of silicon, alkali metal compound content 0.01-2 mol / kg-carrier in terms of alkali metal A catalyst for ethylene oxide production, wherein a catalyst component containing silver is supported on a carrier having an atomic ratio of alkali metal content in the powder / alkali metal content in the carrier of 0.0001 to 0.8.
[0014]
  (6)The α-alumina powder has an average secondary particle diameter of 50 to 100 μm (5)The catalyst according to 1.
[0015]
  (7)The carrier has a BET specific surface area of 0.5 to 4 m. 2 / G of the catalyst according to (5) or (6).
[0016]
  (8) The aluminum compound content in the carrier is 0.01-2 mol / kg-carrier in terms of aluminum, the alkali metal compound content is 0.02-0.5 mol / kg-carrier, and in the powder The catalyst according to any one of the above (5) to (7), wherein the atomic ratio of the alkali metal content / the alkali metal content in the support is 0.001 to 0.5.
  (9) The catalyst according to any one of (5) to (8), wherein the supported amount of silver is 1 to 30% by weight based on the weight of the catalyst.
  (10) Alkaline metal catalyst as reaction acceleratorOn a weight basisThe catalyst according to (9) above, which is supported by 0.001 to 2% by weight.
  (11) said (5) To (10), in the presence of the catalyst according to any one of the above, ethylene is subjected to catalytic gas phase oxidation with a molecular oxygen-containing gas.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The α-alumina used in the present invention has an alkali metal content per kg of 1 to 70 mmol (mmol) (in the present invention, expressed as 1 to 70 mmol / kg-powder). The α-alumina itself is not particularly limited, and any of those generally used as α-alumina can be used. For example, α-alumina obtained by the buyer firing method necessarily contains an alkali metal, particularly sodium, for reasons of its production. In the present invention, this alkali metal is 1 to 70 mmol. Low alkali α-alumina controlled in the range of / kg-powder is used.
[0018]
When the alkali metal content is less than 1 mmol / kg-powder or exceeds 70 mmol / kg-powder, the ethylene oxide selectivity is lowered and the object of the present invention cannot be achieved. Among these, α-alumina having an alkali metal content of 3 to 30 mmol / kg-powder, particularly 5 to 20 mmol / kg-powder is preferably used.
[0019]
The α-alumina used in the present invention has an alumina crystal diameter (primary particle diameter) of 0.1 to 5 μm, an average particle diameter (secondary particle diameter) of 50 to 100 μm, or a BET specific surface area of 0.1. 5-4m2Or a linear shrinkage rate of 12 to 20% by firing at 1700 ° C. for 2 hours is preferably used. “Linear shrinkage rate by firing at 1700 ° C. for 2 hours” means that a sample obtained by crushing α-alumina to the size of α crystal (primary particles) is 1 ton / cm.2This means the linear shrinkage rate when the molded body is molded at 1700 ° C. for 2 hours.
[0020]
In the carrier of the present invention, an aluminum compound, a silicon compound and an alkali metal compound are usually added together with an organic binder to the low alkali α-alumina powder, and then formed into a granular material, and then at a temperature in the range of 1200 to 2000 ° C. It is obtained by firing. It is considered that an amorphous silica-alumina coating layer containing an alkali metal is formed on the outer surface of α-alumina and the inner surface of the pores by this firing operation.
[0021]
One of the features of the present invention is that an amorphous silica or amorphous silica-alumina coating layer containing such an alkali metal is provided. The object of the present invention cannot be achieved by forming and supporting an alkali metal thereon.
[0022]
Any aluminum compound may be used as long as it can form a silica-alumina amorphous layer containing an alkali metal by firing with a silicon compound and an alkali metal compound. Typical examples thereof include aluminum hydrate and aluminum oxide (γ- or θ-alumina). These may be used alone or in combination of two or more. Further, it may be a synthetic product or a natural product. There is no restriction | limiting in particular also about the form of an aluminum compound, It can add with arbitrary forms, such as powder, sol, and aqueous solution. In the case of an aluminum compound powder, a powder having a particle size in the range of 1 to 300 nm, preferably 1 to 20 nm is suitably used. Of these aluminum compounds, colloidal alumina having a particle size of 1 to 300 nm, preferably 1 to 20 nm is suitably used. This colloidal alumina is preferably used as an alumina sol from the viewpoint of ease of dispersion. This alumina sol can be obtained by a method of hydrolyzing an aluminum salt, a method of neutralizing an aluminum salt aqueous solution with an alkali to form a gel, and then peptizing.
