JP2016164713A - 温度サイクル負荷監視システム - Google Patents
温度サイクル負荷監視システム Download PDFInfo
- Publication number
- JP2016164713A JP2016164713A JP2015044490A JP2015044490A JP2016164713A JP 2016164713 A JP2016164713 A JP 2016164713A JP 2015044490 A JP2015044490 A JP 2015044490A JP 2015044490 A JP2015044490 A JP 2015044490A JP 2016164713 A JP2016164713 A JP 2016164713A
- Authority
- JP
- Japan
- Prior art keywords
- temperature cycle
- cycle load
- infrared camera
- monitoring system
- information processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing And Monitoring For Control Systems (AREA)
Abstract
【課題】劣化進行度の高い危険領域を予知するために有効な温度サイクル負荷を監視する。
【解決手段】温度サイクル負荷監視システムは、工業プラント配管設備などの監視対象物を撮像範囲に含む赤外線カメラ(10)と、赤外線カメラから複数のフレームに亘って画像情報を取得する情報処理手段(20)と備える。情報処理手段は、時系列の複数のフレームに亘る画像情報に基づき監視対象物の温度サイクル負荷を示す値(ピーク・ボトムのカウント数)を算出する(ステップS3)。
【選択図】図3
【解決手段】温度サイクル負荷監視システムは、工業プラント配管設備などの監視対象物を撮像範囲に含む赤外線カメラ(10)と、赤外線カメラから複数のフレームに亘って画像情報を取得する情報処理手段(20)と備える。情報処理手段は、時系列の複数のフレームに亘る画像情報に基づき監視対象物の温度サイクル負荷を示す値(ピーク・ボトムのカウント数)を算出する(ステップS3)。
【選択図】図3
Description
本発明は、温度サイクル負荷監視システムに関する。
大規模工業プラントにおける配管からの気体・液体等の流体の漏洩を予知的に検知し漏れる前に配管設備をメンテナンスすることは、重大な事故を防ぐだけでなく大がかりな修理にかかる費用や工数の削減にもなる。
従来、赤外線カメラでガス漏れ発生を検知するシステムが知られている。しかし、これはガスの発生を検知するもので予測するものではなかった。
一方、特許文献1には、流体通路内の漏洩を感知するためのまたは漏洩を発生させる可能性のある流体流路の劣化部分を予測するためのシステムが開示されている。同システムは、流体流路を撮像対象としたサーモグラフィックイメージが、流体の漏洩または予測される流体の漏洩を示す領域が含むかどうかを決定するイメージパターン認識分析による。また、同システムは亀裂付近の異常に高い温度または異常なサーモグラフィックイメージパターンを有する。
従来、赤外線カメラでガス漏れ発生を検知するシステムが知られている。しかし、これはガスの発生を検知するもので予測するものではなかった。
一方、特許文献1には、流体通路内の漏洩を感知するためのまたは漏洩を発生させる可能性のある流体流路の劣化部分を予測するためのシステムが開示されている。同システムは、流体流路を撮像対象としたサーモグラフィックイメージが、流体の漏洩または予測される流体の漏洩を示す領域が含むかどうかを決定するイメージパターン認識分析による。また、同システムは亀裂付近の異常に高い温度または異常なサーモグラフィックイメージパターンを有する。
しかし、特許文献1に記載の発明にあっては、異常なサーモグラフィックイメージパターン、すなわち、配管の劣化を原因とした異常な温度分布の発生まで待つ必要があるため、異常を検知した時には、すでに流体の漏洩が発生していたり、流体の漏洩の直前であったりすることが考えられ、流体の漏洩を十分な時間だけ前もって予測することが困難である。
一方、特定の領域が異常な温度にならなくても、すなわち、配管の劣化が生じなくても、温度サイクル負荷が大きな領域を、将来的に流体漏洩等を生じさせる劣化進行度の高い危険領域として予測することが可能である。
一方、特定の領域が異常な温度にならなくても、すなわち、配管の劣化が生じなくても、温度サイクル負荷が大きな領域を、将来的に流体漏洩等を生じさせる劣化進行度の高い危険領域として予測することが可能である。
本発明は以上の従来技術における問題に鑑みてなされたものであって、劣化進行度の高い危険領域を予知するために有効な温度サイクル負荷を監視することを課題とする。
以上の課題を解決するための請求項1記載の発明は、監視対象物を撮像範囲に含む赤外線カメラと、
前記赤外線カメラから複数のフレームに亘って画像情報を取得する情報処理手段と、備え、
前記情報処理手段は、時系列の複数のフレームに亘る前記画像情報に基づき前記監視対象物の温度サイクル負荷を示す値を算出する温度サイクル負荷監視システムである。
前記赤外線カメラから複数のフレームに亘って画像情報を取得する情報処理手段と、備え、
前記情報処理手段は、時系列の複数のフレームに亘る前記画像情報に基づき前記監視対象物の温度サイクル負荷を示す値を算出する温度サイクル負荷監視システムである。
請求項2記載の発明は、前記情報処理手段は、時系列の複数のフレームに亘る前記画像情報に基づき前記監視対象物の温度変動の極値をカウントし、そのカウント数を前記温度サイクル負荷を示す値とする請求項1に記載の温度サイクル負荷監視システムである。
請求項3記載の発明は、前記情報処理手段は、前記極値を、極大値と極小値との差が所定の値を超える場合に算入してカウントし、そのカウント数を前記温度サイクル負荷を示す値とする請求項2に記載の温度サイクル負荷監視システムである。
請求項4記載の発明は、前記情報処理手段は、前記監視対象物の前記赤外線カメラを通じた監視範囲を複数の領域に分割し、その領域ごとに前記温度サイクル負荷を示す値を算出する請求項1から請求項3のうちいずれか一に記載の温度サイクル負荷監視システムである。
請求項5記載の発明は、前記情報処理手段は、前記領域ごとに前記温度サイクル負荷を示す値が所定の閾値を超えるか否か判断し、
前記所定の閾値を越えた領域の画像情報取得頻度と、前記所定の閾値を越えない領域の画像情報取得頻度とを、前者を高く、後者を低く設定する請求項4に記載の温度サイクル負荷監視システムである。
前記所定の閾値を越えた領域の画像情報取得頻度と、前記所定の閾値を越えない領域の画像情報取得頻度とを、前者を高く、後者を低く設定する請求項4に記載の温度サイクル負荷監視システムである。
請求項6記載の発明は、前記赤外線カメラを制御する制御手段を備え、
前記制御手段は、前記情報処理手段による前記画像情報取得頻度の設定に応じて前記赤外線カメラの撮像動作を制御する請求項5に記載の温度サイクル負荷監視システムである。
前記制御手段は、前記情報処理手段による前記画像情報取得頻度の設定に応じて前記赤外線カメラの撮像動作を制御する請求項5に記載の温度サイクル負荷監視システムである。
請求項7記載の発明は、前記制御手段は、前記赤外線カメラの電源のオンオフ制御が可能である請求項6に記載の温度サイクル負荷監視システムである。
請求項8記載の発明は、前記制御手段は、前記赤外線カメラの撮像範囲の制御が可能である請求項6又は請求項7に記載の温度サイクル負荷監視システムである。
本発明によれば、監視対象物の温度サイクル負荷を監視する温度サイクル負荷監視システムが構成され、劣化進行度の高い危険領域を予知するために有効に利用することができる。
以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。
〔第1実施形態〕
まず、本発明の第1実施形態の温度サイクル負荷監視システムにつき説明する。
図1に示すように本実施形態の温度サイクル負荷監視システムは、赤外線カメラ10と、情報処理手段及び制御手段としてのコンピューター20と、モニター30と、操作入力装置40とを備えて構成される。
コンピューター20は、記憶装置22に記憶されたコンピュータープログラムをプロセッサー21が実行することにより情報処理手段及び制御手段として機能する。
コンピューター20は、インターフェースを介して赤外線カメラ10により撮像された画像情報を取得するとともに、赤外線カメラ10を制御する。赤外線カメラ10は、ガスの特定波長の吸収する性質を利用したガス検知機能を有した赤外線ガス検知カメラであり、ガス漏れがあると撮影画像から検知することができ、また通常は撮影している物体の表面温度もサーモグラフィとして検知できる。
本実施形態ではコンピューター20は、赤外線カメラ10のパン、チルト、ズーム、撮影タイミングを制御する。
まず、本発明の第1実施形態の温度サイクル負荷監視システムにつき説明する。
図1に示すように本実施形態の温度サイクル負荷監視システムは、赤外線カメラ10と、情報処理手段及び制御手段としてのコンピューター20と、モニター30と、操作入力装置40とを備えて構成される。
コンピューター20は、記憶装置22に記憶されたコンピュータープログラムをプロセッサー21が実行することにより情報処理手段及び制御手段として機能する。
コンピューター20は、インターフェースを介して赤外線カメラ10により撮像された画像情報を取得するとともに、赤外線カメラ10を制御する。赤外線カメラ10は、ガスの特定波長の吸収する性質を利用したガス検知機能を有した赤外線ガス検知カメラであり、ガス漏れがあると撮影画像から検知することができ、また通常は撮影している物体の表面温度もサーモグラフィとして検知できる。
本実施形態ではコンピューター20は、赤外線カメラ10のパン、チルト、ズーム、撮影タイミングを制御する。
コンピューター20が、図2に示すような工業プラントのある領域Aを1台の赤外線カメラ10をパン、チルト制御して、分割領域A1→A2→A3→A4→A1・・・・との順で循環監視する場合につき説明する。領域A内に監視対象物である配管が示される。コンピューター20における処理のフローチャートを図3に示す。
まず、コンピューター20は、監視を開始すると、サーモグラフィとして所定の撮像間隔時間(例えば1分)で各分割領域A1,A2,A3,A4を順に撮像させ、画像を取得し蓄積する(ステップS1)。
次に、コンピューター20は、所定の集計間隔時間(例えば300分)で、分割領域A1,A2,A3,A4ごと、かつ、フレームごとに温度値を算出する(ステップS2)。例示の場合では、分割領域A1を対象にした1分間隔の時系列の300フレームの画像情報が取得されたこととなる。他の分割領域A2,A3,A4についても同様に1分間隔の時系列の300フレームの画像情報が取得されたこととなる。
温度値は、フレーム画像全体の平均値、最高値、最頻値などの代表値を算出する。なお、配管部のみを抽出する画像処理を施して、配管部のみを対象に温度値を算出してもよい。
次に、コンピューター20は、所定の集計間隔時間(例えば300分)で、分割領域A1,A2,A3,A4ごと、かつ、フレームごとに温度値を算出する(ステップS2)。例示の場合では、分割領域A1を対象にした1分間隔の時系列の300フレームの画像情報が取得されたこととなる。他の分割領域A2,A3,A4についても同様に1分間隔の時系列の300フレームの画像情報が取得されたこととなる。
温度値は、フレーム画像全体の平均値、最高値、最頻値などの代表値を算出する。なお、配管部のみを抽出する画像処理を施して、配管部のみを対象に温度値を算出してもよい。
次に、コンピューター20は、ステップS2で算出した温度値の時系列データについて、極値をカウントしそのカウント数を、温度サイクル負荷を示す値として算出する(ステップS3)。例えば、図4に示すようにグラフ化される温度値の時系列データが構成される。極値は、極大値(ピーク)と極小値(ボトム)の双方をカウントする。
次に、コンピューター20は、分割領域A1,A2,A3,A4ごとに温度サイクル負荷を示す値(上記カウント数)が所定の閾値を超えるか否か判断する(ステップS4)。例えば、所定の閾値が「50」とされ、分割領域A1のカウント数が「40」、分割領域A2のカウント数が「48」、分割領域A3のカウント数が「52」、分割領域A4のカウント数が「40」との結果を得る。
次に、コンピューター20は、モニター30によって各分割領域A1,A2,A3,A4のカウント数を表示する。また、コンピューター20は、カウント数が所定の閾値を越えていることをアラート表示する。日照や降雨などの環境変化で、配管の温度は高低変化を繰り返すが、その都度、配管は膨張・収縮を繰り返し、この繰り返しが数か月、数年と続くと配管や継ぎ手部分は劣化しガス漏れの危険性が高まる。このため、ユーザーは、前出の例で、分割領域A2,A3にある配管で高温・低温の繰り返し数が際立って多い、従って経年劣化が他より大きく、ガス漏れの危険性が高いと認識できる。本実施形態の温度サイクル負荷監視システムによって、このようなガス漏れの危険性とその領域を知らせる有効な情報提供が可能である。
以上により本来のガス検知を継続しても良いが、さらに詳細に監視する場合につき続けて説明する。
以上により本来のガス検知を継続しても良いが、さらに詳細に監視する場合につき続けて説明する。
次に、コンピューター20は、ステップS4で所定の閾値を超える分割領域が一部に出た場合、所定の閾値を越えた領域の画像情報取得頻度と、所定の閾値を越えない領域の画像情報取得頻度とを、前者を高く、後者を低く設定する(ステップS5)。そして、コンピューター20は、この設定に応じて赤外線カメラ10の撮像動作を制御する。
前出の例では、分割領域A3が所定の閾値(50)を越え、他は超えていないので、分割領域A3の画像情報取得頻度を高く、他の分割領域A1,A2,A4の画像情報取得頻度を低く設定する。
その頻度設定の一例としては、分割領域A3の撮像間隔時間を30秒に設定し、他の分割領域A1,A2,A4の撮像間隔時間を5分に設定するなどである。
また例えば、分割領域A3の撮像間隔時間を10秒に設定し、他の分割領域A1,A2,A4の画像情報取得頻度を0に設定する。「画像情報取得頻度を0に設定する」とは、撮像間隔時間を無限大にするということなので、すなわち、撮影を行わない(監視を行わない。)。この場合、1台の赤外線カメラ10のすべての能力を分割領域A3の監視に注力させガス検知を行う。コンピューター20は、ステップS1でパン、チルトしていた領域Aが、分割領域A3に相当するようにズームし、分割領域A3内を4分割してステップS1〜S4と同様に実施する。カウント数の所定の閾値は適度に設定される。
前出の例では、分割領域A3が所定の閾値(50)を越え、他は超えていないので、分割領域A3の画像情報取得頻度を高く、他の分割領域A1,A2,A4の画像情報取得頻度を低く設定する。
その頻度設定の一例としては、分割領域A3の撮像間隔時間を30秒に設定し、他の分割領域A1,A2,A4の撮像間隔時間を5分に設定するなどである。
また例えば、分割領域A3の撮像間隔時間を10秒に設定し、他の分割領域A1,A2,A4の画像情報取得頻度を0に設定する。「画像情報取得頻度を0に設定する」とは、撮像間隔時間を無限大にするということなので、すなわち、撮影を行わない(監視を行わない。)。この場合、1台の赤外線カメラ10のすべての能力を分割領域A3の監視に注力させガス検知を行う。コンピューター20は、ステップS1でパン、チルトしていた領域Aが、分割領域A3に相当するようにズームし、分割領域A3内を4分割してステップS1〜S4と同様に実施する。カウント数の所定の閾値は適度に設定される。
以上のステップS5の詳細監視が実行されるにしても、実行されないにしても、コンピューター20は、監視を継続して、監視対象内の各領域のカウント数(温度サイクル負荷を示す値)の最新情報を含む履歴情報、これに基づく統計情報(カウント数推移グラフなど)を表示し、ユーザーに対し有効な情報提供を行う(ステップS6)。
なお、コンピューター20に、操作入力装置40を介して領域を指定してカウント数リセットの入力がなされると、コンピューター20は、指定された領域のカウント数をリセットする(ステップS7)。例えば、本システムが提供する情報に基づき、ユーザーが分割領域A3にある配管を調べて、劣化のある個所を修理した場合に、ユーザーが分割領域A3のカウント数リセットを、操作入力装置40を操作してコンピューター20に入力する。これにより、温度サイクル負荷を示す適切な情報を提供可能である。
〔第2実施形態〕
次に、本発明の第2実施形態の温度サイクル負荷監視システムにつき説明する。
本実施形態の温度サイクル負荷監視システムは、上記ステップS3において極大値と極小値との差が所定の値を超える場合に算入してカウントする点で異なり、その他は上記第1実施形態と同様である。
次に、本発明の第2実施形態の温度サイクル負荷監視システムにつき説明する。
本実施形態の温度サイクル負荷監視システムは、上記ステップS3において極大値と極小値との差が所定の値を超える場合に算入してカウントする点で異なり、その他は上記第1実施形態と同様である。
コンピューター20は、上記第1実施形態と同様にステップS1〜S7を実行する。但し、ステップS3において極大値と極小値との差が所定の値を超える場合に算入してカウントする。
例えば、図5に示すように、分割領域A2のグラフA2(符号共通)が、高温側閾値Thaを越え低温側閾値Thbを下回ることを繰り返して温度変動する一方で、分割領域A3のグラフA3(符号共通)が、高温側閾値Thaを越えることなく温度変動する場合があったとする。この場合、分割領域A2のカウント数が分割領域A3のカウント数より増加する。すなわち、分割領域A2の温度サイクル負荷を示す値が分割領域A3の温度サイクル負荷を示す値より高くなり、分割領域A2の方が、劣化が進行しガス漏れの危険性が高いことを示すことができる。
温度サイクル負荷を指標するには、温度変動の振動数のほかに振幅も重要だからである。
そのため、高温側閾値Tha及び低温側閾値Thbは全領域通して固定値ではなく、高温側閾値Thaと低温側閾値Thbとの差を一定の所定の値に統一し、各分割領域A1,A2,A3,A4で上下(温度軸方向)に変動させて当てはめて極大値と極小値との差が所定の値を超えるか否かを判別してカウントする。また、直前の極値との差が所定値を超えるかでカウントしてもよい。
例えば、図5に示すように、分割領域A2のグラフA2(符号共通)が、高温側閾値Thaを越え低温側閾値Thbを下回ることを繰り返して温度変動する一方で、分割領域A3のグラフA3(符号共通)が、高温側閾値Thaを越えることなく温度変動する場合があったとする。この場合、分割領域A2のカウント数が分割領域A3のカウント数より増加する。すなわち、分割領域A2の温度サイクル負荷を示す値が分割領域A3の温度サイクル負荷を示す値より高くなり、分割領域A2の方が、劣化が進行しガス漏れの危険性が高いことを示すことができる。
温度サイクル負荷を指標するには、温度変動の振動数のほかに振幅も重要だからである。
そのため、高温側閾値Tha及び低温側閾値Thbは全領域通して固定値ではなく、高温側閾値Thaと低温側閾値Thbとの差を一定の所定の値に統一し、各分割領域A1,A2,A3,A4で上下(温度軸方向)に変動させて当てはめて極大値と極小値との差が所定の値を超えるか否かを判別してカウントする。また、直前の極値との差が所定値を超えるかでカウントしてもよい。
〔その他の実施形態〕
ここに、他の変形例や、実施に当たっての補足事項を記載する。
上記第1及び第2実施形態にあっては、赤外線カメラ10をパン、チルト制御して監視に用いたが、赤外線カメラを固定式として数台で監視領域を分担して撮像するシステム構成で実施してもよい。もちろん、パン、チルトして撮像する赤外線カメラを数台設置して監視領域を分担して撮像するシステム構成で実施してもよいし、固定式と、パン式、チルト式、パン・チルト式などとを混合して用いもよい。
ここに、他の変形例や、実施に当たっての補足事項を記載する。
上記第1及び第2実施形態にあっては、赤外線カメラ10をパン、チルト制御して監視に用いたが、赤外線カメラを固定式として数台で監視領域を分担して撮像するシステム構成で実施してもよい。もちろん、パン、チルトして撮像する赤外線カメラを数台設置して監視領域を分担して撮像するシステム構成で実施してもよいし、固定式と、パン式、チルト式、パン・チルト式などとを混合して用いもよい。
制御手段としてのコンピューター20が赤外線カメラの電源のオンオフ制御が可能であるシステム構成を実施することにも利点がある。
コンピューター20の制御により、撮像タイミングが到来しない時間帯に赤外線カメラをオフにして消費電力を抑えることができる。
コンピューター20の制御により、撮像タイミングが到来しない時間帯に赤外線カメラをオフにして消費電力を抑えることができる。
なお、上述したコンピューター20の機能が、赤外線カメラ10の本体筐体内に設けられるなどハードウエア構成は問わない。例えば、赤外線カメラ10に設けられるインターバル撮像機能を利用してもよい。そのインターバル撮像機能に非撮影時のスリープ機能が有ってもよい。
また、赤外線カメラ10が所定のフレームレート(例えば、30fps)で連続撮像してコンピューター20に順次に送り、コンピューター20がその中から必要なフレームを選択するように実施してもよいし、コンピューター20で処理されるフレームのみを赤外線カメラ10で撮像するように実施してもよい。
赤外線カメラ10が内部メモリーに複数フレーム分の画像情報を蓄積して、極値のカウント処理(ステップS3)時までの期間の適時にコンピューター20にその画像情報を送信するように実施してもよい。
また、赤外線カメラ10が所定のフレームレート(例えば、30fps)で連続撮像してコンピューター20に順次に送り、コンピューター20がその中から必要なフレームを選択するように実施してもよいし、コンピューター20で処理されるフレームのみを赤外線カメラ10で撮像するように実施してもよい。
赤外線カメラ10が内部メモリーに複数フレーム分の画像情報を蓄積して、極値のカウント処理(ステップS3)時までの期間の適時にコンピューター20にその画像情報を送信するように実施してもよい。
10 赤外線カメラ
20 コンピューター(情報処理手段、制御手段)
30 モニター
40 操作入力装置
20 コンピューター(情報処理手段、制御手段)
30 モニター
40 操作入力装置
Claims (8)
- 監視対象物を撮像範囲に含む赤外線カメラと、
前記赤外線カメラから複数のフレームに亘って画像情報を取得する情報処理手段と、備え、
前記情報処理手段は、時系列の複数のフレームに亘る前記画像情報に基づき前記監視対象物の温度サイクル負荷を示す値を算出する温度サイクル負荷監視システム。 - 前記情報処理手段は、時系列の複数のフレームに亘る前記画像情報に基づき前記監視対象物の温度変動の極値をカウントし、そのカウント数を前記温度サイクル負荷を示す値とする請求項1に記載の温度サイクル負荷監視システム。
- 前記情報処理手段は、前記極値を、極大値と極小値との差が所定の値を超える場合に算入してカウントし、そのカウント数を前記温度サイクル負荷を示す値とする請求項2に記載の温度サイクル負荷監視システム。
- 前記情報処理手段は、前記監視対象物の前記赤外線カメラを通じた監視範囲を複数の領域に分割し、その領域ごとに前記温度サイクル負荷を示す値を算出する請求項1から請求項3のうちいずれか一に記載の温度サイクル負荷監視システム。
- 前記情報処理手段は、前記領域ごとに前記温度サイクル負荷を示す値が所定の閾値を超えるか否か判断し、
前記所定の閾値を越えた領域の画像情報取得頻度と、前記所定の閾値を越えない領域の画像情報取得頻度とを、前者を高く、後者を低く設定する請求項4に記載の温度サイクル負荷監視システム。 - 前記赤外線カメラを制御する制御手段を備え、
前記制御手段は、前記情報処理手段による前記画像情報取得頻度の設定に応じて前記赤外線カメラの撮像動作を制御する請求項5に記載の温度サイクル負荷監視システム。 - 前記制御手段は、前記赤外線カメラの電源のオンオフ制御が可能である請求項6に記載の温度サイクル負荷監視システム。
- 前記制御手段は、前記赤外線カメラの撮像範囲の制御が可能である請求項6又は請求項7に記載の温度サイクル負荷監視システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015044490A JP2016164713A (ja) | 2015-03-06 | 2015-03-06 | 温度サイクル負荷監視システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015044490A JP2016164713A (ja) | 2015-03-06 | 2015-03-06 | 温度サイクル負荷監視システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016164713A true JP2016164713A (ja) | 2016-09-08 |
Family
ID=56876616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015044490A Pending JP2016164713A (ja) | 2015-03-06 | 2015-03-06 | 温度サイクル負荷監視システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016164713A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020034429A (ja) * | 2018-08-30 | 2020-03-05 | 日本アビオニクス株式会社 | 配管検査装置及び配管検査方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62179647A (ja) * | 1986-02-03 | 1987-08-06 | Mitsubishi Heavy Ind Ltd | 高温容器の内壁部欠陥検査装置 |
JP2001217169A (ja) * | 1999-11-26 | 2001-08-10 | Matsushita Electric Ind Co Ltd | データ変動監視方法と監視装置 |
JP2005300179A (ja) * | 2004-04-06 | 2005-10-27 | Constec Engi Co | 赤外線構造物診断システム |
JP2006177869A (ja) * | 2004-12-24 | 2006-07-06 | Constec Engi Co | 外装改善計画システム |
JP2014146334A (ja) * | 2013-01-28 | 2014-08-14 | Fisher Rosemount Systems Inc | 動作プロセスを監視するシステムおよび方法 |
-
2015
- 2015-03-06 JP JP2015044490A patent/JP2016164713A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62179647A (ja) * | 1986-02-03 | 1987-08-06 | Mitsubishi Heavy Ind Ltd | 高温容器の内壁部欠陥検査装置 |
JP2001217169A (ja) * | 1999-11-26 | 2001-08-10 | Matsushita Electric Ind Co Ltd | データ変動監視方法と監視装置 |
JP2005300179A (ja) * | 2004-04-06 | 2005-10-27 | Constec Engi Co | 赤外線構造物診断システム |
JP2006177869A (ja) * | 2004-12-24 | 2006-07-06 | Constec Engi Co | 外装改善計画システム |
JP2014146334A (ja) * | 2013-01-28 | 2014-08-14 | Fisher Rosemount Systems Inc | 動作プロセスを監視するシステムおよび方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020034429A (ja) * | 2018-08-30 | 2020-03-05 | 日本アビオニクス株式会社 | 配管検査装置及び配管検査方法 |
JP7126406B2 (ja) | 2018-08-30 | 2022-08-26 | 日本アビオニクス株式会社 | 配管検査装置及び配管検査方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6344533B2 (ja) | ガス濃度厚み積測定装置、ガス濃度厚み積測定方法、ガス濃度厚み積測定プログラム、及び、ガス濃度厚み積測定プログラムを記録したコンピュータ読み取り可能な記録媒体 | |
US10739226B2 (en) | Gas leak position estimation device, gas leak position estimation method and gas leak position estimation program | |
JP6605357B2 (ja) | 異常検知装置、異常検知システムおよびその方法 | |
US9025817B2 (en) | System and method for leak detection | |
US20160320296A1 (en) | Gas detector | |
CN104948914B (zh) | 使用热成像的过程管道异常检测 | |
CN106131502B (zh) | 用于管廊隧道的视频监控方法及装置 | |
KR101685950B1 (ko) | 자가 고장 진단 기능이 구비된 올인원 녹화 장치 | |
JP2010124028A (ja) | 監視装置 | |
JP2016164713A (ja) | 温度サイクル負荷監視システム | |
KR101590467B1 (ko) | 영상을 이용한 배관누설검출시스템의 배관누설검출방법 | |
JP5710230B2 (ja) | 監視システムおよび監視方法 | |
JP6849150B2 (ja) | 産業プラント監視制御システム | |
JP6604446B2 (ja) | ガス状態判別方法とそれに用いる画像処理装置及び画像処理プログラム | |
JP2791229B2 (ja) | 設備監視システム | |
JP5418635B2 (ja) | 作業者安全検査装置 | |
EP3049798A2 (en) | Industrial process diagnostics using infrared thermal sensing | |
KR20130097286A (ko) | 고정형 카메라를 이용한 이동형 카메라의 제어장치 및 그 제어방법 | |
JP7176429B2 (ja) | ガス漏れ位置特定システム及びガス漏れ位置特定プログラム | |
JP5500507B2 (ja) | 画像処理装置及び画像処理方法 | |
JP2009169718A (ja) | 画像処理による環境適応型侵入者検知装置 | |
KR101425658B1 (ko) | 감시카메라 시스템에 대한 해킹 및 오동작 감지 방법 | |
KR101165821B1 (ko) | 주파수 스펙트럼 분석을 이용한 적외선 열영상 화재검출 시스템 및 방법 | |
JP2763169B2 (ja) | プラントの異常検知装置 | |
JPH1042274A (ja) | 異常監視方法および装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180724 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190312 |