JP5143610B2 - Method for producing catalyst for producing ethylene oxide - Google Patents

Method for producing catalyst for producing ethylene oxide Download PDF

Info

Publication number
JP5143610B2
JP5143610B2 JP2008093175A JP2008093175A JP5143610B2 JP 5143610 B2 JP5143610 B2 JP 5143610B2 JP 2008093175 A JP2008093175 A JP 2008093175A JP 2008093175 A JP2008093175 A JP 2008093175A JP 5143610 B2 JP5143610 B2 JP 5143610B2
Authority
JP
Japan
Prior art keywords
mass
silver
catalyst
carrier
catalyst component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008093175A
Other languages
Japanese (ja)
Other versions
JP2009241003A (en
Inventor
弘己 柚木
健一 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008093175A priority Critical patent/JP5143610B2/en
Publication of JP2009241003A publication Critical patent/JP2009241003A/en
Application granted granted Critical
Publication of JP5143610B2 publication Critical patent/JP5143610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、エチレンオキシド製造用触媒の製造方法に関する。詳細には、本発明は、触媒活性、選択性および触媒寿命に優れ、長期に亘って高い選択率でエチレンオキシドを製造しうる触媒を製造する方法に関する。   The present invention relates to a method for producing a catalyst for producing ethylene oxide. Specifically, the present invention relates to a method for producing a catalyst that is excellent in catalyst activity, selectivity, and catalyst life, and that can produce ethylene oxide with high selectivity over a long period of time.

エチレンを銀触媒の存在下で分子状酸素含有ガスにより接触気相酸化してエチレンオキシドを製造することは工業的に広く行われている。この接触気相酸化に用いる銀触媒については、従来、主活性成分である銀と助触媒(アルカリ金属等)との組合せやその配合比などの組成の最適化、これらを担持する担体の改良、含浸方法などの調製方法の検討等、数多くの技術が提案されている。   It is widely used industrially to produce ethylene oxide by catalytic vapor phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst. As for the silver catalyst used for this catalytic gas phase oxidation, conventionally, the combination of silver as a main active component and a cocatalyst (alkali metal, etc.) and the optimization of the composition such as the compounding ratio, the improvement of the carrier supporting these, Many techniques, such as examination of preparation methods, such as an impregnation method, are proposed.

例えば、特許文献1には、担体へ銀化合物および錯体形成剤化合物を含浸させた後、前工程として雰囲気ガスの供給および排気が可能な連続式加熱装置に投入し、加熱した雰囲気ガスを循環させて加熱処理した後、後工程として該含浸担体に新しい加熱水蒸気等のガスを通過させることを特徴とする触媒の製造方法が開示されている。また、特許文献2には、耐火性固体支持体上に少なくとも30重量%以上の銀を担持した触媒が開示されている。さらに、特許文献3には、助触媒であるアルカリ金属の一部を担体に含浸し、次いで残りの助触媒および銀を含浸する方法が開示されている。また、特許文献4および5には、触媒に担持する銀の一部を分割して担持する方法が開示されている。   For example, in Patent Document 1, after impregnating a carrier with a silver compound and a complex-forming compound, it is introduced into a continuous heating apparatus capable of supplying and exhausting atmospheric gas as a pre-process, and the heated atmospheric gas is circulated. After the heat treatment, a catalyst production method is disclosed in which a new gas such as heated steam is passed through the impregnated support as a post-process. Patent Document 2 discloses a catalyst having at least 30% by weight or more of silver supported on a refractory solid support. Further, Patent Document 3 discloses a method of impregnating a support with a part of an alkali metal as a promoter, and then impregnating the remaining promoter and silver. Patent Documents 4 and 5 disclose a method of dividing and supporting a part of silver supported on a catalyst.

銀触媒の触媒活性、選択性および触媒寿命はすでに高いレベルに達しているが、なおこれらの性能の向上が求められている。例えば選択率を例にとれば、エチレンオキシドの生産規模は大きいことから、選択率が僅か1%向上するだけでも、原料エチレンの使用量が著しく節約され、その経済的効果は大きい。このような事情から、より優れた触媒性能を有する銀触媒の開発が当該技術分野の研究者の継続的なテーマとなっている。
特許第3823716号公報 特許第3030512号公報 特開平8−224477号公報 特開平6−92949号公報 特開2007−301554号公報
Although the catalytic activity, selectivity and catalyst life of silver catalysts have already reached a high level, there is still a need for improvement in these performances. For example, if the selectivity is taken as an example, the production scale of ethylene oxide is large, and even if the selectivity is improved by only 1%, the amount of raw material ethylene used is remarkably saved, and its economic effect is great. Under such circumstances, the development of silver catalysts having better catalytic performance has been a continuous theme for researchers in the technical field.
Japanese Patent No. 3823716 Japanese Patent No. 3030512 JP-A-8-224477 JP-A-6-92949 JP 2007-301554 A

本発明は、上述した従来の技術およびその問題点に鑑みてなされたものであり、優れた触媒性能を有し、長期に亘って高選択率でエチレンオキシドを製造しうる触媒を製造しうる手段を提供することを目的とする。   The present invention has been made in view of the above-described conventional technology and its problems, and has means for producing a catalyst having excellent catalytic performance and capable of producing ethylene oxide with high selectivity over a long period of time. The purpose is to provide.

本発明者らは、上述した課題を解決すべく鋭意研究を行なった。その過程で、エチレンオキシド製造用触媒を製造する際の担体への触媒成分の含浸方法に着目して検討を行なった。その結果、銀、アルカリ金属および水を含む触媒成分含有溶液を担体に含浸させる際に、当該溶液の銀濃度を元素換算で1〜15質量%に調節し、銀濃度が調節されたこの溶液を2回以上担体に含浸させることにより、触媒性能に優れる触媒が得られることを見出し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above-described problems. In the process, the inventors studied focusing on the impregnation method of the catalyst component into the carrier when producing the catalyst for ethylene oxide production. As a result, when impregnating the support with the catalyst component-containing solution containing silver, alkali metal and water, the silver concentration of the solution is adjusted to 1 to 15% by mass in terms of elements, It has been found that a catalyst having excellent catalytic performance can be obtained by impregnating the support twice or more, and the present invention has been completed.

すなわち、本発明のエチレンオキシド製造用触媒の製造方法は、アルミナを主成分とする担体に、銀、アルカリ金属および水を含む触媒成分含有溶液を含浸させる含浸工程と、含浸後の前記担体を焼成する焼成工程とを含む。そして、含浸工程において、銀濃度が元素換算で1〜15質量%の触媒成分含有溶液を2回以上、担体に含浸させることを特徴とする。   That is, in the method for producing an ethylene oxide production catalyst of the present invention, an impregnation step of impregnating a support mainly composed of alumina with a catalyst component-containing solution containing silver, an alkali metal and water, and firing the support after impregnation. Firing step. In the impregnation step, the support is impregnated twice or more times with a catalyst component-containing solution having a silver concentration of 1 to 15% by mass in terms of element.

本発明によれば、優れた触媒性能を有し、長期に亘って高選択率でエチレンオキシドを製造しうる触媒が製造されうる。また、かような手法により得られた触媒の存在下でエチレンを分子状酸素含有ガスにより気相酸化することにより、高い生産性でエチレンオキシドを製造することができ、経済性の観点から、その産業上の利用価値は極めて大きい。   ADVANTAGE OF THE INVENTION According to this invention, the catalyst which has the outstanding catalyst performance and can manufacture ethylene oxide with high selectivity over a long term can be manufactured. In addition, ethylene oxide can be produced with high productivity by vapor-phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a catalyst obtained by such a technique. The above utility value is extremely large.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明は、アルミナを主成分とする担体に、銀、アルカリ金属および水を含む触媒成分含有溶液を含浸させる含浸工程と、含浸後の前記担体を焼成する焼成工程とを含むエチレンオキシド製造用触媒の製造方法であって、前記含浸工程において、銀濃度が元素換算で1〜15質量%の前記触媒成分含有溶液を2回以上、前記担体に含浸させることを特徴とする、エチレンオキシド製造用触媒の製造方法である。   The present invention provides an ethylene oxide production catalyst comprising an impregnation step of impregnating a support containing alumina as a main component with a catalyst component-containing solution containing silver, an alkali metal and water, and a firing step of firing the support after impregnation. A method for producing an ethylene oxide production catalyst, characterized in that, in the impregnation step, the support is impregnated twice or more with the catalyst component-containing solution having a silver concentration of 1 to 15% by mass in terms of element. Is the method.