[0023]
Any silicon compound may be used as long as it can form an amorphous layer of silica or silica-alumina containing an alkali metal by firing with an aluminum compound and an alkali metal compound. Typical examples include silica, feldspar, clay, silicon nitride, silicon carbide, silane, silicate, and the like. In addition, silica-alumina, aluminosilicate, and the like can be used. These may be used alone or in combination of two or more. Further, it may be a synthetic product or a natural product. There is no restriction | limiting in particular also about the form of a silicon compound, You may add with any forms, such as a powder, a sol, and a solution. In the case of these silicon compound powders, silicon compounds having a particle size of 1 to 300 nm, preferably 1 to 20 nm are suitably used. Among these silicon compounds, colloidal silica having a particle size of 1 to 300 nm, preferably 1 to 20 nm is suitably used. The colloidal silica is preferably used as an aqueous solution because of its easy dispersion. Colloidal silica can be obtained by neutralizing a sodium silicate aqueous solution with an acid to form a gel once and then peptizing, or by sodium removal by ion exchange of the sodium silicate aqueous solution.
[0024]
The alkali metal species of the alkali metal compound may be any of lithium, sodium, potassium, rubidium, and cesium, and potassium and rubidium, particularly potassium is preferably used. These may be used alone or in combination. Representative examples include alkali metal salts, oxides, hydroxides, and the like. In the case of a salt, since anionic species are present, it becomes difficult to control physical properties by exhibiting an undesirable flux effect at the time of calcination, or it remains as an impurity even after calcination, which adversely affects the performance of the carrier and thus the catalyst. In some cases, an organic acid salt that can take the form of an oxide at a relatively low temperature is preferably used among the salts. Of these, alkali metal oxides and hydroxides are preferably used. Representative examples thereof include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, lithium oxide, sodium oxide, potassium oxide, rubidium oxide and the like.
[0025]
As said organic binder, the organic binder generally used for preparation of the support | carrier of the catalyst for ethylene oxide manufacture can be used. Typical examples thereof include gum arabic, polyvinyl alcohol, hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, corn starch and the like. Of these, methylcellulose and corn starch are preferably used because of their low ash content after the baking operation.
[0026]
The content of the silicon compound in the carrier of the present invention is 0.01 to 2 mol in terms of silicon per kg of the carrier (in the present invention, expressed as 0.01 to 2 mol / kg-carrier). When the content of the silicon compound is less than 0.01 mol / kg-carrier or more than 2 mol / kg-carrier, the catalyst prepared using the carrier has a reduced ethylene oxide selectivity and can achieve the object of the present invention. Can not. The content of the silicon compound in the carrier is preferably 0.1-1 mol / kg-carrier, more preferably 0.2-0.5 mol / kg-carrier.
[0027]
The content of the aluminum compound (derived from the aluminum compound to be added, excluding α-alumina) is 0 to 3 mol in terms of aluminum per kg of the carrier (in the present invention, expressed as 0 to 3 mol / kg-carrier). To do). When the amount exceeds 3 mol / kg-support, the catalyst prepared using the support has a lower ethylene oxide selectivity and cannot achieve the object of the present invention. The content of the aluminum compound in the carrier is preferably 0.01-2 mol / kg-carrier, more preferably 0.1-1 mol / kg-carrier.
[0028]
The content of the alkali metal compound (derived from the alkali metal compound to be added, excluding the alkali metal in α-alumina) is 0.010 to 2 mol in terms of alkali metal per 1 kg of the carrier. (In the present invention, it is expressed as 0.010 to 2 mol / kg-carrier). When the content of the alkali metal compound is less than 0.010 mol / kg-support or more than 2 mol / kg-support, the catalyst prepared using the support has a lower ethylene oxide selectivity. The content of the alkali metal compound in the carrier is preferably 0.02 to 0.5 mol / kg-carrier, more preferably 0.03 to 0.3 mol / kg-carrier.
[0029]
The content of the silicon compound in the support, the total aluminum content of aluminum and α-alumina derived from the aluminum compound, and the total alkali metal content of the alkali metal derived from the alkali metal compound and the alkali metal in α-alumina It can calculate from the composition analysis result by fluorescent X-ray analysis. The aluminum content of the present invention is obtained by subtracting the amount of charged α-alumina from the total aluminum content, and the alkali metal content of the present invention is the aluminum content in the charged α-alumina from the total alkali metal content. Is excluded. Thus, the atomic ratio of the alkali metal content in the powder / the alkali metal content in the carrier is usually 0.0001 to 0.8, preferably 0.001 to 0.5, and more preferably 0.01 to 0.3.
[0030]
The amount of aluminum compound, silicon compound and alkali metal compound used for α-alumina in preparing the carrier of the present invention is appropriately determined so that the content of aluminum, silicon and alkali metal in the carrier is within the above range. That's fine. There is no restriction | limiting in particular about the usage-amount of an organic binder, The optimal amount can be selected suitably.
[0031]
There is no particular limitation on the method for preparing the carrier of the present invention, and α-alumina powder is used as a main skeleton, and after adding an aluminum compound, a silicon compound, an alkali metal compound and, if necessary, an organic binder, a predetermined shape is obtained. And may be formed into a size and fired at a temperature of 1200 to 2000 ° C. Specifically, for example, after adding an aluminum compound, a silicon compound, an alkali metal compound, and an organic binder to α-alumina, and adding water as necessary, and sufficiently mixing using a kneader such as a kneader , Granulated by extrusion, etc., dried, and fired at a temperature of 1200 to 2000 ° C., preferably 1400 to 1800 ° C., more preferably 1500 to 1700 ° C. The extrusion molding may be wet or dry, but is usually wet extrusion. Moreover, although the said drying is normally performed in the range of 80-900 degreeC, Preferably 120-850 degreeC, you may abbreviate | omit.
[0032]
There are no particular restrictions on the mixing order of the α-alumina powder, the aluminum compound, the silicon compound, the alkali metal compound, and the organic binder. (a) A method in which these compounds are mixed at the same time, and then molded, dried, and fired. ) A method in which α-alumina and an organic binder are mixed and dried, and then an aluminum compound, a silicon compound, and an alkali metal compound are mixed, molded, dried, and fired. (C) α-alumina, an aluminum compound, silicon Compound and organic binder are simultaneously mixed and dried, then alkali metal compound is mixed and molded, dried and fired, (d) after α-alumina, alkali metal and organic binder are mixed and dried A method of mixing an aluminum compound and a silicon compound, molding, drying, and sintering can be appropriately used.
[0033]
In addition to organic binders, peaches, apricots, walnut shells, seeds, etc. having a uniform particle size, or substances that have a uniform particle size and disappear upon firing may be used together as pore forming agents. .
[0034]
There is no restriction | limiting in particular in the shape of the support | carrier of this invention, Usually, granular, such as spherical shape, pellet shape, and ring shape, are used. Moreover, about the magnitude | size, the average equivalent diameter is 3-20 mm normally, Preferably it is 5-10 mm.
[0035]
The Brunauer-Emmett-Teller (BET) specific surface area of the carrier of the present invention is usually 0.03 to 10 m.2/ G, preferably 0.1 to 5 m2/ G, more preferably 0.3-2 m2/ G. If the specific surface area is too low, the sintering proceeds excessively, so that sufficient water absorption cannot be obtained, and it becomes difficult to support the catalyst component. Conversely, if the specific surface area is too high, the pore diameter becomes small, and the carrier In the catalyst prepared using, the sequential oxidation of the product ethylene oxide is promoted. The water absorption is usually 10 to 70%, preferably 20 to 60%, more preferably 30 to 50%. If the water absorption is too low, it becomes difficult to support the catalyst component. Conversely, if the water absorption is too high, sufficient crushing strength cannot be obtained. The average pore diameter is usually 0.1 to 5 μm, preferably 0.2 to 3 μm, more preferably 0.3 to 0.9 μm. If the average pore diameter is too large, the activity of the catalyst is reduced. Conversely, if the average pore diameter is too small, sequential oxidation of ethylene oxide as a product is promoted due to gas retention. The porosity is usually 40 to 80%, preferably 50 to 70%. If the porosity is too low, the specific gravity of the carrier becomes excessively large. Conversely, if the porosity is too high, sufficient crushing strength cannot be obtained.
[0036]
The catalyst for producing ethylene oxide of the present invention can be prepared according to a method generally used for preparing a catalyst for producing ethylene oxide, except that the above-mentioned carrier is used. The catalyst component supported on the carrier may be silver alone or a combination of silver and a reaction accelerator such as cesium. “Supporting a catalyst component” in the present invention includes an embodiment in which silver and a reaction accelerator are supported in addition to silver alone.
[0037]
Specifically, for example, an aqueous solution containing a silver compound alone for forming silver, a complexing agent for forming a silver compound and a silver complex, or a reaction accelerator used as necessary is prepared. After the carrier is impregnated with the carrier, it is dried and fired. This drying is preferably performed at a temperature of 80 to 120 ° C. in an inert gas atmosphere such as air, oxygen gas, or nitrogen. Firing is preferably performed at a temperature of 150 to 700 ° C., particularly 200 to 600 ° C. in an inert gas atmosphere such as air, oxygen gas, or nitrogen. In addition, you may perform this baking by 1 step | paragraph or 2 steps | paragraphs or more. Among them, it is preferable that the first stage is treated at 150 to 250 ° C. for 0.1 to 10 hours in an air atmosphere and the second stage is treated at 250 to 450 ° C. for 0.1 to 10 hours in an air atmosphere. . More preferably, the third stage is treated at 450 to 700 ° C. for 0.1 to 10 hours in an inert gas atmosphere selected from nitrogen, helium, argon and the like.
[0038]
Typical examples of the silver compound include silver nitrate, silver carbonate, silver oxalate, silver acetate, silver propionate, silver lactate, silver citrate and silver neodecanoate. Representative examples of the chaining agent include monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, and propylenediamine. Typical examples of the reaction accelerator include lithium, sodium, potassium, rubidium, and cesium alkali metals, thallium, sulfur, chromium, molybdenum, tungsten, and the like. These can be used alone or in combination of two or more.
[0039]
The catalyst for producing ethylene oxide of the present invention is preferably one carrying silver and a reaction accelerator such as cesium as catalyst components. The supported amount of silver is usually 1 to 30% by weight, preferably 5 to 20% by weight, based on the weight of the catalyst. The supported amount of the reaction accelerator is usually 0.001 to 2% by weight, preferably 0.01 to 1% by weight, more preferably 0.1 to 0.7% by weight, based on the weight of the catalyst.
[0040]
The method for producing ethylene oxide by vapor phase oxidation of ethylene of the present invention can be performed by a conventionally used method except that the above-mentioned catalyst for producing ethylene oxide is used as a catalyst.
[0041]
Specifically, for example, ethylene 0.5 to 40% by volume, oxygen 3 to 10% by volume, carbon dioxide 5 to 30% by volume, the balance being an inert gas such as nitrogen, argon or water vapor, methane, ethane or the like. A raw material gas comprising hydrocarbons and further containing a halide such as ethylene dichloride or diphenyl chloride as a reaction inhibitor is used for 1000 to 30000 hr.-1(STP), preferably 3000 to 8000 hr-1(STP) space velocity, 2-40 kg / cm2g, preferably 15-40 kg / cm2G is brought into contact with the above-mentioned catalyst for producing ethylene oxide at a pressure of 180 to 300 ° C., preferably 200 to 260 ° C.
[0042]
【The invention's effect】
The catalyst for producing ethylene oxide obtained by using the carrier of the present invention has much better catalyst performance, particularly selectivity.
[0043]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, a part means a weight part.
[0044]
In addition, the conversion rate and selectivity which are described in an Example and a comparative example are calculated by following Formula.
[0045]
[Expression 1]
Figure 0004354060
[0046]
[Expression 2]
Figure 0004354060
[0047]
Example 1
α-alumina powder A (alumina crystal diameter: 1 μm, secondary particle average diameter: 65 μm, BET specific surface area: 2.2 m2/ G, linear shrinkage ratio after baking for 2 hours at 1700 ° C .: 15%, sodium content 16 mmol / kg-powder) 93 parts by weight, methyl cellulose 6 parts by weight, and corn starch 6 parts by weight are put into a kneader and thoroughly mixed 4 parts by weight of colloidal alumina (Al2OThreeAs a content, 3 parts by weight (SiO2) of colloidal silica (Nissan Chemical Co., Ltd., Snowtex-O) having a particle size of 2 to 20 nm2Content) and 0.38 parts by weight aqueous potassium hydroxide (as KOH content) were added, and 20 parts by weight of water was added to the kneader and mixed well. This mixture was extruded, granulated, dried, and calcined at 1450 ° C. for 2 hours to obtain a carrier.
[0048]
This support has a silicon content of 0.5 mol / kg-support, an aluminum content of 0.8 mol / kg-support, an alkali metal content of 0.08 mol / kg-support, and a BET specific surface area of 1.0 m.2/ G. The atomic ratio of the alkali metal content in the powder / the alkali metal content in the carrier was 0.18.
[0049]
1 liter of pure water was added to 1 liter of the carrier obtained as described above, and after boiling and washing at 90 ° C. for 30 minutes under normal pressure, the washing solution was removed and washed with pure water. Further, this boiling washing and subsequent washing were repeated twice and dried at 120 ° C. for 2 hours.
[0050]
300 g of this dry carrier was impregnated with a complex solution consisting of 57.3 g of silver oxalate, 38.6 ml of monoethanolamine, 41.4 ml of water and 0.18 g of cesium nitrate, and then heated and concentrated, and further at 120 ° C. for 40 minutes. After drying, heat treatment was performed at 300 ° C. for 30 minutes in an air stream to obtain a catalyst (A) for producing ethylene oxide.
[0051]
Example 2
In Example 1, a carrier was obtained in the same manner as in Example 1 except that 0.70 part by weight of rubidium hydroxide aqueous solution (as RbOH) was used instead of 0.38 g part by weight of potassium hydroxide aqueous solution.
[0052]
This support has a silicon content of 0.5 mol / kg-support, an aluminum content of 0.8 mol / kg-support, an alkali metal content of 0.08 mol / kg-support, and a BET specific surface area of 0.8 m.2/ G. The atomic ratio of the alkali metal content in the powder / the alkali metal content in the carrier was 0.18.
[0053]
Using the carrier obtained as described above, an ethylene oxide production catalyst (B) was obtained as in Example 1.
[0054]
Example 3
In Example 1, a support was obtained in the same manner as in Example 1 except that 0.34 part by weight of sodium hydroxide aqueous solution (as NaOH) was used instead of 0.38 g part by weight of potassium hydroxide aqueous solution.
[0055]
This support has a silicon content of 0.5 mol / kg-support, an aluminum content of 0.8 mol / kg-support, an alkali metal content of 0.10 mol / kg-support, and a BET specific surface area of 0.6 m.2/ G.
[0056]
Using the carrier obtained as described above, an ethylene oxide production catalyst (C) was obtained as in Example 1.
[0057]
Example 4
Example 1 was different from Example 1 except that 0.38 g by weight of an aqueous potassium hydroxide solution and 6 parts by weight of methylcellulose were replaced by 3 parts by weight of carboxymethylcellulose (0.2 parts by weight as Na) and 3 parts by weight of methylcellulose. A carrier was obtained in the same manner.
[0058]
This support has a silicon content of 0.5 mol / kg-support, an aluminum content of 0.8 mol / kg-support, an alkali metal content of 0.10 mol / kg-support, and a BET specific surface area of 0.6 m.2/ G.
[0059]
Using the carrier obtained as described above, an ethylene oxide production catalyst (D) was obtained as in Example 1.
[0060]
Example 5
In Example 1, instead of the α-alumina powder A used, α-alumina powder B (alumina crystal diameter: 3 μm, secondary particle average diameter: 65 μm, BET specific surface area: 0.7 m)2/ G, linear shrinkage by firing at 1700 ° C. for 2 hours: 14%, sodium content: 16 mmol / kg-powder) was used to obtain a support in the same manner as in Example 1. The atomic ratio of alkali metal in the powder / alkali metal content in the carrier was 0.18.
[0061]
This support has a silicon content of 0.5 mol / kg-support, an aluminum content of 0.8 mol / kg-support, an alkali metal content of 0.08 mol / kg-support, and a BET specific surface area of 0.3 m.2/ G.
[0062]
Using the carrier obtained as described above, an ethylene oxide production catalyst (E) was obtained as in Example 1.
[0063]
Example 6
In Example 1, instead of the α-alumina powder A used, α-alumina powder C (alumina crystal diameter: 3 μm, secondary particle average diameter: 65 μm, BET specific surface area: 0.9 m)2/ G, linear shrinkage ratio after baking for 2 hours at 1700 ° C .: 15%, sodium content: 16 mmol / kg-powder) was used to obtain a support in the same manner as in Example 1.
[0064]
This carrier has a silicon content of 0.5 mol / kg-carrier, an aluminum content of 0.8 mol / kg-carrier, an alkali metal content of 0.08 mol / kg-carrier, and a BET specific surface area of 0.6 m.2/ G. The atomic ratio of the alkali metal content in the powder / the alkali metal content in the carrier was 0.18.
[0065]
Using the carrier obtained as described above, an ethylene oxide production catalyst (F) was obtained as in Example 1.
[0066]
Example 7
In Example 1, instead of the α-alumina powder A used, α-alumina powder D (alumina crystal diameter: 3 μm, secondary particle average diameter: 55 μm, BET specific surface area: 6.0 m)2/ G, linear shrinkage by firing for 2 hours at 1700 ° C .: 17%, sodium content: 16 mmol / kg-powder) was used to obtain a support in the same manner as in Example 1.
[0067]
This support has a silicon content of 0.5 mol / kg-support, an aluminum content of 0.8 mol / kg-support, an alkali metal content of 0.08 mol / kg-support, and a BET specific surface area of 2.3 m.2/ G.
[0068]
Using the carrier obtained as described above, an ethylene oxide production catalyst (G) was obtained as in Example 1.
[0069]
Example 8
A carrier was obtained in the same manner as in Example 1 except that the colloidal alumina used in Example 1 was not used.
[0070]
This support has a silicon content of 0.5 mol / kg-support and an alkali metal content of 0.08 mol / kg-support and a BET specific surface area of 1.2 m.2/ G. The atomic ratio of the alkali metal content in the powder / the alkali metal content in the carrier was 0.18.
[0071]
Using the carrier obtained as described above, an ethylene oxide production catalyst (H) was obtained as in Example 1.
[0072]
Example 9
In Example 1, a carrier was obtained in the same manner as in Example 1 except that 0.02 part by weight of potassium hydroxide aqueous solution (as KOH) was used instead of 0.38 part by weight of potassium hydroxide aqueous solution.
[0073]
This support has a silicon content of 0.5 mol / kg-support, an aluminum content of 0.8 mol / kg-support, an alkali metal content of 0.02 mol / kg-support, and a BET specific surface area of 1.5 m.2/ G. The atomic ratio of the alkali metal content in the powder / the alkali metal content in the carrier was 0.75.
[0074]
Using the carrier obtained as described above, an ethylene oxide production catalyst (I) was obtained as in Example 1.
[0075]
Example 10
300 g of the carrier obtained in Example 1 was impregnated with a complex solution consisting of 57.3 g of silver oxalate, 38.6 ml of monoethanolamine, 41.4 ml of water and 0.6 g of cesium nitrate, and then heated and concentrated. After further drying at 120 ° C. for 40 minutes, heat treatment was performed at 300 ° C. for 30 minutes in an air stream, and further heat treatment was performed at 600 ° C. for 3 hours in a nitrogen stream to obtain a catalyst (J) for producing ethylene oxide.
[0076]
Comparative Example 1
A carrier and then a catalyst for ethylene production (K) were obtained in the same manner as in Example 1 except that the aqueous potassium hydroxide solution used in Example 1 was not used. The atomic ratio of the alkali metal content in the powder / the alkali metal content in the carrier was 1.0.
[0077]
Comparative Example 2
In Example 1, in place of α-alumina powder A used, α-alumina powder F (sodium content 0) was used, except that α-alumina powder F (sodium content 0) was used. (L) was obtained. The atomic ratio of the alkali metal content in the powder / the alkali metal content in the carrier was zero.
[0078]
Comparative Example 3
In Example 1, instead of the α-alumina powder A used, α-alumina powder G (alumina crystal diameter: 3 μm, secondary particle average diameter: 65 μm, BET specific surface area: 2.4 m)2/ G, linear shrinkage ratio after baking for 2 hours at 1700 ° C .: 17%, sodium content: 84 mmol / kg-powder) was used to obtain a support in the same manner as in Example 1.
[0079]
This support has a silicon content of 0.5 mol / kg-support, an aluminum content of 3.5 mol / kg-support, an alkali metal content of 0.10 mol / kg-support, and a BET specific surface area of 1.3 m.2/ G.
It was.
[0080]
Using the carrier obtained as described above, an ethylene oxide production catalyst (M) was obtained as in Example 1.
[0081]
Example 11
Each of the catalysts (A) to (M) is pulverized and sieved to 600 to 850 mesh, and 1.2 g thereof is filled in a stainless steel reaction tube having an inner diameter of 3 mm and a tube length of 600 mm. The gas phase oxidation of was performed. When the selectivity when the ethylene conversion rate was 10% and the reaction temperature of the catalyst layer were measured, the results shown in Table 1 were obtained.
[0082]
Space velocity: 6,000hr-1
Reaction pressure: 20 kg / cm2
Raw material gas: 20% by volume of ethylene, 7.8% by volume of oxygen, 5.5% by volume of carbon dioxide, 2.1 ppm of ethylene dichloride and the remainder (methane, nitrogen, argon and ethane)
Example 12
Each of the catalysts (A) and (M) is pulverized and sieved to 600 to 850 mesh, and 1.2 g of the catalyst is filled into a stainless steel reaction tube having an inner diameter of 3 mm and a tube length of 600 mm. The gas phase oxidation of was performed. The ethylene oxide selectivity and the reaction temperature of the catalyst layer were measured when the ethylene conversion was 25% over the entire period of this test. The test was conducted until the amount of ethylene oxide produced per 1 ml of catalyst exceeded 1000 g. It took 25 days or more to produce 1000 g of ethylene oxide.
[0083]
The ethylene oxide selectivity and reaction temperature on the 25th day immediately after the ethylene conversion reached 25% were measured, and the differences were calculated to obtain the results in Table 2.
[0084]
Since the catalyst of the present invention has a small difference in the above calculation, it can be considered that the catalyst performance is excellent in terms of stability.
[0085]
Space velocity: 22,000hr-1
Reaction pressure: 20 kg / cm2
Raw material gas: 20% by volume of ethylene, 7.8% by volume of oxygen, 5.5% by volume of carbon dioxide, 2.1 ppm of ethylene dichloride and the remainder (methane, nitrogen, argon and ethane)
[0086]
[Table 1]
Figure 0004354060
[0087]
[Table 2]
Figure 0004354060

Claims (11)

アルカリ金属含量1〜70mmol/kg−粉体のアルカリ金属含量の低いα−アルミナ粉体に、アルミニウム化合物、ケイ素化合物およびアルカリ金属化合物を加え、焼成して得られる担体であって、該担体中のアルミニウム化合物含量がアルミニウム換算で0〜3mol/kg−担体、ケイ素化合物含量がケイ素換算で0.01〜2mol/kg−担体、アルカリ金属化合物含量がアルカリ金属換算で0.01〜2mol/kg−担体であり、該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比が0.0001〜0.8である酸化エチレン製造用触媒の担体。  A carrier obtained by adding an aluminum compound, a silicon compound and an alkali metal compound to an α-alumina powder having an alkali metal content of 1 to 70 mmol / kg-powders having a low alkali metal content, and calcining the same. Aluminum compound content 0-3 mol / kg-support in terms of aluminum, silicon compound content 0.01-2 mol / kg-support in terms of silicon, alkali metal compound content 0.01-2 mol / kg-support in terms of alkali metal A catalyst carrier for ethylene oxide production wherein the atomic ratio of the alkali metal content in the powder / the alkali metal content in the carrier is 0.0001 to 0.8. 該α−アルミナ粉体はその二次粒子平均径が50〜100μmである請求項1に記載の担体。  The carrier according to claim 1, wherein the α-alumina powder has an average secondary particle diameter of 50 to 100 µm. 該担体はそのBET比表面積が0.5〜4m/gである請求項1または2に記載の担体。The carrier according to claim 1, wherein the carrier has a BET specific surface area of 0.5 to 4 m 2 / g. 該担体中のアルミニウム化合物含量がアルミニウム換算で0.01〜2mol/kg−担体であり、アルカリ金属化合物含量が0.02〜0.5mol/kg−担体であり、かつ該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比が0.001〜0.5である請求項1〜3のいずれか一つに記載の担体。  The aluminum compound content in the carrier is 0.01-2 mol / kg-carrier in terms of aluminum, the alkali metal compound content is 0.02-0.5 mol / kg-carrier, and the alkali metal in the powder The carrier according to any one of claims 1 to 3, wherein the atomic ratio of content / alkali metal content in the carrier is 0.001 to 0.5. アルカリ金属含量1〜70mmol/kg−粉体のアルカリ金属含量の低いα−アルミナ粉体に、アルミニウム化合物、ケイ素化合物およびアルカリ金属化合物を加え、焼成して得られる担体であって、該担体中のアルミニウム化合物含量がアルミニウム換算で0〜3mol/kg−担体、ケイ素化合物含量がケイ素換算で0.01〜2mol/kg−担体、アルカリ金属化合物含量がアルカリ金属換算で0.01〜2mol/kg−担体であり、該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比が0.0001〜0.8である担体に銀を含む触媒成分を担持してなる酸化エチレン製造用触媒。  A carrier obtained by adding an aluminum compound, a silicon compound and an alkali metal compound to an α-alumina powder having an alkali metal content of 1 to 70 mmol / kg-powders having a low alkali metal content, and calcining the same. Aluminum compound content 0-3 mol / kg-support in terms of aluminum, silicon compound content 0.01-2 mol / kg-support in terms of silicon, alkali metal compound content 0.01-2 mol / kg-support in terms of alkali metal A catalyst for ethylene oxide production, wherein a catalyst component containing silver is supported on a carrier having an atomic ratio of alkali metal content in the powder / alkali metal content in the carrier of 0.0001 to 0.8. 該α−アルミナ粉体はその二次粒子平均径が50〜100μmである請求項5に記載の触媒。  The catalyst according to claim 5, wherein the α-alumina powder has an average secondary particle diameter of 50 to 100 μm. 該担体はそのBET比表面積が0.5〜4m/gである請求項5または6に記載の触媒。The catalyst according to claim 5 or 6, wherein the support has a BET specific surface area of 0.5 to 4 m 2 / g. 該担体中のアルミニウム化合物含量がアルミニウム換算で0.01〜2mol/kg−担体であり、アルカリ金属化合物含量が0.02〜0.5mol/kg−担体であり、かつ該粉体中のアルカリ金属含量/該担体中のアルカリ金属含量の原子比が0.001〜0.5である請求項5〜7のいずれか一つに記載の触媒。  The aluminum compound content in the carrier is 0.01-2 mol / kg-carrier in terms of aluminum, the alkali metal compound content is 0.02-0.5 mol / kg-carrier, and the alkali metal in the powder The catalyst according to any one of claims 5 to 7, wherein the atomic ratio of content / alkali metal content in the support is 0.001 to 0.5. 該銀の担持量は、触媒の重量基準で1〜30重量%である請求項5〜8のいずれか一つに記載の触媒。  The catalyst according to any one of claims 5 to 8, wherein the supported amount of silver is 1 to 30% by weight based on the weight of the catalyst. 反応促進剤としてアルカリ金属を触媒の重量基準で0.001〜2重量%担持してなる請求項9に記載の触媒。The catalyst according to claim 9 , wherein 0.001 to 2% by weight of an alkali metal is supported as a reaction accelerator based on the weight of the catalyst. 請求項〜10のいずれか一つに記載の触媒の存在下にエチレンを分子状酸素含有ガスにより接触気相酸化することを特徴とする酸化エチレンの製造方法。A method for producing ethylene oxide, comprising subjecting ethylene to catalytic gas phase oxidation with a molecular oxygen-containing gas in the presence of the catalyst according to any one of claims 5 to 10.
JP32746499A 1998-11-17 1999-11-17 Support for catalyst for producing ethylene oxide, catalyst for producing ethylene oxide, and method for producing ethylene oxide Expired - Fee Related JP4354060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32746499A JP4354060B2 (en) 1998-11-17 1999-11-17 Support for catalyst for producing ethylene oxide, catalyst for producing ethylene oxide, and method for producing ethylene oxide

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP10-326516 1998-11-17
JP32651698 1998-11-17
JP11-178965 1999-06-24
JP17896599 1999-06-24
JP32746499A JP4354060B2 (en) 1998-11-17 1999-11-17 Support for catalyst for producing ethylene oxide, catalyst for producing ethylene oxide, and method for producing ethylene oxide

Publications (2)

Publication Number Publication Date
JP2001062291A JP2001062291A (en) 2001-03-13
JP4354060B2 true JP4354060B2 (en) 2009-10-28

Family

ID=27324657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32746499A Expired - Fee Related JP4354060B2 (en) 1998-11-17 1999-11-17 Support for catalyst for producing ethylene oxide, catalyst for producing ethylene oxide, and method for producing ethylene oxide

Country Status (1)

Country Link
JP (1) JP4354060B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4726349B2 (en) * 2001-08-03 2011-07-20 株式会社日本触媒 Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide using the catalyst
WO2005023417A1 (en) * 2003-08-22 2005-03-17 Union Carbide Chemicals & Plastics Technology Corporation Modified alumina carriers and silver-based catalysts for the production of alkylene oxides
WO2009119416A1 (en) 2008-03-26 2009-10-01 株式会社日本触媒 Catalyst for production of ethylene oxide, and process for production of ethylene oxide using the catalyst
JP5570500B2 (en) 2009-03-31 2014-08-13 株式会社日本触媒 Catalyst for producing ethylene oxide and method for producing ethylene oxide
EP2819781A4 (en) * 2012-03-02 2016-01-27 Basf Se Porous inorganic body

Also Published As

Publication number Publication date
JP2001062291A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
KR100483574B1 (en) Carrier for manufacturing ethylene oxide, catalyst for manufacturing ethylene oxide, and method for manufacturing ethylene oxide
CA2171213C (en) Epoxidation catalyst and process
JP2637537B2 (en) Silver catalyst for producing ethylene oxide and method for producing the same
JP2003144932A (en) Catalyst for producing ethylene oxide, producing method therefor and method for manufacturing ethylene oxide by the catalyst
JP2013534465A (en) Carrier for ethylene oxide catalyst
JP3313164B2 (en) Silver catalyst for producing ethylene oxide and method for producing the same
JP2015504361A (en) Catalyst support for ethylene oxide
EP1081116B1 (en) Ceramic article, carrier for catalyst, methods for production thereof, catalyst for producing ethylene oxide using the carrier, and method for producing ethylene oxide
JP4354060B2 (en) Support for catalyst for producing ethylene oxide, catalyst for producing ethylene oxide, and method for producing ethylene oxide
JP3923289B2 (en) Catalyst for producing ethylene oxide, catalyst for producing ethylene oxide using the carrier, and method for producing ethylene oxide
JP4726349B2 (en) Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide using the catalyst
JP4588183B2 (en) Ceramic body, catalyst carrier, production method thereof, ethylene oxide production catalyst using the carrier, production method thereof, and ethylene oxide production method
JP2010234264A (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3636912B2 (en) Method for producing catalyst for producing ethylene oxide
JP3233652B2 (en) Silver catalyst for ethylene oxide production
RU2169040C2 (en) Silver catalyst for production of ethylene oxide, method of preparing catalyst and ethylene oxide production process
CN112723973B (en) Process for producing styrene
JP5258485B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP4210255B2 (en) Silver catalyst for producing ethylene oxide and method for producing ethylene oxide
JP4001429B2 (en) Silver catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide
JP5388925B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP3963856B2 (en) Catalyst support for producing epoxide, catalyst for producing epoxide, and method for producing epoxide
JP5479286B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5328452B2 (en) Catalyst support for ethylene oxide production, catalyst for ethylene oxide production, and method for producing ethylene oxide

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees