JP5606255B2 - Catalyst precursor, catalyst for producing ethylene oxide, and method for producing ethylene oxide - Google Patents

Catalyst precursor, catalyst for producing ethylene oxide, and method for producing ethylene oxide Download PDF

Info

Publication number
JP5606255B2
JP5606255B2 JP2010221015A JP2010221015A JP5606255B2 JP 5606255 B2 JP5606255 B2 JP 5606255B2 JP 2010221015 A JP2010221015 A JP 2010221015A JP 2010221015 A JP2010221015 A JP 2010221015A JP 5606255 B2 JP5606255 B2 JP 5606255B2
Authority
JP
Japan
Prior art keywords
catalyst
silver
catalyst precursor
amount
ethylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010221015A
Other languages
Japanese (ja)
Other versions
JP2012075985A (en
Inventor
健一 落合
弘己 柚木
博之 廣田
雅嗣 三河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2010221015A priority Critical patent/JP5606255B2/en
Publication of JP2012075985A publication Critical patent/JP2012075985A/en
Application granted granted Critical
Publication of JP5606255B2 publication Critical patent/JP5606255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、触媒前駆体、該触媒前駆体からなる酸化エチレン製造用触媒および該触媒を用いた酸化エチレンの製造方法に関する。詳しくは、本発明は、酸化エチレン選択性に優れ、高い選択率で酸化エチレンを製造しうる触媒前駆体、該触媒前駆体からなる酸化エチレン製造用触媒および該触媒を用いる酸化エチレンの製造方法に関する。   The present invention relates to a catalyst precursor, a catalyst for producing ethylene oxide comprising the catalyst precursor, and a method for producing ethylene oxide using the catalyst. Specifically, the present invention relates to a catalyst precursor that is excellent in ethylene oxide selectivity and can produce ethylene oxide with high selectivity, a catalyst for producing ethylene oxide comprising the catalyst precursor, and a method for producing ethylene oxide using the catalyst. .

エチレンを分子状酸素含有ガスにより気相酸化して酸化エチレンを製造する際に用いる酸化エチレン製造用触媒については、従来から数多くの文献が紹介されている。   Numerous documents have been introduced in the past regarding ethylene oxide production catalysts used for producing ethylene oxide by vapor phase oxidation of ethylene with a molecular oxygen-containing gas.

例えば、特許文献1には、元素周期律表のIIIa−VIIaおよびIIIb−Vb族の第4、5および6周期の元素からなる群より選ばれた1種あるいは2種以上の化合物含むα−アルミナ担体に、銀を担持した触媒が開示されている。   For example, Patent Document 1 discloses α-alumina containing one or more compounds selected from the group consisting of elements of the fourth, fifth and sixth periods of groups IIIa-VIIa and IIIb-Vb of the periodic table of elements. A catalyst having silver supported on a support is disclosed.

特許文献2には、担体に、銀、アルカリ金属、希土類およびレニウムを担持した触媒が開示されている。特許文献3には、担体に銀塩の炭化水素溶液を含浸させ、次いで空気に比べてより少ない酸素を含有した雰囲気中で加熱して得られる触媒が開示されている。   Patent Document 2 discloses a catalyst in which silver, alkali metal, rare earth, and rhenium are supported on a carrier. Patent Document 3 discloses a catalyst obtained by impregnating a carrier with a silver salt hydrocarbon solution and then heating in an atmosphere containing less oxygen than air.

特許文献4には、銀化合物と錯体形成剤化合物とを含有する溶液を担体に含浸後、雰囲気ガスの供給および排気可能な連続式加熱装置に投入し、加熱した雰囲気ガスを循環させて加熱処理し、次いで、該含浸担体に新しい加熱した雰囲気ガスを通過させて、そのうち90容量%以上を排気する処理を5分間以上行うことで得られる触媒が開示されている。特許文献5には、α−アルミナなどの担体に、銀、アルカリ金属、ホウ素及び硫黄成分からなり、レニウム及び遷移金属を含まない触媒が開示されている。   In Patent Document 4, after impregnating a support containing a solution containing a silver compound and a complex-forming agent compound, the support is introduced into a continuous heating apparatus capable of supplying and exhausting atmospheric gas, and the heated atmospheric gas is circulated to perform heat treatment. Then, a catalyst obtained by passing a new heated atmospheric gas through the impregnated support and evacuating 90% by volume or more thereof for 5 minutes or more is disclosed. Patent Document 5 discloses a catalyst comprising silver, an alkali metal, boron and a sulfur component on a carrier such as α-alumina and containing no rhenium and a transition metal.

特許文献1〜5に記載の触媒は、触媒性能に優れ、工業的に十分満足し得るものである。しかしながら、酸化エチレンの工業的生産規模は極めて大きく、選択率が僅かに向上するだけでも原料であるエチレンの使用量を著しく節約できることから、より優れた触媒性能を有する酸化エチレン製造用触媒の開発が依然として望まれている。   The catalysts described in Patent Documents 1 to 5 are excellent in catalyst performance and can be sufficiently satisfied industrially. However, the industrial production scale of ethylene oxide is extremely large, and the amount of ethylene used as a raw material can be significantly saved even if the selectivity is slightly improved. Still desired.

特開平4−363139号公報JP-A-4-363139 特開平7−8798号公報Japanese Patent Laid-Open No. 7-8798 特表平10−503118号公報Japanese National Patent Publication No. 10-503118 特開2002−126527号公報JP 2002-126527 A 特開2006−524129号公報JP 2006-524129 A

本発明の目的は、活性、選択率に優れ、かつ、経済性に優れた酸化エチレン製造用触媒を提供することである。
また、本発明の他の目的は、本発明の触媒の存在下で、エチレンを分子状酸素含有ガスにより気相酸化して、効率よく酸化エチレンを製造する方法を提供することである。
An object of the present invention is to provide a catalyst for producing ethylene oxide which is excellent in activity, selectivity and economical efficiency.
Another object of the present invention is to provide a method for efficiently producing ethylene oxide by gas-phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of the catalyst of the present invention.

本発明者らは、前記目的を達成すべく鋭意研究を重ねた。その結果、担体に触媒成分含有溶液を含浸する際に特定の条件で処理を施すことにより得られた触媒前駆体において、該触媒前駆体中の総銀量に対する水不溶性銀量の割合が特定の範囲内にある場合、これを焼成して得られる酸化エチレン製造用触媒は触媒性能が向上することを見出し、かかる知見に基づき本発明を完成するに至った。   The inventors of the present invention have intensively studied to achieve the above object. As a result, in the catalyst precursor obtained by performing the treatment under specific conditions when the support is impregnated with the catalyst component-containing solution, the ratio of the amount of water-insoluble silver to the total silver amount in the catalyst precursor is specific. When it is within the range, the catalyst for producing ethylene oxide obtained by calcination of the catalyst has been found to improve the catalyst performance, and the present invention has been completed based on such knowledge.

すなわち、本発明は、アルミナを主成分とする担体に銀を担持した酸化エチレン製造用触媒の触媒前駆体であって、含浸時の触媒層温度である含浸温度を120℃〜200℃、前記の含浸温度にて10〜60分保持することによって、前記触媒前駆体中の総銀量に対する水不溶性銀量の割合が30%以上であることを特徴とする触媒前駆体である。また、(2)前記含浸温度が125℃〜190℃、該含浸温度にて10〜40分保持することを特徴とする(1)に記載の触媒前駆体である。
That is, the present invention is a catalyst precursor of an ethylene oxide production catalyst in which silver is supported on a support mainly composed of alumina, and the impregnation temperature, which is the catalyst layer temperature during impregnation, is 120 ° C to 200 ° C, By maintaining the impregnation temperature for 10 to 60 minutes, the ratio of the amount of water-insoluble silver to the total amount of silver in the catalyst precursor is 30% or more. (2) The catalyst precursor according to (1), wherein the impregnation temperature is 125 ° C. to 190 ° C. and the impregnation temperature is maintained for 10 to 40 minutes .

また、本発明は、(3)(1)または(2)に記載の触媒前駆体を焼成して得られることを特徴とする酸化エチレン製造用触媒である。更に、本発明は、(4)(3)に記載の触媒の存在下で、エチレンを分子状酸素含有ガスにより気相酸化することを特徴とする酸化エチレンの製造方法である。
Moreover, this invention is a catalyst for ethylene oxide manufacture characterized by being obtained by baking the catalyst precursor as described in (3) (1) or (2) . Furthermore, the present invention is (4) a method for producing ethylene oxide, characterized in that ethylene is vapor-phase oxidized with a molecular oxygen-containing gas in the presence of the catalyst described in (3) .

本発明の触媒前駆体を用いれば、活性および選択率に優れた酸化エチレン製造用触媒を製造することができる。また、本発明の酸化エチレン製造用触媒は、活性および選択率に優れ、酸化エチレンを効率よく製造することができる。更に、本発明の酸化エチレンの製造方法は、本発明の触媒の存在下に、エチレンを原料とし、分子状酸素含有ガスにより気相酸化することにより、高い生産性で酸化エチレンを製造することができる。 If the catalyst precursor of this invention is used, the catalyst for ethylene oxide manufacture excellent in activity and selectivity can be manufactured. Further, the ethylene oxide production catalyst of the present invention is excellent in activity and selectivity, and can produce ethylene oxide efficiently. Furthermore, the method for producing ethylene oxide according to the present invention can produce ethylene oxide with high productivity by performing gas phase oxidation with molecular oxygen-containing gas using ethylene as a raw material in the presence of the catalyst of the present invention. it can.

以下、本発明の実施の形態を説明する。
[触媒前駆体]
本発明の触媒前駆体は、アルミナを主成分とする担体(以下、単に担体ということがある)に銀を担持した酸化エチレン製造用触媒の触媒前駆体であって、前記触媒前駆体中の総銀量に対する水不溶性銀量の割合が30%以上であることを特徴とする。本発明の触媒前駆体は、担体に触媒成分含有溶液を含浸した後、水不溶性銀量の割合が30%以上になるように処理することで得られる。
Embodiments of the present invention will be described below.
[Catalyst precursor]
The catalyst precursor of the present invention is a catalyst precursor of an ethylene oxide production catalyst in which silver is supported on a support mainly composed of alumina (hereinafter sometimes simply referred to as a support), The ratio of the amount of water-insoluble silver to the amount of silver is 30% or more. The catalyst precursor of the present invention can be obtained by impregnating the support with a catalyst component-containing solution and then treating the support so that the ratio of the amount of water-insoluble silver is 30% or more.

本発明で用いるアルミナを主成分とする担体の具体的形態については特に制限はなく、従来公知の知見が適宜参照されうる。例えば、担体の組成については、アルミナを主成分とすること以外は特に制限されない。ここで、「アルミナを主成分とする」とは、担体におけるアルミナ(好ましくはα―アルミナ)の含有量が、担体の全質量100質量%に対して80質量%以上であることを意味する。担体におけるアルミナの含有量は、好ましくは85質量%以上であり、より好ましくは90質量%以上である。   The specific form of the support mainly composed of alumina used in the present invention is not particularly limited, and conventionally known knowledge can be appropriately referred to. For example, the composition of the carrier is not particularly limited except that the main component is alumina. Here, “mainly composed of alumina” means that the content of alumina (preferably α-alumina) in the support is 80% by mass or more with respect to 100% by mass of the total mass of the support. The content of alumina in the carrier is preferably 85% by mass or more, more preferably 90% by mass or more.

本発明に用いる担体はアルミナを主成分とするものであればその他の組成は特に制限されないが、例えば、アルカリ金属またはアルカリ土類金属の酸化物や遷移金属の酸化物を含有しうる。これらの含有量についても特に制限はないが、アルカリ金属またはアルカリ土類金属の酸化物の含有量は、酸化物換算で、好ましくは0〜5質量%であり、より好ましくは0.01〜4質量%である。また、遷移金属の酸化物の含有量は、酸化物換算で好ましくは0〜5質量%であり、より好ましくは0.01〜3質量%である。   The carrier used in the present invention is not particularly limited as long as it contains alumina as a main component, and may contain, for example, an alkali metal or alkaline earth metal oxide or a transition metal oxide. Although there is no restriction | limiting in particular also about these content, Preferably content of the oxide of an alkali metal or alkaline-earth metal is 0-5 mass% in conversion of an oxide, More preferably, it is 0.01-4. % By mass. The content of the transition metal oxide is preferably 0 to 5% by mass, more preferably 0.01 to 3% by mass in terms of oxide.

担体はまた、シリカ(酸化ケイ素)を通常含有する。担体におけるシリカの含有量についても特に制限はないが、好ましくは0.1〜5質量%であり、より好ましくは0.3〜3質量%である。なお、上述した担体の組成や各成分の含有量は、蛍光X線分析法を用いて決定されうる。   The support also usually contains silica (silicon oxide). Although there is no restriction | limiting in particular about content of the silica in a support | carrier, Preferably it is 0.1-5 mass%, More preferably, it is 0.3-3 mass%. The composition of the carrier and the content of each component described above can be determined using a fluorescent X-ray analysis method.

担体の形状は特に制限されず、リング状、球状、円柱状、ペレット状など、従来公知の知見が適宜参照されうる。また、担体のサイズ(平均直径)についても特に制限はなく、好ましくは3〜20mmであり、より好ましくは5〜10mmである。   The shape of the carrier is not particularly limited, and conventionally known knowledge such as a ring shape, a spherical shape, a cylindrical shape, and a pellet shape can be appropriately referred to. Moreover, there is no restriction | limiting in particular also about the size (average diameter) of a support | carrier, Preferably it is 3-20 mm, More preferably, it is 5-10 mm.

担体のBET比表面積についても特に制限はないが、好ましくは0.03〜10m/gであり、より好ましくは0.5〜5.0m/gであり、さらに好ましくは0.6〜2.5m/gである。担体のBET比表面積が0.03m/g以上であれば、吸水率が十分に確保され、触媒成分の担持が容易となる。一方、担体のBET比表面積が10m/g以下であれば、担体の細孔径がある程度大きい値に維持され、製造された触媒を用いた酸化エチレン製造時の酸化エチレンの逐次酸化が抑制されうる。 There is no particular restriction on the BET specific surface area of the support is preferably 0.03~10m 2 / g, more preferably 0.5~5.0m 2 / g, more preferably 0.6 to 2 0.5 m 2 / g. When the BET specific surface area of the support is 0.03 m 2 / g or more, the water absorption is sufficiently secured and the catalyst component can be easily supported. On the other hand, if the BET specific surface area of the support is 10 m 2 / g or less, the pore diameter of the support is maintained at a certain large value, and the sequential oxidation of ethylene oxide during ethylene oxide production using the produced catalyst can be suppressed. .

担体の細孔容積も特に制限されないが、好ましくは0.2〜0.6mL/gであり、より好ましくは0.3〜0.5mL/gであり、さらに好ましくは0.35〜0.45mL/gである。担体の細孔容積が0.2mL/g以上であれば、触媒成分の担持が容易となるという点で好ましい。一方、担体の細孔容積が0.6mL/g以下であれば、担体の強度が実用的な程度の確保されうるという点で好ましい。   The pore volume of the carrier is not particularly limited, but is preferably 0.2 to 0.6 mL / g, more preferably 0.3 to 0.5 mL / g, and further preferably 0.35 to 0.45 mL. / G. If the pore volume of the carrier is 0.2 mL / g or more, it is preferable in that the catalyst component can be easily supported. On the other hand, if the pore volume of the carrier is 0.6 mL / g or less, it is preferable in that the strength of the carrier can be ensured to a practical level.

担体の吸水率についても特に制限はないが、好ましくは20〜60%であり、より好ましくは30〜50%である。担体の吸水率が20%以上であれば、触媒成分の担持が容易となる。一方、吸水率が60%以下であれば、担体の強度が実用的な程度に確保されうる。   Although there is no restriction | limiting in particular also about the water absorption rate of a support | carrier, Preferably it is 20 to 60%, More preferably, it is 30 to 50%. If the water absorption of the carrier is 20% or more, the catalyst component can be easily supported. On the other hand, if the water absorption is 60% or less, the strength of the carrier can be ensured to a practical level.

本発明の触媒成分含有溶液(以下、単に溶液ということがある)は銀を含む。触媒成分含有溶液を調製する方法については特に制限はなく、従来公知の知見が適宜参照されうる。例えば、銀化合物と銀錯体を形成するための錯化剤を含有する溶液を調製する。   The catalyst component-containing solution of the present invention (hereinafter sometimes simply referred to as a solution) contains silver. There is no restriction | limiting in particular about the method of preparing a catalyst component containing solution, A conventionally well-known knowledge can be referred suitably. For example, a solution containing a complexing agent for forming a silver complex with a silver compound is prepared.

銀化合物の種類については特に制限はないが、例えば、硝酸銀、炭酸銀、シュウ酸銀、酢酸銀、プロピオン酸銀、乳酸銀、クエン酸銀、ネオデカン酸銀などが挙げられる。なかでも、有機酸銀であるシュウ酸銀、酢酸銀、プロピオン酸銀、乳酸銀、クエン酸銀、ネオデカン酸銀が好ましく、シュウ酸銀が特に好ましい。これら銀化合物は1種のみを単独で用いてもよいし、2種以上を併用してもよい。   Although there is no restriction | limiting in particular about the kind of silver compound, For example, silver nitrate, silver carbonate, silver oxalate, silver acetate, silver propionate, silver lactate, silver citrate, silver neodecanoate etc. are mentioned. Among them, silver oxalate, silver acetate, silver propionate, silver lactate, silver citrate and silver neodecanoate which are organic acid silver are preferable, and silver oxalate is particularly preferable. These silver compounds may be used alone or in combination of two or more.

触媒成分含有溶液には、銀のほかに一般に反応促進剤として用いられる成分が含有されてもよい。反応促進剤の代表例としては、アルカリ金属、具体的にはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられる。アルカリ金属のほかには、アルカリ土類金属、レニウム、タングステン、タリウム、クロム、モリブデンおよび硫黄などを挙げることができる。これらは1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。これらのうち、反応促進剤としてはセシウムが好適に用いられる。   In addition to silver, the catalyst component-containing solution may contain components generally used as a reaction accelerator. Representative examples of reaction accelerators include alkali metals, specifically lithium, sodium, potassium, rubidium and cesium. In addition to alkali metals, alkaline earth metals, rhenium, tungsten, thallium, chromium, molybdenum, sulfur, and the like can be given. These may be used alone or in combination of two or more. Of these, cesium is preferably used as the reaction accelerator.

反応促進剤の原料としては、硝酸塩、炭酸塩、シュウ酸塩、ハロゲン化物、酢酸塩、硫酸塩などが挙げられる。   Examples of the raw material for the reaction accelerator include nitrates, carbonates, oxalates, halides, acetates, sulfates and the like.

錯化剤としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、プロピレンジアミン、ピリジン、メチルアミン、ジエチレントリアミンなどが挙げられる。これらは1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。   Examples of the complexing agent include monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, propylenediamine, pyridine, methylamine, diethylenetriamine and the like. These may be used alone or in combination of two or more.

本発明の触媒成分含有溶液においては、水は必ずしも含有していなくても本発明の目的を達成することは可能であるが、水を含有しているのが好ましい。水を含まない触媒成分含有溶液の場合、溶剤として有機溶媒が用いられることがあるが、有機溶媒は通常高価であり、引火性が高いものが多く、製造工程においてできるだけ少なくすることが望ましい。   The catalyst component-containing solution of the present invention can achieve the object of the present invention even if it does not necessarily contain water, but preferably contains water. In the case of a catalyst component-containing solution that does not contain water, an organic solvent may be used as the solvent. However, the organic solvent is usually expensive and has a high flammability, and it is desirable to reduce it as much as possible in the manufacturing process.

触媒成分含有溶液を担体に含浸する方法については特に限定は無く、従来公知の知見が適宜採用されうる。例えば、触媒成分含有溶液中に担体を浸漬する方法や該溶液を担体に噴霧する方法などが採用できるが、銀や反応促進剤などの触媒成分を担体上に可能な限り均一に担持できる含浸方法を選択することが好ましい。なお、触媒成分含有溶液を担体に含浸する際においては、担体を予め蒸留水やイオン交換水を用いて任意の回数、煮沸洗浄し、乾燥させておいてもよい。   The method for impregnating the support with the catalyst component-containing solution is not particularly limited, and conventionally known knowledge can be appropriately employed. For example, a method of immersing the support in a catalyst component-containing solution or a method of spraying the solution onto the support can be employed, but an impregnation method capable of supporting catalyst components such as silver and reaction accelerators on the support as uniformly as possible. Is preferably selected. When impregnating the support with the catalyst component-containing solution, the support may be previously boiled and washed any number of times using distilled water or ion-exchanged water and dried.

触媒成分含有溶液を担体に含浸する際に用いる含浸装置については特に制限はなく、担体に触媒成分含有溶液を含浸できる装置であればよい。例えば、ダブルコーン型の混合装置や転動造粒機、ロッキングミキサーなどを用いることができる。   There is no particular limitation on the impregnation apparatus used when impregnating the catalyst component-containing solution on the support, and any apparatus that can impregnate the support with the catalyst component-containing solution may be used. For example, a double cone type mixing device, a rolling granulator, a rocking mixer, or the like can be used.

含浸に際しては、空気、酸素、窒素または水素などの流体を含浸容器内に吹き込みながら含浸することもできるし、含浸容器内を減圧しながら含浸を行っても良い。含浸は加熱しながら行うこともできる。   In the impregnation, the impregnation can be performed while blowing a fluid such as air, oxygen, nitrogen or hydrogen into the impregnation container, or the impregnation container may be impregnated while the pressure is reduced. Impregnation can also be performed while heating.

触媒成分含有溶液の含浸は複数回に分けて行うこともできる。含浸を複数回に分けて行う場合、それぞれの含浸時には異なる成分を含む溶液を含浸してもよいし、同一の成分を含む溶液を含浸してもよい。   The impregnation with the catalyst component-containing solution can be performed in multiple steps. When impregnation is performed in a plurality of times, a solution containing different components may be impregnated at the time of each impregnation, or a solution containing the same components may be impregnated.

本発明の触媒前駆体は、触媒成分含有溶液を含浸して得られた触媒前駆体中には銀が含有されているが、触媒前駆体中の総銀のうち、30%以上が水不溶性の銀であることを特徴とする。該前駆体中の水不要性の銀が30%未満であると、焼成して得られた触媒の性能が低くなり好ましくない。   The catalyst precursor of the present invention contains silver in the catalyst precursor obtained by impregnating the catalyst component-containing solution, but 30% or more of the total silver in the catalyst precursor is water-insoluble. It is characterized by being silver. If the water-free silver in the precursor is less than 30%, the performance of the catalyst obtained by calcination is undesirably low.

触媒前駆体中の水不溶性銀量を制御する方法については、触媒成分含有溶液を担体に含浸する際の含浸温度、含浸時間、含浸容器内の圧力、含浸時の雰囲気といった含浸条件や、触媒成分含有溶液を調製する際に使用する錯化剤の種類または量によって制御することができる。   Regarding the method for controlling the amount of water-insoluble silver in the catalyst precursor, the impregnation conditions such as the impregnation temperature, impregnation time, pressure in the impregnation vessel, atmosphere during impregnation when impregnating the support with the catalyst component-containing solution, catalyst components It can control by the kind or quantity of the complexing agent used when preparing a containing solution.

含浸時の温度が高いほど、また、含浸時間が長いほど、更には含浸容器内を減圧するほど触媒前駆体中の水不溶性銀量は増加する傾向があり、前記した含浸条件や錯化剤の種類および/または量を適宜組み合わせることもできる。   The higher the temperature during impregnation, the longer the impregnation time, and the more the pressure in the impregnation vessel is reduced, the more the amount of water-insoluble silver in the catalyst precursor tends to increase. The types and / or amounts can be appropriately combined.

触媒前駆体中の総銀量に対する水不溶性銀量を30%以上に処理する場合の含浸温度(熱電対を触媒層に差し込み測定される、いわゆる含浸時の触媒層温度)は、含浸時間、含浸装置の伝熱、触媒成分含有溶液中の銀量、担体投入量、雰囲気ガス種類および錯化剤の種類、量等の影響を受けるため一概には言えないが、銀の還元がおこる温度であればよく、好ましくは100℃を超える温度、より好ましくは110℃〜250℃、更に好ましくは120℃〜200℃である。   The impregnation temperature (the so-called catalyst layer temperature at the time of impregnation measured by inserting a thermocouple into the catalyst layer) in the case of treating the amount of water-insoluble silver with respect to the total silver amount in the catalyst precursor to 30% or more is impregnation time, impregnation It is not possible to say unconditionally because it is affected by the heat transfer of the equipment, the amount of silver in the catalyst component-containing solution, the amount of support, the type of atmospheric gas and the type and amount of complexing agent. The temperature is preferably over 100 ° C, more preferably 110 ° C to 250 ° C, and still more preferably 120 ° C to 200 ° C.

触媒前駆体中の総銀量に対する水不溶性銀量を30%以上に処理する場合の含浸時間は、含浸温度、含浸装置の伝熱、触媒成分含有溶液中の銀量、雰囲気ガス種類および錯化剤の種類、量等の影響を受けるため一概には言えないが、前記の含浸温度にて5分以上保持することが好ましく、より好ましくは10分以上、更に好ましくは10〜60分保持することである。   The impregnation time when the amount of water-insoluble silver relative to the total amount of silver in the catalyst precursor is processed to 30% or more is the impregnation temperature, the heat transfer of the impregnation apparatus, the amount of silver in the catalyst component-containing solution, the type of atmosphere gas, and complex Since it is influenced by the type, amount, etc. of the agent, it cannot be generally stated, but it is preferable to hold at the above impregnation temperature for 5 minutes or more, more preferably 10 minutes or more, and further preferably 10 to 60 minutes. It is.

含浸後に不溶性銀量が30%未満の状態で触媒を取り出し、さらに賦活化のための加熱、濃縮、乾燥等の処理を施して不溶性銀量の割合が30%を超えても本願の発明の効果は得られない。   Even if the catalyst is taken out in the state where the amount of insoluble silver is less than 30% after impregnation, and further subjected to treatment such as heating, concentration, and drying for activation, the effect of the present invention can be achieved even if the proportion of the amount of insoluble silver exceeds 30%. Cannot be obtained.

本発明において、触媒前駆体中の総銀量に対する水不溶性銀量の割合が30%以上であるとは、触媒前駆体に含有される総銀のうち、水に不溶性の銀が30%以上存在することを意味し、以下の式1にて算出される。   In the present invention, the ratio of the amount of water-insoluble silver to the total amount of silver in the catalyst precursor is 30% or more means that 30% or more of water-insoluble silver exists in the total silver contained in the catalyst precursor. It is calculated by the following formula 1.

触媒前駆体中の水不溶性銀量の割合(%)=(触媒前駆体中の水不溶性銀量(質量%)/触媒前駆体中の総銀量(質量%))×100 ・・・(式1)
触媒前駆体中の総銀量に対する水不溶性銀量の割合は30%以上であれば所期の目的を達成することができるが、好ましくは40%以上、より好ましくは50〜95%、更に好ましくは60〜90%である。触媒前駆体中の総銀量に対する水不溶性銀量の割合が30%未満だと、焼成後に得られる酸化エチレン製造用触媒の触媒性能が低くなる傾向にある。
Ratio (%) of water-insoluble silver amount in catalyst precursor = (water-insoluble silver amount (mass%) in catalyst precursor / total silver amount (mass%) in catalyst precursor) × 100 (formula 1)
If the ratio of the amount of water-insoluble silver to the total amount of silver in the catalyst precursor is 30% or more, the intended purpose can be achieved, but preferably 40% or more, more preferably 50 to 95%, still more preferably. Is 60-90%. When the ratio of the amount of water-insoluble silver to the total amount of silver in the catalyst precursor is less than 30%, the catalyst performance of the ethylene oxide production catalyst obtained after calcination tends to be low.

触媒前駆体中の水不溶性の銀は、還元された金属銀であると考えられることから、本発明における触媒前駆体中の総銀量に対する水不溶性銀量の割合とは、換言すれば、触媒前駆体に含有する総銀量に対する金属銀の割合すなわち、銀の還元度であるという解釈もできる。   Since the water-insoluble silver in the catalyst precursor is considered to be reduced metallic silver, the ratio of the water-insoluble silver amount to the total silver amount in the catalyst precursor in the present invention is, in other words, the catalyst. It can also be interpreted that the ratio of metallic silver to the total amount of silver contained in the precursor, that is, the degree of reduction of silver.

触媒前駆体中の水不溶性銀は、触媒前駆体にイオン交換水を流通させることで洗浄し、水溶性の銀を触媒前駆体から除去した後も触媒前駆体に残存している銀である。   The water-insoluble silver in the catalyst precursor is silver remaining in the catalyst precursor even after washing with ion exchange water flowing through the catalyst precursor and removing water-soluble silver from the catalyst precursor.

触媒前駆体のイオン交換水での洗浄は、洗浄液に銀が検出されなくなるまで行われる。洗浄後の液を定期的にサンプリングし、サンプリング液に塩化ナトリウムを添加して白濁の有無を目視にて確認する。液の白濁は塩化銀が析出を意味し、洗浄液中に銀イオンが含まれることになる。洗浄はサンプリング液が白濁しなくなるまで行われ、白濁しなくなることで触媒前駆体中に含まれる水溶性銀が除去されたことになる。   The catalyst precursor is washed with ion-exchanged water until no silver is detected in the washing solution. The liquid after washing is sampled periodically, sodium chloride is added to the sampling liquid, and the presence or absence of cloudiness is visually confirmed. The cloudiness of the solution means that silver chloride is precipitated, and silver ions are contained in the cleaning solution. The washing is performed until the sampling solution does not become cloudy, and the water-soluble silver contained in the catalyst precursor has been removed.

触媒前駆体中の水不溶性銀量の測定する方法は、洗浄後の触媒前駆体に含まれる水不溶性銀を濃硝酸にて溶解し、溶液中に含まれる銀を0.1mol/lのNaCl溶液にて滴定し定量することができる。滴定装置としては京都電子製自動滴定装置(AT−310J)を使用することができる。   The method for measuring the amount of water-insoluble silver in the catalyst precursor is obtained by dissolving the water-insoluble silver contained in the washed catalyst precursor with concentrated nitric acid, and adding 0.1 mol / l NaCl solution to the silver contained in the solution. Titration can be carried out at As a titration apparatus, an automatic titration apparatus (AT-310J) manufactured by Kyoto Electronics can be used.

触媒前駆体中の総銀量は、前駆体焼成後の触媒中の総銀量である。触媒前駆体中の総銀量を測定する方法は水不溶性銀量の測定と同様の方法にて測定することができる。なお、触媒前駆体中の総銀量および触媒前駆体中の水不溶性銀量を測定する方法については実施例にて詳述する。   The total silver amount in the catalyst precursor is the total silver amount in the catalyst after the precursor firing. The method for measuring the total amount of silver in the catalyst precursor can be measured by the same method as the measurement of the amount of water-insoluble silver. The method for measuring the total amount of silver in the catalyst precursor and the amount of water-insoluble silver in the catalyst precursor will be described in detail in Examples.

触媒前駆体中の総銀量に対する水不溶性銀量が30%以上になるように調整された触媒前駆体は、焼成工程に移される。すなわち、本発明の触媒前駆体とは、前記含浸が終了した時点の、焼成前の状態のものをいう。 [触媒前駆体の焼成]
前記触媒前駆体を焼成することで、本発明の最終目的物のひとつである酸化エチレン製造用触媒が完成する。すなわち、焼成は、得られた触媒前駆体から、エチレンの酸化反応に供するための酸化エチレン製造用触媒を製造する工程であり、実質的に触媒製造工程における最終段階である。
The catalyst precursor adjusted so that the amount of water-insoluble silver relative to the total amount of silver in the catalyst precursor is 30% or more is transferred to the calcination step. That is, the catalyst precursor of the present invention refers to a state before firing at the time when the impregnation is completed. [Baking of catalyst precursor]
By firing the catalyst precursor, a catalyst for producing ethylene oxide, which is one of the final objects of the present invention, is completed. That is, calcination is a process for producing an ethylene oxide production catalyst for use in an ethylene oxidation reaction from the obtained catalyst precursor, and is substantially the final stage in the catalyst production process.

触媒前駆体の焼成条件については、本発明の触媒前駆対中の総銀量に対する水不溶性銀量が30%以上の触媒前駆体を用いる以外は特に制限はなく、酸化エチレン製造用触媒を製造する際に通常採用されている焼成条件で行うことができる。   The firing conditions of the catalyst precursor are not particularly limited except that a catalyst precursor having a water-insoluble silver amount of 30% or more based on the total silver amount in the catalyst precursor pair of the present invention is used, and a catalyst for producing ethylene oxide is produced. In this case, it can be carried out under the firing conditions usually employed.

本発明において、焼成は1段階または2段階以上で行ってもよい。中でも好ましくは、1段階目を空気雰囲気中で150〜250℃で0.1〜10時間、2段階目を空気雰囲気中で250〜450℃で0.1〜10時間処理したものが好適である。さらに好ましくは、3段階目を窒素、ヘリウム、アルゴンなどから選択される不活性ガス雰囲気中で450〜700℃で0.1〜10時間で処理したものが好ましい。   In the present invention, the firing may be performed in one step or two or more steps. Among them, it is preferable that the first stage is treated at 150 to 250 ° C. for 0.1 to 10 hours in an air atmosphere and the second stage is treated at 250 to 450 ° C. for 0.1 to 10 hours in an air atmosphere. . More preferably, the third stage is treated at 450 to 700 ° C. for 0.1 to 10 hours in an inert gas atmosphere selected from nitrogen, helium, argon and the like.

また、焼成温度としては、700℃以下、好ましくは650℃以下、より好ましくは600℃以下が好ましく、焼成時間は特に制限はないが、一般的には1〜10時間であればよく、5時間以内でも所望の触媒性能を得ることができる。   The firing temperature is 700 ° C. or lower, preferably 650 ° C. or lower, more preferably 600 ° C. or lower. The firing time is not particularly limited, but generally 1 to 10 hours may be sufficient, and 5 hours. Within the range, the desired catalyst performance can be obtained.

焼成時に流通させるガスとしては、窒素、ヘリウム、アルゴンなどから選択される不活性ガス雰囲気や、水蒸気 空気など分子状酸素を含有するガスを使用することもできるが、500℃を超える高温域で分子状酸素含有ガスを触媒に接触させると触媒性能が低下する傾向があるため、分子状酸素含有ガスを焼成に用いる場合は400℃以下の温度であることが望ましく、好ましくは200℃以下の温度域で使用するべきである。また、高温域での雰囲気には可能な限り酸素は含有していないガスを使用することが望ましい。   As the gas to be circulated at the time of firing, an inert gas atmosphere selected from nitrogen, helium, argon and the like, and gas containing molecular oxygen such as water vapor can be used. When the molecular oxygen-containing gas is used for calcination, the temperature is desirably 400 ° C. or lower, preferably 200 ° C. or lower, because the catalytic performance tends to decrease when the gaseous oxygen-containing gas is brought into contact with the catalyst. Should be used in. Further, it is desirable to use a gas that does not contain oxygen as much as possible in the atmosphere in the high temperature range.

触媒前駆体を焼成する装置については、特に制限はなく、上述した焼成温度、焼成時間または雰囲気などの焼成条件を選択できる装置であれば一般的な焼成装置を用いることができる。例えば、箱型焼成炉やトンネル型焼成炉などが使用できる。
[酸化エチレン製造用触媒]
本発明の酸化エチレン製造用触媒は、触媒前駆対中の水不溶性銀量が30%以上になるように調製された触媒前駆体を焼成処理することで得られる。
The apparatus for calcining the catalyst precursor is not particularly limited, and a general calcining apparatus can be used as long as it can select calcining conditions such as the calcining temperature, the calcining time, or the atmosphere described above. For example, a box-type firing furnace or a tunnel-type firing furnace can be used.
[Catalyst for ethylene oxide production]
The catalyst for producing ethylene oxide of the present invention can be obtained by calcining a catalyst precursor prepared so that the amount of water-insoluble silver in the catalyst precursor pair is 30% or more.

本発明の酸化エチレン製造用触媒としては、触媒成分としての銀とセシウムなどの反応促進剤とを担持したものが好ましい。銀および反応促進剤の担持量については特に制限はなく、酸化エチレンの製造に有効な量で担持すればよい。例えば、銀の場合、その担持量は酸化エチレン製造用触媒の質量基準で、好ましくは1〜30質量%であり、より好ましくは5〜20質量%であり、さらに好ましくは8〜15質量%である。また反応促進剤の担持量は酸化エチレン製造用触媒の質量基準で、通常0.001〜2質量%であり、好ましくは0.01〜1質量%であり、より好ましくは0.1〜0.7質量%である。   As the catalyst for producing ethylene oxide of the present invention, a catalyst carrying silver as a catalyst component and a reaction accelerator such as cesium is preferable. There is no restriction | limiting in particular about the load of silver and reaction accelerator, What is necessary is just to carry | support with the quantity effective for manufacture of ethylene oxide. For example, in the case of silver, the supported amount is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, and still more preferably 8 to 15% by mass, based on the mass of the ethylene oxide production catalyst. is there. The supported amount of the reaction accelerator is usually 0.001 to 2% by mass, preferably 0.01 to 1% by mass, and more preferably 0.1 to 0. 0% by mass based on the mass of the ethylene oxide production catalyst. 7% by mass.

より詳細には、本発明の作用効果をより一層発揮させるという観点から、触媒成分としてアルカリ金属が用いられる場合のアルカリ金属の担持量(2種以上のアルカリ金属が用いられる場合は合計担持量)は、酸化エチレン製造用触媒の質量基準で、好ましくは0.001〜2質量%であり、より好ましくは0.01〜1質量%であり、さらに好ましくは0.02〜0.5質量%である。さらに、反応促進剤としてレニウムが用いられる場合のレニウムの担持量は、酸化エチレン製造用触媒の質量基準で、好ましくは0.001〜1質量%であり、より好ましくは0.005〜0.5質量%であり、さらに好ましくは0.01〜0.3質量%である。   More specifically, from the viewpoint of further exerting the effects of the present invention, the amount of alkali metal supported when an alkali metal is used as the catalyst component (the total amount supported when two or more alkali metals are used). Is preferably from 0.001 to 2 mass%, more preferably from 0.01 to 1 mass%, still more preferably from 0.02 to 0.5 mass%, based on the mass of the ethylene oxide production catalyst. is there. Further, the amount of rhenium supported when rhenium is used as the reaction accelerator is preferably 0.001 to 1% by mass, more preferably 0.005 to 0.5, based on the mass of the ethylene oxide production catalyst. It is mass%, More preferably, it is 0.01-0.3 mass%.

以下、本発明の触媒前駆体および酸化エチレン製造用触媒を製造する工程をまとめると、触媒成分含有溶液を調製する工程、担体に触媒成分含有溶液を含浸して触媒前駆体を得る工程、触媒前駆体を焼成して酸化エチレン製造用触媒を得る工程に大別することができる。   Hereinafter, the steps of producing the catalyst precursor of the present invention and the catalyst for producing ethylene oxide are summarized: a step of preparing a catalyst component-containing solution, a step of impregnating a catalyst component-containing solution on a carrier to obtain a catalyst precursor, a catalyst precursor It can be divided roughly into the process of baking a body and obtaining the catalyst for ethylene oxide manufacture.

本発明の触媒前駆体の特徴は、含浸工程終了後の触媒前駆体の総銀量に対する水不溶性銀量が30%以上であることであり、本発明の酸化エチレン製造用触媒の特徴は、総銀量に対する水不溶性銀量が30%以上である触媒前駆体を焼成して得られることである。
[酸化エチレンの製造方法]
本発明における酸化エチレンの製造方法は、触媒として本発明の酸化エチレン製造用触媒を使用する点を除けば、従来から一般に用いられている方法によって行うことができる。
The feature of the catalyst precursor of the present invention is that the amount of water-insoluble silver relative to the total amount of silver in the catalyst precursor after the impregnation step is 30% or more. The feature of the catalyst for producing ethylene oxide of the present invention is that It is obtained by calcining a catalyst precursor having a water-insoluble silver amount of 30% or more with respect to the silver amount.
[Method for producing ethylene oxide]
The method for producing ethylene oxide in the present invention can be carried out by a conventionally used method except that the catalyst for producing ethylene oxide of the present invention is used as a catalyst.

例えば、工業的製造規模における一般的な条件、すなわち反応温度150〜300℃、好ましくは180〜280℃、反応圧力2〜40kg/cmG、好ましくは10〜30kg/cmG、空間速度1,000〜30,000hr−1(STP)、好ましくは3,000〜8,000hr−1(STP)が採用される。触媒に接触させる原料ガスとしては、エチレン0.5〜40容量%、酸素3〜10容量%、炭酸ガス1〜20容量%、残部の窒素、アルゴン、水蒸気などの不活性ガスおよびメタン、エタンなどの低級炭化水素類からなり、さらに反応抑制剤としての二塩化エチレン、塩化ジフェニルなどのハロゲン化物を0.1〜10容量ppm含有するものが挙げられる。本発明の酸化エチレン製造方法において使用される分子状酸素含有ガスとしては空気、酸素および富化空気が挙げられる。 For example, general conditions on an industrial production scale, that is, reaction temperature 150 to 300 ° C., preferably 180 to 280 ° C., reaction pressure 2 to 40 kg / cm 2 G, preferably 10 to 30 kg / cm 2 G, space velocity 1 3,000 to 30,000 hr −1 (STP), preferably 3,000 to 8,000 hr −1 (STP) is employed. Examples of the raw material gas to be brought into contact with the catalyst include 0.5 to 40% by volume of ethylene, 3 to 10% by volume of oxygen, 1 to 20% by volume of carbon dioxide gas, the remaining inert gas such as nitrogen, argon and water vapor, and methane and ethane. And those containing 0.1 to 10 ppm by volume of halides such as ethylene dichloride and diphenyl chloride as reaction inhibitors. Examples of the molecular oxygen-containing gas used in the ethylene oxide production method of the present invention include air, oxygen, and enriched air.

以下、実施例および比較例を挙げて本発明を更に詳細に説明する。
また、本実施例及び比較例において、各種パラメーターの測定は以下の手法及び条件にて行われた。なお、以下の説明において「部」は重量部を意味する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
In the examples and comparative examples, various parameters were measured by the following methods and conditions. In the following description, “parts” means parts by weight.

<触媒前駆体中総銀量測定>
触媒前駆体を焼成して得られる触媒に含まれる銀を定量すれば触媒前駆体中総銀量が測定される。測定方法は以下(a)〜(g)に示す通りである。
(a)焼成して得られた触媒量約10gを200mlコニカルビーカーに秤量する。
(b)約30mlの濃硝酸を加えて約5分間振とうする。
(c)イオン交換水を加え、液量を約100mlにし、約30分間煮沸する。
(d)触媒と煮沸液を分離する。
(e)分離した触媒に100mlのイオン交換水を加え、再度約30分間煮沸後、触媒と煮沸液を分離する。
(f)(e)を再度行い、煮沸液を全て回収する。(回収した煮沸液には触媒前駆体中の銀の全量が含まれる。煮沸液の銀量=触媒の総銀量)
(g)回収した煮沸液を任意量採取し、京都電子製自動滴定装置(AT−310J)にて銀を定量し、触媒中の総銀量を算出する。なお、滴定液は0.1mol/NaCl溶液を用いる。
<触媒前駆体中水不溶性銀量測定>
触媒前駆体中水不溶性銀量は、触媒前駆体を焼成前に洗浄した後、触媒中に残存する銀を定量することにより測定できる。
<Measurement of total silver in catalyst precursor>
If silver contained in the catalyst obtained by calcining the catalyst precursor is quantified, the total amount of silver in the catalyst precursor can be measured. The measuring method is as shown in (a) to (g) below.
(A) About 10 g of the catalyst obtained by calcination is weighed into a 200 ml conical beaker.
(B) Add about 30 ml of concentrated nitric acid and shake for about 5 minutes.
(C) Add ion-exchanged water to make the liquid volume about 100 ml and boil for about 30 minutes.
(D) Separate the catalyst and the boiling liquid.
(E) Add 100 ml of ion-exchanged water to the separated catalyst, boil again for about 30 minutes, and then separate the catalyst and boiling liquid.
(F) Perform (e) again and collect all boiling liquid. (The recovered boiling liquid contains the total amount of silver in the catalyst precursor. The amount of silver in the boiling liquid = the total amount of silver in the catalyst)
(G) An arbitrary amount of the recovered boiling solution is collected, silver is quantified with an automatic titrator (AT-310J) manufactured by Kyoto Electronics, and the total amount of silver in the catalyst is calculated. The titrant is a 0.1 mol / NaCl solution.
<Measurement of amount of water-insoluble silver in catalyst precursor>
The amount of water-insoluble silver in the catalyst precursor can be measured by quantifying the silver remaining in the catalyst after washing the catalyst precursor before calcination.

(触媒前駆体の洗浄処理)
含浸終了後の触媒前駆体を約30g取り、精秤しておく。内径25mm、長さ200mmのガラス製チューブに精秤した触媒前駆体を静かに充填し、チューブ下部からイオン交換水を50ml/min.の流量で流通し、チューブ上部から流出させる。10分ごとにチューブ上部から流出した液を一部サンプリングし、サンプリング液に食塩を添加して塩化銀の生成によるサンプリング液の白濁の有無を確認する。サンプリングが白濁した場合、流出液中に銀イオンが存在することを意味し、つまりは触媒前駆体中に水溶性の銀が残存している(完全に水溶性の銀が除去されていない)ことを意味する。
(Catalyst precursor cleaning process)
About 30 g of the catalyst precursor after impregnation is taken and weighed accurately. A glass tube having an inner diameter of 25 mm and a length of 200 mm is gently filled with a precisely weighed catalyst precursor, and ion-exchanged water is supplied from the bottom of the tube at 50 ml / min. And flow out from the top of the tube. A part of the liquid flowing out from the upper part of the tube is sampled every 10 minutes, and sodium chloride is added to the sampling liquid to confirm the presence or absence of cloudiness of the sampling liquid due to silver chloride formation. When sampling is clouded, it means that silver ions are present in the effluent, that is, water-soluble silver remains in the catalyst precursor (the water-soluble silver is not completely removed). Means.

サンプリング液から白濁が見られなくなったのを確認してからも30分間イオン交換水の流通を続け、触媒前駆体より水溶性の銀を完全に除去する(このとき、触媒前駆対中には水不溶性の銀のみが残っている)。   Even after confirming that cloudiness is no longer observed from the sampling solution, the flow of ion-exchanged water is continued for 30 minutes to completely remove water-soluble silver from the catalyst precursor (at this time, water in the catalyst precursor pair is not water. Only insoluble silver remains).

洗浄が終わったら、触媒前駆体をガラス製チューブより取り出し、焼成を行う。
その後、<触媒前駆体中総銀量測定>と同様にして、銀の溶解および自動滴定装置により銀量測定を行い、触媒前駆体中水不溶性銀量を定量する。
<触媒前駆体中の総銀量に対する水不溶性銀の割合>
式1を用い、触媒前駆体中総銀量および触媒前駆対中水不溶性銀量から、触媒前駆体中の総銀量に対する水不溶性銀量の割合を算出する。
<銀担持量>
銀担持量は触媒前駆対中総銀量から以下の式2を用いて算出する。
When the washing is finished, the catalyst precursor is taken out from the glass tube and fired.
Thereafter, in the same manner as in <Measurement of total silver in catalyst precursor>, the amount of silver in water in the catalyst precursor is quantified by measuring the amount of silver using a dissolution and automatic titration apparatus.
<Ratio of water-insoluble silver to the total amount of silver in the catalyst precursor>
Using Equation 1, the ratio of the amount of water-insoluble silver to the total amount of silver in the catalyst precursor is calculated from the total amount of silver in the catalyst precursor and the amount of water-insoluble silver in the catalyst precursor.
<Amount of silver supported>
The amount of silver supported is calculated from the total amount of silver in the catalyst precursor using the following formula 2.

銀担持率(質量%)=(触媒前駆体中総銀量(質量)/触媒量(質量))×100 ・・・(式2)
(実施例1)
Silver loading ratio (mass%) = (total silver amount (mass) in catalyst precursor / catalyst amount (mass)) × 100 (Formula 2)
Example 1

表面積1.1m2/g、吸水率40%のアルミナ担体A(外径8mm、内径4mm、長さ8mm)1リットルにイオン交換水1リットルを加え、常圧下で30分間煮沸洗浄した後、洗浄液を除去し、イオン交換水で洗浄した。さらに、この煮沸洗浄を2回繰り返した後、120℃で3時間乾燥した。上記処理後の担体100質量部を100℃で1時間脱気した。以下、実施例1から12および比較例1〜4には同じ担体Aを使用した。 After adding 1 liter of ion-exchanged water to 1 liter of alumina carrier A (outer diameter 8 mm, inner diameter 4 mm, length 8 mm) having a surface area of 1.1 m2 / g and a water absorption of 40%, boiled and washed under normal pressure for 30 minutes, Removed and washed with ion exchanged water. Furthermore, after this boiling washing was repeated twice, it was dried at 120 ° C. for 3 hours. 100 parts by mass of the carrier after the above treatment was deaerated at 100 ° C. for 1 hour. Hereinafter, the same carrier A was used in Examples 1 to 12 and Comparative Examples 1 to 4.

一方、シュウ酸銀28質量部、硝酸セシウム0.18質量部にエチレンジアミン11.7質量部、水27.0質量部を加えて溶解させ、触媒成分含有溶液を調製した。   On the other hand, 11.7 parts by mass of ethylenediamine and 27.0 parts by mass of water were dissolved in 28 parts by mass of silver oxalate and 0.18 parts by mass of cesium nitrate to prepare a catalyst component-containing solution.

上記処理後の担体100質量部を内容量1000mlのナスフラスコに入れ、次いで上記で調製した触媒成分含有溶液を加えた。担体および触媒成分含有溶液を添加したナスフラスコをロータリーエバポレーターにセットし、含浸温度125℃にて15分間回転、触媒前駆体(A−1)を得た。触媒前駆体(A−1)中の総銀量に対する水不溶性銀の割合は35.0%であった。その後、熱風乾燥機を用い、空気気流中400℃で20分加熱処理を行った。さらにこれを窒素雰囲気中にて550℃で3時間加熱処理し、触媒(B−1)を得た。触媒(B−1)の銀担持率は14.6質量%であった。   100 parts by mass of the carrier after the above treatment was placed in an eggplant flask having an internal volume of 1000 ml, and then the catalyst component-containing solution prepared above was added. The eggplant flask to which the carrier and the catalyst component-containing solution were added was set on a rotary evaporator and rotated at an impregnation temperature of 125 ° C. for 15 minutes to obtain a catalyst precursor (A-1). The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-1) was 35.0%. Then, heat processing was performed for 20 minutes at 400 degreeC in the airflow using the hot air dryer. Furthermore, this was heat-processed in nitrogen atmosphere at 550 degreeC for 3 hours, and the catalyst (B-1) was obtained. The silver supporting rate of the catalyst (B-1) was 14.6% by mass.

(実施例2)
125℃での保持時間10分のうち残り5分間を0.05MPaで減圧すること以外は実施例1と同様の条件にて調製を行い、触媒前駆体(A−2)ならびに触媒(B−2)を得た。触媒前駆体(A−2)中の総銀量に対する水不溶性銀の割合は51.3%、触媒(B−2)の銀担持量は14.5質量%であった。
(Example 2)
A catalyst precursor (A-2) and a catalyst (B-2) were prepared under the same conditions as in Example 1 except that the remaining 5 minutes of the holding time at 125 ° C. was reduced to 0.05 MPa for 10 minutes. ) The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-2) was 51.3%, and the amount of silver supported on the catalyst (B-2) was 14.5% by mass.

(実施例3)
125℃での保持時間が20分、保持時間の残り5分間を0.05MPaで減圧すること以外は実施例1と同様の条件にて調製を行い、触媒前駆体(A−3)ならびに触媒(B−3)を得た。触媒前駆体(A−3)中の総銀量に対する水不溶性銀の割合は76.5%、触媒(B−3)の銀担持量は14.5質量%であった。
(Example 3)
The catalyst precursor (A-3) and catalyst (A) were prepared under the same conditions as in Example 1 except that the holding time at 125 ° C. was 20 minutes and the remaining 5 minutes of the holding time was reduced to 0.05 MPa. B-3) was obtained. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-3) was 76.5%, and the amount of silver supported on the catalyst (B-3) was 14.5% by mass.

(実施例4)
125℃での保持時間が40分、保持時間の残り5分間を0.05MPaで減圧すること以外は実施例1と同様の条件にて調製を行い、触媒前駆体(A−4)ならびに触媒(B−4)を得た。触媒前駆体(A−4)中の総銀量に対する水不溶性銀の割合は97.8%、触媒(B−4)の銀担持量は14.7質量%であった。
Example 4
The catalyst precursor (A-4) and the catalyst (A) were prepared under the same conditions as in Example 1 except that the holding time at 125 ° C. was 40 minutes and the remaining 5 minutes of the holding time was reduced to 0.05 MPa. B-4) was obtained. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-4) was 97.8%, and the amount of silver supported on the catalyst (B-4) was 14.7% by mass.

(実施例5)
含浸温度が140℃であること以外は実施例1と同様の条件にて調製を行い、触媒前駆体(A−5)ならびに触媒(B−5)を得た。触媒前駆体(A−5)中の総銀量に対する水不溶性銀の割合は47.8%、触媒(B−5)の銀担持量は14.7質量%であった。
(Example 5)
The catalyst precursor (A-5) and the catalyst (B-5) were obtained under the same conditions as in Example 1 except that the impregnation temperature was 140 ° C. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-5) was 47.8%, and the amount of silver supported on the catalyst (B-5) was 14.7% by mass.

(実施例6)
含浸温度が140℃であること以外は実施例2と同様の条件にて調製を行い、触媒前駆体(A−6)ならびに触媒(B−6)を得た。触媒前駆体(A−6)中の総銀量に対する水不溶性銀の割合は66.3%、触媒(B−6)の銀担持量は14.6質量%であった。
(Example 6)
The catalyst precursor (A-6) and the catalyst (B-6) were obtained under the same conditions as in Example 2 except that the impregnation temperature was 140 ° C. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-6) was 66.3%, and the amount of silver supported on the catalyst (B-6) was 14.6% by mass.

(実施例7)
含浸温度が140℃であること以外は実施例3と同様の条件にて調製を行い、触媒前駆体(A−7)ならびに触媒(B−7)を得た。触媒前駆体(A−7)中の総銀量に対する水不溶性銀の割合は87.2%、触媒(B−7)の銀担持量は14.6質量%であった。
(Example 7)
The catalyst precursor (A-7) and the catalyst (B-7) were obtained under the same conditions as in Example 3 except that the impregnation temperature was 140 ° C. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-7) was 87.2%, and the amount of silver supported on the catalyst (B-7) was 14.6% by mass.

(実施例8)
含浸温度が140℃であること以外は実施例4と同様の条件にて調製を行い、触媒前駆体(A−8)ならびに触媒(B−8)を得た。触媒前駆体(A−8)中の総銀量に対する水不溶性銀の割合は98.1%、触媒(B−8)の銀担持量は14.5質量%であった。
(Example 8)
The catalyst precursor (A-8) and the catalyst (B-8) were obtained under the same conditions as in Example 4 except that the impregnation temperature was 140 ° C. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-8) was 98.1%, and the amount of silver supported on the catalyst (B-8) was 14.5% by mass.

(実施例9)
含浸温度が190℃であること以外は実施例1と同様の条件にて調製を行い、触媒前駆体(A−9)ならびに触媒(B−9)を得た。触媒前駆体(A−9)中の総銀量に対する水不溶性銀の割合は82.9%、触媒(B−9)の銀担持量は14.6質量%であった。
Example 9
The catalyst precursor (A-9) and the catalyst (B-9) were obtained under the same conditions as in Example 1 except that the impregnation temperature was 190 ° C. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-9) was 82.9%, and the amount of silver supported on the catalyst (B-9) was 14.6% by mass.

(実施例10)
含浸温度が190℃であること以外は実施例2と同様の条件にて調製を行い、触媒前駆体(A−10)ならびに触媒(B−10)を得た。触媒前駆体(A−10)中の総銀量に対する水不溶性銀の割合は92.6%、触媒(B−10)の銀担持量は14.6質量%であった。
(Example 10)
The catalyst precursor (A-10) and the catalyst (B-10) were obtained under the same conditions as in Example 2 except that the impregnation temperature was 190 ° C. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-10) was 92.6%, and the amount of silver supported on the catalyst (B-10) was 14.6% by mass.

(実施例11)
含浸温度が190℃であること以外は実施例3と同様の条件にて調製を行い、触媒前駆体(A−11)ならびに触媒(B−11)を得た。触媒前駆体(A−11)中の総銀量に対する水不溶性銀の割合は98.7%、触媒(B−11)の銀担持量は14.5質量%であった。
(Example 11)
The catalyst precursor (A-11) and the catalyst (B-11) were obtained under the same conditions as in Example 3 except that the impregnation temperature was 190 ° C. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-11) was 98.7%, and the amount of silver supported on the catalyst (B-11) was 14.5% by mass.

(実施例12)
含浸温度が190℃であること以外は実施例4と同様の条件にて調製を行い、触媒前駆体(A−12)ならびに触媒(B−12)を得た。触媒前駆体(A−12)中の総銀量に対する水不溶性銀の割合は99.5%、触媒(B−12)の銀担持量は14.5質量%であった。
(Example 12)
The catalyst precursor (A-12) and the catalyst (B-12) were obtained under the same conditions as in Example 4 except that the impregnation temperature was 190 ° C. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (A-12) was 99.5%, and the amount of silver supported on the catalyst (B-12) was 14.5% by mass.

<評価例>
実施例1〜12にて得られた触媒(B−1)〜(B−12)を、600〜850メッシュに篩い分け、それぞれ1.2gを内径3mm、管長600mmのステンレス鋼製の反応管に充填し、下記反応条件下にてエチレンの気相酸化反応をそれぞれ行った。
(エチレン気相酸化反応条件)
空間速度 :6000hr−1
反応圧力 :20kg/cm2
原料ガス :エチレン22容量%、酸素6.5容量%、二酸化炭素5.0容量%、
二塩化エチレン2ppm および 残余(メタン、窒素、アルゴン
およびエタン)
エチレン転化率が10%のときの反応温度および酸化エチレンの選択率を表1に示す。なお、酸化エチレン製造時の転化率および選択率は、それぞれ下記の式2および式3に従って算出した。
<Evaluation example>
The catalysts (B-1) to (B-12) obtained in Examples 1 to 12 were sieved to 600 to 850 mesh, and 1.2 g of each was put into a stainless steel reaction tube having an inner diameter of 3 mm and a tube length of 600 mm. Then, the gas phase oxidation reaction of ethylene was performed under the following reaction conditions.
(Ethylene gas phase oxidation reaction conditions)
Space velocity: 6000 hr-1
Reaction pressure: 20 kg / cm 2
Raw material gas: ethylene 22% by volume, oxygen 6.5% by volume, carbon dioxide 5.0% by volume,
2 ppm ethylene dichloride and the remainder (methane, nitrogen, argon and ethane)
Table 1 shows the reaction temperature and ethylene oxide selectivity when the ethylene conversion is 10%. The conversion rate and selectivity during ethylene oxide production were calculated according to the following formula 2 and formula 3, respectively.

転化率(%)=(反応したエチレンのモル数 / 原料ガス中のエチレンのモル数)×100 ・・・(式3) Conversion rate (%) = (number of moles of reacted ethylene / number of moles of ethylene in raw material gas) × 100 (Formula 3)

選択率(%)=(酸化エチレンに変化したエチレンのモル数 / 反応したエチレンのモル数) × 100 ・・・(式4)
実施例1〜12で触媒前駆体の水不溶性銀量は35〜99.5質量%であり、当該前駆体を焼成して得られた触媒の選択率は82.1〜82.6%であった。
Selectivity (%) = (number of moles of ethylene changed to ethylene oxide / number of moles of reacted ethylene) × 100 (Formula 4)
In Examples 1 to 12, the amount of water-insoluble silver in the catalyst precursor was 35 to 99.5% by mass, and the selectivity of the catalyst obtained by calcining the precursor was 82.1 to 82.6%. It was.

(比較例1)
含浸温度が60℃、保持時間が20分、保持時間の残り5分間を0.05MPaで減圧すること以外は実施例1と同様の条件にて調製を行い、触媒前駆体(a−1)ならびに触媒(b−1)を得た。触媒前駆体(a−1)中の総銀量に対する水不溶性銀の割合は0.05%、触媒(b−3)の銀担持量は14.8質量%であった。
(Comparative Example 1)
The catalyst precursor (a-1) and the catalyst precursor (a-1) were prepared under the same conditions as in Example 1 except that the impregnation temperature was 60 ° C., the retention time was 20 minutes, and the remaining 5 minutes of the retention time was reduced to 0.05 MPa. A catalyst (b-1) was obtained. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (a-1) was 0.05%, and the amount of silver supported on the catalyst (b-3) was 14.8% by mass.

(比較例2)
60℃での保持時間が40分であること以外は比較例1と同様の条件にて調製を行い、触媒前駆体(a−2)ならびに触媒(b−2)を得た。触媒前駆体(a−2)中の総銀量に対する水不溶性銀の割合は0.06%、触媒(b−2)の銀担持量は14.6質量%であった。
(Comparative Example 2)
The catalyst precursor (a-2) and the catalyst (b-2) were obtained under the same conditions as in Comparative Example 1 except that the retention time at 60 ° C. was 40 minutes. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (a-2) was 0.06%, and the amount of silver supported on the catalyst (b-2) was 14.6% by mass.

(比較例3)
含浸温度が90℃であること以外は比較例1と同様の条件にて調製を行い、触媒前駆体(a−3)ならびに触媒(b−3)を得た。触媒前駆体(a−3)中の総銀量に対する水不溶性銀の割合は15.0%、触媒(b−3)の銀担持量は14.7質量%であった。
(Comparative Example 3)
The catalyst precursor (a-3) and the catalyst (b-3) were obtained under the same conditions as in Comparative Example 1 except that the impregnation temperature was 90 ° C. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (a-3) was 15.0%, and the amount of silver supported on the catalyst (b-3) was 14.7% by mass.

(比較例4)
含浸温度が90℃であること以外は比較例2と同様の条件にて調製を行い、触媒前駆体(a−4)ならびに触媒(b−4)を得た。触媒前駆体(a−4)中の総銀量に対する水不溶性銀の割合は21%、触媒(b−4)の銀担持量は14.7質量%であった。
比較例1〜4の触媒(b−1)〜(b−4)について、実施例と同様の評価条件での、エチレン転化率が10%のときの反応温度および酸化エチレンの選択率を表2に示す。
比較例1〜4の触媒前駆体の水不溶性銀量は30%未満であり、当該前駆体を焼成して得られた触媒の選択率は81.3%〜81.8%であった。
(Comparative Example 4)
The catalyst precursor (a-4) and the catalyst (b-4) were obtained under the same conditions as in Comparative Example 2 except that the impregnation temperature was 90 ° C. The ratio of water-insoluble silver to the total amount of silver in the catalyst precursor (a-4) was 21%, and the amount of silver supported on the catalyst (b-4) was 14.7% by mass.
For the catalysts (b-1) to (b-4) of Comparative Examples 1 to 4, the reaction temperature and ethylene oxide selectivity when the ethylene conversion rate is 10% under the same evaluation conditions as in Examples are shown in Table 2. Shown in
The amount of water-insoluble silver in the catalyst precursors of Comparative Examples 1 to 4 was less than 30%, and the selectivity of the catalyst obtained by firing the precursor was 81.3% to 81.8%.

Figure 0005606255
Figure 0005606255

Figure 0005606255
Figure 0005606255

本発明は、高い生産性で酸化エチレンを製造することができるので、経済性の面から、その産業上の利用価値は極めて大きい。また、二酸化炭素の副生を低減できるので、地球温暖化対策に多大の貢献をなすものである。   Since the present invention can produce ethylene oxide with high productivity, its industrial utility value is extremely large from the economical aspect. In addition, since carbon dioxide by-products can be reduced, it greatly contributes to global warming countermeasures.

Claims (4)

アルミナを主成分とする担体に銀を担持した酸化エチレン製造用触媒の触媒前駆体であって、含浸時の触媒層温度である含浸温度を120℃〜200℃、前記の含浸温度にて10〜60分保持することによって、前記触媒前駆体中の総銀量に対する水不溶性銀量の割合が30%以上であることを特徴とする触媒前駆体。 A catalyst precursor of a catalyst for ethylene oxide production in which silver is supported on a carrier mainly composed of alumina, and an impregnation temperature which is a catalyst layer temperature at the time of impregnation is 120 ° C. to 200 ° C., 10 to 10 at the impregnation temperature. A catalyst precursor characterized in that the ratio of the amount of water-insoluble silver to the total amount of silver in the catalyst precursor is 30% or more by holding for 60 minutes . 前記含浸温度が125℃〜190℃、該含浸温度にて10〜40分保持することを特徴とする請求項1に記載の触媒前駆体。The catalyst precursor according to claim 1, wherein the impregnation temperature is 125 ° C to 190 ° C, and the impregnation temperature is maintained for 10 to 40 minutes. 請求項1または2に記載の触媒前駆体を焼成して得られる、酸化エチレン製造用触媒。 The catalyst for ethylene oxide manufacture obtained by baking the catalyst precursor of Claim 1 or 2 . 請求項に記載の酸化エチレン製造用触媒の存在下で、エチレンを分子状酸素含有ガスにより気相酸化することを特徴とする、酸化エチレンの製造方法。 A method for producing ethylene oxide, comprising subjecting ethylene to gas phase oxidation with a molecular oxygen-containing gas in the presence of the catalyst for producing ethylene oxide according to claim 3 .
JP2010221015A 2010-09-30 2010-09-30 Catalyst precursor, catalyst for producing ethylene oxide, and method for producing ethylene oxide Active JP5606255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221015A JP5606255B2 (en) 2010-09-30 2010-09-30 Catalyst precursor, catalyst for producing ethylene oxide, and method for producing ethylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221015A JP5606255B2 (en) 2010-09-30 2010-09-30 Catalyst precursor, catalyst for producing ethylene oxide, and method for producing ethylene oxide

Publications (2)

Publication Number Publication Date
JP2012075985A JP2012075985A (en) 2012-04-19
JP5606255B2 true JP5606255B2 (en) 2014-10-15

Family

ID=46236853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221015A Active JP5606255B2 (en) 2010-09-30 2010-09-30 Catalyst precursor, catalyst for producing ethylene oxide, and method for producing ethylene oxide

Country Status (1)

Country Link
JP (1) JP5606255B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201705868A (en) * 2015-07-01 2017-02-16 艾迪科股份有限公司 Supporting body, ethylene remover, and freshness keeping agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001429B2 (en) * 1998-02-20 2007-10-31 株式会社日本触媒 Silver catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide
JP5143610B2 (en) * 2008-03-31 2013-02-13 株式会社日本触媒 Method for producing catalyst for producing ethylene oxide
JP5211924B2 (en) * 2008-08-05 2013-06-12 三菱化学株式会社 Catalyst for producing ethylene oxide and method for producing ethylene oxide

Also Published As

Publication number Publication date
JP2012075985A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP4172827B2 (en) Method for producing ethylene oxide catalyst
JP4267015B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
KR102203848B1 (en) Method for the production of ethylene oxide
EP3496851A1 (en) Catalyst for the oxidation of ethylene to ethylene oxide
EP0724479A1 (en) Ethylene oxide catalyst
JP2006524130A (en) Ethylene oxide catalyst
JP5606255B2 (en) Catalyst precursor, catalyst for producing ethylene oxide, and method for producing ethylene oxide
JP5143610B2 (en) Method for producing catalyst for producing ethylene oxide
JPH04363139A (en) Silver catalyst for production of ethylene oxide
JP4497926B2 (en) Preparation of ethylene oxide catalyst support
KR102197292B1 (en) Carrier treatment to improve catalytic performance of an ethylene oxide catalyst
JP2009248044A (en) Catalyst for synthesizing chlorine, method for manufacturing the same and method for synthesizing chlorine by using the same
KR102232620B1 (en) Silver-based ethylene oxide catalyst having reduced sodium content
JP7052831B2 (en) Metal-supported catalyst, method for producing and storing metal-supported catalyst, and method for producing alcohol.
JP2010189206A (en) Method for producing chlorine
JP5211924B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
CN106955700A (en) A kind of preparation method and applications of silver catalyst for alkene epoxidation
JP5165441B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JPH11314034A (en) Silver catalyst for manufacturing ethyleneoxide, manufacture thereof and manufacture of ethylene oxide
JP5581058B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP5916329B2 (en) Catalyst for producing ethylene oxide, method for producing the catalyst, and method for producing ethylene oxide
JP4747066B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
JP2006524129A (en) Ethylene oxide catalyst
JP2016165697A (en) Ethylene oxide production catalyst and method for producing ethylene oxide using the same
JP2013202592A (en) Catalyst for ethylene oxide production and method for production of ethylene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R150 Certificate of patent or registration of utility model

Ref document number: 5606255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150