本発明の製造方法は、上述した通り、含浸工程で用いられる触媒成分含有溶液中の銀濃度を所定の範囲内の値に制御し、当該溶液を2回以上担体に含浸させる点に特徴を有する。したがって、その他の形態(担体の構成や触媒成分の具体的な形態など)は特に制限されない。   As described above, the production method of the present invention is characterized in that the silver concentration in the catalyst component-containing solution used in the impregnation step is controlled to a value within a predetermined range, and the support is impregnated twice or more. . Therefore, other forms (such as the structure of the carrier and the specific form of the catalyst component) are not particularly limited.

以下、本発明の製造方法について工程順に詳細に説明するが、本発明の技術的範囲は下記の形態のみには制限されない。   Hereinafter, although the manufacturing method of this invention is demonstrated in detail in order of a process, the technical scope of this invention is not restrict | limited only to the following form.

[含浸工程]
本工程では、担体に触媒成分含有溶液を含浸させる。
[Impregnation process]
In this step, the support is impregnated with the catalyst component-containing solution.

本工程では、まず、担体を準備する。担体の具体的な形態については特に制限はなく、従来公知の知見が適宜参照されうる。   In this step, first, a carrier is prepared. There is no restriction | limiting in particular about the specific form of a support | carrier, A conventionally well-known knowledge can be referred suitably.

例えば、担体の組成について、アルミナを主成分とすること以外は特に制限されない。ここで、担体が「アルミナを主成分とする」とは、担体におけるアルミナ(好ましくは、α−アルミナ)の含有量が、担体の全質量100質量%に対して90質量%以上であることを意味する。担体におけるアルミナの含有量は、好ましくは95質量%以上であり、より好ましくは98質量%以上である。アルミナを主成分とするものであればその他の組成は特に制限されないが、担体は、例えばアルカリ金属またはアルカリ土類金属の酸化物や遷移金属の酸化物を含有しうる。これらの含有量についても特に制限はないが、アルカリ金属またはアルカリ土類金属の酸化物の含有量は、酸化物換算で好ましくは0〜5質量%であり、より好ましくは0.01〜4質量%である。また、遷移金属の酸化物の含有量は、酸化物換算で好ましくは0〜5質量%であり、より好ましくは0.01〜3質量%である。   For example, the composition of the carrier is not particularly limited except that the main component is alumina. Here, the carrier “mainly composed of alumina” means that the content of alumina (preferably α-alumina) in the carrier is 90% by mass or more with respect to 100% by mass of the total mass of the carrier. means. The content of alumina in the support is preferably 95% by mass or more, and more preferably 98% by mass or more. The other composition is not particularly limited as long as it is mainly composed of alumina, but the carrier may contain, for example, an oxide of an alkali metal or alkaline earth metal or an oxide of a transition metal. Although there is no restriction | limiting in particular also about these content, Preferably content of the oxide of an alkali metal or alkaline-earth metal is 0-5 mass% in conversion of an oxide, More preferably, it is 0.01-4 mass %. The content of the transition metal oxide is preferably 0 to 5% by mass, more preferably 0.01 to 3% by mass in terms of oxide.

担体はまた、シリカ(酸化ケイ素)を通常含有する。担体におけるシリカの含有量についても特に制限はないが、好ましくは0.1〜5質量%であり、より好ましくは0.3〜3質量%である。   The support also usually contains silica (silicon oxide). Although there is no restriction | limiting in particular about content of the silica in a support | carrier, Preferably it is 0.1-5 mass%, More preferably, it is 0.3-3 mass%.

なお、上述した担体の組成や各成分の含有量は、蛍光X線分析法を用いて決定されうる。   The composition of the carrier and the content of each component described above can be determined using a fluorescent X-ray analysis method.

担体の形状は特に制限されず、リング状、球状、円柱状、ペレット状のほか、従来公知の知見が適宜参照されうる。また、担体のサイズ(平均直径)についても特に制限はなく、好ましくは3〜20mmであり、より好ましくは5〜10mmである。   The shape of the carrier is not particularly limited, and conventionally known knowledge can be appropriately referred to in addition to a ring shape, a spherical shape, a cylindrical shape, and a pellet shape. Moreover, there is no restriction | limiting in particular also about the size (average diameter) of a support | carrier, Preferably it is 3-20 mm, More preferably, it is 5-10 mm.

担体の粒径に関しても特に制限はないが、担体の一次粒子径は、好ましくは0.01〜100μmであり、より好ましくは0.1〜20μmであり、さらに好ましくは0.5〜10μmであり、特に好ましくは1〜5μmである。また、担体の二次粒子径は、好ましくは0.1〜1,000μmであり、より好ましくは1〜500μmであり、さらに好ましくは10〜200μmであり、特に好ましくは30〜100μmである。   The particle size of the carrier is not particularly limited, but the primary particle size of the carrier is preferably 0.01 to 100 μm, more preferably 0.1 to 20 μm, and further preferably 0.5 to 10 μm. Especially preferably, it is 1-5 micrometers. The secondary particle size of the carrier is preferably 0.1 to 1,000 μm, more preferably 1 to 500 μm, still more preferably 10 to 200 μm, and particularly preferably 30 to 100 μm.

担体のBET比表面積についても特に制限はないが、好ましくは0.03〜10m/gであり、より好ましくは0.3〜5.0m/gであり、さらに好ましくは0.6〜2.5m/gである。担体のBET比表面積が0.03m/g以上であれば、吸水率が充分に確保され、触媒成分の担持が容易となる。一方、担体のBET比表面積が10m/g以下であれば、担体の細孔径がある程度大きい値に維持され、製造された触媒を用いたエチレンオキシド製造時のエチレンオキシドの逐次酸化が抑制されうる。 The BET specific surface area of the carrier is not particularly limited, but is preferably 0.03 to 10 m 2 / g, more preferably 0.3 to 5.0 m 2 / g, and further preferably 0.6 to 2 0.5 m 2 / g. If the BET specific surface area of the support is 0.03 m 2 / g or more, the water absorption rate is sufficiently secured and the catalyst component can be easily supported. On the other hand, if the BET specific surface area of the support is 10 m 2 / g or less, the pore diameter of the support is maintained at a certain large value, and the sequential oxidation of ethylene oxide during the production of ethylene oxide using the produced catalyst can be suppressed.

担体の細孔容積も特に制限されないが、好ましくは0.2〜0.6mL/gであり、より好ましくは0.3〜0.5mL/gであり、さらに好ましくは0.35〜0.45mL/gである。担体の細孔容積が0.2mL/g以上であれば、触媒成分の担持が容易となるという点で好ましい。一方、担体の細孔容積が0.6mL/g以下であれば、担体の強度が実用的な程度に確保されうるという点で好ましい。なお、担体の細孔容積の値としては、水銀圧入法により、200℃にて少なくとも30分間脱気した担体をサンプルとし、測定装置としてオートポアIII9420W(株式会社島津製作所製)を用い、1.0〜60,000psia(6895Pa〜613.7MPa)の圧力範囲及び60個の測定ポイントで測定される値を採用するものとする。   The pore volume of the carrier is not particularly limited, but is preferably 0.2 to 0.6 mL / g, more preferably 0.3 to 0.5 mL / g, and further preferably 0.35 to 0.45 mL. / G. If the pore volume of the carrier is 0.2 mL / g or more, it is preferable in that the catalyst component can be easily supported. On the other hand, if the pore volume of the carrier is 0.6 mL / g or less, it is preferable in that the strength of the carrier can be ensured to a practical level. As the pore volume value of the carrier, a carrier deaerated at 200 ° C. for at least 30 minutes by a mercury intrusion method is used as a sample, and Autopore III9420W (manufactured by Shimadzu Corporation) is used as a measuring device. Values measured at a pressure range of ˜60,000 psia (6895 Pa to 613.7 MPa) and 60 measurement points shall be adopted.

担体の有する細孔のサイズも特に制限されないが、平均細孔直径は、好ましくは0.1〜10μmであり、より好ましくは0.2〜4.0μmであり、さらに好ましくは0.3〜3.0μmである。平均細孔直径が0.1μm以上であれば、エチレンオキシド製造時の生成ガスの滞留に伴うエチレンオキシドの逐次酸化が抑制されうる。一方、平均細孔直径が10μm以下であれば、担体の強度が実用的な程度に確保されうる。なお、平均細孔直径の値としては、担体の細孔容積の測定方法として上述した手法(水銀圧入法)と同様の手法により測定される値を採用するものとする。   The size of the pores of the carrier is not particularly limited, but the average pore diameter is preferably 0.1 to 10 μm, more preferably 0.2 to 4.0 μm, and further preferably 0.3 to 3 μm. 0.0 μm. If the average pore diameter is 0.1 μm or more, the sequential oxidation of ethylene oxide accompanying the retention of the product gas during the production of ethylene oxide can be suppressed. On the other hand, if the average pore diameter is 10 μm or less, the strength of the carrier can be ensured to a practical level. As the value of the average pore diameter, a value measured by a method similar to the method (mercury intrusion method) described above as a method for measuring the pore volume of the carrier is adopted.

担体の吸水率についても特に制限はないが、好ましくは20〜60%であり、より好ましくは30〜50%である。担体の吸水率が20%以上であれば、触媒成分の担持が容易となる。一方、担体の吸水率が60%以下であれば、担体の強度が実用的な程度に確保されうる。なお、担体の吸水率の値としては、アルキメデス法という手法により得られる値を採用するものとする。   Although there is no restriction | limiting in particular also about the water absorption rate of a support | carrier, Preferably it is 20 to 60%, More preferably, it is 30 to 50%. If the water absorption of the carrier is 20% or more, the catalyst component can be easily supported. On the other hand, if the water absorption rate of the carrier is 60% or less, the strength of the carrier can be ensured to a practical level. In addition, as a value of the water absorption rate of the carrier, a value obtained by a technique called Archimedes method is adopted.

担体の調製方法としては、次のような調製方法を採用することで、担体の物性が制御されうることが知られている。すなわち、1)α−アルミナを主成分とする母粉体に、所望のサイズおよび量の気孔形成剤を添加する方法、2)物性の異なる少なくとも2種の母粉体を所望の混合比で調合する方法、3)担体を所望の温度にて所望の時間焼成する方法、などが知られており、これらを組み合わせた手法も知られている。これらの調製方法については、例えば、「多孔質体の性質とその応用技術」竹内雍監修、株式会社フジ・テクノシステム発行(1999年)に記載されている。また、特開平5−329368号公報、特開2001−62291号公報、特開2002−136868号公報、特許第2983740号公報、特許第3256237号公報、特許第3295433号公報なども参照されうる。   As a method for preparing the carrier, it is known that the physical properties of the carrier can be controlled by adopting the following method. That is, 1) a method of adding a pore-forming agent having a desired size and amount to a mother powder mainly composed of α-alumina, and 2) preparing at least two kinds of mother powders having different physical properties at a desired mixing ratio. 3) a method of firing the carrier at a desired temperature for a desired time, and the like, and a method combining these methods is also known. These preparation methods are described in, for example, “Characteristics of Porous Materials and Their Application Technologies”, supervised by Satoshi Takeuchi, published by Fuji Techno System Co., Ltd. (1999). Reference can also be made to JP-A-5-329368, JP-A-2001-62291, JP-A-2002-136868, JP-A-2984740, JP-A-3256237, JP-A-3295433, and the like.

次いで、触媒成分含有溶液を準備する。触媒成分含有溶液は、担体に触媒成分を担持させるために用いられる溶液である。本発明において、触媒成分含有溶液は、銀、アルカリ金属、および水を必須に含有する。   Next, a catalyst component-containing solution is prepared. The catalyst component-containing solution is a solution used for supporting a catalyst component on a carrier. In the present invention, the catalyst component-containing solution essentially contains silver, an alkali metal, and water.

触媒成分含有溶液の調製方法として、具体的には、銀化合物と、アルカリ金属含有化合物を、溶媒である水に添加する。   As a method for preparing the catalyst component-containing solution, specifically, a silver compound and an alkali metal-containing compound are added to water as a solvent.

銀化合物の種類について特に制限はないが、例えば、硝酸銀、炭酸銀、シュウ酸銀、酢酸銀、プロピオン酸銀、乳酸銀、クエン酸銀、ネオデカン酸銀などが挙げられる。なかでも、有機酸銀であるシュウ酸銀、酢酸銀、プロピオン酸銀、乳酸銀、クエン酸銀、ネオデカン酸銀が好ましく、シュウ酸銀が特に好ましい。これらは1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。   Although there is no restriction | limiting in particular about the kind of silver compound, For example, silver nitrate, silver carbonate, silver oxalate, silver acetate, silver propionate, silver lactate, silver citrate, silver neodecanoate etc. are mentioned. Among them, silver oxalate, silver acetate, silver propionate, silver lactate, silver citrate and silver neodecanoate which are organic acid silver are preferable, and silver oxalate is particularly preferable. These may be used alone or in combination of two or more.

また、アルカリ金属含有化合物の種類についても特に制限はなく、アルカリ金属としてリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムより選択される少なくとも1つの元素を含有する化合物であればよい。なかでも、アルカリ金属としてセシウムを含有する化合物が好ましい。具体例としては、上述したアルカリ金属の硝酸塩、炭酸塩、シュウ酸塩、ハロゲン化物、酢酸塩、硫酸塩などが挙げられる。これらは1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。   Moreover, there is no restriction | limiting in particular also about the kind of alkali metal containing compound, What is necessary is just a compound containing at least 1 element selected from lithium, sodium, potassium, rubidium, and a cesium as an alkali metal. Among these, a compound containing cesium as an alkali metal is preferable. Specific examples include the above-mentioned alkali metal nitrates, carbonates, oxalates, halides, acetates, sulfates, and the like. These may be used alone or in combination of two or more.

触媒成分含有溶液には、必要に応じて錯化剤を添加する。錯化剤としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、プロピレンジアミン、ピリジンなどが挙げられる。これらは1種のみが単独に用いられてもよいし、2種以上が併用されてもよい。   A complexing agent is added to the catalyst component-containing solution as necessary. Examples of the complexing agent include monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, propylenediamine, and pyridine. These may be used alone or in combination of two or more.

触媒成分含有溶液は、溶媒として水を必須に含有する。水を含むことを必須の構成要件としたのは、錯化剤などの有機溶媒のみでは歩留まりが低下し、所定量の担持量を得ることが困難になるためである。これを解決する手段として溶液中の銀濃度を増やすことで所定量の銀担持量を得ることも理論上は考えられるが、かような場合には、結局触媒成分が細孔内部までは到達せず、担体外表面に局部的に担持され、触媒成分の分散性が大きく低下してしまうのである。さらに、有機溶媒は通常高価であり、引火性が高いものが多く、製造工程においてできるだけ少なくすることが望ましい。   The catalyst component-containing solution essentially contains water as a solvent. The reason why the inclusion of water is an essential constituent requirement is that the yield decreases only with an organic solvent such as a complexing agent, and it becomes difficult to obtain a predetermined amount of support. As a means to solve this, it is theoretically possible to obtain a predetermined amount of silver supported by increasing the silver concentration in the solution. However, in such a case, the catalyst component does not reach the inside of the pores in the end. Instead, the catalyst is locally supported on the outer surface of the carrier and the dispersibility of the catalyst component is greatly reduced. Furthermore, organic solvents are usually expensive and often have high flammability, and it is desirable to reduce them as much as possible in the manufacturing process.

触媒成分含浸溶液には、任意に反応促進剤を添加してもよい。反応促進剤としては、例えば、アルカリ土類金属、レニウム、タングステン、タリウム、クロム、モリブデン、および硫黄などが挙げられる。これらは1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。   A reaction accelerator may optionally be added to the catalyst component impregnation solution. Examples of the reaction accelerator include alkaline earth metals, rhenium, tungsten, thallium, chromium, molybdenum, and sulfur. These may be used alone or in combination of two or more.

本発明の製造方法における1つの特徴は、含浸工程において用いられる触媒成分含有溶液における銀濃度を所定の範囲内の値に制御することである。すなわち、本工程において準備される触媒成分含有溶液の銀濃度は、元素換算で1〜15質量%である。当該溶液の銀濃度が1質量%未満であると、目標担持量を得るために大量の溶媒が必要となるため、溶媒除去に多くの時間、エネルギーを要し、製造コストの高騰を招くため好ましくない。一方、当該溶液の銀濃度が15質量%を超えると、得られる触媒において銀を微粒子化し、高分散に担持することが困難となり、その結果十分な触媒性能が得られなくなってしまう虞がある。なお、当該溶液の銀濃度は、好ましくは3〜15質量%であり、より好ましくは5〜15質量%である。   One feature of the production method of the present invention is that the silver concentration in the catalyst component-containing solution used in the impregnation step is controlled to a value within a predetermined range. That is, the silver concentration of the catalyst component-containing solution prepared in this step is 1 to 15% by mass in terms of elements. When the silver concentration of the solution is less than 1% by mass, a large amount of solvent is required to obtain the target loading amount, and therefore, it takes a lot of time and energy to remove the solvent, which leads to an increase in production cost. Absent. On the other hand, when the silver concentration of the solution exceeds 15% by mass, it is difficult to make silver fine particles in the obtained catalyst and carry it in a highly dispersed state, and as a result, sufficient catalytic performance may not be obtained. In addition, the silver concentration of the solution is preferably 3 to 15% by mass, more preferably 5 to 15% by mass.

触媒成分含有溶液におけるアルカリ金属濃度には特に制限はない。触媒成分含有溶液に含まれるアルカリ金属としてはセシウムが好ましいが、特にセシウムを含有する場合の触媒成分含有溶液におけるセシウム濃度は、銀1モルに対して、好ましくは1×10−3〜20×10−3モル、より好ましくは2×10−3〜15×10−3モル、さらにより好ましくは3×10−3×10×10−3モルである。セシウムを含有する場合のセシウム濃度がかような範囲内の値であると、触媒性能がより一層向上しうる。 There is no restriction | limiting in particular in the alkali metal density | concentration in a catalyst component containing solution. The alkali metal contained in the catalyst component-containing solution is preferably cesium, but the concentration of cesium in the catalyst component-containing solution particularly when containing cesium is preferably 1 × 10 −3 to 20 × 10 with respect to 1 mol of silver. −3 mol, more preferably 2 × 10 −3 to 15 × 10 −3 mol, and even more preferably 3 × 10 −3 × 10 × 10 −3 mol. When the cesium concentration in the case of containing cesium is a value within such a range, the catalyst performance can be further improved.

次いで、上記で調製した触媒成分含有溶液を、同じく上記で準備した担体に含浸させる。本発明の製造方法におけるもう1つの特徴は、触媒成分含有溶液を2回以上、担体に含浸させることである。これにより、所望の量の触媒成分を担体に担持させる。したがって、最終的に所望の量の触媒成分が担体に担持されるのであれば、触媒成分含有溶液を2回以上担体に担持させる限り、その他の具体的な形態について特に制限はない。   Next, the catalyst component-containing solution prepared above is impregnated in the carrier prepared as described above. Another feature of the production method of the present invention is that the support is impregnated with the catalyst component-containing solution twice or more. Thus, a desired amount of the catalyst component is supported on the support. Therefore, as long as a desired amount of the catalyst component is finally supported on the carrier, other specific forms are not particularly limited as long as the catalyst component-containing solution is supported on the carrier twice or more.

触媒成分含有溶液を担体に含浸させる回数についても、2回以上であればよいが、含浸の回数が多すぎると製造のための工数の増加に伴って製造効率が低下し、また、含浸回数の増加に伴って性能の向上効果も逓減する。このため、含浸回数は、好ましくは2〜5回であり、より好ましくは2〜3回であり、特に好ましくは2回である。   The number of times the catalyst component-containing solution is impregnated into the support may be two or more. However, if the number of impregnations is too large, the production efficiency decreases as the number of man-hours for production decreases. The performance improvement effect diminishes with the increase. For this reason, the number of impregnations is preferably 2 to 5 times, more preferably 2 to 3 times, and particularly preferably 2 times.

従来、低吸水率の担体に触媒成分を含浸する際に、高吸水率の担体と同程度の担持率を達成するには、通常、銀を高濃度で含有する触媒成分含有溶液を用いて含浸工程を行なう必要があった。これに対し、本発明によれば、当該溶液を2回以上に分割して含浸工程を行なうことで、従来より低濃度の触媒成分含有溶液を担体に含浸させても、銀の微粒子化、高分散化が可能となり触媒性能も向上するのである。   Conventionally, when a catalyst component is impregnated in a carrier having a low water absorption rate, in order to achieve a loading rate comparable to that of a carrier having a high water absorption rate, it is usually impregnated using a catalyst component-containing solution containing silver at a high concentration. It was necessary to carry out the process. In contrast, according to the present invention, by performing the impregnation step by dividing the solution into two or more times, even if the support is impregnated with a catalyst component-containing solution having a lower concentration than in the prior art, Dispersion is possible and the catalyst performance is improved.

触媒成分含有溶液を担体に含浸させる際の温度(含浸容器内の温度)は特に制限されないが、好ましくは0〜100℃であり、より好ましくは20〜80℃である。また、1回の含浸における含浸時間も特に制限されないが、通常は1〜120分間であり、好ましくは5〜60分間である。   The temperature at which the catalyst component-containing solution is impregnated into the support (temperature in the impregnation vessel) is not particularly limited, but is preferably 0 to 100 ° C, more preferably 20 to 80 ° C. Also, the impregnation time in one impregnation is not particularly limited, but is usually 1 to 120 minutes, preferably 5 to 60 minutes.

本工程では含浸操作を2回以上行なうが、それぞれの含浸操作後には、従来公知の知見を参照しつつ、乾燥工程を行なうとよい。かような乾燥工程の詳細について特に制限はないが、一例を挙げると、空気、酸素ガス、または窒素などの不活性ガス雰囲気中で、80〜120℃程度の温度で、0.1〜2時間乾燥させるとよい。乾燥工程における圧力に制限はないが、例えば0.01〜0.08MPa程度に減圧した方が、乾燥時間が短縮されうるため好ましい。また、減圧乾燥を施すことで、触媒成分を担体の細孔内部にまで高分散に担持させることが可能となるという利点もある。なお、減圧は乾燥工程の間一貫して行ってもよいし、乾燥工程の一部において行なってもよい。また、かような条件下で乾燥工程を行なった後でも、担持された銀は金属単体には変換されておらず、後述する焼成工程を経て初めて、金属単体へと変換される。   In this step, the impregnation operation is performed twice or more. After each impregnation operation, it is preferable to perform the drying step with reference to conventionally known knowledge. Although there is no restriction | limiting in particular about the detail of such a drying process, If an example is given, it will be 0.1 to 2 hours at the temperature of about 80-120 degreeC in inert gas atmosphere, such as air, oxygen gas, or nitrogen. It is good to dry. Although there is no restriction | limiting in the pressure in a drying process, For example, it is preferable to reduce pressure to about 0.01-0.08 MPa, since drying time can be shortened. Moreover, there is also an advantage that the catalyst component can be supported in a highly dispersed manner within the pores of the carrier by performing drying under reduced pressure. Note that the decompression may be performed consistently during the drying process, or may be performed during a part of the drying process. Further, even after the drying process is performed under such conditions, the supported silver is not converted into a metal simple substance, but is converted into a metal simple substance only after a firing process described later.

なお、本工程において、反応促進剤は、上述したように銀イオンが溶解した水溶液に同様に溶解させて銀と同時に担体に含浸させてもよいし、銀を担持する前または銀を担持した後に担体に担持してもよい。銀とは別に担持させる場合には、担持用の溶液(例えば、水溶液)を別途準備し、これに担体を担持させればよい。   In this step, the reaction accelerator may be similarly dissolved in the aqueous solution in which silver ions are dissolved as described above and impregnated on the support at the same time as silver, or before or after supporting silver. It may be supported on a carrier. In the case of supporting separately from silver, a supporting solution (for example, an aqueous solution) may be separately prepared and a carrier may be supported on this.

[焼成工程]
続いて、上記含浸工程(乾燥工程を含む)を経て得られた、触媒成分が担持されてなる担体を焼成する。これにより、本発明の最終目的物であるエチレンオキシド製造用触媒が完成する。
[Baking process]
Then, the support | carrier with which the catalyst component carry | supported obtained through the said impregnation process (a drying process is included) is baked. This completes the ethylene oxide production catalyst that is the final object of the present invention.

焼成は、空気、酸素、または不活性ガス(例えば、窒素)の雰囲気中で、150〜700℃の温度で、好ましくは200〜600℃の温度で0.1〜100時間程度行うことが好ましい。なお、焼成は、1段階のみ行われてもよいし、2段階以上行われてもよい。好ましい焼成条件としては、1段階目の焼成を空気雰囲気中で150〜250℃にて0.1〜10時間行い、2段階目の焼成を空気雰囲気中で250〜450℃にて0.1〜10時間行う条件が挙げられる。さらに好ましくは、かような空気雰囲気中での焼成後にさらに、不活性ガス(例えば、窒素、ヘリウム、アルゴンなど)雰囲気中で450〜700℃にて0.1〜10時間、焼成を行うとよい。   Firing is preferably performed in an atmosphere of air, oxygen, or an inert gas (for example, nitrogen) at a temperature of 150 to 700 ° C., preferably at a temperature of 200 to 600 ° C. for about 0.1 to 100 hours. In addition, baking may be performed only in one step or may be performed in two or more steps. As preferable firing conditions, the first stage firing is performed in an air atmosphere at 150 to 250 ° C. for 0.1 to 10 hours, and the second stage firing is performed in an air atmosphere at 250 to 450 ° C. for 0.1 to 10 hours. The conditions for 10 hours are mentioned. More preferably, after firing in such an air atmosphere, firing may be performed at 450 to 700 ° C. for 0.1 to 10 hours in an inert gas (eg, nitrogen, helium, argon, etc.) atmosphere. .

[エチレンオキシド製造用触媒]
本発明の製造方法によれば、担体に触媒成分が担持されてなる構成の触媒が得られる。
[Catalyst for ethylene oxide production]
According to the production method of the present invention, a catalyst having a structure in which a catalyst component is supported on a carrier can be obtained.

銀や反応促進剤の担持量については特に制限はなく、エチレンオキシドの製造に有効な量で担持すればよい。例えば、銀の場合、その担持量はエチレンオキシド製造用触媒の質量基準で好ましくは1〜30質量%であり、より好ましくは5〜20質量%であり、さらに好ましくは8〜15質量%である。また、反応促進剤の担持量は、エチレンオキシド製造用触媒の質量基準で、通常0.001〜2質量%であり、好ましくは0.01〜1質量%であり、より好ましくは0.1〜0.7質量%である。より詳細には、本発明の作用効果をより一層発揮させるという観点から、触媒成分としてアルカリ金属が用いられる場合のアルカリ金属の担持量(2種以上のアルカリ金属が用いられる場合の合計担持量)は、触媒の質量基準で、好ましくは0.03〜1.0質量%であり、より好ましくは0.05〜0.5質量%である。また、特に、アルカリ金属としてセシウムが用いられる場合のセシウムの担持量は、触媒の質量基準で、好ましくは0.001〜2質量%であり、より好ましくは0.01〜1質量%であり、さらに好ましくは0.02〜0.5質量%である。さらに、反応促進剤としてレニウムが用いられる場合のレニウムの担持量は、触媒の質量基準で、好ましくは0.001〜0.2質量%であり、より好ましくは0.005〜0.1質量%であり、さらに好ましくは0.01〜0.05質量%である。   There is no particular limitation on the amount of silver or reaction accelerator supported, and it may be supported in an amount effective for the production of ethylene oxide. For example, in the case of silver, the supported amount is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, and further preferably 8 to 15% by mass based on the mass of the ethylene oxide production catalyst. The amount of the reaction accelerator supported is usually 0.001 to 2% by mass, preferably 0.01 to 1% by mass, more preferably 0.1 to 0%, based on the mass of the catalyst for producing ethylene oxide. 0.7% by mass. More specifically, from the viewpoint of further exerting the effects of the present invention, the amount of alkali metal supported when an alkali metal is used as the catalyst component (the total amount supported when two or more alkali metals are used). Is preferably 0.03 to 1.0 mass%, more preferably 0.05 to 0.5 mass%, based on the mass of the catalyst. In particular, the amount of cesium supported when cesium is used as the alkali metal is preferably 0.001 to 2 mass%, more preferably 0.01 to 1 mass%, based on the mass of the catalyst. More preferably, it is 0.02-0.5 mass%. Further, the amount of rhenium supported when rhenium is used as the reaction accelerator is preferably 0.001 to 0.2% by mass, more preferably 0.005 to 0.1% by mass, based on the mass of the catalyst. More preferably, it is 0.01-0.05 mass%.

本発明の他の形態によれば、本発明のエチレンオキシド製造用触媒の存在下で、エチレンを分子状酸素含有ガスにより気相酸化する段階を有する、エチレンオキシドの製造方法が提供される。   According to another aspect of the present invention, there is provided a method for producing ethylene oxide, comprising the step of vapor-phase oxidizing ethylene with a molecular oxygen-containing gas in the presence of the catalyst for producing ethylene oxide of the present invention.

本発明のエチレンオキシドの製造方法は、触媒として本発明のエチレンオキシド製造用触媒を使用する点を除けば、常法に従って行われうる。   The method for producing ethylene oxide of the present invention can be carried out according to a conventional method except that the catalyst for producing ethylene oxide of the present invention is used as a catalyst.

例えば、工業的製造規模における一般的な条件、すなわち反応温度150〜300℃、好ましくは180〜280℃、反応圧力2〜40kg/cmG、好ましくは10〜30kg/cmG、空間速度1,000〜30,000hr−1(STP)、好ましくは3,000〜8,000hr−1(STP)が採用される。触媒に接触させる原料ガスとしては、エチレン0.5〜40容量%、酸素3〜10容量%、炭酸ガス5〜30容量%、残部の窒素、アルゴン、水蒸気等の不活性ガスおよびメタン、エタン等の低級炭化水素類からなり、さらに反応抑制剤としての二塩化エチレン、塩化ジフェニル等のハロゲン化物を0.1〜10容量ppm含有するものが挙げられる。本発明の製造方法において使用される分子状酸素含有ガスとしては、空気、酸素および富化空気が挙げられる。 For example, general conditions on an industrial production scale, that is, reaction temperature 150 to 300 ° C., preferably 180 to 280 ° C., reaction pressure 2 to 40 kg / cm 2 G, preferably 10 to 30 kg / cm 2 G, space velocity 1 3,000 to 30,000 hr −1 (STP), preferably 3,000 to 8,000 hr −1 (STP) is employed. Examples of the raw material gas to be brought into contact with the catalyst include 0.5 to 40% by volume of ethylene, 3 to 10% by volume of oxygen, 5 to 30% by volume of carbon dioxide, the remaining inert gas such as nitrogen, argon and water vapor, methane, ethane and the like And those containing 0.1 to 10 ppm by volume of halides such as ethylene dichloride and diphenyl chloride as reaction inhibitors. Examples of the molecular oxygen-containing gas used in the production method of the present invention include air, oxygen, and enriched air.

本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、本実施例において、担体の各種パラメータの測定は以下の手法により行われた。   The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In this example, various parameters of the carrier were measured by the following method.

<担体の比表面積の測定>
担体を粉砕した後、0.85〜1.2mmの粒径に分級したもの約3.0gを正確に秤量した。秤量したサンプルを200℃にて少なくとも30分間脱気し、BET(Brunauer−Emmet−Teller)法により測定した。
<Measurement of specific surface area of carrier>
After pulverizing the carrier, about 3.0 g, which was classified to a particle size of 0.85 to 1.2 mm, was accurately weighed. The weighed sample was deaerated at 200 ° C. for at least 30 minutes and measured by the BET (Brunauer-Emmet-Teller) method.

<担体中のシリカ含有量の測定>
蛍光X線分析法により測定した。
<Measurement of silica content in carrier>
Measured by fluorescent X-ray analysis.

<担体の吸水率の測定>
日本工業規格(JIS R 2205(1998年度))に記載の方法に準拠して、以下の手法により測定した。
<Measurement of water absorption rate of carrier>
In accordance with the method described in Japanese Industrial Standard (JIS R 2205 (1998)), the measurement was performed by the following method.

a)破砕前の担体を、120℃に保温した乾燥機中に入れ、恒量に達した際の質量を秤量した(乾燥質量:W1(g))。   a) The carrier before crushing was placed in a drier kept at 120 ° C., and the mass when reaching a constant weight was weighed (dry mass: W1 (g)).

b)上記a)で秤量した担体を水中に沈めて30分間以上煮沸した後、室温の水中にて冷却し、飽水サンプルとした。   b) The carrier weighed in a) above was submerged in water and boiled for 30 minutes or more, and then cooled in room temperature water to obtain a saturated sample.

c)上記b)で得た飽水サンプルを水中から取り出し、湿布ですばやく表面を拭い、水滴を除去した後に秤量した(飽水サンプル質量:W2(g))。   c) The saturated sample obtained in the above b) was taken out from the water, and the surface was quickly wiped with a compress, and after removing water droplets, weighed (saturated sample mass: W2 (g)).

d)上記で得られたW1およびW2を用い、下記数式1に従って、吸水率を算出した。   d) The water absorption was calculated according to the following formula 1 using W1 and W2 obtained above.

Figure 0005143610
Figure 0005143610

(実施例1)
表面積1.5m/g、吸水率45%のアルミナ担体A(外径8mm、内径4mm、長さ8mm)1リットルに蒸留水1リットルを加え、常圧下で30分間煮沸洗浄した後、洗浄液を除去し、蒸留水で洗浄した。さらに、この煮沸洗浄を2回繰り返した後、120℃で3時間乾燥した。上記処理後の担体100質量部を100℃で1時間脱気した。以下、実施例1〜9および比較例1〜4には同じ担体Aを使用した。
Example 1
After adding 1 liter of distilled water to 1 liter of alumina carrier A (outer diameter 8 mm, inner diameter 4 mm, length 8 mm) having a surface area of 1.5 m 2 / g and a water absorption rate of 45%, boiled and washed under normal pressure for 30 minutes, Removed and washed with distilled water. Furthermore, after this boiling washing was repeated twice, it was dried at 120 ° C. for 3 hours. 100 parts by mass of the carrier after the above treatment was deaerated at 100 ° C. for 1 hour. Hereinafter, the same carrier A was used in Examples 1 to 9 and Comparative Examples 1 to 4.

一方、シュウ酸銀14質量部、硝酸セシウム0.15質量部にエチレンジアミン8.0質量部、水44.1質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は15質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。上記処理後の担体100質量部を内容量1000mlのナスフラスコに入れ、次いで上記で調製した触媒成分含有溶液を加えた。担体および触媒成分含有溶液を添加したナスフラスコをロータリーエバポレーターにセットし、80℃の水浴に漬けて30分間含浸させた。その後0.05MPaの減圧下、攪拌しながら蒸発させ、余分な水分を除去した。   On the other hand, 8.0 parts by mass of ethylenediamine and 44.1 parts by mass of water were dissolved in 14 parts by mass of silver oxalate and 0.15 parts by mass of cesium nitrate to prepare a catalyst component-containing solution in which silver and cesium coexisted. The silver concentration of this solution was 15% by mass, and the cesium concentration was 0.008 mol with respect to 1 mol of silver. 100 parts by mass of the carrier after the above treatment was placed in an eggplant flask having an internal volume of 1000 ml, and then the catalyst component-containing solution prepared above was added. The eggplant flask to which the carrier and the catalyst component-containing solution were added was set on a rotary evaporator, immersed in an 80 ° C. water bath and impregnated for 30 minutes. Thereafter, the mixture was evaporated with stirring under a reduced pressure of 0.05 MPa to remove excess water.

続いて、1回目の含浸工程と同組成の触媒成分含有溶液を、上記で乾燥した担体に加え、1回目と同様の条件で当該担体に含浸させ、乾燥させた。   Subsequently, the catalyst component-containing solution having the same composition as in the first impregnation step was added to the dried carrier, and the carrier was impregnated under the same conditions as in the first time and dried.

その後、熱風乾燥機を用い、空気気流中で400℃で20分加熱処理を行った。さらにこれを窒素雰囲気中にて550℃で3時間加熱処理し、触媒(A−1)を得た。触媒(A−1)の銀担持率は15.2質量%であり、セシウムの担持率は0.15質量%であった。   Then, heat processing was performed at 400 degreeC for 20 minutes in the airflow using the hot air dryer. Furthermore, this was heat-processed at 550 degreeC for 3 hours in nitrogen atmosphere, and the catalyst (A-1) was obtained. The silver supporting rate of the catalyst (A-1) was 15.2% by mass, and the supporting rate of cesium was 0.15% by mass.

(実施例2)
シュウ酸銀14質量部、硝酸セシウム0.15質量部にエチレンジアミン8質量部、水77.3質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は10質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
(Example 2)
A catalyst component-containing solution in which silver and cesium coexisted was prepared by adding 8 parts by mass of ethylenediamine and 77.3 parts by mass of water to 14 parts by mass of silver oxalate and 0.15 parts by mass of cesium nitrate. The silver concentration of this solution was 10% by mass, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、上述した実施例1と同様の手法により、2回の含浸−乾燥、および焼成を行ない、触媒(A−2)を得た。触媒(A−2)の銀担持率は15.3質量%であり、セシウムの担持率は0.15質量%であった。なお、実施例2は実施例1と比較して、触媒成分含有溶液の銀濃度が低い。   Subsequently, impregnation-drying and calcination were performed twice by the same method as in Example 1 to obtain a catalyst (A-2). The silver supporting rate of the catalyst (A-2) was 15.3% by mass, and the supporting rate of cesium was 0.15% by mass. In addition, compared with Example 1, Example 2 has a low silver concentration of a catalyst component containing solution.

(実施例3)
シュウ酸銀14質量部、硝酸セシウム0.15質量部にエチレンジアミン8質量部、水176.7質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は5質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
(Example 3)
A catalyst component-containing solution in which silver and cesium coexisted was prepared by adding 8 parts by mass of ethylenediamine and 176.7 parts by mass of water to 14 parts by mass of silver oxalate and 0.15 parts by mass of cesium nitrate. The silver concentration of this solution was 5% by mass, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、上述した実施例1と同様の手法により、2回の含浸−乾燥、および焼成を行ない、触媒(A−3)を得た。触媒(A−3)の銀担持率は15.2質量%であり、セシウムの担持率は0.15質量%であった。なお、実施例3は実施例1および2と比較して、触媒成分含有溶液の銀濃度が低い。   Next, impregnation-drying and calcination were performed twice by the same method as in Example 1 to obtain a catalyst (A-3). The silver supporting rate of the catalyst (A-3) was 15.2% by mass, and the supporting rate of cesium was 0.15% by mass. In Example 3, the silver concentration of the catalyst component-containing solution is lower than in Examples 1 and 2.

(実施例4)
シュウ酸銀9.3質量部、硝酸セシウム0.1質量部にエチレンジアミン5.3質量部、水29.3質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は15質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
Example 4
To 9.3 parts by mass of silver oxalate and 0.1 part by mass of cesium nitrate, 5.3 parts by mass of ethylenediamine and 29.3 parts by mass of water were added and dissolved to prepare a catalyst component-containing solution in which silver and cesium coexisted. The silver concentration of this solution was 15% by mass, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、上述した実施例1と同様の手法により、3回の含浸−乾燥、および焼成を行ない、触媒(A−4)を得た。触媒(A−4)の銀担持率は15.4質量%であり、セシウムの担持率は0.15質量%であった。なお、実施例4は実施例1と比較して、含浸工程(乾燥工程を含む)を3回行なっている点で異なる。   Subsequently, impregnation-drying and calcination were performed three times by the same method as in Example 1 to obtain a catalyst (A-4). The silver support rate of the catalyst (A-4) was 15.4% by mass, and the support rate of cesium was 0.15% by mass. Example 4 is different from Example 1 in that the impregnation step (including the drying step) is performed three times.

(実施例5)
シュウ酸銀5.6質量部、硝酸セシウム0.06質量部にエチレンジアミン3.2質量部、水17.6質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は15質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
(Example 5)
A catalyst component-containing solution in which silver and cesium coexisted was prepared by adding 3.2 parts by mass of ethylenediamine and 17.6 parts by mass of water to 5.6 parts by mass of silver oxalate and 0.06 parts by mass of cesium nitrate. The silver concentration of this solution was 15% by mass, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、上述した実施例1と同様の手法により、5回の含浸−乾燥、および焼成を行ない、触媒(A−5)を得た。触媒(A−5)の銀担持率は15.6質量%であり、セシウムの担持率は0.15質量%であった。なお、実施例5は実施例1および4と比較して、含浸工程(乾燥工程を含む)を5回行なっている点で異なる。   Subsequently, impregnation-drying and calcination were performed 5 times by the same method as in Example 1 to obtain a catalyst (A-5). The silver support rate of the catalyst (A-5) was 15.6% by mass, and the support rate of cesium was 0.15% by mass. In addition, Example 5 is different from Examples 1 and 4 in that the impregnation step (including the drying step) is performed five times.

(実施例6)
シュウ酸銀9.3質量部、硝酸セシウム0.1質量部にエチレンジアミン5.3質量部、水50.4質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は10質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
(Example 6)
A catalyst component-containing solution in which silver and cesium coexisted was prepared by adding 5.3 parts by mass of ethylenediamine and 50.4 parts by mass of water to 9.3 parts by mass of silver oxalate and 0.1 parts by mass of cesium nitrate. The silver concentration of this solution was 10% by mass, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、上述した実施例1と同様の手法により、3回の含浸−乾燥、および焼成を行ない、触媒(A−6)を得た。触媒(A−6)の銀担持率は15.3質量%であり、セシウムの担持率は0.15質量%であった。なお、実施例6は、触媒成分含有溶液の銀濃度は実施例2と同一であるが、含浸工程(乾燥工程を含む)を3回行なっている点で異なる。   Subsequently, impregnation-drying and calcination were performed three times by the same method as in Example 1 to obtain a catalyst (A-6). The silver supporting rate of the catalyst (A-6) was 15.3% by mass, and the supporting rate of cesium was 0.15% by mass. In Example 6, the silver concentration of the catalyst component-containing solution is the same as that in Example 2, but differs in that the impregnation step (including the drying step) is performed three times.

(実施例7)
シュウ酸銀5.6質量部、硝酸セシウム0.06質量部にエチレンジアミン3.2質量部、水30.9質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は10質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
(Example 7)
A catalyst component-containing solution in which silver and cesium coexisted was prepared by adding 3.2 parts by mass of ethylenediamine and 30.9 parts by mass of water to 5.6 parts by mass of silver oxalate and 0.06 parts by mass of cesium nitrate. The silver concentration of this solution was 10% by mass, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、上述した実施例1と同様の手法により、5回の含浸−乾燥、および焼成を行ない、触媒(A−7)を得た。触媒(A−7)の銀担持率は15.4質量%であり、セシウムの担持率は0.15質量%であった。なお、実施例7は、触媒成分含有溶液の銀濃度は実施例2および6と同一であるが、含浸工程(乾燥工程を含む)を5回行なっている点で異なる。   Subsequently, impregnation-drying and calcination were performed 5 times by the same method as in Example 1 to obtain a catalyst (A-7). The silver support rate of the catalyst (A-7) was 15.4% by mass, and the cesium support rate was 0.15% by mass. In Example 7, the silver concentration of the catalyst component-containing solution is the same as in Examples 2 and 6, but differs in that the impregnation step (including the drying step) is performed five times.

(実施例8)
シュウ酸銀9.3質量部、硝酸セシウム0.1質量部にエチレンジアミン5.3質量部、水117.4質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は5質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
(Example 8)
A catalyst component-containing solution in which silver and cesium coexisted was prepared by adding 5.3 parts by mass of ethylenediamine and 117.4 parts by mass of water to 9.3 parts by mass of silver oxalate and 0.1 parts by mass of cesium nitrate. The silver concentration of this solution was 5% by mass, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、上述した実施例1と同様の手法により、3回の含浸−乾燥、および焼成を行ない、触媒(A−8)を得た。触媒(A−8)の銀担持率は15.3質量%であり、セシウムの担持率は0.15質量%であった。なお、実施例8は、触媒成分含有溶液の銀濃度は実施例3と同一であるが、含浸工程(乾燥工程を含む)を3回行なっている点で異なる。   Subsequently, impregnation-drying and calcination were performed three times by the same method as in Example 1 to obtain a catalyst (A-8). The silver supporting rate of the catalyst (A-8) was 15.3% by mass, and the supporting rate of cesium was 0.15% by mass. In Example 8, the silver concentration of the catalyst component-containing solution is the same as that in Example 3, but differs in that the impregnation step (including the drying step) is performed three times.

(実施例9)
シュウ酸銀5.6質量部、硝酸セシウム0.06質量部にエチレンジアミン3.2質量部、水70.5質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は5質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
Example 9
A catalyst component-containing solution in which silver and cesium coexisted was prepared by adding 3.2 parts by mass of ethylenediamine and 70.5 parts by mass of water to 5.6 parts by mass of silver oxalate and 0.06 parts by mass of cesium nitrate. The silver concentration of this solution was 5% by mass, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、上述した実施例1と同様の手法により、5回の含浸−乾燥、および焼成を行ない、触媒(A−9)を得た。触媒(A−9)の銀担持率は15.4質量%であり、セシウムの担持率は0.15質量%であった。なお、実施例9は、触媒成分含有溶液の銀濃度は実施例3および8と同一であるが、含浸工程(乾燥工程を含む)を5回行なっている点で異なる。   Subsequently, impregnation-drying and calcination were performed 5 times by the same method as in Example 1 to obtain a catalyst (A-9). The silver supporting rate of the catalyst (A-9) was 15.4% by mass, and the supporting rate of cesium was 0.15% by mass. In Example 9, the silver concentration of the catalyst component-containing solution is the same as in Examples 3 and 8, but differs in that the impregnation step (including the drying step) is performed five times.

(比較例1)
シュウ酸銀14質量部、硝酸セシウム0.15質量部にエチレンジアミン8質量部、水26.0質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は20.6質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
(Comparative Example 1)
A catalyst component-containing solution in which silver and cesium coexisted was prepared by adding 8 parts by mass of ethylenediamine and 26.0 parts by mass of water to 14 parts by mass of silver oxalate and 0.15 parts by mass of cesium nitrate. The silver concentration of this solution was 20.6% by mass, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、上述した実施例1と同様の手法により、2回の含浸−乾燥、および焼成を行ない、触媒(B−1)を得た。触媒(B−1)の銀担持率は15.3質量%であり、セシウムの担持率は0.14質量%であった。なお、比較例1は、触媒成分含有溶液の銀濃度が20.6質量%と高い点で、本発明の製造方法とは異なる。   Next, impregnation-drying and calcination were performed twice by the same method as in Example 1 to obtain a catalyst (B-1). The silver supporting rate of the catalyst (B-1) was 15.3% by mass, and the supporting rate of cesium was 0.14% by mass. Comparative Example 1 differs from the production method of the present invention in that the silver concentration of the catalyst component-containing solution is as high as 20.6% by mass.

(比較例2)
シュウ酸銀28質量部、硝酸セシウム0.3質量部にエチレンジアミン18質量部、水86.2質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は15.0質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
(Comparative Example 2)
A catalyst component-containing solution in which silver and cesium coexisted was prepared by adding 18 parts by mass of ethylenediamine and 86.2 parts by mass of water to 28 parts by mass of silver oxalate and 0.3 parts by mass of cesium nitrate. The silver concentration of this solution was 15.0 mass%, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、上述した実施例1と同様の手法により、1回の含浸−乾燥、および焼成を行ない、触媒(B−2)を得た。触媒(B−2)の銀担持率は15.1質量%であり、セシウムの担持率は0.15質量%であった。なお、比較例2は、含浸工程(乾燥工程を含む)を1回しか行なっていない点で、本発明の製造方法とは異なる。   Next, impregnation-drying and firing were performed once by the same method as in Example 1 to obtain a catalyst (B-2). The silver support rate of the catalyst (B-2) was 15.1% by mass, and the support rate of cesium was 0.15% by mass. Comparative Example 2 differs from the production method of the present invention in that the impregnation step (including the drying step) is performed only once.

(比較例3:特許文献4に記載の技術に対応)
シュウ酸銀14質量部、硝酸セシウム0.15質量部にエチレンジアミン34質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は20.6質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
(Comparative Example 3: corresponding to the technique described in Patent Document 4)
34 parts by mass of ethylenediamine was added to 14 parts by mass of silver oxalate and 0.15 parts by mass of cesium nitrate and dissolved to prepare a catalyst component-containing solution in which silver and cesium coexisted. The silver concentration of this solution was 20.6% by mass, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、上述した実施例1と同様の手法により、2回の含浸−乾燥、および焼成を行ない、触媒(B−3)を得た。触媒(B−3)の銀担持率は13.2質量%であり、セシウムの担持率は0.12質量%であった。なお、比較例3は、触媒成分含有溶液の銀濃度が20.6質量%と高く、かつ、触媒成分含有溶液の溶媒として水を含んでいない点で、本発明の製造方法とは異なる。   Subsequently, impregnation-drying and calcination were performed twice by the same method as in Example 1 to obtain a catalyst (B-3). The silver support rate of the catalyst (B-3) was 13.2% by mass, and the support rate of cesium was 0.12% by mass. Comparative Example 3 is different from the production method of the present invention in that the silver concentration of the catalyst component-containing solution is as high as 20.6% by mass and water is not included as the solvent of the catalyst component-containing solution.

(比較例4:特許文献5に記載の技術に対応)
シュウ酸銀14質量部、硝酸セシウム0.15質量部にエチレンジアミン8質量部、水44.1質量部を加えて溶解させ、銀およびセシウムが共存した触媒成分含有溶液を調製した。この溶液の銀濃度は15.0質量%であり、セシウム濃度は銀1モルに対して0.008モルであった。
(Comparative example 4: corresponding to the technique described in Patent Document 5)
A catalyst component-containing solution in which silver and cesium coexisted was prepared by adding 8 parts by mass of ethylenediamine and 44.1 parts by mass of water to 14 parts by mass of silver oxalate and 0.15 parts by mass of cesium nitrate. The silver concentration of this solution was 15.0 mass%, and the cesium concentration was 0.008 mol with respect to 1 mol of silver.

次いで、1回目の含浸工程(乾燥工程を含む)後に、空気中、300℃で30分間加熱し、担体上に金属銀を析出させたこと以外は、上述した実施例1と同様の手法により、2回の含浸−乾燥、および焼成を行ない、触媒(B−4)を得た。すなわち、本比較例では、2回の含浸−乾燥−焼成を行なったことになる。触媒(B−4)の銀担持率は15.0質量%であり、セシウムの担持率は0.15質量%であった。   Then, after the first impregnation step (including the drying step), in the same manner as in Example 1 described above, except that the metal silver was deposited on the support by heating at 300 ° C. for 30 minutes in air. Two impregnations-drying and calcination were performed to obtain a catalyst (B-4). That is, in this comparative example, the impregnation-drying-firing was performed twice. The silver support rate of the catalyst (B-4) was 15.0% by mass, and the support rate of cesium was 0.15% by mass.

(評価例)
実施例1〜9および比較例1〜4にて得られた触媒(A−1)〜(A−9)および触媒(B−1)〜(B−4)をそれぞれ粉砕し、600〜850メッシュに篩い分け、それぞれ1.2gを内径3mm、管長600mmのステンレス鋼製の反応管に充填し、下記条件下にてエチレンの気相酸化反応をそれぞれ行った。なお、エチレンの気相酸化に用いた反応条件は以下の通りである。
(Evaluation example)
The catalysts (A-1) to (A-9) and the catalysts (B-1) to (B-4) obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were pulverized, and 600 to 850 mesh. In each case, 1.2 g of each was filled in a stainless steel reaction tube having an inner diameter of 3 mm and a tube length of 600 mm, and ethylene gas phase oxidation reaction was performed under the following conditions. The reaction conditions used for the vapor phase oxidation of ethylene are as follows.

Figure 0005143610
Figure 0005143610

エチレン転化率が10%のときの反応温度および酸化エチレンの選択率を下記の表2(実施例の触媒の結果)および表3(比較例の触媒の結果)に示す。なお、エチレンオキシド製造時の転化率および選択率は、それぞれ下記の数式2および数式3に従って算出される。   The reaction temperature and ethylene oxide selectivity when the ethylene conversion is 10% are shown in the following Table 2 (results of the catalyst of the example) and Table 3 (results of the catalyst of the comparative example). In addition, the conversion rate and selectivity at the time of ethylene oxide manufacture are calculated according to the following formula 2 and formula 3, respectively.

Figure 0005143610
Figure 0005143610

Figure 0005143610
Figure 0005143610

Figure 0005143610
Figure 0005143610

上記表2および表3に示す結果から、各比較例において得られた触媒と比較して、各実施例において得られた触媒では、より低い反応温度でも高い選択率が得られる。したがって、本発明によれば、優れた触媒性能を有し、より低い反応温度でも(すなわち、高活性)高選択率でエチレンオキシドを製造しうる触媒が提供されうる。そして、当該触媒を用いたエチレンオキシドの製造方法によれば、反応温度のわりに高い選択率でエチレンオキシドを製造することが可能となり、経済性の観点から、その産業上の利用価値は極めて大きい。   From the results shown in Table 2 and Table 3 above, the catalysts obtained in each Example can obtain higher selectivity even at a lower reaction temperature, compared with the catalysts obtained in each Comparative Example. Therefore, according to the present invention, a catalyst having excellent catalytic performance and capable of producing ethylene oxide with a high selectivity even at a lower reaction temperature (that is, high activity) can be provided. And according to the manufacturing method of ethylene oxide using the said catalyst, it becomes possible to manufacture ethylene oxide with high selectivity instead of reaction temperature, and the industrial utility value is very large from a viewpoint of economical efficiency.

Claims (5)

アルミナを主成分とする担体に、銀、アルカリ金属および水を含む触媒成分含有溶液を含浸させる含浸工程と、
含浸後の前記担体を焼成する焼成工程と、
を含むエチレンオキシド製造用触媒の製造方法であって、
前記含浸工程において、銀濃度が元素換算で1〜15質量%の前記触媒成分含有溶液を2回以上、前記担体に含浸させ
前記焼成工程において、2段階以上の焼成を行うことを特徴とする、エチレンオキシド製造用触媒の製造方法。
An impregnation step of impregnating a carrier containing alumina as a main component with a catalyst component-containing solution containing silver, an alkali metal, and water;
A firing step of firing the carrier after impregnation;
A method for producing an ethylene oxide production catalyst comprising:
In the impregnation step, the support is impregnated twice or more with the catalyst component-containing solution having a silver concentration of 1 to 15% by mass in terms of element ,
The method for producing a catalyst for producing ethylene oxide , wherein the firing step comprises two or more steps of firing .
前記含浸工程におけるそれぞれの含浸操作後に乾燥工程を行う、請求項1に記載の製造方法。The manufacturing method of Claim 1 which performs a drying process after each impregnation operation in the said impregnation process. 前記触媒成分含有溶液が錯化剤を含有する、請求項1または2に記載の製造方法。The production method according to claim 1, wherein the catalyst component-containing solution contains a complexing agent. 前記アルカリ金属がセシウムであり、前記触媒成分含有溶液におけるセシウムの含有量が銀1モルに対して1×10−3〜20×10−3モルである、請求項1〜3のいずれか1項に記載の製造方法。 Wherein the alkali metal is cesium, the content of cesium in the catalyst component-containing solution is 1 × 10 -3 ~20 × 10 -3 mol per mol of silver, any one of claims 1 to 3 The manufacturing method as described in. 請求項1〜4のいずれか1項に記載の製造方法により製造されたエチレンオキシド製造用触媒の存在下で、エチレンを分子状酸素含有ガスにより気相酸化する工程を有する、エチレンオキシドの製造方法。 The manufacturing method of ethylene oxide which has the process of carrying out the gaseous-phase oxidation of ethylene with molecular oxygen containing gas in presence of the catalyst for ethylene oxide manufacture manufactured by the manufacturing method of any one of Claims 1-4 .
JP2008093175A 2008-03-31 2008-03-31 Method for producing catalyst for producing ethylene oxide Expired - Fee Related JP5143610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093175A JP5143610B2 (en) 2008-03-31 2008-03-31 Method for producing catalyst for producing ethylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093175A JP5143610B2 (en) 2008-03-31 2008-03-31 Method for producing catalyst for producing ethylene oxide

Publications (2)

Publication Number Publication Date
JP2009241003A JP2009241003A (en) 2009-10-22
JP5143610B2 true JP5143610B2 (en) 2013-02-13

Family

ID=41303541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093175A Expired - Fee Related JP5143610B2 (en) 2008-03-31 2008-03-31 Method for producing catalyst for producing ethylene oxide

Country Status (1)

Country Link
JP (1) JP5143610B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606255B2 (en) * 2010-09-30 2014-10-15 株式会社日本触媒 Catalyst precursor, catalyst for producing ethylene oxide, and method for producing ethylene oxide
TW201705868A (en) * 2015-07-01 2017-02-16 艾迪科股份有限公司 Supporting body, ethylene remover, and freshness keeping agent
CN112691662A (en) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 Silver catalyst for producing ethylene oxide by ethylene epoxidation and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3224322A1 (en) * 1982-06-30 1984-01-05 Hoechst Ag, 6230 Frankfurt Silver catalysts, process for their preparation, and their use for the preparation of ethylene oxide
EP0428845B2 (en) * 1989-11-09 1998-12-23 Hüls Aktiengesellschaft Silver catalyst for the oxidation of ethylene and process for its preparation
JP2002320855A (en) * 2001-04-25 2002-11-05 Scientific Design Co Inc Catalyst for ethylene oxide

Also Published As

Publication number Publication date
JP2009241003A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP4267015B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP7416140B2 (en) Hydrogenation catalyst for carbonyl compounds and method for producing alcohol
JP5576607B2 (en) Catalyst for producing alkylene oxide, method for producing the same, and method for producing alkylene oxide using the catalyst
JP5143610B2 (en) Method for producing catalyst for producing ethylene oxide
CN106311230B (en) Preparation method, catalyst and the application of silver catalyst for alkene epoxidation
JP5566881B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP7369694B2 (en) Process for preparing epoxidation catalysts
JP5570277B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5165441B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
CN109201027B (en) Alpha-alumina carrier and preparation method and application thereof
JP5581058B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5606255B2 (en) Catalyst precursor, catalyst for producing ethylene oxide, and method for producing ethylene oxide
JP5101428B2 (en) Method for packing catalyst for producing ethylene oxide, reactor for producing ethylene oxide, and method for producing ethylene oxide
JP5258485B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP6033124B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5388925B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP4747066B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP5656709B2 (en) A method for recovering an active component from a catalyst for producing ethylene oxide after use, and a method for producing a catalyst using the recovered component.
JP5916329B2 (en) Catalyst for producing ethylene oxide, method for producing the catalyst, and method for producing ethylene oxide
JP5479286B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5328452B2 (en) Catalyst support for ethylene oxide production, catalyst for ethylene oxide production, and method for producing ethylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees